EP1311712A2 - Verfahren zur erhöhung der druckspannung oder zur erniedrigung der zugeigenspannung einer schicht - Google Patents

Verfahren zur erhöhung der druckspannung oder zur erniedrigung der zugeigenspannung einer schicht

Info

Publication number
EP1311712A2
EP1311712A2 EP01991711A EP01991711A EP1311712A2 EP 1311712 A2 EP1311712 A2 EP 1311712A2 EP 01991711 A EP01991711 A EP 01991711A EP 01991711 A EP01991711 A EP 01991711A EP 1311712 A2 EP1311712 A2 EP 1311712A2
Authority
EP
European Patent Office
Prior art keywords
layer
substrate body
cvd
cutting insert
pcvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01991711A
Other languages
English (en)
French (fr)
Inventor
Hartmut Westphal
Volkmar Sottke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Widia GmbH
Original Assignee
Widia GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10123554A external-priority patent/DE10123554B4/de
Application filed by Widia GmbH filed Critical Widia GmbH
Publication of EP1311712A2 publication Critical patent/EP1311712A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5886Mechanical treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the invention relates to a method for increasing the residual compressive stress or for lowering the internal tensile stress of an outer or an outer hard material layer applied by means of CVD, PCVD or PVD to a hard metal, cermet or ceramic substrate body, in which the coated substrate body after coating is subjected to a dry blasting treatment Using a granular abrasive.
  • the invention further relates to a cutting insert for machining, which consists of a hard metal, cermet or ceramic substrate body with a single or multi-layer coating of carbides, nitrides, carbonitrides, oxicarbonitrides and / or borides of the elements of the IVa to Vla group of the periodic table, boron-containing hard material compounds and / or oxidic compounds of aluminum and / or zirconium, which have been applied by means of a PCVD or CVD process.
  • Hard metals have a binding phase consisting of cobalt and / or nickel as well as a hard material phase, which can have, for example, WC, TiC, TaC, NbC, VC and / or Cr 3 C 2 .
  • the cermets differ in that they have a large proportion of a TiCN phase, but other carbides and / or nitrides can also belong to them.
  • binder metals are the elements of the iron group, mostly Co and / or Ni. Ceramics, in particular for machining purposes, usually consist of A1 2 0 3 and / or Zr0 2 .
  • the wear resistance can be increased by single- or multi-layer coatings of the above composition.
  • the coating can be applied by means of a physical vapor deposition process (PVD) or a chemical vapor deposition process (CVD), whereby the CVD process or - in a further development - the so-called plasma-assisted CVD process (PCVD) has the advantage of a more uniform deposition, which the Avoid shading effects that occur with PVD processes.
  • PVD physical vapor deposition process
  • CVD chemical vapor deposition process
  • PCVD plasma-assisted CVD process
  • the outer layer (top layer) consists of a single or multi-phase layer of carbides, nitrides or carbonitrides based on Zr or Hf, which has been applied by means of CVD and which has internal compressive stresses, and the layer or layers underneath, also applied by means of CVD all have internal tensile stresses, at least one or the only underlying layer consisting of TiN, TiC and / or Ti (C, N).
  • the compressive stresses measured in the outer layers or the outer layer are between -500 and -2500 MPa (compressive stresses are defined by definition with negative values in contrast to tensile stresses for which positive values are used).
  • the blasting medium has a maximum diameter of 150 ⁇ m, preferably a maximum of 100 ⁇ m.
  • the internal tension of the layers lying under the cover layer also changes in a uniform manner to the extent that the edge zones of the substrate body near the surface are influenced.
  • a composite body with a multi-layer coating can thus be produced by dry mechanical blasting treatment, the layers of which, without exception, have internal compressive stresses, the top layer having undergone intensive consolidation and thus increased wear resistance.
  • the fine-grained powdery abrasives are also essentially not, but at least significantly less abrasive, than the coarser grains previously used in the prior art.
  • a further advantage of this dry blasting treatment is that the layer surface is smoothed considerably better than was previously possible with blasting treatment or brushing.
  • WO 99/23275 describes the use of a beam consisting of Al 2 0 3 particles with a size of 30 ⁇ m. proposed, but this should be used in the form of a suspension as a wet blasting agent, which should be used under a pressure of 2 to 6 bar (x 10 5 Pa), preferably 3 bar.
  • the wet jet treatment described there relates exclusively to the specific layer sequence with a lower ⁇ l 2 0 3 layer on which an outer layer has been applied, which consists of TiN or a multi-layer layer of TiN / TiC.
  • the CVD process used for coating apparently leads to (tensile) stresses, which should be minimized by means of wet blasting.
  • wet blasting with an Al 2 0 3 abrasive primarily serves to smooth the surface, whereas the achievable change in internal stresses compared to dry blasting treatment is significantly minimized.
  • the K-aluminum oxide present on the surface should finally be heat-treated at a temperature of 900 ° C to 1100 ° C for 0.3 to 10 hours in order to convert the wet-blasted K-aluminum oxide into ⁇ -aluminum oxide.
  • the blasting agent has at least essentially a rounded grain shape, the diameter of which is preferably between see 5 to 150 microns, further preferably between 10 to 100 microns.
  • the blasting agent has at least essentially a rounded grain shape, the diameter of which is preferably between see 5 to 150 microns, further preferably between 10 to 100 microns.
  • Pressure-atomized steel, cast iron granules, heavy metal powder or alloys or carbide granules and / or break-resistant ceramics produced therefrom are preferably used as blasting agents. These abrasives are characterized by a high breaking strength, so that the grains do not crack into smaller, sharp-edged grains, which can then damage the composite surface more severely.
  • the abrasive is or are directed onto the coated substrate body by means of compressed air under a pressure of at least 5 ⁇ 10 5 Pa to a maximum of 10 6 Pa, preferably between 6 ⁇ 10 5 Pa and 7 ⁇ 10 5 Pa.
  • the jet prints used are therefore considerably higher than the pressures usually used according to the prior art (when using a coarser-sized blasting agent).
  • blasting media it is possible that blasting media ; to be directed at the composite surface at any angle, but the effect increases if the abrasive is directed essentially perpendicular to the composite surface.
  • the blasting treatment is carried out until the one under an external one Layer or an outermost layer lying areas or layers, preferably up into the near-surface zones of the substrate body, have experienced a change in the internal stresses, ie either an increase in the compressive stresses or a minimization of the tensile stresses.
  • the jet pressure and duration of treatment the internal tensions of the layers lying under the cover layer can also be influenced in a targeted manner.
  • the substrate body can be a hard metal, a hard metal with an edge zone gradient, a cermet or an oxide or nitride ceramic.
  • the substrate body is preferably coated with a coating of carbides, nitrides, carbonitrides, oxicarbonitrides and / or borides of the elements of the IVa to Vla group of the periodic table, boron-containing hard material compounds and / or oxidic compounds of aluminum and / or zirconium.
  • the layer thickness of a single layer is between 0.1 ⁇ m and a maximum of 10 ⁇ m.
  • the total layer thickness of a multilayer coating should preferably be ⁇ 20 ⁇ m.
  • the residual compressive stresses are measured by X-ray analysis using the sin 2 ⁇ method.
  • the method is described, for example, in the publication HTM43 (1988) 4, pages 208 to 211, "Roentgenographic residual stress measurements on texture-based PVD layers made of titanium carbide" by B. Eigenmann, B. Scholtes and E. Macherauch.
  • the residual stress values measured according to the invention are achieved on at least one grid level.
  • the proposed beam treatment covers at least the entire cutting area of a cutting insert used for the respective machining operations.

