EP1223400A2 - Tube for heat exchanger and process for making same - Google Patents

Tube for heat exchanger and process for making same Download PDF

Info

Publication number
EP1223400A2
EP1223400A2 EP02000425A EP02000425A EP1223400A2 EP 1223400 A2 EP1223400 A2 EP 1223400A2 EP 02000425 A EP02000425 A EP 02000425A EP 02000425 A EP02000425 A EP 02000425A EP 1223400 A2 EP1223400 A2 EP 1223400A2
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
exchanger tube
tube according
metallic heat
ribs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02000425A
Other languages
German (de)
French (fr)
Other versions
EP1223400A3 (en
EP1223400B1 (en
Inventor
Andreas Dr. Dipl.-Phys. Beutler
Manfred Dipl.-Ing. Knab
Andreas Dipl.-Ing. Knöpfler
Axel Dipl.-Ing. Kriegsmann (Fh)
Klaus Dipl.-Ing. Menze
Gerhard Dr.-Ing. Schüz
Andreas Dipl.-Ing. Schwitalla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wieland Werke AG
Original Assignee
Wieland Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wieland Werke AG filed Critical Wieland Werke AG
Publication of EP1223400A2 publication Critical patent/EP1223400A2/en
Publication of EP1223400A3 publication Critical patent/EP1223400A3/en
Application granted granted Critical
Publication of EP1223400B1 publication Critical patent/EP1223400B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/20Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
    • B21C37/207Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls with helical guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/182Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing especially adapted for evaporator or condenser surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49377Tube with heat transfer means
    • Y10T29/49378Finned tube
    • Y10T29/49385Made from unitary workpiece, i.e., no assembly

Definitions

  • the invention relates to a metallic heat exchanger tube, especially for the evaporation of liquids from pure substances or mixtures on the outside of the pipe, according to the generic term of claim 1.
  • Tube heat exchangers are often used in technology which liquids of pure substances or mixtures on the Evaporate the outside of the pipe and thereby on the inside of the pipe cool down a brine or water. Such devices are called flooded evaporators.
  • the present invention relates to structured Pipes where the heat transfer coefficient is on the outside of the pipe is intensified. Since this is the main part of the Thermal resistance is often shifted to the inside the heat transfer coefficient must be on the inside usually also be intensified. An increase the heat transfer on the inside of the tube usually has an increase in the pipe-side pressure drop.
  • Have heat exchanger tubes for shell and tube heat exchangers usually at least one structured area as well smooth end pieces and possibly smooth intermediate pieces.
  • the smooth end or intermediate pieces limit the structured Areas. So that the tube can be easily inserted into the tube bundle heat exchanger can be installed, the outer diameter the structured areas should not be larger than the outer Diameter of the smooth end and intermediate pieces.
  • the Bubble boiling process intensified. It is known that the formation of bubbles at germ sites begins. These germ spots are mostly small gas or vapor inclusions. Such Germination can already be done by roughening the surface produce. If the growing bubble is a certain size reached, it detaches from the surface. If in In the course of the blister detachment the germ site by inflowing If liquid is flooded, the inclusion of gas or steam displaced by liquid. In this case the Germ site inactivated. This can be done by an appropriate one Avoid designing the germ sites. For this it is necessary that the opening of the germination point is smaller than that under the Opening cavity.
  • integral rolled finned tubes are understood to be finned tubes, where the fins are made of the wall material of a smooth tube were formed.
  • the located between adjacent ribs Channels are closed in such a way that connections between channel and environment in the form of pores or slits stay. Because the opening of the pores or slits is smaller than the width of the channels, the channels represent suitably shaped Cavities represent the formation and stabilization of bladder germ sites favor.
  • EP 0.222.100 proposes the bottom of the groove by means of a notched disk with indentations to provide.
  • the indentations on the bottom of the groove can be V-, Have a trapezoidal or semicircular cross-section additional bladder germ sites represent.
  • the by such Structures especially in the area of small heating surface loads achievable performance increases are not sufficient more the demands of the market.
  • the impressions a weakening of the core wall of the tube and lead to a reduction in the mechanical stability of the Tube.
  • the task is the one mentioned in a heat exchanger tube Type in which the area between the Ribs of helical primary grooves are arranged, solved according to the invention, that the recesses in the form of undercut secondary grooves are trained.
  • An undercut secondary groove provides for education and Stabilization of bladder germ sites much cheaper Conditions than the simple ones proposed in EP 0.222.100 Indentations.
  • the location of the undercut secondary grooves in the proximity of the primary groove bottom is for the evaporation process Particularly favorable because the wall overtemperature at the bottom of the groove is largest and therefore the highest driving force there Temperature difference for blistering is available.
  • Claims 2 to 15 relate to preferred embodiments of the heat exchanger tube according to the invention.
  • suitable additional tools material from the field of Rib flanks displaced towards the bottom of the groove so that not there Completely closed cavities emerge that are the desired ones represent undercut secondary grooves.
  • the cavities extend from the primary groove bottom to the tip of the rib, with a maximum of 45% of the rib height H, typically Extend to 20% of the rib height H.
  • the rib height H is from the deepest part of the bottom of the groove through the largest roller was formed up to the tip of the rib of the fully formed finned tube measured.
  • the invention relates to claims 16 to 22 furthermore various processes for the production of the invention Heat exchanger tube.
  • the integrally rolled finned tube 1 according to FIGS. 2 to 7 has on the outside of the tube helical ribs 3, between which a primary groove 4 is formed. material the rib flanks 5 are suitably shifted so that in the area of the bottom 6 of the groove are not completely closed, the undercut secondary grooves according to the invention represent. Material of the rib tips 8 is such relocated that the rib spaces with formation of Channels 9 are closed except for pores 26.
  • the finned tube according to the invention is produced by a rolling process (see US Pat. Nos. 1,865,575 / 3,327,512) by means of the devices shown in Figures 2/4/6.
  • the tool holder 10 are each 360 ° / n offset on the circumference of the finned tube.
  • the tool holder 10 are radially deliverable. They are in turn a stationary roller head (not shown).
  • the smooth pipe entering the device in the direction of the arrow 2 is driven by the driven rolling tools arranged on the circumference 11 set in rotation, the axes of the rolling tools 11 run obliquely to the pipe axis.
  • the rolling tools 11 consist of several side by side in a manner known per se arranged rolling disks 12, the diameter in Arrow direction increases.
  • the centrally arranged rolling tools 11 form the helical circumferential ribs 3 from the tube wall of the smooth tube 2, being in the forming zone the tube wall is supported by a rolling mandrel 27.
  • the rolling mandrel 27 can be profiled.
  • the along the pipe axis measured distance between the centers of two adjacent ribs referred to as the rib pitch T.
  • the rolling disks are on hers profiled outer circumference such that the shaped ribs 3rd have a substantially trapezoidal cross-section. Only in the transition area 13 between the rib flank 5 and the bottom of the groove 6 the rib deviates from the ideal trapezoidal shape. This Transition area 13 is usually referred to as a rib base. The radius formed there is required to be one unimpeded material flow during the rib formation enable.
  • the diameter is smaller than the diameter of the largest roller disc (Fig. 2).
  • the thickness D of this cylindrical disc 14 is somewhat larger than the width B of the formed by the rolling disks 12 Primary groove 4, here the width B of the primary groove 4 on the Point is measured at which the rib flank 5 in the radius area of the fin base 13 passes over.
  • the thickness D of the cylindrical disc 50% to 80% of the rib pitch T.
  • the cylindrical disc 14 displaces material from the rib flank 5 towards the bottom 6 of the groove. The displaced material is determined by the appropriate choice of tool geometry shifted such that there are 6 material projections above the groove base 15 forms and thus directly at the bottom of the groove 6 not completely closed cavity 7 is formed (Fig. 3).
  • This cavity 7 runs in the circumferential direction with almost constant cross section.
  • the cavity 7 represents one undercut secondary groove according to the invention.
  • This embodiment is an extension of the embodiment 1 represents: After the cylindrical disc 14 is in the second embodiment, a gear-like notched disk 16 engaged, the diameter of which is larger than the diameter the cylindrical disc 14, but at most as large like the diameter of the largest rolling disc of the rolling tool 11 (Fig. 4).
  • the formed by the cylindrical disc 14 in Circumferential direction with constant cross-section Cavity is through the notched disk 16 through in the circumferential direction regularly arranged impressions 17 divided. It This creates circumferential, undercut circumferential Secondary grooves 7, the cross section of which at regular intervals is varied (Fig. 5).
  • the notched disk 16 can be straight or be helical.
  • the tube wall 18 is accordingly in the formation of the undercut secondary grooves 7 according to embodiment 2 not weakened.
  • the Diameter of the notched disk 19 is at most as large as that Diameter of the largest roller disc (Fig. 6).
  • the thickness D 'of Notched disk 19 is slightly larger than the width B of the Rolling disks 12 shaped primary groove 4, here the width B of the primary groove 4 is measured at the point where the Rib flank 5 merges into the radius area of the rib foot 13.
  • the thickness D 'of this notched disk is typically 50% to 80% of the rib pitch T.
  • the notched disk 19 can be straight or helical.
  • the notched disk 19 displaces Material from the area of the rib flanks 5 and from the Radius area at the fin base 13 and leaves each other there spaced indentations 20.
  • the tube wall 18 is accordingly in the formation of the undercut secondary grooves 7 according to embodiment 3 not weakened.
  • the rib tips 8 by means of a notched gear-like notched disk 24. This is in the figures 2/4/6 shown. Subsequently, the notched rib tips by one or more compression rollers 25.
  • the ribs 3 thus have a substantially T-shaped Cross section, and the grooves 9 between the ribs 3 are up closed on pores 26 (see FIGS. 3/5/7).
  • the fin height H is the lowest on the finished finned tube 1 Place the bottom of the groove 6 up to the tip of the ribs completely shaped finned tube measured.
  • Bottom 6 of the primary grooves 4 extend from the bottom 6 of the groove Rib tip down, with a maximum of 45% of the rib height H, typically up to 20% of the rib height H.
  • FIG. 8 shows the photo of an undercut according to the invention Secondary groove 7 at the bottom of the groove 6.
  • the cutting plane is vertical to the circumferential direction of the pipe.
  • the recognizable asymmetry the structure is due to unavoidable tolerances in tool and Due to raw material dimensions.
  • the projections 15 exist made of material from the rib flanks 5 to the bottom 6 of the groove was relocated.
  • Fig. 9 shows the performance of two structured in comparison Pipes on the evaporation of the refrigerant R-134a the outside of the pipe, one of the pipes with undercut Secondary grooves on the groove base was carried out. shown is the external heat transfer coefficient above the heating surface load. The saturation temperature is 14.5 ° C. It can be seen that the undercut secondary grooves on A performance advantage is achieved that is small Heating surface loads over 30%, with large heating surface loads is about 20%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Making Paper Articles (AREA)

