EP3581871B1 - Metallisches wärmeaustauscherrohr - Google Patents
Metallisches wärmeaustauscherrohr Download PDFInfo
- Publication number
- EP3581871B1 EP3581871B1 EP19000245.1A EP19000245A EP3581871B1 EP 3581871 B1 EP3581871 B1 EP 3581871B1 EP 19000245 A EP19000245 A EP 19000245A EP 3581871 B1 EP3581871 B1 EP 3581871B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rib
- heat exchanger
- metal heat
- cavity
- exchanger pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 43
- 239000002184 metal Substances 0.000 claims 10
- 230000002093 peripheral effect Effects 0.000 claims 2
- 239000011796 hollow space material Substances 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 21
- 238000001704 evaporation Methods 0.000 description 16
- 230000008020 evaporation Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000035784 germination Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/26—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/34—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
- F28F1/36—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
- F28F13/185—Heat-exchange surfaces provided with microstructures or with porous coatings
- F28F13/187—Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
Definitions
- the invention relates to a metallic heat exchanger tube with ribs running around the outside of the tube according to the preamble of claim 1.
- a heat exchanger tube is made of WO2013 / 087140A1 known.
- Metallic heat exchanger tubes of this type are used in particular for the evaporation of liquids from pure substances or mixtures on the outside of the tube.
- Shell and tube heat exchangers are often used in which liquids of pure substances or mixtures evaporate on the outside of the tube and thereby cool down brine or water on the inside of the tube. Such devices are referred to as flooded evaporators.
- the size of the evaporators can be greatly reduced. As a result, the manufacturing costs of such apparatus decrease.
- the amount of refrigerant required decreases, which can make up a not insignificant share of the total system costs with the chlorine-free safety refrigerants that are mainly used today.
- the risk potential can also be reduced by reducing the filling quantity.
- Today's high-performance pipes are already four times more powerful than smooth pipes of the same diameter.
- Integrally rolled finned tubes are understood to mean finned tubes in which the fins are made of the wall material a smooth tube were formed.
- Various methods are known with which the channels located between adjacent ribs are closed in such a way that connections between the channel and the surroundings remain in the form of pores or slots.
- such essentially closed channels are formed by bending or folding the ribs ( US 3,696,861 A ; US 5,054,548 A ; US 7 178 361 B2 ), by splitting and compressing the ribs ( DE 27 58 526 C2 ; US 4,577,381 A ) and by notching and compressing the ribs ( US 4,660,630 A ; EP 0 713 072 B1 ; US 4,216,826 A ) generated.
- the most powerful, commercially available finned tubes for flooded evaporators have a finned structure on the outside of the tube with a fin density of 55 to 60 fins per inch ( US 5,669,441 A ; US 5 697 430 A ; DE 197 57 526 C1 ). This corresponds to a rib pitch of approximately 0.45 to 0.40 mm.
- a smaller rib division inevitably requires equally fine tools.
- finer tools are subject to a higher risk of breakage and faster wear.
- the tools currently available enable the safe production of finned tubes with fin densities of up to 60 fins per inch. Furthermore, as the fin pitch decreases, the production speed of the pipes becomes slower, and consequently the manufacturing costs become higher.
- EP 1 223 400 B1 and WO 2014/072 047 A1 It is proposed to produce undercut secondary grooves at the bottom of the groove, which extend continuously along the primary groove. The cross-section of these secondary grooves can remain constant or can be varied at regular intervals.
- WO 2014/072 046 A1 It is proposed to produce pyramid-like undercut structural elements at the bottom of the groove between the ribs, which are arranged at regular intervals along the primary groove.
- the invention has for its object to provide a performance-enhanced heat exchanger tube for the evaporation of liquids on the outside of the tube.
- the invention includes a metallic heat exchanger tube, comprising a tube wall and ribs encircling the outside of the tube, which have a rib foot, rib flanks and a rib tip and a primary groove formed between the ribs, the rib foot projecting essentially radially from the tube wall and along the rib flanks the primary groove are provided with additional structural elements spaced apart from one another, which are designed as material projections formed from the material of the rib flank and arranged laterally on the rib flank.
- the material projections are deformed in such a way that they touch the tube wall in the area of the primary groove, so that local cavities are formed.
- the cavities have openings in the circumferential direction of the ribs.
- the invention is based on the consideration that to increase the heat transfer during the evaporation, the process of bubble boiling is intensified.
- the formation of bubbles begins at the germination points. These germ sites are mostly small gas or vapor inclusions. When the growing bubble has reached a certain size, it detaches from the surface. If, during the course of the bubble detachment, the germ site was flooded with liquid, the germ site is deactivated.
- the surface must therefore be designed in such a way that a small bubble remains when the bubble is detached, which then serves as the nucleus for a new cycle of bubble formation. This is achieved by forming local cavities on the surface which have openings in the circumferential direction of the ribs. The liquid and vapor are exchanged through the opening.
- a cavity is formed from material of the rib flank which, shaped like a chip, touches the pipe wall in the area of the primary groove as a material projection.
- it is the front edge, i.e. the area of a material projection that is the most distant from the rib flank in the course of the curvature.
- the deformed material projections have a point on the front, the front edges of which, or the surface portions directly connected to these front edges by a conceivable rolling process in the manufacturing process, can come into contact with the tube wall in the region of the primary groove.
- a cavity is consequently formed from the material projection and the rib foot remaining radially within the material projection and the region of the primary groove adjoining the rib foot until the material projection contacts.
- the material projections are particularly preferably on both sides of the ribs arranged.
- the length of the areas in the circumferential direction between two cavities can be between 0.2 mm and 0.5 mm. In this way, optimal coordination of the successive cavities and the areas in between is achieved.
- the rib tips can be deformed in such a way that they cover and partially close off the primary grooves in the radial direction and thus form a helically surrounding, partially closed cavity.
- the rib tips can have, for example, a substantially T-shaped cross section with pore-like recesses through which the vapor bubbles can escape.