Abstract

Die Erfindung betrifft ein Verfahren zur Erhöhung de Druckeigenspannung oder zur Erniedrigung der zugeigenspannung einer äusseren oder einer äussersten, mittels CVD, PCVD oder PVD auf einen Hartmetall-, Cermet- oder Keramiksubstratkörper aufgetragenen Hartstoffschicht, bei dem der beschichtete Substratkörper nach dem Beschichten einer trockenen Strahlbehandlung unter Verwendung eines körnigen Strahlmittels unterzogen wird, das erfindungsgemäss einen maximalen Durchmesser von 150 mu m aufweist.

Description

Beschreibung
Verfahren zur Erhöhung der Druckspannung oder zur Erniedrigung der Zugeigenspannung einer CVD-, PCVD- oder PVD-Schicht und Schneideinsatz zum Zerspanen
Die Erfindung betrifft ein Verfahren zur Erhöhung der Druckeigenspannung oder zur Erniedrigung der Zugeigenspannung einer äußeren oder einer äußersten, mittels CVD, PCVD oder PVD auf einen Hartmetall-, Cermet- oder Keramiksubstratkörper aufgetragenen Hartstoffschicht, bei dem der beschichtete Substratkörper nach dem Beschichten einer trockenen Strahlbehandlung unter Verwendung eines körnigen Strahlmittels unterzogen wird.
Die Erfindung betrifft ferner einen Schneideinsatz zum Zerspanen, der aus einem Hartmetall-, Cermet- oder Keramiksubstratkörper mit einer ein- oder mehrlagigen Beschichtung aus Carbi- den, Nitriden, Carbonitriden, Oxicarbonitriden und/oder Bori- den der Elemente der IVa bis Vla-Gruppe des Periodensystems, borhaltigen Hartstoffverbindungen und/oder oxidischen Verbindungen des Aluminiums und/oder des Zirkoniums besteht, die mittels eines PCVD- oder CVD-Verfahrens aufgetragen worden sind.
Hartmetalle besitzen eine aus Cobalt und/oder Nickel bestehende Bindephase sowie eine Hartstoffphase, die z.B. WC, TiC, TaC, NbC, VC und/oder Cr3C2 aufweisen kann.
Demgegenüber unterscheiden sich die Cermets durch einen starken Anteil einer TiCN-Phase, der jedoch auch andere Carbide und/oder Nitride zugehören können. Bindemetalle sind auch hier die Elemente der Eisengruppe, zumeist Co und/oder Ni. Keramiken, insbesondere für Zerspanungszwecke bestehen meist aus A1203 und/oder Zr02. Je nach Zerspanungsoperation und zu bearbeitendem Werkstück kann die Verschleißbeständigkeit (Standzeit) durch ein- oder mehrlagige Beschichtungen der obengenannten Zusammensetzung gesteigert werden. Die Beschichtung läßt sich mittels eines physikalischen Aufdampfverfahrens (PVD) oder eines chemischen Aufdampfverfahrens (CVD) auftragen, wobei das CVD-Verfahren oder - in einer Weiterentwicklung - das sogenannte plasmaunterstützte CVD-Verfahren (PCVD) den Vorteil einer gleichmäßigeren Ablagerung hat, die die bei PVD-Verfahren auftretenden Schattierungseffekte vermeiden.
Die MikroStruktur, die Eigenspannungen und die Haftfestigkeit von ein- oder mehrlagigen Schichten ist stark von den jeweils angewandten Beschichtungsverfahren und den verwendeten Beschichtungspara etern abhängig. In der Vergangenheit gewonnene Erfahrungen zeigen, daß mittels CVD abgeschiedene Beschichtungen im Regelfall Zugspannungen aufweisen, während durch PVD-Verfahren aufgetragene Beschichtungen Druckspannungen besitzen. Zur Verbesserung der Bruchfestigkeit wird beispielsweise in der WO 92/05296 vorgeschlagen, eine CVD-Schicht bzw. mehrere CVD-Schichten mit einer oder mehreren durch PVD abgeschiedenen Schichten zu kombinieren, wobei als Material für die inneren, mittels CVD abgeschiedene Schicht, Nitride des Titans, Hafniums und/oder Zirkoniums und für die mittels PVD abgeschiedene Schicht Nitride und Carbonitride der genannten Metalle vorgeschlagen werden. Eine solche Beschichtung muß jedoch nachteiligerweise in unterschiedlichen Apparaturen durchgeführt werden, was arbeitsaufwendig und kostspielig ist.
In der DE 197 19 195 AI wird daher vorgeschlagen, eine mehrlagige Beschichtung durch einen ununterbrochenen CVD-Prozeß bei Temperaturen zwischen 900°C und 1100°C durch jeweiligen Wechsel der Gaszusammensetzung abzuscheiden. Die äußere Schicht (Deckschicht) besteht aus einer ein- oder mehrphasigen Schicht aus Carbiden, Nitriden oder Carbonitriden auf Zr- oder Hf-Basis, die mittels CVD aufgetragen worden ist und die innere Druckspannungen aufweist und deren darunterliegende, ebenfalls mittels CVD aufgetragene Schicht oder Schichten ausnahmslos innere Zugspannungen aufweisen, wobei mindestens eine oder die einzige darunterliegende Schicht aus TiN, TiC und/oder Ti(C,N) besteht. Die in den äußeren Schichten oder der äußeren Schicht gemessenen Druckspannungen liegen zwischen -500 und -2500 MPa (Druckspannungen werden definitionsgemäß mit negativen Werten im Gegensatz zu Zugspannungen, für die positive Werte angesetzt werden, benannt) .
Nach dem Stand der Technik ist es weiterhin bekannt, beschichtete Substratkörper nach der Beschichtung einer Oberflächenbehandlung zu unterziehen. Gängige mechanische Behandlungsverfahren sind das Bürsten und die Strahlbehandlung, bei der die verwendeten kugelförmigen Strahlmittel mit Korngrößen von 300 μm bis 600 μm mittels Preßluft unter einem Druck von 2 x 105 Pa bis 4 x 105 Pa auf die Oberfläche gerichtet werden. Eine solche Oberflächenbehandlung erhöht die Druckeigenspannungen der äußersten Schicht durch eintretende Verfestigung geringfügig. Hiermit will man störenden Rißbildungen und Ausbreitungen, Korrosion und Abplatzungsreaktionen entgegenwirken.