Abstract

A metallic heat exchanger tube, especially for vaporizing liquids comprising pure materials and mixtures on the outside of the tube, comprises integral ribs (3) on the outside of the pipe, which have a foot (13) that extends radially from the pipe wall (18). Grooves between the ribs have cut-outs in the base. The cut-outs are in the form of cut-back secondary grooves (7).

Description

Die Erfindung betrifft ein metallisches Wärmeaustauscherrohr, insbesondere zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite, nach dem Oberbegriff des Anspruchs 1.The invention relates to a metallic heat exchanger tube, especially for the evaporation of liquids from pure substances or mixtures on the outside of the pipe, according to the generic term of claim 1.

Verdampfung tritt in vielen Bereichen der Kälte- und Klimatechnik sowie in der Prozeß- und Energietechnik auf. In der Technik werden häufig Rohrbündelwärmeaustauscher verwendet, in denen Flüssigkeiten von Reinstoffen oder Mischungen auf der Rohraußenseite verdampfen und dabei auf der Rohrinnenseite eine Sole oder Wasser abkühlen. Solche Apparate werden als überflutete Verdampfer bezeichnet.Evaporation occurs in many areas of refrigeration and air conditioning technology as well as in process and energy technology. In the Tube heat exchangers are often used in technology which liquids of pure substances or mixtures on the Evaporate the outside of the pipe and thereby on the inside of the pipe cool down a brine or water. Such devices are called flooded evaporators.

Durch die Intensivierung des Wärmeübergangs auf der Rohraußenund der Rohrinnenseite läßt sich die Größe der Verdampfer stark reduzieren. Hierdurch nehmen die Herstellungskosten solcher Apparate ab. Außerdem sinkt die notwendige Füllmenge an Kältemittel, die bei den heute überwiegend verwendeten, chlorfreien Sicherheitskältemitteln einen nicht zu vernachlässigenden Kostenanteil an den gesamten Anlagekosten ausmachen kann. Bei toxischen oder brennbaren Kältemitteln läßt sich durch eine Reduktion der Füllmenge ferner das Gefahrenpotential herabsetzen. Die heute üblichen Hochleistungsrohre sind etwa um den Faktor drei leistungsfähiger als glatte Rohre gleichen Durchmessers. By intensifying the heat transfer on the outer tube and the inside of the tube can be the size of the evaporator greatly reduce. This will increase the manufacturing costs of such apparatus. In addition, the necessary filling quantity drops of refrigerants that are mainly used today chlorine-free safety refrigerants not to be neglected Make up part of the total investment costs can. With toxic or flammable refrigerants by reducing the filling quantity, the potential danger decrease. The high-performance pipes that are common today are about three times more powerful than smooth pipes same diameter.

Stand der TechnikState of the art

Die vorliegende Erfindung bezieht sich auf strukturierte Rohre, bei denen der Wärmeübergangskoeffizient auf der Rohraußenseite intensiviert wird. Da hierdurch der Hauptanteil des Wärmedurchgangswiderstandes häufig auf die Innenseite verlagert wird, muß der Wärmeübergangskoeffizient auf der Innenseite in der Regel ebenfalls intensiviert werden. Eine Erhöhung des Wärmeübergangs auf der Rohrinnenseite hat üblicherweise eine Steigerung des rohrseitigen Druckabfalls zu Folge.The present invention relates to structured Pipes where the heat transfer coefficient is on the outside of the pipe is intensified. Since this is the main part of the Thermal resistance is often shifted to the inside the heat transfer coefficient must be on the inside usually also be intensified. An increase the heat transfer on the inside of the tube usually has an increase in the pipe-side pressure drop.

Wärmeaustauscherrohre für Rohrbündelwärmeaustauscher besitzen üblicherweise mindestens einen strukturierten Bereich sowie glatte Endstücke und eventuell glatte Zwischenstücke. Die glatten End- bzw. Zwischenstücke begrenzen die strukturierten Bereiche. Damit das Rohr problemlos in den Rohrbündelwärmeaustauscher eingebaut werden kann, darf der äußere Durchmesser der strukturierten Bereiche nicht größer sein als der äußere Durchmesser der glatten End- und Zwischenstücke.Have heat exchanger tubes for shell and tube heat exchangers usually at least one structured area as well smooth end pieces and possibly smooth intermediate pieces. The smooth end or intermediate pieces limit the structured Areas. So that the tube can be easily inserted into the tube bundle heat exchanger can be installed, the outer diameter the structured areas should not be larger than the outer Diameter of the smooth end and intermediate pieces.

Zur Erhöhung des Wärmeüberganges bei der Verdampfung wird der Vorgang des Blasensiedens intensiviert. Es ist bekannt, daß die Bildung von Blasen an Keimstellen beginnt. Diese Keimstellen sind meist kleine Gas- oder Dampfeinschlüsse. Solche Keimstellen lassen sich bereits durch Aufrauhen der Oberfläche erzeugen. Wenn die anwachsende Blase eine bestimmte Größe erreicht hat, löst sie sich von der Oberfläche ab. Wenn im Zuge der Blasenablösung die Keimstelle durch nachströmende Flüssigkeit geflutet wird, wird u.U. der Gas- bzw. Dampfeinschluß durch Flüssigkeit verdrängt. In diesem Fall wird die Keimstelle inaktiviert. Dies läßt sich durch eine geeignete Gestaltung der Keimstellen vermeiden. Hierzu ist es notwendig, daß die Öffnung der Keimstelle kleiner ist als der unter der Öffnung liegende Hohlraum.To increase the heat transfer during evaporation, the Bubble boiling process intensified. It is known that the formation of bubbles at germ sites begins. These germ spots are mostly small gas or vapor inclusions. Such Germination can already be done by roughening the surface produce. If the growing bubble is a certain size reached, it detaches from the surface. If in In the course of the blister detachment the germ site by inflowing If liquid is flooded, the inclusion of gas or steam displaced by liquid. In this case the Germ site inactivated. This can be done by an appropriate one Avoid designing the germ sites. For this it is necessary that the opening of the germination point is smaller than that under the Opening cavity.

Es ist Stand der Technik, derartige Strukturen auf der Basis von integral gewalzten Rippenrohren herzustellen. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Wandungsmaterial eines Glattrohres geformt wurden. Es sind hierbei verschiedene Verfahren bekannt, mit denen die zwischen benachbarten Rippen befindlichen Kanäle derart verschlossen werden, daß Verbindungen zwischen Kanal und Umgebung in Form von Poren oder Schlitzen bleiben. Da die Öffnung der Poren oder Schlitze kleiner ist als die Breite der Kanäle, stellen die Kanäle geeignet geformte Hohlräume dar, die Bildung und Stabilisierung von Blasenkeimstellen begünstigen. Insbesondere werden solche im wesentlichen geschlossene Kanäle durch Umbiegen oder Umlegen der Rippe (US 3.696.861, US 5.054.548), durch Spalten und Stauchen der Rippe (DE 2.758.526, US 4.577.381), und durch Kerben und Stauchen der Rippe (US 4.660.630, EP 0.713.072, US 4.216.826) erzeugt.It is state of the art to base such structures of integrally rolled finned tubes. Under integral rolled finned tubes are understood to be finned tubes, where the fins are made of the wall material of a smooth tube were formed. There are different procedures here known with which the located between adjacent ribs Channels are closed in such a way that connections between channel and environment in the form of pores or slits stay. Because the opening of the pores or slits is smaller than the width of the channels, the channels represent suitably shaped Cavities represent the formation and stabilization of bladder germ sites favor. In particular, such are essentially closed channels by bending or folding the Rib (US 3,696,861, US 5,054,548), by splitting and upsetting the rib (DE 2,758,526, US 4,577,381), and by notches and Compression of the rib (US 4,660,630, EP 0.713.072, US 4,216,826) generated.

