EP1306539B1 - Zwei-Zyklen-Heissgasmotor - Google Patents

Zwei-Zyklen-Heissgasmotor Download PDF

Info

Publication number
EP1306539B1
EP1306539B1 EP02023231A EP02023231A EP1306539B1 EP 1306539 B1 EP1306539 B1 EP 1306539B1 EP 02023231 A EP02023231 A EP 02023231A EP 02023231 A EP02023231 A EP 02023231A EP 1306539 B1 EP1306539 B1 EP 1306539B1
Authority
EP
European Patent Office
Prior art keywords
piston
compression
expansion
gas
gas engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02023231A
Other languages
English (en)
French (fr)
Other versions
EP1306539A3 (de
EP1306539A2 (de
Inventor
Andreas Gimsa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enerlyt Potsdam GmbH Energie Umwelt Planung und Analytik
Original Assignee
Enerlyt Potsdam GmbH Energie Umwelt Planung und Analytik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2001153772 external-priority patent/DE10153772C1/de
Priority claimed from DE2002116190 external-priority patent/DE10216190C1/de
Priority claimed from DE2002140347 external-priority patent/DE10240347B3/de
Priority claimed from DE2002140750 external-priority patent/DE10240750C1/de
Application filed by Enerlyt Potsdam GmbH Energie Umwelt Planung und Analytik filed Critical Enerlyt Potsdam GmbH Energie Umwelt Planung und Analytik
Publication of EP1306539A2 publication Critical patent/EP1306539A2/de
Publication of EP1306539A3 publication Critical patent/EP1306539A3/de
Application granted granted Critical
Publication of EP1306539B1 publication Critical patent/EP1306539B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/50Double acting piston machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/50Double acting piston machines
    • F02G2244/52Double acting piston machines having interconnecting adjacent cylinders constituting a single system, e.g. "Rinia" engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/50Double acting piston machines
    • F02G2244/54Double acting piston machines having two-cylinder twin systems, with compression in one cylinder and expansion in the other cylinder for each of the twin systems, e.g. "Finkelstein" engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2275/00Controls
    • F02G2275/20Controls for preventing piston over stroke