Es ist Aufgabe der vorliegenden Erfindung, die Rißanfälligkeit, Korrosionsbeständigkeit und Verschleißbeständigkeit von beschichteten Verbundwerkstoffen, insbesondere Schneidkörpern, durch geeignete Maßnahmen zu erhöhen und einen verbesserten Schneideinsatz zu schaffen.
Diese Aufgabe wird durch das Verfahren nach Anspruch 1 gelöst. Erfindungsgemäß besitzt das Strahlmittel einen maximalen Durchmesser von 150 μm, vorzugsweise von maximal 100 μm. Überraschenderweise führt die Verwendung von derart feinkörnigen Strahlmitteln, die trocken ohne Wasser oder sonstigen Flüssigkeitszusatz verwendet werden, zu dem überraschenden Ergebnis, daß die Druckspannungen der äußeren Schicht in weitaus stärkerem Maße erhöht werden bzw., sofern die äußere Schicht innere Zugspannungen aufweist, die Zugspannungen mittels der trockenen Strahlbehandlung deutlich minimiert werden können bis hin zur Umkehrung in eine Druckspannung in der äußeren Schicht. Je nach Dauer und Intensität der Strahlbehandlung ändert sich auch in gleichförmiger Weise die innere Spannung der unter der Deckschicht liegenden Schichten bis hin zur Beeinflussung der oberflächennahen Randzonen des Substratkörpers. Im Idealfall kann somit ein Verbundkörper mit einer mehrlagigen Beschichtung durch trockene mechanische Strahlbehandlung erzeugt werden, dessen Schichten ausnahmslos innere Druckspannungen aufweisen, wobei die Deckschicht eine intensive Verfestigung und damit erhöhte Verschleißbeständigkeit erfahren hat. Die feinkörnigen pulverartigen Strahlmittel sind auch im wesentlichen nicht, zumindest aber deutlich weniger abrasiv als die bisher nach dem Stand der Technik verwendeten gröberen Körnungen. Ein weiterer Vorteil dieser trockenen Strahlbehandlung liegt darin, daß die Schichtoberfläche erheblich besser geglättet wird als dies durch bisherige Strahlbehandlung oder Bürsten erreichbar war.
In der WO 99/23275 wird zwar die Verwendung eines aus Al203-Partikeln mit einer Größe von 30 μm bestehenden Strahl- mittels vorgeschlagen, jedoch soll dies in Form einer Suspension als Naßstrahlmittel angewendet werden, das unter einem Druck von 2 bis 6 bar (x 105 Pa) , vorzugsweise 3 bar benutzt werden soll. Die dort beschriebene Naßstrahlbehandlung bezieht sich jedoch ausschließlich auf die konkrete Schichtfolge mit einer unteren Αl203-Schicht, auf der eine äußere Schicht aufgetragen worden ist, die aus TiN oder einer Viellagenschicht aus TiN/TiC besteht. Das zur Beschichtung verwendete CVD-Verfahren führt augenscheinlich zu (Zug-) Spannungen, die mittels des Naßstrahlens minimiert werden sollen. Das Naßstrahlen mit einem Al203-Abrasionsmittel dient jedoch primär der Ober- flächenglättung, wohingegen die erzielbare Änderung der inneren Spannungen gegenüber einer Trockenstrahlbehandlung deutlich minimiert ist.
Dies wird auch daran deutlich, daß in dieser Druckschrift die Befürchtung ausgesprochen wird, daß eine unmittelbar auf eine Al203-Schicht abgeschiedene TiN-Schicht eine nur geringe Haftfestigkeit hat, weshalb vorzugsweise eine Zwischenlage aus (Ti,Al) (C,0,N) bevorzugt werden sollen.
Entsprechendes gilt auch für das in der EP 0 727 510 A2 beschriebene Naßstrahlbehandeln einer Aluminiumoxid-Beschichtung. Das an der Oberfläche vorliegende K-Aluminiumoxid soll abschließend bei einer Temperatur von 900°C bis 1100°C für 0,3 bis 10 Stunden wärmebehandelt werden, um das naßgestrahlte K-Aluminiumoxid in α-Aluminiumoxid umzuwandeln.
Weiterbildungen der Erfindung sind in den ünteransprüchen beschrieben.
So weist das Strahlmittel zumindest im wesentlichen eine rundliche Korngestalt auf, dessen Durchmesser vorzugsweise zwi- sehen 5 bis 150 μm, weiterhin vorzugsweise zwischen 10 bis 100 μm liegt. Bei jeweils größeren Körnungen besteht die Gefahr einer stärkeren Abrasion der aufgetragenen Deckschicht bis hin zu einem völlig unerwünschten Abtragen dieser äußeren Deckschicht sowie angrenzender darunterliegender Schichten. Bei kleineren Strahlmittel-Korngrößen reduziert sich demgegenüber die abrasive Wirksamkeit der trockenen Strahlmittelbehandlung erheblich.
Als Strahlmittel wird vorzugsweise druckverdüster Stahl, Gußeisengranulat, Schwermetallpulver oder hieraus hergestellte Legierungen oder Hartmetallgranulate und/oder bruchfeste Keramik verwendet. Diese Strahlmittel zeichnen sich durch eine große Bruchfestigkeit aus, so daß ein Zerspringen der Körner zu scharfkantigen kleineren Körnern, die dann die Verbundkörperoberfläche stärker beschädigen können, vermieden wird.
Nach einer weiteren Erkenntnis der Erfindung wird das oder werden die Strahlmittel mittels Preßluft unter einem Druck von mindestens 5 x 105 Pa bis maximal 106 Pa, vorzugsweise zwischen 6 x 105 Pa bis 7 x 105 Pa auf den beschichteten Substratkörper gerichtet. Die verwendeten Strahldrucke liegen damit erheblich über den üblicherweise nach dem Stand der Technik (bei Verwendung eines grobkörnigeren Strahlmittels) verwendeten Drucken.