Die leistungsstärksten, kommerziell erhältlichen Rippenrohre für überflutete Verdampfer besitzen auf der Rohraußenseite eine Rippenstruktur mit einer Rippendichte von 55 bis 60 Rippen pro Zoll (US 5.669.441, US 5.697.430, DE 197 57 526). Dies entspricht einer Rippenteilung von ca. 0.45 bis 0.40 mm. Prinzipiell ist es möglich, die Leistungsfähigkeit derartiger Rohre durch eine noch höhere Rippendichte bzw. kleinere Rippenteilung zu verbessern, da hierdurch die Blasenkeimstellendichte erhöht wird. Eine kleinere Rippenteilung erfordert zwangsläufig gleichermaßen feinere Werkzeuge. Feinere Werkzeuge sind jedoch einer höheren Bruchgefahr und schnellerem Verschleiß unterworfen. Die derzeit verfügbaren Werkzeuge ermöglichen eine sichere Fertigung von Rippenrohren mit Rippendichten von maximal 60 Rippen pro Zoll. Ferner werden mit abnehmender Rippenteilung die Produktionsgeschwindigkeit der Rohre kleiner und folglich die Herstellungskosten höher.The most powerful, commercially available finned tubes for flooded evaporators on the outside of the tube a rib structure with a rib density of 55 to 60 Ribs per inch (US 5,669,441, US 5,697,430, DE 197 57 526). This corresponds to a rib pitch of approx. 0.45 to 0.40 mm. In principle it is possible to improve the performance of such Pipes through an even higher fin density or smaller fin pitch to improve, as this increases the density of the bladder germs is increased. A smaller rib division is required inevitably equally fine tools. Finer tools However, there is a higher risk of breakage and faster Subject to wear. The tools currently available enable a safe production of finned tubes with fin density of a maximum of 60 ribs per inch. Furthermore, with decreasing rib pitch the production speed of the Pipes are smaller and consequently the manufacturing costs are higher.

Es ist bekannt, daß leistungsgesteigerte Verdampfungsstrukturen bei gleichbleibender Rippendichte auf der Rohraußenseite erzeugt werden können, indem man den Grund der Nut zwischen den Rippen strukturiert. In EP 0.222.100 wird vorgeschlagen, den Grund der Nut mittels einer Kerbscheibe mit Eindrückungen zu versehen. Die Eindrückungen am Nutengrund können V-, trapez- oder halbkreisförmigen Querschnitt besitzen und stellen zusätzliche Blasenkeimstellen dar. Die durch derartige Strukturen insbesondere im Bereich kleiner Heizflächenbelastungen erzielbaren Leistungssteigerungen genügen jedoch nicht mehr den Anforderungen des Marktes. Ferner stellen die Eindrückungen eine Schwächung der Kernwand des Rohres dar und führen zu einer Reduzierung der mechanischen Stabilität des Rohres.It is known that increased evaporation structures with the same fin density on the outside of the pipe can be generated by placing the bottom of the groove between structured the ribs. EP 0.222.100 proposes the bottom of the groove by means of a notched disk with indentations to provide. The indentations on the bottom of the groove can be V-, Have a trapezoidal or semicircular cross-section additional bladder germ sites represent. The by such Structures especially in the area of small heating surface loads achievable performance increases are not sufficient more the demands of the market. Furthermore, the impressions a weakening of the core wall of the tube and lead to a reduction in the mechanical stability of the Tube.

Aufgabenstellung:Task:

Es soll ein leistungsgesteigertes Wärmeaustauscherrohr zur Verdampfung von Flüssigkeiten auf der Rohraußenseite bei gleichem rohrseitigen Wärmeübergang und Druckabfall sowie gleichen Herstellungskosten produziert werden. Die mechanische Stabilität des Rohres soll nicht negativ beeinflußt werden.It is said to be a performance-enhanced heat exchanger tube Evaporation of liquids on the outside of the pipe same tube-side heat transfer and pressure drop as well same manufacturing costs are produced. The mechanical The stability of the pipe should not be adversely affected.

Kurze Beschreibung der ErfindungBrief description of the invention

Die Aufgabe wird bei einem Wärmeaustauscherrohr der genannten Art, bei dem im Bereich des Nutengrunds der zwischen den Rippen schraubenlinienförmig verlaufenden Primärnuten Aussparungen angeordnet sind, erfindungsgemäß dadurch gelöst, daß die Aussparungen in Form hinterschnittener Sekundärnuten ausgebildet sind. The task is the one mentioned in a heat exchanger tube Type in which the area between the Ribs of helical primary grooves are arranged, solved according to the invention, that the recesses in the form of undercut secondary grooves are trained.

Eine hinterschnittene Nut (siehe Fig. 1) liegt dann vor, wenn

  • in einer Schnittebene ein nicht abgeschlossenes Gebiet X zu finden ist,
  • dieses Gebiet X mittels einer Strecke AB abgeschlossen werden kann,
  • eine Strecke PQ mit P, Q ∈ Rand von X gefunden wird, so daß PQ parallel zu AB und die Länge von PQ größer ist als die Länge von AB.
An undercut groove (see Fig. 1) is present when
  • an incomplete area X can be found in a sectional plane,
  • this area X can be closed off by a route AB,
  • a distance PQ with P, Q ∈ edge of X is found, so that PQ is parallel to AB and the length of PQ is greater than the length of AB.

Eine hinterschnittene Sekundärnut bietet für die Bildung und Stabilisierung von Blasenkeimstellen deutlich günstigere Bedingungen als die in EP 0.222.100 vorgeschlagenen, einfachen Eindrückungen. Die Lage der hinterschnittenen Sekundärnuten in der Nähe des primären Nutengrundes ist für den Verdampfungsprozeß besonders günstig, da am Nutengrund die Wandübertemperatur am größten ist und deshalb dort die höchste treibende Temperaturdifferenz für die Blasenbildung zur Verfügung steht.An undercut secondary groove provides for education and Stabilization of bladder germ sites much cheaper Conditions than the simple ones proposed in EP 0.222.100 Indentations. The location of the undercut secondary grooves in the proximity of the primary groove bottom is for the evaporation process Particularly favorable because the wall overtemperature at the bottom of the groove is largest and therefore the highest driving force there Temperature difference for blistering is available.

Die Ansprüche 2 bis 15 betreffen bevorzugte Ausführungsformen des erfindungsgemäßen Wärmeaustauscherrohres.Claims 2 to 15 relate to preferred embodiments of the heat exchanger tube according to the invention.

Gemäß der Erfindung wird nach dem Ausformen der Rippen durch geeignete zusätzliche Werkzeuge Material aus dem Bereich der Rippenflanken zum Nutengrund hin verdrängt, so daß dort nicht ganz abgeschlossene Hohlräume entstehen, die die gewünschten hinterschnittenen Sekundärnuten darstellen. Die Hohlräume erstrecken sich vom primären Nutengrund zur Rippenspitze hin, wobei sie sich maximal bis 45% der Rippenhöhe H, typischerweise bis 20% der Rippenhöhe H ausdehnen. Die Rippenhöhe H wird dabei von der tiefsten Stelle des Nutengrunds, die durch die größte Walzscheibe ausgeformt wurde, bis zur Rippenspitze des vollständig geformten Rippenrohres gemessen. According to the invention, after the ribs have been formed, suitable additional tools material from the field of Rib flanks displaced towards the bottom of the groove, so that not there Completely closed cavities emerge that are the desired ones represent undercut secondary grooves. The cavities extend from the primary groove bottom to the tip of the rib, with a maximum of 45% of the rib height H, typically Extend to 20% of the rib height H. The rib height H is from the deepest part of the bottom of the groove through the largest roller was formed up to the tip of the rib of the fully formed finned tube measured.

Gegenstand der Erfindung sind gemäß der Ansprüche 16 bis 22 weiterhin verschiedene Verfahren zur Herstellung des erfindungsgemäßen Wärmeaustauscherrohres.The invention relates to claims 16 to 22 furthermore various processes for the production of the invention Heat exchanger tube.

Detaillierte Beschreibung:Detailed description:

Die Erfindung wird anhand der folgenden Ausführungsbeispiele näher erläutert:The invention is illustrated by the following examples explained in more detail:

Es zeigt:

Fig.1:
die Prinzipskizze einer hinterschnittenen Nut;
Fig.2:
schematisch die Herstellung eines erfindungsgemäßen Wärmeaustauscherrohres mit hinterschnittenen Sekundärnuten, die auf der Rohraußenseite mit im wesentlichen konstanten Querschnitt schraubenlinienförmig umlaufen;
Fig.3:
eine Teilansicht eines erfindungsgemäßen Wärmeaustauscherrohres mit hinterschnittenen Sekundärnuten, die mit im wesentlichen konstanten Querschnitt schraubenlinienförmig umlaufen;
Fig.4:
schematisch die Herstellung eines erfindungsgemäßen Wärmeaustauscherrohres mit schraubenlinienförmig verlaufenden, hinterschnittenen Sekundärnuten, deren Querschnitt in regelmäßigen Abständen variiert ist;
Fig.5:
eine Teilansicht eines erfindungsgemäßen Wärmeaustauscherrohres mit schraubenlinienförmig verlaufenden, hinterschnittenen Sekundärnuten, deren Querschnitt in regelmäßigen Abständen variiert ist;
Fig.6:
schematisch die Herstellung eines erfindungsgemäßen Wärmeaustauscherrohres mit hinterschnittenen Sekundärnuten, die im wesentlichen quer zur Richtung der Primärnuten verlaufen;
Fig.7:
eine Teilansicht eines erfindungsgemäßen Wärmeaustauscherrohres mit hinterschnittenen Sekundärnuten, die im wesentlichen quer zur Richtung der Primärnuten verlaufen;
Fig.8:
das Foto einer erfindungsgemäßen hinterschnittenen Sekundärnut am Nutengrund, die mit im wesentlichen konstanten Querschnitt schraubenlinienförmig umläuft;
Fig.9:
ein Diagramm, das den Leistungsvorteil durch die hinterschnittenen Sekundärnut am Nutengrund dokumentiert.
It shows:
Fig.1:
the schematic diagram of an undercut groove;
Figure 2:
schematically the production of a heat exchanger tube according to the invention with undercut secondary grooves, which run on the outside of the tube with a substantially constant cross-section helically;
Figure 3:
a partial view of a heat exchanger tube according to the invention with undercut secondary grooves, which run with a substantially constant cross section helically;
Figure 4:
schematically the production of a heat exchanger tube according to the invention with helical, undercut secondary grooves, the cross section of which is varied at regular intervals;
Figure 5:
a partial view of a heat exchanger tube according to the invention with helical, undercut secondary grooves, the cross section of which is varied at regular intervals;
Figure 6:
schematically the production of a heat exchanger tube according to the invention with undercut secondary grooves, which run essentially transversely to the direction of the primary grooves;
Figure 7:
a partial view of a heat exchanger tube according to the invention with undercut secondary grooves, which extend substantially transversely to the direction of the primary grooves;
Figure 8:
the photo of an undercut secondary groove according to the invention on the groove base, which revolves in a helical manner with a substantially constant cross section;
Figure 9:
a diagram that documents the performance advantage through the undercut secondary groove on the groove base.