- the particular advantage of the invention is that the effect of a cavity on the formation of bubbles is particularly great if the exchange of liquid and steam is controlled in a targeted manner and the flooding of the bladder germ site in the cavity is prevented.
- the position of the cavities in the vicinity of the primary groove base is particularly favorable for the evaporation process, since the excess temperature is greatest at the groove base and therefore the highest driving temperature difference is available there for the formation of bubbles.
- the cavities can form a cylindrical cavity.
- the material projections can deform more and more with increasing distance from the rib flank, so that they curl up to the point of contact with the tube wall and a cylindrical tube is thereby formed.
- a cylindrical cavity has two openings of the same type in the circumferential direction of the ribs, via which a bubble nuclei supports the evaporation process of a fluid.
- the maximum clear width of a cavity can advantageously be a maximum of half the longitudinal extent of the cavity. In this way, elongated cavities are formed, which represent bladder germ sites particularly efficiently and contribute to an increase in the heat transfer during evaporation. When the bubble growing from the elongated cavity has reached a certain size, it detaches from the surface.
- the elongated tube as a germ site is only partially flooded with liquid, which means that the germ site remains constantly activated.
- the dimension of the cavity is consequently designed such that when a bubble is detached, a small bubble remains, which then serves as a nucleus for a new cycle of bubble formation.
- fluid guide structures can be arranged on the rib flanks between the cavities.
- the bubbles formed in the evaporation process preferably originate in the cavities opened in the circumferential direction of the ribs, and the liquid flows through the fluid guide structures preferably radially along the rib flank near the closed regions of the cavity.
- the escaping bladder is not hindered by the inflowing liquid working medium and can expand undisturbed in the primary groove.
- the respective flow zones for the liquid and the vapor are ideally spatially separated from one another.
- fluid guide structures can be arranged which extend from one cavity to the cavity adjacent in the circumferential direction of the ribs.
- the liquid flows particularly efficiently radially along the rib flank.
- the escaping bladder is not hindered by the inflowing liquid working medium and can expand in the primary groove until it detaches.
- the respective flow zones for the liquid and for the vapor are spatially separated by the fluid guide structures.
- the fluid guide structures on the rib flanks can extend in a raised arc segment rising towards the rib tip. Through such fluid guide structures, the fluid is led to the cavities as bubble nuclei for evaporation.
- the fluid guide structures on the rib flanks can advantageously extend in the radial direction as raised fluid guide surfaces.
- Raised fluid guiding surfaces can, due to the comparatively sharp edges and the wetting behavior of the liquid fluid, be particularly effective for mass transfer on the heat exchanger tube and thus for efficient heat exchange.
- a fluid guide surface can end directed radially inwards at or in the immediate vicinity of a cavity. Structures of this type ensure targeted fluid guidance and thus efficient heat dissipation on the outside of the pipe.
- a fluid guide surface can advantageously end radially outward at or in the immediate vicinity of the rib tip.
- the liquid fluid is already guided radially towards the tube wall for heat exchange along the fin flanks.
- the fluid guide structures on the rib flanks can extend outward in the radial direction up to a maximum of half the rib height.
- the rib tip can be designed to be extremely narrow, as a result of which, in the radially inward direction, a rib only has a sufficient width and thus sufficient material in the central part and in the region of the rib base in order to form a material projection from the flank.
- Fig. 1 shows a perspective partial view of a rib section of a heat exchanger tube 1 with four material projections 4. From the tube outer side 21, only a part of the circumferential, integrally formed ribs 3 is shown.
- the ribs 3 have a rib foot 31 which attaches to the tube wall 2, rib flanks 32 and a rib tip 33.
- the rib 3 projects essentially radially from the tube wall 2.
- the rib flanks 32 are provided with additional structural elements which are designed as material projections 4 which attach laterally to the rib flank 32.
- the material projections 4 have tips 41 on the end face which touch the tube wall 2 in the region of the primary groove 34. In this way, together with the rib base 31, cavities 5 form, which are in the direction of rotation U of the ribs
- Such cavities 5 preferably form bubble nuclei in the evaporation process of a fluid, which promote heat exchange.
- the boundary surfaces of the material projections 4 are convexly curved on the side facing away from the tube wall 2. In principle, however, other boundary surfaces can also be provided with a convex curvature for each material projection 4. The remaining, non-convex boundary surfaces can either be flat or concave.
- the material of the integrally worked-out material projections 4 comes from the fin flank 32, with recesses 42 additionally being formed in the fin flank 32 due to a material shift during the manufacture of the heat exchanger tubes 1.
- Fig. 2 shows a detailed view of a material projection 4 with a curved boundary surface and a tip 41 which contacts the tube wall 2 in the region of the primary groove 34.
- the cavity 5 formed from the rib base 31 and the inside of the material projections 4 has an approximately cylindrical cavity.
- the maximum clear width x 1 of a cavity 5 is significantly smaller than the longitudinal extension x 2 of the cavity 5. This creates elongated cavities which form bubble nuclei particularly efficiently and contribute to an increase in the heat transfer during evaporation.
- the dimension of the cavity is consequently designed such that when a bubble is detached in the evaporation process, a small bubble residue remains, which then serves as a nucleus for a new cycle of bubble formation.
- liquid fluid is preferably accumulated in the area of the recess 42, as a result of which there is an increasing amount of liquid in the area of the bladder germ, which is available for evaporation.
- the structural size of the material projections 4 and thus also the cavities 5 are typically in the submillimeter range.
- Fig. 3 shows a perspective partial view of a rib section of a heat exchanger tube 1 with material projections 4 and raised fluid guide structures 6. From the tube outer side 21, in turn, only part of one of the circumferential, integrally formed ribs 3 is shown.
- the ribs 3 have a rib foot 31 which attaches to the tube wall 2, rib flanks 32 and a rib tip 33.
- the ribs 3 protrude radially from the tube wall 2.
- the rib flanks 32 are provided with additional structural elements which are designed as material projections 4.
- the fluid guide structures 6 formed formed essentially extend in the axial and radial directions of the tube 1.