Definitions

  • the invention is in the field of hot gas engines.
  • Hot-gas engines based on the Stirling principle are among the oldest heat engines. Basically, with the help of hot-gas engines according to the Stirling principle or the related principles, a higher efficiency than with steam engines, diesel or gasoline engines can be achieved. With the help of hot gas engines heat is supplied to the outside of a working gas heater without combustion in the cylinder must be done. The potential use of renewable fuels and continuous combustion ensure environmentally friendly energy efficiency in conjunction with their high efficiency.
  • Hot-gas engines based on the Stirling principle are known as alpha, beta and gamma-type engines.
  • alpha type the total working gas volume is affected by the movement of an expansion piston and a compression piston.
  • beta and gamma type a displacer moves in a space of constant volume and only the working piston affects the total gas volume.
  • a hot gas engine according to the sterling principle of the alpha-type is known.
  • the known engine is a 1-cycle engine in which an expansion piston and a compression piston are arranged along a common center axis.
  • Such a feature is also provided in a further 1-cycle hot gas engine, which is disclosed in the document DE 44 29 602 A1.
  • the object of the invention is to provide an improved two-cycle alpha-type hot gas engine with rectified gas cycles and 180 degrees phase offset, which has a simple structure and can be used flexibly for a permanent operation in various fields of application.
  • This object is achieved in a two-cycle hot gas engine with an expansion piston in an expansion cylinder component and a compression piston in a compression cylinder component according to the invention in that the expansion piston and the compression piston along a common center axis are arranged.
  • a significant advantage achieved with the invention over the prior art is that a motor structure has been provided for a two-cycle, alpha-type hot gas engine which, despite constructive simplicity, has a high power density provides.
  • the proposed engine has constructive parallels to the beta type and combines these with the benefits of an alpha-type double-acting engine.
  • the successive pistons ensure a slim gearbox and thus crankcase.
  • For the crosshead or rail slide of both connecting rods can use a common rail.
  • piston rod feedthroughs can be realized by a cylinder wall on the side of the cool compression cylinder part and thus are easy to seal.
  • phase offset between expansion piston and compression piston can be set arbitrarily.
  • the expansion volume can be varied with respect to the compression volume.
  • the symmetry ratios of the expansion and compression pistons can be used excellently for free-piston arrangements. In this way, pressure-resistant and completely pressure-tight motors can be built.
  • An expedient development of the invention provides that the expansion piston and the compression piston are arranged to operate in alignment in operation one behind the other. As a result, both pistons and their cylinder parts can be made the same diameter.
  • first gas spaces which are formed in the compression cylinder component on a lower side of the compression piston and in the expansion cylinder component on a lower side of the expansion piston, via a first heater, a first regenerator and a first radiator, and that second gas spaces formed in the compression cylinder member on an upper surface of the compression piston and in the expansion cylinder component on an upper surface of the expansion piston are connected via a second heater, a second regenerator and a second radiator.
  • the working gas connection line from the heater to the expansion cylinder component may consist, for the thermal separation of both components for each gas cycle, in part of a dimensionally defined straight tube which operates as a pulse tube
  • a compact design of the hot gas engine is supported in an advantageous embodiment of the invention in that between the expansion cylinder component and the compression cylinder component, a channel is formed, wherein in the channel, a piston rod of the expansion piston is arranged, which is pressure-tight manner through the channel. With the help of the channel, the hydraulic and, if necessary, thermal separation of the compression and the expansion cylinder component takes place.
  • a pressure-tight mounting of the piston rod of the expansion piston in the channel is facilitated in an advantageous embodiment of the invention in that the channel is formed in a connecting member which comprises at least a portion of the expansion cylinder component and at least a portion of the compression cylinder component. In this way, the channel can be created in a one-piece connector component.
  • an embodiment of the invention may advantageously provide that the piston rod of the expansion piston is movably inserted through a bore in the compression piston. In this way, a piston force propagation of the expansion piston can be realized to a transmission.
  • a movement of the compression piston along the piston rod of the expansion piston is made possible in an expedient development of the invention in that the. Piston rod of the expansion piston is movably guided through the compression piston.
  • the piston rod of the expansion piston is movably guided through an opening in a housing of the compression cylinder component.
  • the piston rod of the expansion piston To lead in the region of the compression cylinder component to the outside, for example, for coupling a connecting rod.
  • a space-saving design of the hot gas engine is made possible in a further development of the invention in that a piston attached to the compression piston has an opening, wherein the piston rod of the expansion piston is guided through the opening.
  • a common lead out of the piston rod of the compression piston and the piston rod of the expansion piston from the compression cylinder component is advantageously made possible in one embodiment of the invention in that the attached to the compression piston piston rod is pressure-tightly guided through the opening in the housing of the compression cylinder component.