Das integral gewalzte Rippenrohr 1 nach Figuren 2 bis 7 weist auf der Rohraußenseite schraubenlinienförmig umlaufende Rippen 3 auf, zwischen denen eine Primärnut 4 gebildet ist. Material der Rippenflanken 5 wird geeignet verlagert, so daß im Bereich des Nutengrunds 6 nicht ganz abgeschlossene Hohlräume 7 entstehen, die die erfindungsgemäßen hinterschnittenen Sekundärnuten darstellen. Material der Rippenspitzen 8 ist derart verlagert, daß die Rippenzwischenräume unter Ausbildung von Kanälen 9 bis auf Poren 26 geschlossen werden.The integrally rolled finned tube 1 according to FIGS. 2 to 7 has on the outside of the tube helical ribs 3, between which a primary groove 4 is formed. material the rib flanks 5 are suitably shifted so that in the area of the bottom 6 of the groove are not completely closed, the undercut secondary grooves according to the invention represent. Material of the rib tips 8 is such relocated that the rib spaces with formation of Channels 9 are closed except for pores 26.

Die Herstellung des erfindungsgemäßen Rippenrohres erfolgt durch einen Walzvorgang (vgl. US-PSen 1.865.575 / 3.327.512) mittels der in Figuren 2/4/6 dargestellten Vorrichtungen. The finned tube according to the invention is produced by a rolling process (see US Pat. Nos. 1,865,575 / 3,327,512) by means of the devices shown in Figures 2/4/6.

Es wird eine Vorrichtung verwendet, die aus n = 3 oder 4 Werkzeughaltern 10 besteht, in die jeweils ein Walzwerkzeug 11 integriert ist. Die Werkzeughalter 10 sind jeweils um 360°/n versetzt am Umfang des Rippenrohres angeordnet. Die Werkzeughalter 10 sind radial zustellbar. Sie sind ihrerseits in einem ortsfesten (nicht dargestellten) Walzkopf angeordnet.A device is used which consists of n = 3 or 4 Tool holders 10, in each of which a rolling tool 11 is integrated. The tool holder 10 are each 360 ° / n offset on the circumference of the finned tube. The tool holder 10 are radially deliverable. They are in turn a stationary roller head (not shown).

Das in Pfeilrichtung in die Vorrichtung einlaufende Glattrohr 2 wird durch die am Umfang angeordneten, angetriebenen Walzwerkzeuge 11 in Drehung versetzt, wobei die Achsen der Walzwerkzeuge 11 schräg zur Rohrachse verlaufen. Die Walzwerkzeuge 11 bestehen in an sich bekannter Weise aus mehreren nebeneinander angeordneten Walzscheiben 12, deren Durchmesser in Pfeilrichtung ansteigt. Die zentrisch angeordneten Walzwerkzeuge 11 formen die schraubenlinienförmig umlaufenden Rippen 3 aus der Rohrwandung des Glattrohrs 2, wobei in der Umformzone die Rohrwandung durch einen Walzdorn 27 unterstützt wird. Der Walzdorn 27 kann profiliert sein. Der längs zur Rohrachse gemessene Abstand der Mitten zweier benachbarter Rippen wird als Rippenteilung T bezeichnet. Die Walzscheiben sind an ihrem äußeren Umfang derart profiliert, daß die geformten Rippen 3 im wesentlichen trapezförmigen Querschnitt besitzen. Lediglich im Übergangsbereich 13 zwischen Rippenflanke 5 und Nutengrund 6 weicht die Rippe von der idealen Trapezform ab. Dieser Übergangsbereich 13 wird üblicherweise als Rippenfuß bezeichnet. Der dort gebildete Radius ist erforderlich, um einen ungehinderten Werkstofffluß während der Rippenausformung zu ermöglichen.The smooth pipe entering the device in the direction of the arrow 2 is driven by the driven rolling tools arranged on the circumference 11 set in rotation, the axes of the rolling tools 11 run obliquely to the pipe axis. The rolling tools 11 consist of several side by side in a manner known per se arranged rolling disks 12, the diameter in Arrow direction increases. The centrally arranged rolling tools 11 form the helical circumferential ribs 3 from the tube wall of the smooth tube 2, being in the forming zone the tube wall is supported by a rolling mandrel 27. The rolling mandrel 27 can be profiled. The along the pipe axis measured distance between the centers of two adjacent ribs referred to as the rib pitch T. The rolling disks are on hers profiled outer circumference such that the shaped ribs 3rd have a substantially trapezoidal cross-section. Only in the transition area 13 between the rib flank 5 and the bottom of the groove 6 the rib deviates from the ideal trapezoidal shape. This Transition area 13 is usually referred to as a rib base. The radius formed there is required to be one unimpeded material flow during the rib formation enable.

Nach der Ausformung der im wesentlichen trapezförmigen Rippen 3 durch das Walzwerkzeug 11 werden im Bereich des Grunds 6 der Primärnuten 4 die erfindungsgemäßen, hinterschnittenen Sekundärnuten 7 erzeugt. Hierbei können drei verschiedene Ausführungsformen Anwendung finden: After the formation of the essentially trapezoidal ribs 3 by the rolling tool 11 in the area of the bottom 6 of the Primary grooves 4, the undercut secondary grooves according to the invention 7 generated. Here, three different embodiments can be used Find application:

Ausführungsform 1:Embodiment 1:

Nach der letzten Scheibe des Walzwerkzeugs 11 befindet sich eine zylindrische Scheibe 14 im Eingriff, deren Durchmesser kleiner ist als der Durchmesser der größten Walzscheibe (Fig. 2). Die Dicke D dieser zylindrischen Scheibe 14 ist etwas größer als die Breite B der von den Walzscheiben 12 geformten Primärnut 4, wobei hier die Breite B der Primärnut 4 an der Stelle gemessen wird, an der die Rippenflanke 5 in den Radiusbereich des Rippenfußes 13 übergeht. Typischerweise beträgt die Dicke D der zylindrischen Scheibe 50% bis 80% der Rippenteilung T. Die zylindrische Scheibe 14 verdrängt Material von der Rippenflanke 5 zum Nutengrund 6 hin. Das verdrängte Material wird durch die geeignete Wahl der Werkzeuggeometrie derart verlagert, daß es über dem Nutengrund 6 Materialvorsprünge 15 bildet und unmittelbar am Nutengrund 6 somit ein nicht ganz abgeschlossener Hohlraum 7 entsteht (Fig. 3). Dieser Hohlraum 7 verläuft in Umfangsrichtung mit nahezu gleichbleibendem Querschnitt. Der Hohlraum 7 stellt eine erfindungsgemäße, hinterschnittene Sekundärnut dar.After the last disc of the rolling tool 11 is a cylindrical disc 14 is engaged, the diameter is smaller than the diameter of the largest roller disc (Fig. 2). The thickness D of this cylindrical disc 14 is somewhat larger than the width B of the formed by the rolling disks 12 Primary groove 4, here the width B of the primary groove 4 on the Point is measured at which the rib flank 5 in the radius area of the fin base 13 passes over. Typically is the thickness D of the cylindrical disc 50% to 80% of the rib pitch T. The cylindrical disc 14 displaces material from the rib flank 5 towards the bottom 6 of the groove. The displaced material is determined by the appropriate choice of tool geometry shifted such that there are 6 material projections above the groove base 15 forms and thus directly at the bottom of the groove 6 not completely closed cavity 7 is formed (Fig. 3). This cavity 7 runs in the circumferential direction with almost constant cross section. The cavity 7 represents one undercut secondary groove according to the invention.

Es kann sich als zweckmäßig erweisen, die Scheibe 14 auf ihrer Mantelfläche entlang ihres Umfangs mit einem vollständig oder abschnittsweise konkaven Profil zu versehen, um so die Verdrängung des Materials der Rippenflanke 5 zu begünstigen.It may prove useful to have the disk 14 on it Lateral surface along its circumference with a completely or sectionally concave profile, so as to avoid displacement to favor the material of the rib flank 5.

Da der Durchmesser der zylindrischen Scheibe 14 kleiner ist als der Durchmesser der größten Walzscheibe des Walzwerkzeugs 11, wird die tiefste Stelle des primären Nutengrunds 6 durch die zylindrische Scheibe 14 nicht bearbeitet. Die Rohrwandung 18 wird demnach bei der Formung der hinterschnittenen Sekundärnuten 7 nicht geschwächt. Since the diameter of the cylindrical disc 14 is smaller than the diameter of the largest rolling disc of the rolling tool 11, the deepest point of the primary groove base 6 through the cylindrical disc 14 is not machined. The pipe wall 18 is accordingly in the formation of the undercut secondary grooves 7 not weakened.