- Fig. 3 two fluid guide surfaces 62 are assigned to each of the material projections 4.
- the fluid guide surfaces 62 are brought radially from the outside to the material projections 4.
- the surface of the tube 1 is enlarged by the fluid guide structures 6.
- the edges of the fluid guide surfaces 62 facing away from the rib flank 32 represent convex edges, on which the liquid fluid is preferably collected and directed to the cavity 5.
- Fluid guide surfaces 62 shown are flat surfaces. However, surfaces of this type can also be curved in themselves or assume a wavy shape.
- the axial extent of the fluid guiding surfaces 62 is smaller than the axial extent of the material projections 4. This results in pocket-like structures as recesses 42 on the rib flank 32. Consequently, with a heat exchanger tube 1 designed in this way, liquid fluid can also collect in the pocket-like structures 42 are available for the evaporation process.
- the surface of the tube 1 is thus specifically covered with liquid fluid. This favors the Evaporation process, which increases the performance of the pipe.
- Fig. 4 shows a perspective partial view of a rib section of a heat exchanger tube 1 with a plurality of material projections 4. From the tube outside 21, in turn only a part of the circumferential, integrally formed ribs 3 is shown.
- the material of the integrally worked-out material projections 4 originates primarily from the rib flank 32, recesses 42 being produced by a material shift during the manufacture of the heat exchanger tubes 1.
- fluid guide structures 6 run as arc segments 61, which rise on the rib flanks 32 0 toward the rib tip.
- Such fluid guide structures 6 consequently extend from a cavity 5 to the cavity 5 adjacent in the circumferential direction of the ribs 3. As a result, the liquid flows particularly efficiently radially along the rib flank 32 to the cavity 5.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
- Die Erfindung betrifft ein metallisches Wärmeaustauscherrohr mit auf der Rohraußenseite umlaufenden Rippen gemäß dem Oberbegriff des Anspruchs 1. Solch ein Wärmeaustauscherrohr ist aus
WO2013/087140A1 bekannt. - Derartige metallische Wärmeaustauscherrohre dienen insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite.
- Verdampfung tritt in vielen Bereichen der Kälte- und Klimatechnik sowie in der Prozess- und Energietechnik auf. Häufig werden Rohrbündelwärmeaustauscher verwendet, in denen Flüssigkeiten von Reinstoffen oder Mischungen auf der Rohraußenseite verdampfen und dabei auf der Rohrinnenseite Sole oder Wasser abkühlen. Solche Apparate werden als überflutete Verdampfer bezeichnet.
- Durch die Intensivierung des Wärmeübergangs auf der Rohraußen- bzw. der Rohrinnenseite lässt sich die Größe der Verdampfer stark reduzieren. Hierdurch nehmen die Herstellungskosten solcher Apparate ab. Außerdem sinkt die notwendige Füllmenge an Kältemittel, die bei den heute überwiegend verwendeten, chlorfreien Sicherheitskältemitteln einen nicht zu vernachlässigenden Kostenanteil an den gesamten Anlagekosten ausmachen kann. Bei toxischen oder brennbaren Kältemitteln lässt sich durch eine Reduktion der Füllmenge ferner das Gefahrenpotenzial herabsetzen. Die heute üblichen Hochleistungsrohre sind bereits etwa um den Faktor vier leistungsfähiger als glatte Rohre gleichen Durchmessers.
- Es ist Stand der Technik, derartig leistungsfähige Rohre auf der Basis von integral gewalzten Rippenrohren herzustellen. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Wandmaterial eines Glattrohres geformt wurden. Es sind hierbei verschiedene Verfahren bekannt, mit denen die zwischen benachbarten Rippen befindlichen Kanäle derart verschlossen werden, dass Verbindungen zwischen Kanal und Umgebung in Form von Poren oder Schlitzen bleiben. Insbesondere werden solche im Wesentlichen geschlossenen Kanäle durch Umbiegen oder Umlegen der Rippen (
US 3 696 861 A ;US 5 054 548 A ;US 7 178 361 B2 ), durch Spalten und Stauchen der Rippen (DE 27 58 526 C2 ;US 4 577 381 A ) und durch Kerben und Stauchen der Rippen (US 4 660 630 A ;EP 0 713 072 B1 ;US 4 216 826 A ) erzeugt. - Die leistungsstärksten, kommerziell erhältlichen Rippenrohre für überflutete Verdampfer besitzen auf der Rohraußenseite eine Rippenstruktur mit einer Rippendichte von 55 bis 60 Rippen pro Zoll (
US 5 669 441 A ;US 5 697 430 A ;DE 197 57 526 C1 ). Dies entspricht einer Rippenteilung von ca. 0,45 bis 0,40 mm. Prinzipiell ist es möglich, die Leistungsfähigkeit derartiger Rohre durch eine noch höhere Rippendichte bzw. kleinere Rippenteilung zu verbessern, da hierdurch die Blasenkeimstellendichte erhöht wird. Eine kleinere Rippenteilung erfordert zwangsläufig gleichermaßen feinere Werkzeuge. Feinere Werkzeuge sind jedoch einer höheren Bruchgefahr und einem schnelleren Verschleiß unterworfen. Die derzeit verfügbaren Werkzeuge ermöglichen eine sichere Fertigung von Rippenrohren mit Rippendichten von maximal 60 Rippen pro Zoll. Ferner wird mit abnehmender Rippenteilung die Produktionsgeschwindigkeit der Rohre kleiner und folglich werden die Herstellungskosten höher. - Weiterhin ist bekannt, dass leistungsgesteigerte Verdampfungsstrukturen bei gleichbleibender Rippendichte auf der Rohraußenseite erzeugt werden können, indem man zusätzliche Strukturelemente im Bereich des Nutengrundes zwischen den Rippen einbringt. Da im Bereich des Nutengrundes die Temperatur der Rippe höher ist als im Bereich der Rippenspitze, sind Strukturelemente zur Intensivierung der Blasenbildung in diesem Bereich besonders wirkungsvoll. Beispiele hierfür sind in
EP 0 222 100 B1 ;US 5 186 252 A ;JP 4 039 596 B2 US 2007 / 0 151 715 A1 zu finden. Diesen Erfindungen ist gemeinsam, dass die Strukturelemente am Nutengrund keine hinterschnittene Form aufweisen, weshalb sie die Blasenbildung nicht ausreichend intensivieren. InEP 1 223 400 B1 undWO 2014/ 072 047 A1 wird vorgeschlagen, am Nutengrund zwischen den Rippen hinterschnittene Sekundärnuten zu erzeugen, die sich kontinuierlich entlang der Primärnut erstrecken. Der Querschnitt dieser Sekundärnuten kann konstant bleiben oder in regelmäßigen Abständen variiert werden. InWO 2014/ 072 046 A1 wird vorgeschlagen, am Nutengrund zwischen den Rippen pyramindenartige hinterschnittene Strukturelemente zu erzeugen, die in regelmäßigen Abständen entlang der Primärnut angeordnet sind. - Der Erfindung liegt die Aufgabe zugrunde, ein leistungsgesteigertes Wärmeaustauscherrohr zur Verdampfung von Flüssigkeiten auf der Rohraußenseite anzugeben.
- Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.
- Die Erfindung schließt ein metallisches Wärmeaustauscherrohr ein, umfassend eine Rohrwand und auf der Rohraußenseite umlaufende Rippen, welche einen Rippenfuß, Rippenflanken und eine Rippenspitze haben sowie eine zwischen den Rippen gebildete Primärnut, wobei der Rippenfuß im Wesentlichen radial von der Rohrwand absteht, und die Rippenflanken entlang der Primärnut mit zusätzlichen voneinander beabstandeten Strukturelementen versehen sind, welche als aus Material der Rippenflanke geformte Werkstoffvorsprünge ausgebildet sind, die seitlich an der Rippenflanke angeordnet sind. Die Werkstoffvorsprünge sind derart verformt, dass sie die Rohrwand im Bereich der Primärnut berühren, so dass lokale Kavitäten ausgebildet sind. Die Kavitäten weisen in Umlaufrichtung der Rippen Öffnungen auf.
- Die Erfindung geht dabei von der Überlegung aus, dass zur Erhöhung des Wärmeüberganges bei der Verdampfung der Vorgang des Blasensiedens intensiviert wird. Die Bildung von Blasen beginnt an Keimstellen. Diese Keimstellen sind meist kleine Gas- oder Dampfeinschlüsse. Wenn die anwachsende Blase eine bestimmte Größe erreicht hat, löst sie sich von der Oberfläche ab. Würde im Zuge der Blasenablösung unerwünscht die Keimstelle mit Flüssigkeit geflutet, dann wird die Keimstelle deaktiviert. Die Oberfläche muss also derart gestaltet werden, dass beim Ablösen der Blase eine kleine Blase zurück bleibt, die dann als Keimstelle für einen neuen Zyklus der Blasenbildung dient. Dies wird erreicht, indem man auf der Oberfläche lokale Kavitäten ausbildet, die in Umlaufrichtung der Rippen Öffnungen aufweisen. Durch die Öffnung erfolgt der Austausch von Flüssigkeit und Dampf.
- Eine Kavität wird aus Material der Rippenflanke gebildet, welches ähnlich einem Span geformt als Werkstoffvorsprung die Rohrwand im Bereich der Primärnut berührt. Im Sonderfall handelt es sich um die stirnseitige Kante, also den von der Rippenflanke im Krümmungsverlauf entferntesten Bereich eines Werkstoffvorsprungs. Mit anderen Worten: Die verformten Werkstoffvorsprünge weisen vorderseitig quasi eine Spitze auf, deren stirnseitigen Kanten oder auch die durch einen denkbaren Einrollvorgang im Herstellungsprozess an diese stirnseitigen Kanten unmittelbar anschließenden Flächenanteile mit der Rohrwand im Bereich der Primärnut in Berührung kommen können. Eine Kavität wird folglich aus dem Werkstoffvorsprung und dem radial innerhalb des Werkstoffvorsprungs verbleibenden Rippenfuß und dem an den Rippenfuß anschließenden Bereich der Primärnut bis zum Kontakt des Werkstoffvorsprungs ausgeformt. Die Werkstoffvorsprünge sind besonders bevorzugt beidseitig an den Rippen angeordnet.
- Die Länge der Bereiche in Umlaufrichtung zwischen zwei Kavitäten können zwischen 0,2 mm und 0,5 mm betragen. Hierdurch wird eine optimale Abstimmung der aufeinanderfolgenden Kavitäten und dazwischen liegenden Bereiche erzielt.
- Zudem können die Rippenspitzen derart verformt sein, dass sie die Primärnuten in Radialrichtung überdecken und teilweise verschließen und so einen helixförmig umlaufenden, teilweise abgeschlossenen Hohlraum bilden. Die Rippenspitzen können dabei beispielsweise einen im Wesentlichen T-förmigen Querschnitt mit porenartigen Ausnehmungen aufweisen, durch welche die Dampfblasen entweichen können.
- Der besondere Vorteil der Erfindung besteht darin, dass die Wirkung einer Kavität auf die Bildung von Blasen dann besonders groß ist, wenn der Austausch von Flüssigkeit und Dampf gezielt gesteuert und die Flutung der Blasenkeimstelle in der Kavität verhindert wird. Die Lage der Kavitäten in der Nähe des primären Nutengrundes ist für den Verdampfungsprozess besonders günstig, da am Nutengrund die Übertemperatur am größten ist und deshalb dort die höchste treibende Temperaturdifferenz für die Blasenbildung zur Verfügung steht.