Grundsätzlich ist es möglich, daß Strahlmittel; unter beliebigen Winkeln auf die Verbundkörperoberfläche zu richten, jedoch erhöht sich die Wirkung, wenn das Strahlmittel im wesentlichen senkrecht auf die Verbundkörperoberfläche gerichtet wird.
Nach einer Weiterbildung der Erfindung wird die Strahlbehandlung so lange durchgeführt, bis auch die unter einer äußeren Schicht oder einer äußersten Schicht liegenden Bereiche bzw. Schichten, vorzugsweise bis in die oberflächennahen Zonen des Substratkörpers hinein, eine Veränderung der inneren Spannungen, d.h. entweder Erhöhung der Druckspannungen oder Minimierung der Zugspannungen erfahren haben. Durch entsprechende Wahl des Strahldruckes und Behandlungsdauer lassen sich somit gezielt auch die inneren Spannungen der unter der Deckschicht liegenden Schichten beeinflussen.
Überraschenderweise konnten mit einem Schneideinsatz gemäß Anspruch 7 erheblich verbesserte Standzeiten beim Zerspanen erreicht werden. Erstmals ist es gelungen, in einer äußeren bzw. äußersten Schicht, die mittels PCVD oder CVD aufgetragen worden ist, Druckeigenspannungen zu erzeugen, die > 4 GPa, vorzugsweise 4,5 bis 10 GPa betragen. Solche Druckeigenspannungen waren bisher allenfalls in PVD-Schichten, die nachbehandelt worden sind, erreichbar.
Der Substratkörper kann ein Hartmetall, ein Hartmetall mit einem Randzonengradienten, ein Cermet oder eine Oxid- oder Nitridkeramik sein. Der Substratkörper wird vorzugsweise mit einer Beschichtung aus Carbiden, Nitriden, Carbonitriden, Oxi- carbonitriden und/oder Boriden der Elemente der IVa bis Vla-Gruppe des Periodensystems, borhaltigen HartstoffVerbindungen und/oder oxidischen Verbindungen des Aluminiums und/oder Zirkoniums beschichtet. Die Schichtdicke einer einzelnen Schicht liegt zwischen 0,1 μm und maximal 10 μm. Die Gesamtschichtdicke einer mehrlagigen Beschichtung soll bevorzugt < 20 μm betragen.
Die Druckeigenspannungen werden röntgenographisch nach dem sin2ψ-Verfahren gemessen. Das Verfahren wird beispielsweise in der Veröffentlichung HTM43 (1988) 4, Seiten 208 bis 211, "Röntgenographische Eigenspannungsmessungen an texturbehafteten PVD-Schichten aus Titancarbid" von B. Eigenmann, B. Scholtes und E. Macherauch.
Die erfindungsgemäß gemessenen Eigenspannungswerte werden an mindestens einer Gitterebene erreicht. Die vorgeschlagene Strahlbehandlung erfaßt zumindest den gesamten für die jeweiligen Zerspanungsoperationen verwendeten Schneidenbereich eines Schneideinsatzes.
Die Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert:
Beispiel 1
Schneidkörper des Typs CNMG 120412 mit Spanformrille für mittlere bis mittelschwere Schnittbedingungen aus P 20 Hartmetall (WC/TaC/NbC/TiC/7, 5% Co) mit mischcarbidfreier Randzone und einer am Substrat beginnenden CVD-Beschichtung TiN-TiCN(MT CVD) -Al203-ZrCN bei einer Gesamtschichtdicke von 18 μm wurden nach der Beschichtung einer Trockenstrahlbehandlung nach dem Injektor-Gravitations-Strahlverfahren mit Zir- konoxidkeramik-Granulat, druckverdüstem Stahlpulver und gesintertem Hartmetallsprühgranulat unterworfen, die Eigenspannungen nach dem sin2ψ-Verfahren röntgendiffraktometrisch an jeweils mindestens zwei Gitterebenen bestimmt (die darauf gebildeten Mittelwerte sind in der Tabelle 1 angegeben) und im Drehtest mit stark unterbrochenen Schnitt (Leistendrehtest) auf rostfreiem martensitischem Stahl auf Schneidhaltigkeit geprüft (v = 150 m/min, ap = 2,0 mm, f = 0,35 mm/U): Tabelle 1
vO
Vorzeichen + steht für Zugeigenspannungen, - steht für Druckeigenspannungen
Beispiel 2
Zur Verbesserung des Glätteffektes wurde für die Stahlbehandlung mit Hartmetallgranulat gemäß obenstehender Tabelle ca. 5 % Gußhartmetallsplitt in der Körnung 50 - 100 μm als abrasiv wirkende Komponente zugemischt. Unter den gleichen Bedingungen, wie sie für Hartmetallgranulat oben beschrieben sind, vermindert sich die Rauhtiefe um ca. 1/3. Die Änderung der Eigenspannungen bleibt davon unbeeinflußt.
Beispiel 3
Schneidkörper des Typs SEKN 1203 AF.N mit umlaufender Spanflächenfase (15°/0,2 mm) aus K 20 Hartmetall ( C/6,2%Co) mit einer am Substrat beginnenden CVD-Beschichtung TiN-TiCN(MT CVD) -Al203-TiN mit einer Gesamtschichtdicke von 11 μm wurden nach der Beschichtung einer Trockenstrahlbehandlung nach dem Injektor-Gravitations-Strahlverfahren mit Stahlkies, Hartmetallgranulat und Wolframmetallpulver unterworfen, wie in Beispiel 1 beschrieben, Eigenspannungen bestimmt und im Einzahn-Frästest (Planfräsen) auf Kugelgraphitguss GGG60 auf Schneidhaltigkeit geprüft (v = 250 m/min, ap = 2,0 mm, fz = 0,25 mm/Zahn, vf = 200 mm/min) (siehe Tabelle 2):
Tabelle 2
Vorzeichen + steht für Zugeigenspannungen, - steht für Druckeigenspannungen
Die vorstehenden Tabellen zeigen, daß eine Trockenstrahlbehandlung erhebliche Standzeitverbesserungen der Schneidkörper bewirkt. Die besten Ergebnisse konnten mit druckverdüstem Stahlpulver, Hartmetallgranulat und Wolframpulver erreicht werden.