Ausführungsform 2:Embodiment 2:

Diese Ausführungsform stellt eine Erweiterung von Ausführungsform 1 dar: Nach der zylindrischen Scheibe 14 befindet sich bei der zweiten Ausführungsform eine zahnradartige Kerbscheibe 16 im Eingriff, deren Durchmesser größer ist als der Durchmesser der zylindrischen Scheibe 14, höchstens jedoch so groß wie der Durchmesser der größten Walzscheibe des Walzwerkzeugs 11 (Fig. 4). Der von der zylindrischen Scheibe 14 geformte, in Umfangsrichtung mit gleichbleibendem Querschnitt verlaufende Hohlraum wird durch die Kerbscheibe 16 durch in Umfangsrichtung regelmäßig angeordnete Eindrückungen 17 unterteilt. Es entstehen somit in Umfangsrichtung umlaufende, hinterschnittene Sekundärnuten 7, deren Querschnitt in regelmäßigen Abständen variiert ist (Fig. 5). Die Kerbscheibe 16 kann gerade oder schräg verzahnt sein.This embodiment is an extension of the embodiment 1 represents: After the cylindrical disc 14 is in the second embodiment, a gear-like notched disk 16 engaged, the diameter of which is larger than the diameter the cylindrical disc 14, but at most as large like the diameter of the largest rolling disc of the rolling tool 11 (Fig. 4). The formed by the cylindrical disc 14 in Circumferential direction with constant cross-section Cavity is through the notched disk 16 through in the circumferential direction regularly arranged impressions 17 divided. It This creates circumferential, undercut circumferential Secondary grooves 7, the cross section of which at regular intervals is varied (Fig. 5). The notched disk 16 can be straight or be helical.

Da der Durchmesser der zahnradartigen Kerbscheibe 16 nicht größer ist als der Durchmesser der größten Walzscheibe des Walzwerkzeugs 11, wird die tiefste Stelle des primären Nutengrunds 6 durch die zahnradartige Kerbscheibe 16 nicht weiter vertieft. Die Rohrwandung 18 wird demnach bei der Formung der hinterschnittenen Sekundärnuten 7 gemäß Ausführungsform 2 nicht geschwächt.Since the diameter of the gear-like notched disk 16 is not is larger than the diameter of the largest rolling disc of the Rolling tool 11, the lowest point of the primary groove bottom 6 by the gear-like notched disk 16 deepened. The tube wall 18 is accordingly in the formation of the undercut secondary grooves 7 according to embodiment 2 not weakened.

Ausführungsform 3:Embodiment 3:

Nach der letzten Scheibe des Walzwerkzeugs 11 befindet sich eine zahnradartige Kerbscheibe 19 im Eingriff, wobei der Durchmesser der Kerbscheibe 19 höchstens so groß ist wie der Durchmesser der größten Walzscheibe (Fig. 6). Die Dicke D' der Kerbscheibe 19 ist etwas größer als die Breite B der von den Walzscheiben 12 geformten Primärnut 4, wobei hier die Breite B der Primärnut 4 an der Stelle gemessen wird, an der die Rippenflanke 5 in den Radiusbereich des Rippenfußes 13 übergeht. Typischerweise beträgt die Dicke D' dieser Kerbscheibe 50% bis 80% der Rippenteilung T. Die Kerbscheibe 19 kann gerade oder schräg verzahnt sein. Die Kerbscheibe 19 verdrängt Material aus dem Bereich der Rippenflanken 5 sowie aus dem Radiusbereich am Rippenfuß 13 und hinterläßt dort von einander beabstandete Eindrückungen 20. Das verdrängte Material wird vorzugsweise in die unbearbeiteten Bereich zwischen den einzelnen Eindrückungen 20 verlagert, so daß dort ausgeprägte Dämme 21 am Nutengrund 6 entstehen, die quer zu den primären Nuten 4 zwischen den Rippen 3 verlaufen. Die nun folgende Überwalzscheibe 22 konstanten Durchmessers verformt die oberen Bereiche dieser Dämme 21 in Richtung des Rohrumfangs, so daß zwischen den verformten oberen Bereichen 23 der Dämme 21 und dem Nutengrund 6 kleine Hohlräume 7 zwischen zwei benachbarten Dämmen 21 gebildet werden (Fig. 7). Diese Hohlräume 7 stellen die erfindungsgemäßen, hinterschnittenen Sekundärnuten dar. Der Durchmesser der Überwalzscheibe 22 muß kleiner gewählt werden als der Durchmesser der Grundkerbscheibe 19.After the last disc of the rolling tool 11 is a gear-like washer 19 is engaged, the Diameter of the notched disk 19 is at most as large as that Diameter of the largest roller disc (Fig. 6). The thickness D 'of Notched disk 19 is slightly larger than the width B of the Rolling disks 12 shaped primary groove 4, here the width B of the primary groove 4 is measured at the point where the Rib flank 5 merges into the radius area of the rib foot 13. The thickness D 'of this notched disk is typically 50% to 80% of the rib pitch T. The notched disk 19 can be straight or helical. The notched disk 19 displaces Material from the area of the rib flanks 5 and from the Radius area at the fin base 13 and leaves each other there spaced indentations 20. The displaced material preferably in the unprocessed area between each Impressions 20 relocated so that there are pronounced Dams 21 on the bottom of the groove 6 arise, which are transverse to the primary Grooves 4 run between the ribs 3. The following now Rolling disc 22 of constant diameter deforms the upper Areas of these dams 21 in the direction of the pipe circumference, so that between the deformed upper regions 23 of the dams 21 and the groove bottom 6 small cavities 7 between two neighboring ones Dams 21 are formed (Fig. 7). Make these cavities 7 the undercut secondary grooves according to the invention. The diameter of the roller plate 22 must be chosen smaller are called the diameter of the base washer 19th

Da der Durchmesser der zahnradartigen Kerbscheibe 19 nicht größer ist als der Durchmesser der größten Walzscheibe des Walzwerkzeugs 11, wird die tiefste Stelle des primären Nutengrunds 6 durch die zahnradartige Kerbscheibe 19 nicht weiter vertieft. Die Rohrwandung 18 wird demnach bei der Formung der hinterschnittenen Sekundärnuten 7 gemäß Ausführungsform 3 nicht geschwächt.Since the diameter of the gear-like notched disk 19 is not is larger than the diameter of the largest rolling disc of the Rolling tool 11, the lowest point of the primary groove bottom 6 by the gear-like notched disk 19 no further deepened. The tube wall 18 is accordingly in the formation of the undercut secondary grooves 7 according to embodiment 3 not weakened.

Nachdem die hinterschnittenen Sekundärnuten 7 am Nutengrund 6 erzeugt wurden, werden die Rippenspitzen 8 mittels einer zahnradartigen Kerbscheibe 24 gekerbt. Dies ist in den Figuren 2/4/6 dargestellt. Anschließend erfolgt das Stauchen der gekerbten Rippenspitzen durch eine oder mehrere Stauchrollen 25. Die Rippen 3 erhalten so einen im wesentlichen T-förmigen Querschnitt, und die Nuten 9 zwischen den Rippen 3 werden bis auf Poren 26 verschlossen (Siehe Figuren 3/5/7). After the undercut secondary grooves 7 on the bottom 6 were generated, the rib tips 8 by means of a notched gear-like notched disk 24. This is in the figures 2/4/6 shown. Subsequently, the notched rib tips by one or more compression rollers 25. The ribs 3 thus have a substantially T-shaped Cross section, and the grooves 9 between the ribs 3 are up closed on pores 26 (see FIGS. 3/5/7).

Die Rippenhöhe H wird am fertigen Rippenrohr 1 von der tiefsten Stelle des Nutengrunds 6 bis zur Rippenspitze des vollständig geformten Rippenrohres gemessen.The fin height H is the lowest on the finished finned tube 1 Place the bottom of the groove 6 up to the tip of the ribs completely shaped finned tube measured.

Die erfindungsgemäßen, hinterschnittenen Sekundärnuten 7 am Grund 6 der Primärnuten 4 erstrecken sich vom Nutengrund 6 zur Rippenspitze hin, wobei sie sich maximal bis 45% der Rippenhöhe H, typischerweise bis 20% der Rippenhöhe H ausdehnen.The undercut secondary grooves 7 according to the invention Bottom 6 of the primary grooves 4 extend from the bottom 6 of the groove Rib tip down, with a maximum of 45% of the rib height H, typically up to 20% of the rib height H.

Fig. 8 zeigt das Foto einer erfindungsgemäßen, hinterschnittenen Sekundärnut 7 am Nutengrund 6. Die Schnittebene ist senkrecht zur Umfangsrichtung des Rohres. Es ist hier ein Beispiel nach Ausführungsform 1 dargestellt. Die erkennbare Asymmetrie der Struktur ist durch unvermeidbare Toleranzen bei Werkzeugund Vormaterialabmessungen bedingt. Die Vorsprünge 15 bestehen aus Material, das von den Rippenflanken 5 zum Nutengrund 6 hin verlagert wurde.8 shows the photo of an undercut according to the invention Secondary groove 7 at the bottom of the groove 6. The cutting plane is vertical to the circumferential direction of the pipe. Here is an example shown according to embodiment 1. The recognizable asymmetry the structure is due to unavoidable tolerances in tool and Due to raw material dimensions. The projections 15 exist made of material from the rib flanks 5 to the bottom 6 of the groove was relocated.