- In bevorzugter Ausgestaltung der Erfindung können die Kavitäten einen zylinderartigen Hohlraum ausbilden. Die Werkstoffvorsprünge können sich mit zunehmender Entfernung von der Rippenflanke zunehmend verformen, so dass sie sich quasi bis zum Kontakt mit der Rohrwand einrollen und sich dadurch eine zylinderförmige Röhre ausbildet. Ein zylinderartiger Hohlraum hat in Umlaufrichtung der Rippen zwei im Wesentlichen gleichgeartete Öffnungen, über die ein Blasenkeim den Verdampfungsprozess eines Fluids unterstützt. Vorteilhafterweise kann die maximale lichte Weite einer Kavität maximal die Hälfte der Längserstreckung der Kavität betragen. Hierdurch werden längliche Hohlräume ausgebildet, die besonders effizient Blasenkeimstellen darstellen und zu einer Erhöhung des Wärmeüberganges bei der Verdampfung beitragen. Wenn die aus der längsgestreckten Kavität anwachsende Blase eine bestimmte Größe erreicht hat, löst sie sich von der Oberfläche ab. Nach der Ablösung wird die längliche Röhre als Keimstelle nur zu einem gewissen Teil mit Flüssigkeit geflutet, wodurch die Keimstelle ständig aktiviert bleibt. Die Dimension des Hohlraums wird folglich derart gestaltet, dass beim Ablösen einer Blase eine kleine Blase zurück bleibt, die dann als Keimstelle für einen neuen Zyklus der Blasenbildung dient.
- In besonders bevorzugter Ausgestaltung können an den Rippenflanken zwischen den Kavitäten Fluidleitstrukturen angeordnet sein. Die im Verdampfungsprozess gebildeten Blasen haben bevorzugt ihren Ursprung in den in Umlaufrichtung der Rippen geöffneten Kavitäten, die Flüssigkeit strömt durch die Fluidleitstrukturen bevorzugt radial entlang der Rippenflanke nahe der verschlossenen Bereiche der Kavität nach. Hierbei wird die entweichende Blase durch das einströmende flüssige Arbeitsmedium nicht behindert und kann sich ungestört in der Primärnut ausdehnen. Die jeweiligen Strömungszonen für die Flüssigkeit und den Dampf sind dabei im Idealfall räumlich voneinander getrennt.
- Bei einer weiteren vorteilhaften Ausführungsform der Erfindung können Fluidleitstrukturen angeordnet sein, welche sich von einer Kavität zur in Umlaufrichtung der Rippen benachbarten Kavität erstrecken. Hierdurch strömt die Flüssigkeit besonders effizient radial entlang der Rippenflanke nach. Die entweichende Blase wird durch das einströmende flüssige Arbeitsmedium nicht behindert und kann sich bis zur Ablösung in der Primärnut ausdehnen. Durch die Fluidleitstrukturen werden die jeweiligen Strömungszonen für die Flüssigkeit und für den Dampf räumlich getrennt.
- In weiterer vorteilhafter Ausgestaltung können sich die Fluidleitstrukturen an den Rippenflanken in einem zur Rippenspitze hin ansteigenden erhabenen Bogensegment erstrecken. Durch derartige Fluidleitstrukturen wird das Fluid zu den Kavitäten als Blasenkeimstellen zur Verdampfung hingeführt.
- Vorteilhafterweise können sich die Fluidleitstrukturen an den Rippenflanken in radialer Richtung als erhabene Fluidleitflächen erstrecken. Erhabene Fluidleitflächen können aufgrund vergleichsweise scharfer Kanten und des Benetzungsverhaltens des flüssigen Fluids besonders wirksam für einen Stofftransport am Wärmeaustauscherrohr und damit für einen effizienten Wärmeaustausch sorgen.
- In bevorzugter Ausführungsform der Erfindung kann eine Fluidleitfläche radial einwärts gerichtet an oder in unmittelbarer Nachbarschaft einer Kavität enden. Derartige Strukturen sorgen für eine gezielte Fluidführung und damit effiziente Wärmeabfuhr auf der Rohraußenseite.
- Vorteilhafterweise kann eine Fluidleitfläche radial auswärts gerichtet an oder in unmittelbarer Nachbarschaft der Rippenspitze enden. So wird bereits, ausgehend vom Bereich der Rippenspitze, das flüssige Fluid für einen Wärmeaustauch an den Rippenflanken entlang radial in Richtung Rohrwand geführt.
- In weiterer vorteilhafter Ausgestaltung der Erfindung können sich die Fluidleitstrukturen an den Rippenflanken in radialer Richtung auswärts gerichtet maximal bis zur Hälfte der Rippenhöhe erstrecken. Aus fertigungstechnischen Gründen kann die Rippenspitze ausgesprochen schmal ausgebildet sein, wodurch radial einwärts gerichtet eine Rippe erst im mittleren Teil und im Bereich des Rippenfußes eine ausreichende Breite und damit genügend Material aufweist, um aus der Flanke einen Werkstoffvorsprung auszubilden.
- Ausführungsbeispiele der Erfindung werden anhand der schematischen Zeichnungen näher erläutert.
- Darin zeigen:
- Fig. 1
- eine perspektivische Teilansicht eines Rippenabschnitts eines Wärmeaustauscherrohres mit Werkstoffvorsprüngen,
- Fig. 2
- eine Detailansicht eines in
Figur 1 dargestellten Werkstoffvorsprungs mit einer gekrümmten Begrenzungsfläche, - Fig. 3
- eine perspektivische Teilansicht eines Rippenabschnitts eines Wärmeaustauscherrohres mit Werkstoffvorsprüngen und erhabenen Fluidleitstrukturen, und
- Fig.
- 4 eine weitere perspektivische Teilansicht eines Rippenabschnitts eines Wärmeaustauscherrohres mit Werkstoffvorsprüngen und bogenartigen Fluidleitstrukturen.
- Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
-
Fig. 1 zeigt eine perspektivische Teilansicht eines Rippenabschnitts eines Wärmeaustauscherrohres 1 mit vier Werkstoffvorsprüngen 4. Von der Rohraußenseite 21 ist nur ein Teil der umlaufenden, integral ausgeformten Rippen 3 abgebildet. Die Rippen 3 haben einen Rippenfuß 31, der an der Rohrwand 2 ansetzt, Rippenflanken 32 und eine Rippenspitze 33. Die Rippe 3 steht im Wesentlichen radial von der Rohrwand 2 ab. Die Rippenflanken 32 sind mit zusätzlichen Strukturelementen versehen, die als Werkstoffvorsprünge 4 ausgebildet sind, die seitlich an der Rippenflanke 32 ansetzen. Die Werkstoffvorsprünge 4 weisen stirnseitige Spitzen 41 auf, welche die Rohrwand 2 im Bereich der Primärnut 34 berühren. Hierdurch bilden sich zusammen mit dem Rippenfuß 31 Kavitäten 5 aus, welche in Umlaufrichtung U der Rippen - Öffnungen 51, 52 aufweisen. Derartige Kavitäten 5 bilden im Verdampfungsprozess eines Fluids bevorzugt Blasenkeimstellen, welche den Wärmeaustausch fördern.
- In der abgebildeten Ausführungsform sind die Begrenzungsflächen der Werkstoffvorsprünge 4 auf der von der Rohrwand 2 abgewandten Seite konvex gekrümmt. Prinzipiell können allerdings bei jedem Werkstoffvorsprung 4 auch andere Begrenzungsflächen mit einer konvexen Krümmung ausgestattet sein. Die übrigen, nicht konvexen Begrenzungsflächen, können entweder eben oder auch konkav ausgestaltet sein. Das Material der integral herausgearbeiteten Werkstoffvorsprünge 4 stammt aus der Rippenflanke 32, wobei durch eine Materialverlagerung bei der Herstellung der Wärmeaustauscherrohre 1 zusätzlich Ausnehmungen 42 in der Rippenflanke 32 entstehen.
-
Fig. 2 zeigt eine Detailansicht eines Werkstoffvorsprungs 4 mit einer gekrümmten Begrenzungsfläche und einer Spitze 41, welche die Rohrwand 2 im Bereich der Primärnut 34 berührt. Die aus dem Rippenfuß 31 und der Innenseite der Werkstoffvorsprünge 4 gebildeten Kavität 5 weist einen annähernd zylinderartigen Hohlraum auf. - Die maximale lichte Weite x1 einer Kavität 5 ist wesentlich geringer als die Längserstreckung x2 der Kavität 5. Hierdurch entstehen längliche Hohlräume, die besonders effizient Blasenkeimstellen bilden und zu einer Erhöhung des Wärmeüberganges bei der Verdampfung beitragen. Die Dimension des Hohlraums wird folglich derart gestaltet, dass beim Ablösen einer Blase im Verdampfungsprozess ein kleiner Blasenrest zurück bleibt, der dann als Keimstelle für einen neuen Zyklus der Blasenbildung dient. Im Bereich der Ausnehmung 42 wird im Betrieb flüssiges Fluid bevorzugt angesammelt, wodurch sich vermehrt Flüssigkeit im Bereich des Blasenkeims befindet, welches zur Verdampfung zur Verfügung steht. Bei üblichen Strukturgrößen der erfindungsgemäßen Wärmeaustauscherrohre 1 mit integral gewalzten Rippen 3 liegt die Strukturgröße der Werkstoffvorsprünge 4 und damit auch der Kavitäten 5 typischerweise im Submillimeterbereich.
-
Fig. 3 zeigt eine perspektivische Teilansicht eines Rippenabschnitts eines Wärmeaustauscherrohres 1 mit Werkstoffvorsprüngen 4 und erhabenen Fluidleitstrukturen 6. Von der Rohraußenseite 21 ist wiederum nur ein Teil einer der umlaufenden, integral ausgeformten Rippen 3 abgebildet. Die Rippen 3 haben einen Rippenfuß 31, der an der Rohrwand 2 ansetzt, Rippenflanken 32 und eine Rippenspitze 33. Die Rippen 3 stehen radial von der Rohrwand 2 ab. Die Rippenflanken 32 sind mit zusätzlichen Strukturelementen versehen, die als Werkstoffvorsprünge 4 ausgebildet sind. Die ausgebildeten Fluidleitstrukturen 6 erstrecken sich im Wesentlichen in Axial- und Radialrichtung des Rohres 1. - In
Fig. 3 sind zu jedem der Werkstoffvorsprünge 4 jeweils zwei Fluidleitflächen 62 zugeordnet. Die Fluidleitflächen 62 sind radial von außen an die Werkstoffvorsprünge 4 herangeführt. Durch die Fluidleitstrukturen 6 wird die Oberfläche des Rohres 1 vergrößert. Ferner stellen die von der Rippenflanke 32 abgewandten Ränder der Fluidleitflächen 62 konvexe Kanten dar, an denen das flüssige Fluid bevorzugt angesammelt und zur Kavität 5 geleitet wird. Die inFig. 3 dargestellten Fluidleitflächen 62 sind ebene Flächen. Derartige Flächen können jedoch auch in sich gekrümmt sein bzw. auch eine wellige Gestalt annehmen. - Wie in