Claims

Patentansprüche
1. Verfahren zur Erhöhung der Druckeigenspannung oder zur Erniedrigung der Zugeigenspannung einer äußeren oder einer äußersten, mittels CVD, PCVD oder PVD auf einen Hartmetall-, Cermet-, oder Keramiksubstratkörper aufgetragenen Hartstoffschicht r bei dem der beschichtete Substratkörper nach dem Beschichten einer Trockenstrahlbehandlung unter Verwendung eines körnigen Strahlmittels unterzogen wird, d a d u r c h g e k e n n z e i c h n e t, daß das Strahlmittel einen maximalen Durchmesser von 150 μm, vorzugsweise von maximal 100 μm aufweist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Strahlmittel zumindest im wesentlichen eine rundliche Korngestalt aufweist, dessen Durchmesser vorzugsweise zwischen 5 bis 150 μm, weiterhin vorzugsweise 10 bis 100 μm liegt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Stahlmittel druckverdüster Stahl, Gußeisengranulat, Schwermetallpulver oder hieraus hergestellte Legierungen oder Hartmetallgranulate und/oder bruchfeste Keramiken verwendet werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das oder die Strahlmittel mittels Preßluft unter einem Druck von mindestens 5 x 105 Pa bis maximal 106 Pa, vorzugsweise 6 x 105 Pa bis 7 x 105 Pa auf den beschichteten Substratkörper gerichtet wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Strahlmittel im wesentlichen senkrecht auf die Substratkörperoberfläche gerichtet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Strahlbehandlung so lange durchgeführt wird, bis auch die unter einer äußeren Schicht oder einer äußersten Schicht liegenden Bereiche, vorzugsweise bis in die oberflächennahen Zonen des Substratkörpers hinein, eine Absenkung der inneren Zugspannungen (entweder Erhöhung der Druckspannungen oder Minimierung der Zugspannungen) erfahren haben.
7. Schneideinsatz zum Zerspanen, bestehend aus einem Hartmetall-, Cermet-, oder Keramik-Substratkörper mit einer ein- oder mehrlagigen Beschichtung aus Carbiden, Nitriden, Car- bonitriden, Oxicarbonitriden und/oder Boriden der Elemente der IVa bis Vla-Gruppe des Periodensystems, borhaltigen Hartstoffverbindungen und/oder oxidischen Verbindungen des Aluminiums und/oder Zirkoniums, die mittels eines PCVD- oder CVD-Verfahrens aufgetragen worden sind, dadurch gekennzeichnet, daß die Druckeigenspannung in der äußeren bzw. äußersten Schicht > 4 GPa, vorzugsweise 4,5 bis
10 GPa beträgt.
8. Schneideinsatz nach Anspruch 7, dadurch gekennzeichnet, daß der Substratkörper aus einem Hartmetall mit einer sich zu seiner oberflächennahen Randzonen ändernden Hartstoffzusammensetzungen oder -gehalt (Hartstoffgradient) besteht.
9. Schneideinsatz nach Anspruch 7, dadurch gekennzeichnet, daß der Substratkörper einer Oxid- oder Nitridkeramik ist.
0. Schneideinsatz nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Schichtdicke einer einzelnen Schicht mindestens 0,1 μm und maximal 10 μm und/oder bei einer mehrlagigen Beschichtung die Gesamtschichtdicke < 20 μm beträgt.
EP01991711A 2001-03-27 2001-12-22 Verfahren zur erhöhung der druckspannung oder zur erniedrigung der zugeigenspannung einer schicht Withdrawn EP1311712A2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10115201 2001-03-27
DE10115201 2001-03-27
DE10123554A DE10123554B4 (de) 2001-03-27 2001-05-15 Verfahren zur Erhöhung der Druckspannung oder zur Erniedrigung der Zugeigenspannung einer CVD-, PCVD- oder PVD-Schicht und Schneideinsatz zum Zerspanen
DE10123554 2001-05-15
PCT/DE2001/004952 WO2002077312A2 (de) 2001-03-27 2001-12-22 Verfahren zur erhöhung der druckspannung oder zur erniedrigung der zugeigenspannung einer schicht