Fig. 9 zeigt im Vergleich das Leistungsverhalten zweier strukturierter Rohre bei Verdampfung des Kältemittels R-134a auf der Rohraußenseite, wobei eines der Rohre mit hinterschnittenen Sekundärnuten am Nutengrund ausgeführt wurde. Dargestellt ist der äußere Wärmeübergangskoeffizient über der Heizflächenbelastung. Die Sättigungstemperatur beträgt hierbei 14.5 °C. Man erkennt, daß durch die hinterschnittenen Sekundärnuten am Nutengrund ein Leistungsvorteil erreicht wird, der bei kleinen Heizflächenbelastungen über 30%, bei großen Heizflächenbelastungen ca. 20% beträgt.Fig. 9 shows the performance of two structured in comparison Pipes on the evaporation of the refrigerant R-134a the outside of the pipe, one of the pipes with undercut Secondary grooves on the groove base was carried out. shown is the external heat transfer coefficient above the heating surface load. The saturation temperature is 14.5 ° C. It can be seen that the undercut secondary grooves on A performance advantage is achieved that is small Heating surface loads over 30%, with large heating surface loads is about 20%.

Strukturen mit hinterschnittenen Sekundärnuten am Nutengrund werden auch in EP 0.522.985 vorgeschlagen. Hierbei befindet sich die Struktur jedoch auf der Innenseite eines Rohres. Um die mechanische Stabilität derartiger Rohre insbesondere beim Aufweiten der Rohre zu gewährleisten, müssen die Sekundärnuten möglichst flach gestaltet sein. Dies wird durch die in EP 0.522.985 beschriebene, spitzwinklige Geometrie der Sekundärnuten erreicht. Bei rohrseitiger Verdampfung von Kältemitteln herrscht im Rohr üblicherweise ein höherer Druck als auf der Rohraußenseite. Unter Innendruckbelastung geht aufgrund der Kerbwirkung von den spitzwinkligen Rändern der Sekundärnuten eine erhöhte mechanische Belastung auf die Wand des Rohres aus. Dies muß durch eine dickere Rohrwandung kompensiert werden. Dieser Sicherheitszuschlag in der Rohrwandung führt jedoch zu einem erhöhten Materialeinsatz und damit zu erhöhten Kosten.Structures with undercut secondary grooves on the bottom of the groove are also proposed in EP 0.522.985. Here is however, the structure is on the inside of a pipe. Around the mechanical stability of such pipes in particular To ensure expansion of the pipes, the secondary grooves be as flat as possible. This is through the in EP 0.522.985 described acute-angled geometry of the secondary grooves reached. In the case of evaporation of refrigerants on the pipe side there is usually a higher pressure in the pipe than on the outside of the pipe. Under internal pressure is due to the notch effect from the acute-angled edges of the Secondary grooves an increased mechanical load on the wall of the pipe. This must be compensated for by a thicker tube wall become. This safety margin in the pipe wall however leads to an increased use of materials and thus to increased costs.

Bei der hier vorgeschlagenen Gestaltung der hinterschnittenen Sekundärnuten 7 im Bereich des primären Nutengrunds 6 auf der Außenseite von berippten Rohren findet jedoch keine Schwächung der Rohrwandung 18 statt, da zur Bildung der Sekundärnuten 7 ausschließlich Material aus dem Bereich der Rippenflanken 5 und eventuell aus dem Radiusbereich 13 oberhalb des Nutengrunds 6 verwendet wird.In the undercut design proposed here Secondary grooves 7 in the area of the primary groove base 6 on the However, there is no weakening on the outside of finned tubes the tube wall 18 instead, since to form the secondary grooves 7 only material from the area of the rib flanks 5 and possibly from the radius area 13 above the bottom of the groove 6 is used.

Claims (22)

Metallisches Wärmeaustauscherrohr, insbes. zur Verdampfung von Flüssigkeiten aus Reinstoffen oder Gemischen auf der Rohraußenseite, mit auf der Rohraußenseite ausgeformten integralen Rippen (3), deren Fuß (13) im wesentlichen radial von der Rohrwandung (18)absteht, wobei im Bereich des Nutengrundes (6) der zwischen den Rippen (3) verlaufenden Primärnuten (4) Aussparungen angeordnet sind, dadurch gekennzeichnet, daß die Aussparungen in Form hinterschnittener Sekundärnuten (7) ausgebildet sind.Metallic heat exchanger tube, in particular for the evaporation of liquids from pure substances or mixtures on the outside of the tube, with integral fins (3) formed on the outside of the tube, the base (13) of which projects essentially radially from the tube wall (18), whereby in the area of the groove base ( 6) of the primary grooves (4) extending between the ribs (3), recesses are arranged, characterized in that the recesses are designed in the form of undercut secondary grooves (7). Metallisches Wärmeaustauscherrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Rippen (3) und die Primärnuten (4) schraubenlinienförmig verlaufen.Metallic heat exchanger tube according to claim 1, characterized in that the ribs (3) and the primary grooves (4) run helically. Metallisches Wärmeaustauscherrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Rippen (3) und die Primärnuten (4) ringförmig verlaufen.Metallic heat exchanger tube according to claim 1, characterized in that the ribs (3) and the primary grooves (4) extend in an annular manner. Metallisches Wärmeaustauscherrohr nach Anspruch 1, dadurch gekennzeichnet, daß die Rippen (3) und die Primärnuten (4) in Axialrichtung verlaufen. Metallic heat exchanger tube according to claim 1, characterized in that the ribs (3) and the primary grooves (4) run in the axial direction. Metallisches Wärmeaustauscherrohr nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, daß die hinterschnittenen Sekundärnuten (7) mit im wesentlichen konstantem Querschnitt in Richtung der Primärnuten (4) verlaufen.Metallic heat exchanger tube according to claim 2, 3 or 4, characterized in that the undercut secondary grooves (7) run in the direction of the primary grooves (4) with an essentially constant cross section. Metallisches Wärmeaustauscherrohr nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, daß der Querschnitt der in Richtung der Primärnuten (4) verlaufenden, hinterschnittenen Sekundärnuten (7) in regelmäßigen Abständen variiert ist.Metallic heat exchanger tube according to claim 2, 3 or 4, characterized in that the cross section of the undercut secondary grooves (7) running in the direction of the primary grooves (4) is varied at regular intervals. Metallisches Wärmeaustauscherrohr nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, daß die hinterschnittenen Sekundärnuten (7) im wesentlichen quer zur Richtung der Primärnuten (4) verlaufen.Metallic heat exchanger tube according to claim 2, 3 or 4, characterized in that the undercut secondary grooves (7) run essentially transversely to the direction of the primary grooves (4). Metallisches Wärmeaustauscherrohr nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sich die hinterschnittenen Sekundärnuten (7) maximal bis 45 % der Rippenhöhe H ausdehnen.Metallic heat exchanger tube according to one or more of claims 1 to 7, characterized in that the undercut secondary grooves (7) extend up to a maximum of 45% of the fin height H. Metallisches Wärmeaustauscherrohr nach Anspruch 8, dadurch gekennzeichnet, daß sich die hinterschnittenen Sekundärnuten (7) maximal bis 20 % der Rippenhöhe H ausdehnen.Metallic heat exchanger tube according to claim 8, characterized in that the undercut secondary grooves (7) extend up to a maximum of 20% of the fin height H. Metallisches Wärmeaustauscherrohr nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Rippen (3) eine gleichmäßige Höhe H aufweisen.Metallic heat exchanger tube according to one or more of claims 1 to 9, characterized in that the ribs (3) have a uniform height H. Metallisches Wärmeaustauscherrohr nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Rippenspitzen (8) gekerbt sind. Metallic heat exchanger tube according to one or more of claims 1 to 9, characterized in that the fin tips (8) are notched. Metallisches Wärmeaustauscherrohr nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Rippen (3) einen im wesentlichen T-förmigen Querschnitt aufweisen.Metallic heat exchanger tube according to claim 10 or 11, characterized in that the ribs (3) have a substantially T-shaped cross section. Metallisches Wärmeaustauscherrohr nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß es glatte Enden und/oder glatte Zwischenbereiche aufweist.Metallic heat exchanger tube according to one or more of claims 1 to 12, characterized in that it has smooth ends and / or smooth intermediate areas. Metallisches Wärmeaustauscherrohr nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß es als nahtloses Rohr ausgebildet ist.Metallic heat exchanger tube according to one or more of claims 1 to 13, characterized in that it is designed as a seamless tube. Metallisches Wärmeaustauscherrohr nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß es als längsnahtgeschweißtes Rohr ausgebildet ist.Metallic heat exchanger tube according to one or more of claims 1 to 13, characterized in that it is designed as a longitudinally welded tube. Verfahren zur Herstellung eines Wärmeaustauschrohres nach Anspruch 2, bei dem folgende Verfahrensschritte durchgeführt werden: a) Auf der äußeren Oberfläche eines Glattrohres (2) werden schraubenlinienförmig verlaufende Rippen (3) herausgewalzt, indem das Rippenmaterial durch Verdrängen von Material aus der Rohrwandung nach außen mittels eines Walzvorgangs gewonnen wird und das entstehende Rippenrohr (1) durch die Walzkräfte in Drehung versetzt und/oder entsprechend den entstehenden Rippen (3) vorgeschoben wird, wobei die Rippen (3) mit ansteigender Höhe aus dem sonst unverformten Glattrohr (2) ausgeformt werden, b) das Glattrohr (2) wird durch einen darinliegenden Walzdorn (27) abgestützt, c) nach dem Herausformen der Rippen (3) wird durch radialen Druck Material von den Rippenflanken (5) und/oder aus dem Übergangsbereich (13) am Rippenfuß unter Ausbildung der hinterschnittenen Sekundärnuten (7) zum Nutengrund (6) verlagert. A method of manufacturing a heat exchange tube according to claim 2, in which the following process steps are carried out: a) Helical ribs (3) are rolled out on the outer surface of a smooth tube (2), in that the rib material is obtained by displacing material from the tube wall to the outside by means of a rolling process and the resulting finned tube (1) is rotated by the rolling forces and / or is advanced according to the resulting fins (3), the fins (3) being formed from the otherwise undeformed smooth tube (2) with increasing height, b) the smooth tube (2) is supported by a rolling mandrel (27) therein, c) after the ribs (3) have been shaped out, material is displaced by radial pressure from the rib flanks (5) and / or from the transition region (13) on the rib base, forming the undercut secondary grooves (7) to the groove base (6). Verfahren nach Anspruch 16 zur Herstellung eines Wärmeaustauscherrohres nach Anspruch 5, dadurch gekennzeichnet, daß der radiale Druck im Verfahrensschritt c) mittels einer zylindrischen Scheibe (14) erzeugt wird,
deren Durchmesser kleiner ist als der Durchmesser der größten Walzscheibe (12) und deren Dicke D mindestens 50 % und höchstens 80 % der Rippenteilung T beträgt.
Method according to claim 16 for producing a heat exchanger tube according to claim 5, characterized in that the radial pressure in method step c) is generated by means of a cylindrical disk (14),
whose diameter is smaller than the diameter of the largest roller disc (12) and whose thickness D is at least 50% and at most 80% of the fin pitch T.
Verfahren nach Anspruch 17 zur Herstellung eines Wärmeaustauscherrohres nach Anspruch 6, dadurch gekennzeichnet, daß auf den Verfahrensschritt c) der Verfahrensschritt d) folgt,
in dem der Nutengrund (6) durch weiteren radialen Druck mittels einer zahnradartigen Kerbscheibe (16),
deren Durchmesser größer ist als der Durchmesser der zylindrischen Scheibe (14), maximal jedoch so groß wie der Durchmesser der größten Walzscheibe (12), stellenweise derart verformt wird,
daß in Umfangsrichtung regelmäßig voneinander beabstandete Eindrückungen (17) entstehen.
Method according to claim 17 for producing a heat exchanger tube according to claim 6, characterized in that method step c) is followed by method step d),
in which the base of the groove (6) by further radial pressure by means of a toothed-wheel-type notched disk (16),
whose diameter is larger than the diameter of the cylindrical disc (14), but at most as large as the diameter of the largest roller disc (12), is deformed in places in this way,
that in the circumferential direction regularly spaced indentations (17) arise.
Verfahren nach Anspruch 16 zur Herstellung eines Wärmeaustauscherrohres nach Anspruch 7, dadurch gekennzeichnet, daß der radiale Druck im Verfahrensschritt c') mittels einer zahnradartigen Kerbscheibe (19) erzeugt wird,
deren Durchmesser kleiner ist als der Durchmesser der größten Walzscheibe (12), wodurch voneinander beabstandete Eindrückungen (20) entstehen, und
daß der Verfahrensschritt d') folgt,
in dem durch weiteren radialen Druck mittels einer zylindrischen Überwalzscheibe (22) die hinterschnittenen Sekundärnuten (7) erzeugt werden.
Method according to claim 16 for producing a heat exchanger tube according to claim 7, characterized in that the radial pressure in method step c ') is generated by means of a toothed-wheel-type notched disk (19),
the diameter of which is smaller than the diameter of the largest roller disk (12), as a result of which indentations (20) spaced apart from one another are produced, and
that step d ') follows,
in which the undercut secondary grooves (7) are produced by further radial pressure using a cylindrical roller plate (22).
Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß jeweils eine gerade oder schräg verzahnte Kerbscheibe (16, 19) verwendet wird.Method according to claim 18 or 19, characterized in that in each case a straight or helically toothed notched disk (16, 19) is used. Verfahren nach einem der Ansprüche 17 bis 20 zur Herstellung eines Wärmeaustauscherrohres nach Anspruch 11, dadurch gekennzeichnet, daß in einem weiteren Verfahrensschritt e) die Rippenspitzen (8) durch radialen Druck mittels einer zahnradartigen Kerbscheibe (24) gekerbt werden.Method according to one of claims 17 to 20 for producing a heat exchanger tube according to claim 11, characterized in that in a further method step e) the fin tips (8) are notched by radial pressure by means of a gear-like notched disk (24). Verfahren nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, daß in einem Verfahrensschritt f) durch weiteren radialen Druck die Rippenspitzen (8) mittels mindestens einer Stauchrolle (25) zu einem im wesentlichen T-förmigen Querschnitt gestaucht werden.Method according to one of claims 17 to 21, characterized in that in a method step f) by further radial pressure the rib tips (8) are compressed to an essentially T-shaped cross section by means of at least one compression roller (25).
EP02000425A 2001-01-16 2002-01-08 Tube for heat exchanger and process for making same Expired - Lifetime EP1223400B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10101589 2001-01-16
DE10101589A DE10101589C1 (en) 2001-01-16 2001-01-16 Heat exchanger tube and process for its production