Fig. 3 zudem dargestellt, ist die axiale Erstreckung der Fluidleitflächen 62 kleiner als die axiale Erstreckung der Werkstoffvorsprünge 4. Dadurch entstehen an der Rippenflanke 32 taschenartige Strukturen als Ausnehmungen 42. Folglich kann sich bei einem so ausgestalteten Wärmeaustauscherrohr 1 zudem flüssiges Fluid in den taschenartigen Strukturen 42 sammeln und zum Verdampfungsprozess zur Verfügung stehen. Es wird die Oberfläche des Rohres 1 damit gezielt mit flüssigem Fluid bedeckt. Dies begünstigt den Verdampfungsprozess, wodurch die Leistungsfähigkeit des Rohres erhöht wird. -
Fig. 4 zeigt eine perspektivische Teilansicht eines Rippenabschnitts eines Wärmeaustauscherrohres 1 mit mehreren Werkstoffvorsprüngen 4. Von der Rohraußenseite 21 ist wiederum nur ein Teil der umlaufenden, integral ausgeformten Rippen 3 abgebildet. Das Material der integral herausgearbeiteten Werkstoffvorsprünge 4 stammt in erster Linie aus der Rippenflanke 32, wobei durch eine Materialverlagerung bei der Herstellung der Wärmeaustauscherrohre 1 Ausnehmungen 42 entstehen. Ausgehend von diesen Ausnehmungen 42 verlaufen Fluidleitstrukturen 6 als Bogensegmente 61, die an den Rippenflanken 32 0zur Rippenspitze hin ansteigen. Derartige Fluidleitstrukturen 6 erstrecken sich folglich von einer Kavität 5 zur in Umlaufrichtung der Rippen 3 benachbarte Kavität 5. Hierdurch strömt die Flüssigkeit besonders effizient radial entlang der Rippenflanke 32 zur Kavität 5 nach. -
- 1
- Wärmeaustauscherrohr
- 2
- Rohrwand
- 21
- Rohraußenseite
- 22
- Rohrinnenseite
- 3
- Rippe auf der Rohraußenseite
- 31
- Rippenfuß
- 32
- Rippenflanke
- 33
- Rippenspitze
- 34
- Primärnut
- 4
- Strukturelement, Werkstoffvorsprung
- 41
- Spitze
- 42
- Ausnehmung
- 5
- Kavität
- 51
- Öffnung
- 52
- Öffnung
- 6
- Fluidleitstruktur
- 61
- Bogensegment
- 62
- Fluidleitfläche
- x1
- lichte Weite einer Kavität
- x2
- Längserstreckung einer Kavität
- U
- Umlaufrichtung
- A
- Rohrachse
Claims (10)
- Metallisches Wärmeaustauscherrohr (1), umfassend eine Rohrwand (2) und auf der Rohraußenseite (21) umlaufende Rippen (3), welche einen Rippenfuß (31), Rippenflanken (32) und eine Rippenspitze (33) haben sowie eine zwischen den Rippen gebildete Primärnut (34), wobei der Rippenfuß (31) im Wesentlichen radial von der Rohrwand (2) absteht, und die Rippenflanken (32) entlang der Primärnut (34) mit zusätzlichen voneinander beabstandeten Strukturelementen (4) versehen sind, welche als aus Material der Rippenflanke (32) geformte Werkstoffvorsprünge (4) ausgebildet sind, die seitlich an der Rippenflanke (32) angeordnet sind, dadurch gekennzeichnet,- dass die Werkstoffvorsprünge (4) derart verformt sind, dass sie die Rohrwand (2) im Bereich der Primärnut (34) berühren, so dass lokale Kavitäten (5) ausgebildet sind, und- dass die Kavitäten (5) in Umlaufrichtung (U) der Rippen Öffnungen (51, 52) aufweisen.
- Metallisches Wärmeaustauscherrohr (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Kavitäten (5) einen zylinderartigen Hohlraum ausbilden.
- Metallisches Wärmeaustauscherrohr (1) nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die maximale lichte Weite (x1) einer Kavität (5) maximal die Hälfte der Längserstreckung (x2) der Kavität (5) beträgt.
- Metallisches Wärmeaustauscherrohr (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass an den Rippenflanken (32) zwischen den Kavitäten (5) Fluidleitstrukturen (6) angeordnet sind.
- Metallisches Wärmeaustauscherrohr (1) nach Anspruch 4, dadurch gekennzeichnet, dass Fluidleitstrukturen (6) angeordnet sind, welche sich von einer Kavität (5) zur in Umlaufrichtung (U) der Rippen (3) benachbarten Kavität (5) erstrecken.
- Metallisches Wärmeaustauscherrohr (1) nach Anspruch 5, dadurch gekennzeichnet, dass sich die Fluidleitstrukturen (6) an den Rippenflanken (32) in einem zur Rippenspitze (33) hin ansteigenden erhabenen Bogensegment (61) erstrecken.
- Metallisches Wärmeaustauscherrohr (1) nach Anspruch 4, dadurch gekennzeichnet, dass sich die Fluidleitstrukturen (6) an den Rippenflanken (32) in radialer Richtung als erhabene Fluidleitflächen (62) erstrecken.
- Metallisches Wärmeaustauscherrohr (1) nach Anspruch 7, dadurch gekennzeichnet, dass eine Fluidleitfläche (62) radial einwärts gerichtet an oder in unmittelbarer Nachbarschaft einer Kavität (5) endet.
- Metallisches Wärmeaustauscherrohr (1) nach einem der Ansprüche 4, 7 oder 8, dadurch gekennzeichnet, dass eine Fluidleitfläche (62) radial auswärts gerichtet an oder in unmittelbarer Nachbarschaft der Rippenspitze (33) endet.