Publications (1)

Publication Number Publication Date
EP1311712A2 true EP1311712A2 (de) 2003-05-21

Family

ID=26008930

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01991711A Withdrawn EP1311712A2 (de) 2001-03-27 2001-12-22 Verfahren zur erhöhung der druckspannung oder zur erniedrigung der zugeigenspannung einer schicht

Country Status (3)

Country Link
US (1) US6884496B2 (de)
EP (1) EP1311712A2 (de)
WO (1) WO2002077312A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1696051A1 (de) 2005-02-25 2006-08-30 Sandvik Intellectual Property AB Beschichteter Schneidwerkzeugeinsatz
EP1867755A2 (de) 2006-06-16 2007-12-19 Sandvik Intellectual Property AB Beschichteter Schneidewerkzeugeinsatz
WO2008031768A1 (en) 2006-09-15 2008-03-20 Sandvik Intellectual Property Ab Coated cutting tool
EP2287359A1 (de) 2009-07-03 2011-02-23 Sandvik Intellectual Property AB Beschichteter Schneidewerkzeugeinsatz

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012611B2 (en) * 2004-10-29 2011-09-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
WO2006059551A1 (ja) * 2004-12-03 2006-06-08 Sumitomo Electric Hardmetal Corp. 刃先交換型切削チップおよびその製造方法
KR100576321B1 (ko) * 2004-12-14 2006-05-03 한국야금 주식회사 고인성 절삭공구/내마모성 공구
WO2006064724A1 (ja) * 2004-12-14 2006-06-22 Sumitomo Electric Hardmetal Corp. 表面被覆切削工具
DE102004063816B3 (de) * 2004-12-30 2006-05-18 Walter Ag Al2O3-Multilagenplatte
WO2006080154A1 (ja) * 2005-01-26 2006-08-03 Sumitomo Electric Hardmetal Corp. 刃先交換型切削チップおよびその製造方法
JPWO2006103982A1 (ja) * 2005-03-29 2008-09-04 住友電工ハードメタル株式会社 刃先交換型切削チップおよびその製造方法
JP4739200B2 (ja) * 2005-03-30 2011-08-03 住友電工ハードメタル株式会社 刃先交換型切削チップ
US20070050175A1 (en) * 2005-06-16 2007-03-01 Richard Schmelzer Content enhancement based on contextual data within a feed
SE529023C2 (sv) * 2005-06-17 2007-04-10 Sandvik Intellectual Property Belagt skär av hårdmetall
US7799413B2 (en) 2005-06-17 2010-09-21 Sandvik Intellectual Property Ab Coated cutting tool insert
US8637127B2 (en) 2005-06-27 2014-01-28 Kennametal Inc. Composite article with coolant channels and tool fabrication method
WO2007013392A1 (ja) 2005-07-29 2007-02-01 Sumitomo Electric Hardmetal Corp. 刃先交換型切削チップおよびその製造方法
DE102005041078B4 (de) * 2005-08-30 2007-05-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Verbundkörpers mit einer druckeigenspannungsbelasteten galvanischen Beschichtung
JP4783153B2 (ja) * 2006-01-06 2011-09-28 住友電工ハードメタル株式会社 刃先交換型切削チップ
CA2648181C (en) 2006-04-27 2014-02-18 Tdy Industries, Inc. Modular fixed cutter earth-boring bits, modular fixed cutter earth-boring bit bodies, and related methods
US8080312B2 (en) 2006-06-22 2011-12-20 Kennametal Inc. CVD coating scheme including alumina and/or titanium-containing materials and method of making the same
SE530735C2 (sv) * 2006-10-18 2008-08-26 Sandvik Intellectual Property Ett belagt skär av hårdmetall, speciellt användbart för svarvning av stål
BRPI0717332A2 (pt) 2006-10-25 2013-10-29 Tdy Ind Inc Artigos tendo resistência aperfeiçoada à rachadura térmica
US8512882B2 (en) * 2007-02-19 2013-08-20 TDY Industries, LLC Carbide cutting insert
US20090004449A1 (en) * 2007-06-28 2009-01-01 Zhigang Ban Cutting insert with a wear-resistant coating scheme exhibiting wear indication and method of making the same
US8080323B2 (en) 2007-06-28 2011-12-20 Kennametal Inc. Cutting insert with a wear-resistant coating scheme exhibiting wear indication and method of making the same
US8475944B2 (en) 2007-06-28 2013-07-02 Kennametal Inc. Coated ceramic cutting insert and method for making the same
US8557406B2 (en) * 2007-06-28 2013-10-15 Kennametal Inc. Coated PCBN cutting insert, coated PCBN cutting tool using such coated PCBN cutting insert, and method for making the same
DE102007042833A1 (de) * 2007-09-10 2009-03-12 Walter Ag Strahlbehandelter Schneideinsatz und Verfahren
DE102008009487B4 (de) * 2008-02-15 2022-09-22 Walter Ag Strahlbehandelter Schneideinsatz und Verfahren
US8790439B2 (en) 2008-06-02 2014-07-29 Kennametal Inc. Composite sintered powder metal articles
US8221517B2 (en) 2008-06-02 2012-07-17 TDY Industries, LLC Cemented carbide—metallic alloy composites
US8025112B2 (en) 2008-08-22 2011-09-27 Tdy Industries, Inc. Earth-boring bits and other parts including cemented carbide
US8322465B2 (en) * 2008-08-22 2012-12-04 TDY Industries, LLC Earth-boring bit parts including hybrid cemented carbides and methods of making the same
US8440314B2 (en) * 2009-08-25 2013-05-14 TDY Industries, LLC Coated cutting tools having a platinum group metal concentration gradient and related processes
US8323783B2 (en) * 2009-11-10 2012-12-04 Kennametal Inc. Coated cutting insert and method for making the same
US8668982B2 (en) 2009-11-10 2014-03-11 Kennametal Inc. Coated cutting insert and method for making the same
US8409734B2 (en) 2011-03-04 2013-04-02 Kennametal Inc. Coated substrates and methods of making same
US8507082B2 (en) 2011-03-25 2013-08-13 Kennametal Inc. CVD coated polycrystalline c-BN cutting tools
US8800848B2 (en) 2011-08-31 2014-08-12 Kennametal Inc. Methods of forming wear resistant layers on metallic surfaces
DE102011053705A1 (de) * 2011-09-16 2013-03-21 Walter Ag Schneideinsatz und Verfahren zu dessen Herstellung
US9016406B2 (en) 2011-09-22 2015-04-28 Kennametal Inc. Cutting inserts for earth-boring bits
CN103121115A (zh) * 2011-11-18 2013-05-29 钴碳化钨硬质合金公司 涂覆的切削镶片及其制造方法
US9028953B2 (en) 2013-01-11 2015-05-12 Kennametal Inc. CVD coated polycrystalline c-BN cutting tools
JP6213867B2 (ja) * 2013-02-21 2017-10-18 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