Publications (3)

Publication Number Publication Date
EP1223400A2 true EP1223400A2 (en) 2002-07-17
EP1223400A3 EP1223400A3 (en) 2005-11-30
EP1223400B1 EP1223400B1 (en) 2007-03-14

Family

ID=7670615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02000425A Expired - Lifetime EP1223400B1 (en) 2001-01-16 2002-01-08 Tube for heat exchanger and process for making same

Country Status (8)

Country Link
US (2) US6913073B2 (en)
EP (1) EP1223400B1 (en)
JP (1) JP3935348B2 (en)
CN (1) CN1313794C (en)
AT (1) ATE356966T1 (en)
DE (2) DE10101589C1 (en)
ES (1) ES2283470T3 (en)
PT (1) PT1223400E (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001435A1 (en) 2008-04-28 2009-10-29 Basf Se Process for transferring heat to a monomeric acrylic acid, acrylic acid-Michael oligomers and acrylic acid polymer dissolved liquid containing
WO2014072047A1 (en) * 2012-11-12 2014-05-15 Wieland-Werke Ag Evaporation heat transfer tube
US9618279B2 (en) 2011-12-21 2017-04-11 Wieland-Werke Ag Evaporator tube having an optimised external structure
EP3581871A1 (en) 2018-06-12 2019-12-18 Wieland-Werke AG Metallic heat exchange pipe

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10226641B4 (en) * 2002-06-14 2004-11-04 Rohde & Schwarz Ftk Gmbh Heat exchanger element and method for producing a heat exchanger element
US7254964B2 (en) * 2004-10-12 2007-08-14 Wolverine Tube, Inc. Heat transfer tubes, including methods of fabrication and use thereof
US7293602B2 (en) * 2005-06-22 2007-11-13 Holtec International Inc. Fin tube assembly for heat exchanger and method
CN100365369C (en) * 2005-08-09 2008-01-30 江苏萃隆铜业有限公司 Heat exchange tube of evaporator
CN100498187C (en) * 2007-01-15 2009-06-10 高克联管件(上海)有限公司 Evaporation and condensation combined type heat-transfer pipe
CN101338987B (en) * 2007-07-06 2011-05-04 高克联管件(上海)有限公司 Heat transfer pipe for condensation
CN100547339C (en) 2008-03-12 2009-10-07 江苏萃隆精密铜管股份有限公司 A kind of intensify heat transfer pipe and preparation method thereof
DE102008013929B3 (en) 2008-03-12 2009-04-09 Wieland-Werke Ag Metallic heat exchanger pipe i.e. integrally rolled ribbed type pipe, for e.g. air-conditioning and refrigeration application, has pair of material edges extending continuously along primary grooves, where distance is formed between edges
US9844807B2 (en) 2008-04-16 2017-12-19 Wieland-Werke Ag Tube with fins having wings
US9038710B2 (en) * 2008-04-18 2015-05-26 Wieland-Werke Ag Finned tube for evaporation and condensation
MX2010011462A (en) * 2008-04-18 2011-03-24 Wolverine Tube Inc Finned tube for condensation and evaporation.
DE102009007446B4 (en) * 2009-02-04 2012-03-29 Wieland-Werke Ag Heat exchanger tube and method for its production
JP4638951B2 (en) * 2009-06-08 2011-02-23 株式会社神戸製鋼所 Metal plate for heat exchange and method for producing metal plate for heat exchange
GB0911753D0 (en) * 2009-07-07 2009-08-19 Rolls Royce Plc Heat transfer passage
DE102011121436A1 (en) * 2011-12-16 2013-06-20 Wieland-Werke Ag Condenser tubes with additional flank structure
CN102519297A (en) * 2011-12-29 2012-06-27 鄢炳火 Heat exchanger with convection heat transfer ability strengthened by aid of transverse fluid mixing effect
CN102980432A (en) * 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 Evaporation heat transfer pipe with hollow cavity body
DE102014002829A1 (en) 2014-02-27 2015-08-27 Wieland-Werke Ag Metallic heat exchanger tube
DE102016006914B4 (en) 2016-06-01 2019-01-24 Wieland-Werke Ag heat exchanger tube
US9945618B1 (en) * 2017-01-04 2018-04-17 Wieland Copper Products, Llc Heat transfer surface
CN107774849A (en) * 2017-10-27 2018-03-09 华南理工大学 A kind of forming tool and manufacturing process of evaporative condenser two-purpose ladder palace lattice finned tube
CN111707122B (en) * 2020-05-07 2022-03-25 华南理工大学 Outer finned tube with surface mixed wettability and preparation method thereof
CN112222217A (en) * 2020-09-24 2021-01-15 上海宇洋特种金属材料有限公司 Rolling method of T-shaped crossed-tooth steel belt
DE202020005628U1 (en) 2020-10-31 2021-11-11 Wieland-Werke Aktiengesellschaft Metallic heat exchanger tube
CN116507872A (en) 2020-10-31 2023-07-28 威兰德-沃克公开股份有限公司 Metal heat exchanger tube
DE202020005625U1 (en) 2020-10-31 2021-11-10 Wieland-Werke Aktiengesellschaft Metallic heat exchanger tube
MX2023004837A (en) 2020-10-31 2023-05-10 Wieland Werke Ag Metal heat exchanger tube.
US20220146214A1 (en) * 2020-11-09 2022-05-12 Carrier Corporation Heat Transfer Tube