- Metallisches Wärmeaustauscherrohr (1) nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass sich die Fluidleitstrukturen (6) an den Rippenflanken (32) in radialer Richtung auswärts gerichtet maximal bis zur Hälfte der Rippenhöhe erstrecken.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL19000245T PL3581871T3 (pl) | 2018-06-12 | 2019-05-17 | Metalowa rura wymiennika ciepła |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018004701.7A DE102018004701A1 (de) | 2018-06-12 | 2018-06-12 | Metallisches Wärmeaustauscherrohr |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3581871A1 EP3581871A1 (de) | 2019-12-18 |
EP3581871B1 true EP3581871B1 (de) | 2020-06-24 |
Family
ID=66624947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19000245.1A Active EP3581871B1 (de) | 2018-06-12 | 2019-05-17 | Metallisches wärmeaustauscherrohr |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3581871B1 (de) |
DE (1) | DE102018004701A1 (de) |
HU (1) | HUE051946T2 (de) |
PL (1) | PL3581871T3 (de) |
PT (1) | PT3581871T (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118149627B (zh) * | 2024-05-11 | 2024-07-23 | 浙江银轮机械股份有限公司 | 换热装置、逆变器冷却系统及变流器冷却系统 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE559831A (de) * | 1956-08-06 | |||
US3696861A (en) | 1970-05-18 | 1972-10-10 | Trane Co | Heat transfer surface having a high boiling heat transfer coefficient |
DE2808080C2 (de) | 1977-02-25 | 1982-12-30 | Furukawa Metals Co., Ltd., Tokyo | Wärmeübertragungs-Rohr für Siedewärmetauscher und Verfahren zu seiner Herstellung |
DE2758526C2 (de) | 1977-12-28 | 1986-03-06 | Wieland-Werke Ag, 7900 Ulm | Verfahren und Vorrichtung zur Herstellung eines Rippenrohres |
US4577381A (en) | 1983-04-01 | 1986-03-25 | Kabushiki Kaisha Kobe Seiko Sho | Boiling heat transfer pipes |
US4660630A (en) | 1985-06-12 | 1987-04-28 | Wolverine Tube, Inc. | Heat transfer tube having internal ridges, and method of making same |
EP0222100B1 (de) | 1985-10-31 | 1989-08-09 | Wieland-Werke Ag | Rippenrohr mit eingekerbtem Nutengrund und Verfahren zu dessen Herstellung |
US5054548A (en) | 1990-10-24 | 1991-10-08 | Carrier Corporation | High performance heat transfer surface for high pressure refrigerants |
JP2788793B2 (ja) | 1991-01-14 | 1998-08-20 | 古河電気工業株式会社 | 伝熱管 |
JP2854751B2 (ja) * | 1992-03-12 | 1999-02-03 | 株式会社神戸製鋼所 | 熱交換器用伝熱管の製造方法 |
EP0713072B1 (de) | 1994-11-17 | 2002-02-27 | Carrier Corporation | Wärmeaustauschrohr |
US5697430A (en) | 1995-04-04 | 1997-12-16 | Wolverine Tube, Inc. | Heat transfer tubes and methods of fabrication thereof |
DE19757526C1 (de) | 1997-12-23 | 1999-04-29 | Wieland Werke Ag | Verfahren zur Herstellung eines Wärmeaustauschrohres, insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite |
JP4039596B2 (ja) | 1998-10-06 | 2008-01-30 | 株式会社サンセイアールアンドディ | パチンコ遊技機 |
DE10101589C1 (de) | 2001-01-16 | 2002-08-08 | Wieland Werke Ag | Wärmeaustauscherrohr und Verfahren zu dessen Herstellung |
US20040010913A1 (en) | 2002-04-19 | 2004-01-22 | Petur Thors | Heat transfer tubes, including methods of fabrication and use thereof |
CN100365369C (zh) * | 2005-08-09 | 2008-01-30 | 江苏萃隆铜业有限公司 | 蒸发器热交换管 |
CN100437011C (zh) * | 2005-12-13 | 2008-11-26 | 金龙精密铜管集团股份有限公司 | 一种电制冷机组用满液式铜蒸发换热管 |
DE102009021334A1 (de) * | 2009-05-14 | 2010-11-18 | Wieland-Werke Ag | Metallisches Wärmeaustauscherrohr |
DE102011121436A1 (de) * | 2011-12-16 | 2013-06-20 | Wieland-Werke Ag | Verflüssigerrohre mit zusätzlicher Flankenstruktur |
CN102980431A (zh) * | 2012-11-12 | 2013-03-20 | 沃林/维兰德传热技术有限责任公司 | 蒸发传热管 |
CN102980432A (zh) * | 2012-11-12 | 2013-03-20 | 沃林/维兰德传热技术有限责任公司 | 带空心腔体的蒸发传热管 |
-
2018
- 2018-06-12 DE DE102018004701.7A patent/DE102018004701A1/de not_active Withdrawn
-
2019
- 2019-05-17 HU HUE19000245A patent/HUE051946T2/hu unknown
- 2019-05-17 EP EP19000245.1A patent/EP3581871B1/de active Active
- 2019-05-17 PT PT190002451T patent/PT3581871T/pt unknown
- 2019-05-17 PL PL19000245T patent/PL3581871T3/pl unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
PT3581871T (pt) | 2020-08-28 |
HUE051946T2 (hu) | 2021-03-29 |
PL3581871T3 (pl) | 2020-12-14 |
EP3581871A1 (de) | 2019-12-18 |
DE102018004701A1 (de) | 2019-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10101589C1 (de) | Wärmeaustauscherrohr und Verfahren zu dessen Herstellung | |
DE102009007446B4 (de) | Wärmeübertragerrohr und Verfahren zu dessen Herstellung | |
DE4404357C1 (de) | Wärmeaustauschrohr zum Kondensieren von Dampf | |
EP2795233B1 (de) | VERDAMPFERROHR MIT OPTIMIERTER AUßENSTRUKTUR | |
EP2339283B1 (de) | Wärmeübertragerrohr und Verfahren zur Herstellung eines Wärmeübertragerrohrs | |
EP2101136B1 (de) | Metallisches Wärmeaustauscherrohr | |
EP2253922B1 (de) | Metallisches Wärmeaustauscherrohr | |
EP3111153B1 (de) | Metallisches wärmeaustauscherrohr | |
EP3581871B1 (de) | Metallisches wärmeaustauscherrohr | |
EP2791609B1 (de) | Verflüssigerrohre mit zusätzlicher flankenstruktur | |
EP3465057B1 (de) | Wärmeübertragerrohr | |
EP3465056B1 (de) | Wärmeübertragerrohr | |
EP3465055B1 (de) | Wärmeübertragerrohr | |
EP4237782B1 (de) | Metallisches wärmeaustauscherrohr | |
EP4237781B1 (de) | Metallisches wärmeaustauscherrohr | |
DE202020005628U1 (de) | Metallisches Wärmeaustauscherrohr |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190812 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200131 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019000066 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1284311 Country of ref document: AT Kind code of ref document: T Effective date: 20200715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3581871 Country of ref document: PT Date of ref document: 20200828 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20200818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200924 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200925 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200924 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201024 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019000066 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E051946 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210517 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240312 Year of fee payment: 6 Ref country code: FR Payment date: 20240308 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240531 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240411 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20240516 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240426 Year of fee payment: 6 Ref country code: HU Payment date: 20240410 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200624 |