US9371580B2 (en) 2013-03-21 2016-06-21 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same
CN105051248B (zh) 2013-03-21 2018-03-20 钴碳化钨硬质合金公司 用于切削工具的涂层
WO2014153469A1 (en) 2013-03-21 2014-09-25 Kennametal Inc. Coatings for cutting tools
US9719175B2 (en) 2014-09-30 2017-08-01 Kennametal Inc. Multilayer structured coatings for cutting tools
US10100405B2 (en) 2015-04-20 2018-10-16 Kennametal Inc. CVD coated cutting insert and method of making the same
WO2017169303A1 (ja) * 2016-03-31 2017-10-05 株式会社不二製作所 機械加工工具の刃先部構造及びその表面処理方法
JP7470963B2 (ja) * 2020-01-27 2024-04-19 株式会社不二機販 焼結体のバインダ金属相強化方法
CN111979544B (zh) * 2020-09-22 2022-11-15 南京航空航天大学 一种采用热致相变膜作为应力调控层多级调节刀具涂层应力的方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6918719A (de) 1968-12-13 1970-06-16
US3705373A (en) * 1971-05-24 1972-12-05 Westinghouse Electric Corp Current limiting fuse
US3729046A (en) * 1971-09-10 1973-04-24 Airco Inc Process for manufacturing foil
US4454379A (en) * 1982-05-21 1984-06-12 General Electric Company Semi-conductive, moisture barrier shielding tape and cable
US4836982A (en) * 1984-10-19 1989-06-06 Martin Marietta Corporation Rapid solidification of metal-second phase composites
JPS6342859A (ja) * 1986-08-08 1988-02-24 航空宇宙技術研究所長 傾斜機能材料の製造方法
US4889745A (en) * 1986-11-28 1989-12-26 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method for reactive preparation of a shaped body of inorganic compound of metal
US4990180A (en) * 1988-07-28 1991-02-05 The United States Of America As Represented By The United States Department Of Energy Combustion synthesis of low exothermic component rich composites
US4909842A (en) * 1988-10-21 1990-03-20 The United States Of America As Represented By The United States Department Of Energy Grained composite materials prepared by combustion synthesis under mechanical pressure
JPH02254144A (ja) 1989-03-27 1990-10-12 Nippon Steel Corp 耐摩耗特性、耐欠損性に優れた被覆切削工具の製造方法
EP0416824B2 (de) * 1989-09-04 1998-08-12 Nippon Steel Corporation Mit Keramik überzogenes Sinterkarbidwerkzeug mit hoher Bruchbeständigkeit
JP2909913B2 (ja) * 1990-03-08 1999-06-23 松下電器産業株式会社 光学的情報記録媒体およびその製造方法および光学的情報記録方法
JP2793696B2 (ja) 1990-05-17 1998-09-03 神鋼コベルコツール株式会社 耐摩耗性皮膜
US5062025A (en) * 1990-05-25 1991-10-29 Iowa State University Research Foundation Electrolytic capacitor and large surface area electrode element therefor
US5232318A (en) * 1990-09-17 1993-08-03 Kennametal Inc. Coated cutting tools
US5250367A (en) * 1990-09-17 1993-10-05 Kennametal Inc. Binder enriched CVD and PVD coated cutting tool
CA2090854C (en) 1990-09-17 1998-10-06 Anakkavur T. Santhanam Cvd and pvd coated cutting tools
US5266132A (en) * 1991-10-08 1993-11-30 The United States Of America As Represented By The United States Department Of Energy Energetic composites
US5310476A (en) * 1992-04-01 1994-05-10 Moltech Invent S.A. Application of refractory protective coatings, particularly on the surface of electrolytic cell components
JPH0657409A (ja) * 1992-08-11 1994-03-01 Mitsubishi Materials Corp 強度および耐摩耗性に優れた硬質層複合被覆切削工具の製造方法
JP3087465B2 (ja) * 1992-08-27 2000-09-11 三菱マテリアル株式会社 耐摩耗性および耐欠損性のすぐれた表面被覆炭窒化チタン基サーメット製切削工具の製造法
US5576093A (en) * 1992-10-22 1996-11-19 Mitsubishi Materials Corporation Multilayer coated hard alloy cutting tool
US5913256A (en) * 1993-07-06 1999-06-15 Lockheed Martin Energy Systems, Inc. Non-lead environmentally safe projectiles and explosive container
US5381944A (en) * 1993-11-04 1995-01-17 The Regents Of The University Of California Low temperature reactive bonding
US5490911A (en) * 1993-11-26 1996-02-13 The United States Of America As Represented By The Department Of Energy Reactive multilayer synthesis of hard ceramic foils and films
US5597272A (en) * 1994-04-27 1997-01-28 Sumitomo Electric Industries, Ltd. Coated hard alloy tool
SE509201C2 (sv) * 1994-07-20 1998-12-14 Sandvik Ab Aluminiumoxidbelagt verktyg
US5635247A (en) 1995-02-17 1997-06-03 Seco Tools Ab Alumina coated cemented carbide body
US5773748A (en) * 1995-06-14 1998-06-30 Regents Of The University Of California Limited-life cartridge primers
SE517474C2 (sv) * 1996-10-11 2002-06-11 Sandvik Ab Sätt att tillverka hårdmetall med bindefasanrikad ytzon
SE511211C2 (sv) * 1996-12-20 1999-08-23 Sandvik Ab Ett multiskiktbelagt skärverktyg av polykristallin kubisk bornitrid
US5786129A (en) * 1997-01-13 1998-07-28 Presstek, Inc. Laser-imageable recording constructions utilizing controlled, self-propagating exothermic chemical reaction mechanisms
DE19719195A1 (de) 1997-05-09 1998-11-12 Widia Gmbh Schneideinsatz zum Zerspanen und Verfahren zur Herstellung dieses Schneideinsatzes
US6015614A (en) 1997-11-03 2000-01-18 Seco Tools Ab Cemented carbide body with high wear resistance and extra tough behavior
WO1999024198A1 (fr) * 1997-11-06 1999-05-20 Sumitomo Electric Industries, Ltd. Outil enrobe en carbure fritte
JPH11296843A (ja) * 1998-02-13 1999-10-29 Sony Corp 磁気記録媒体及びその製造方法
DE19924422C2 (de) * 1999-05-28 2001-03-08 Cemecon Ceramic Metal Coatings Verfahren zur Herstellung eines hartstoffbeschichteten Bauteils und beschichtetes, nachbehandeltes Bauteil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02077312A2 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1696051A1 (de) 2005-02-25 2006-08-30 Sandvik Intellectual Property AB Beschichteter Schneidwerkzeugeinsatz
EP1867755A2 (de) 2006-06-16 2007-12-19 Sandvik Intellectual Property AB Beschichteter Schneidewerkzeugeinsatz
WO2008031768A1 (en) 2006-09-15 2008-03-20 Sandvik Intellectual Property Ab Coated cutting tool
EP2287359A1 (de) 2009-07-03 2011-02-23 Sandvik Intellectual Property AB Beschichteter Schneidewerkzeugeinsatz