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1865575A (en) 1928-11-30 1932-07-05 Wolverine Tube Company Apparatus for manufacturing integral finned tubing
US3327512A (en) 1964-12-28 1967-06-27 Calumet & Hecla Fine pitch finned tubing and method of producing the same
US3696861A (en) 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
DE2758526A1 (en) 1977-12-28 1979-07-05 Wieland Werke Ag FIBER TUBE AND THE METHOD AND DEVICE FOR THE PRODUCTION THEREOF
US4216826A (en) 1977-02-25 1980-08-12 Furukawa Metals Co., Ltd. Heat transfer tube for use in boiling type heat exchangers and method of producing the same
US4577381A (en) 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
US4660630A (en) 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
EP0222100A2 (en) 1985-10-31 1987-05-20 Wieland-Werke Ag Finned tube with a notched groove bottom and method for making it
US5054548A (en) 1990-10-24 1991-10-08 Carrier Corporation High performance heat transfer surface for high pressure refrigerants
EP0713072A2 (en) 1994-11-17 1996-05-22 Carrier Corporation Heat transfer tube
US5697430A (en) 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
DE19757526C1 (en) 1997-12-23 1999-04-29 Wieland Werke Ag Heat exchanger tube manufacturing method

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906605A (en) * 1973-06-18 1975-09-23 Olin Corp Process for preparing heat exchanger tube
JPS5216048A (en) * 1975-07-30 1977-02-07 Hitachi Cable Ltd Heat transmitting wall
US4313248A (en) * 1977-02-25 1982-02-02 Fukurawa Metals Co., Ltd. Method of producing heat transfer tube for use in boiling type heat exchangers
US4353234A (en) * 1977-07-13 1982-10-12 Carrier Corporation Heat transfer surface and method of manufacture
US4179911A (en) * 1977-08-09 1979-12-25 Wieland-Werke Aktiengesellschaft Y and T-finned tubes and methods and apparatus for their making
SU923661A1 (en) * 1980-10-02 1982-04-30 Feliks P Kirpichnikov Method of producing ribbed tubes
JPS5946490A (en) * 1982-09-08 1984-03-15 Kobe Steel Ltd Heat transmitting tube for heat exchanger of boiling type
JPS5984095A (en) * 1982-11-04 1984-05-15 Hitachi Ltd Heat exchanging wall
JPS59199137A (en) * 1983-04-26 1984-11-12 Kobe Steel Ltd Production of boiling heat transfer pipe
JPS6064194A (en) * 1983-09-19 1985-04-12 Sumitomo Light Metal Ind Ltd Heat transfer tube
JPH0612222B2 (en) * 1985-08-12 1994-02-16 三菱重工業株式会社 Heat transfer tube with cross groove on inner wall
JPH01102295A (en) * 1987-10-15 1989-04-19 Daikin Ind Ltd Heat transmission pipe externally exchanging heat
JPH0439596A (en) * 1990-06-06 1992-02-10 Furukawa Electric Co Ltd:The Boiling type heat transfer tube
JP2788793B2 (en) * 1991-01-14 1998-08-20 古河電気工業株式会社 Heat transfer tube
JP2730824B2 (en) 1991-07-09 1998-03-25 三菱伸銅株式会社 Heat transfer tube with inner groove and method of manufacturing the same
JPH06323778A (en) * 1993-05-12 1994-11-25 Kobe Steel Ltd Heating tube for use in boiling
US5333682A (en) * 1993-09-13 1994-08-02 Carrier Corporation Heat exchanger tube
US5415225A (en) * 1993-12-15 1995-05-16 Olin Corporation Heat exchange tube with embossed enhancement
US5597039A (en) * 1994-03-23 1997-01-28 High Performance Tube, Inc. Evaporator tube
DE19963353B4 (en) * 1999-12-28 2004-05-27 Wieland-Werke Ag Heat exchanger tube structured on both sides and method for its production

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1865575A (en) 1928-11-30 1932-07-05 Wolverine Tube Company Apparatus for manufacturing integral finned tubing
US3327512A (en) 1964-12-28 1967-06-27 Calumet & Hecla Fine pitch finned tubing and method of producing the same
US3696861A (en) 1970-05-18 1972-10-10 Trane Co Heat transfer surface having a high boiling heat transfer coefficient
US4216826A (en) 1977-02-25 1980-08-12 Furukawa Metals Co., Ltd. Heat transfer tube for use in boiling type heat exchangers and method of producing the same
DE2758526A1 (en) 1977-12-28 1979-07-05 Wieland Werke Ag FIBER TUBE AND THE METHOD AND DEVICE FOR THE PRODUCTION THEREOF
US4577381A (en) 1983-04-01 1986-03-25 Kabushiki Kaisha Kobe Seiko Sho Boiling heat transfer pipes
US4660630A (en) 1985-06-12 1987-04-28 Wolverine Tube, Inc. Heat transfer tube having internal ridges, and method of making same
EP0222100A2 (en) 1985-10-31 1987-05-20 Wieland-Werke Ag Finned tube with a notched groove bottom and method for making it
US5054548A (en) 1990-10-24 1991-10-08 Carrier Corporation High performance heat transfer surface for high pressure refrigerants
EP0713072A2 (en) 1994-11-17 1996-05-22 Carrier Corporation Heat transfer tube
US5669441A (en) 1994-11-17 1997-09-23 Carrier Corporation Heat transfer tube and method of manufacture
US5697430A (en) 1995-04-04 1997-12-16 Wolverine Tube, Inc. Heat transfer tubes and methods of fabrication thereof
DE19757526C1 (en) 1997-12-23 1999-04-29 Wieland Werke Ag Heat exchanger tube manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001435A1 (en) 2008-04-28 2009-10-29 Basf Se Process for transferring heat to a monomeric acrylic acid, acrylic acid-Michael oligomers and acrylic acid polymer dissolved liquid containing
US9618279B2 (en) 2011-12-21 2017-04-11 Wieland-Werke Ag Evaporator tube having an optimised external structure
US9909819B2 (en) 2011-12-21 2018-03-06 Wieland-Werke Ag Evaporator tube having an optimised external structure
WO2014072047A1 (en) * 2012-11-12 2014-05-15 Wieland-Werke Ag Evaporation heat transfer tube
US9644900B2 (en) 2012-11-12 2017-05-09 Wieland-Werke Ag Evaporation heat transfer tube
EP3581871A1 (en) 2018-06-12 2019-12-18 Wieland-Werke AG Metallic heat exchange pipe

Also Published As

Publication number Publication date
JP2002277188A (en) 2002-09-25
EP1223400A3 (en) 2005-11-30
ATE356966T1 (en) 2007-04-15
CN1313794C (en) 2007-05-02
US20020092644A1 (en) 2002-07-18
DE50209693D1 (en) 2007-04-26
US20030024121A1 (en) 2003-02-06
PT1223400E (en) 2007-05-31
EP1223400B1 (en) 2007-03-14
US6913073B2 (en) 2005-07-05
ES2283470T3 (en) 2007-11-01
DE10101589C1 (en) 2002-08-08
US6786072B2 (en) 2004-09-07
CN1366170A (en) 2002-08-28
JP3935348B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
EP1223400B1 (en) Tube for heat exchanger and process for making same
DE4404357C1 (en) Heat exchange core for condensing vapour (steam)
DE10156374C1 (en) Heat exchange tube structured on both sides has inner fins crossed by secondary grooves at specified rise angle
DE102009007446B4 (en) Heat exchanger tube and method for its production
EP2339283B1 (en) Heat transfer pipe and method for manufacturing same
DE19628280C2 (en) Heat transfer tube with a grooved inner surface
DE102006008083B4 (en) Structured heat exchanger tube and method for its production
EP1113237B1 (en) Heat exchange tube structured on both sides and process for making same
EP0925856B1 (en) Method for manufacturing an evaporation tube
EP2101136B1 (en) Metallic heat exchanger tube
EP1182416A2 (en) Heat exchanger tube with inner offset fins with variable height
EP3111153B1 (en) Metal heat exchanger tube
EP0102407B1 (en) Finned tube with internal projections and method and apparatus for its manufacture
EP3465056B1 (en) Heat exchanger tube
EP3465057B1 (en) Heat exchanger tube
EP3465055B1 (en) Heat exchanger tube
DE10210016B9 (en) Heat exchange tube with a ribbed inner surface
WO2022089773A1 (en) Metal heat exchanger tube
EP3581871B1 (en) Metallic heat exchange pipe
WO2022089772A1 (en) Metal heat exchanger tube
DE202020005628U1 (en) Metallic heat exchanger tube
DE202020005625U1 (en) Metallic heat exchanger tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020108

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50209693

Country of ref document: DE

Date of ref document: 20070426

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070614

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070530

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2283470

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

26N No opposition filed

Effective date: 20071217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070615

BERE Be: lapsed

Owner name: WIELAND-WERKE A.G.

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201230

Year of fee payment: 20

Ref country code: FR

Payment date: 20201210

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20210107

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210131

Year of fee payment: 20

Ref country code: ES

Payment date: 20210208

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201211

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50209693

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220109