Also Published As

Publication number Publication date
US6884496B2 (en) 2005-04-26
US20030104254A1 (en) 2003-06-05
WO2002077312A3 (de) 2003-01-03
WO2002077312A2 (de) 2002-10-03

Similar Documents

Publication Publication Date Title
EP1311712A2 (de) Verfahren zur erhöhung der druckspannung oder zur erniedrigung der zugeigenspannung einer schicht
DE102018112535B4 (de) Cvd-kompositrefraktärbeschichtungen und deren anwendungen
EP0598762B1 (de) Werkzeug mit verschleissfester schneide aus kubischem bornitrid oder polykristallinem kubischem bornitrid, verfahren zu dessen herstellung sowie dessen verwendung
DE69527124T3 (de) Harter Verbundwerkstoff für Werkzeuge
DE102015121206B4 (de) Widerstandsfähige Nanoverbundbeschichtungen
DE112012003571B4 (de) Schneidwerkzeug
EP1231295B1 (de) Hartmetallverschleissteil mit Mischoxidschicht
EP2209929A1 (de) Beschichteter gegenstand
DE102013113501B4 (de) Beschichtungen für Schneidwerkzeuge
DE112014001520B4 (de) Beschichtungen für Schneidwerkzeuge
DE112014001640B4 (de) Mehrschichtig strukturierte Beschichtungen für Schneidwerkzeuge und Verfahren zum Herstellen eines Schneidwerkzeugs
DE102015115859A1 (de) Mehrschichtig strukturierte Beschichtungen für Schneidwerkzeuge
EP0599869B1 (de) Herstellung von werkzeug mit verschleissfester diamantschneide
DE10123554B4 (de) Verfahren zur Erhöhung der Druckspannung oder zur Erniedrigung der Zugeigenspannung einer CVD-, PCVD- oder PVD-Schicht und Schneideinsatz zum Zerspanen
WO2006058353A1 (de) Werkzeug zur spanabhebenden bearbeitung
DE112014001562B4 (de) Beschichtungen für Schneidwerkzeuge
DE102013113502B4 (de) Beschichtete polykristalline c-BN-Schneidwerkzeuge, Verfahren zur Herstellung derartiger Schneidwerkzeuge und Verfahren zur maschinellen Bearbeitung eines Werkstücks
WO2007082498A1 (de) Verfahren zur beschichtung eines hartmetall- oder cermetsubstratkörpers und beschichteter hartmetall- oder cermetkörper
DE102016118162A1 (de) Hybridnanokompositbeschichtungen und deren anwendungen
EP2486164B1 (de) Schneidwerkzeug zur bearbeitung metallischer werkstoffe
DE19543748A1 (de) Schneidwerkzeug, Verfahren zur Beschichtung eines Schneidwerkzeuges und Verwendung des Schneidwerkzeuges
WO2002085563A2 (de) Schneideinsatz zur bearbeitung von schwer zerspanbaren metalllegierungswerkstücken und verfahren zu dessen herstellung
DE102020135082A1 (de) Beschichtung und die beschichtung umfassendes beschichtetes schneidwerkzeug
DE60125718T2 (de) Oberflächenbeschichtetes zementiertes Karbid mit höchster Haftfähigkeit und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020827

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20071017

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090610