  • a direct coupling of the movement of the compression piston to that of the expansion piston and the piston rod is made possible in a preferred embodiment of the invention in that the compression piston has a cavity in which a fixed to the piston rod of the expansion piston buffer piston is movably arranged so that in the cavity two buffer spaces are formed.
  • a transmission for transmitting power between the piston rod of the expansion piston and the compression piston can be saved in a development of the invention in that the two buffer spaces are formed in the cavity so that movement of the expansion piston and the attached thereto buffer piston in the cavity to a gas compression / Gas relaxation in the two buffer spaces leads to effect a movement of the compression piston.
  • a portion of the buffer space decreases, this creates an overpressure that pushes the compression piston.
  • the other portion of the buffer space increases simultaneously, so that there is a negative pressure, which pulls the compression piston.
  • a movement of the compression piston always occurs when the force resulting from the pressure difference between the two buffer space sections is greater than the required compression force.
  • a pressure-tight leading out the piston rod of the expansion piston from the compression cylinder component is facilitated in an expedient development of the invention in that a section extending beyond the compression cylinder component the piston rod of the expansion piston is received in a sealed interior of an extension sleeve, wherein the extension sleeve is attached to the outside of the compression cylinder component.
  • the extension sleeve can be sealed to the cylinder component by means of simple means.
  • a magnetic coupling can be achieved with an outer magnetic sleeve surrounding the extension sleeve or a linear generator with an outer stationary coil former surrounding the extension sleeve.
  • a distal end of the piston rod of the expansion piston is received in the cavity of the compression piston and that the expansion cylinder member and the compression cylinder member are movably mounted in a linear guide.
  • the hollow compression piston thus has only a pressure-tight piston rod opening on the side facing the expansion piston.
  • the cylinder consisting of expansion and compression cylinder component, can be movably mounted in a linear guide. With the movement of the expansion piston, the cylinder comes into resonance and can perform work to the outside with complete pressure tightness. In this embodiment, the cylinder also moves heaters, regenerators and coolers, which can be used for improved heat transfer in the heaters and coolers.
  • the compression piston has a cavity and that the piston rod of the expansion piston is formed through the cavity, wherein in the cavity on the piston rod of the expansion piston, a magnetic piston is arranged with magnetic means which interact with other magnetic means , and opposite portions of the magnetic means and the further magnetic means have a similar magnetic polarity.
  • a magnetic piston is arranged with magnetic means which interact with other magnetic means , and opposite portions of the magnetic means and the further magnetic means have a similar magnetic polarity.
  • the necessary phase offset between the expansion piston and compression piston can be realized simpler than in the above embodiment with buffer piston in the compression piston, as only at a very small distance between opposite portions of the magnetic means and the other magnetic means a repulsive force is so great that the Movement of the compression piston occurs.
  • the necessary compression pressures may be adjusted by a suitable selection of the magnetic means and the other magnetic means.
  • a compact design of the hot gas engine is supported by the fact that the further magnetic means are arranged at least partially in the region of end faces of the compression piston.
  • a compact heater which comprises a running as unfinished component cylindrical body with a combustion chamber and a heat transfer surface for working gas, wherein the heat transfer surface for working gas in a surface layer of the cylindrical base body is formed spirally.
  • the spiral surface arrangement can create space-saving and streamlined heat transfer conditions.
  • the spiral passages can be closed by sleeves shrunk into and onto the cylindrical base body, to which the gas connecting pieces are fastened.
  • An inner sleeve, which simultaneously forms the combustion chamber, can be closed on one side and leaves below a defined Spiralgang Scheme the flue gas spiral free to form a turning chamber for the flue gas.
  • a respective heat transfer surface for combustion air and flue gas is formed spirally.
  • the use of the compact heater for two working gases is made possible in a development of the invention in that the heat transfer surface for working gas comprises a working gas spiral for a first working gas and at least one of the working gas spiral hydraulically separate further working gas spiral for a second working gas.
  • the heat transfer surface for working gas comprises a working gas spiral for a first working gas and at least one of the working gas spiral hydraulically separate further working gas spiral for a second working gas.
  • the production of the compact heater is facilitated a further development of the invention in that the heat transfer surface for working gas is formed on an outer circumference of the cylindrical body.
  • the heat transfer surface is formed for combustion air on the outer circumference of the cylindrical body.
  • the heat transfer surface for working gas in a region around the combustion chamber and the heat transfer surface for combustion air in a region above the combustion chamber of the cylindrical body are arranged so that in the combustion chamber generated heat energy initially the heat transfer surface for Working gas and then heat the heat transfer surface for combustion air.
  • the heat energy generated by means of a fuel in the combustion chamber is used efficiently in the operation of the hot gas engine.
  • a preferred embodiment of the invention provides that the cylindrical base body is designed with the aid of two basic body components, wherein the two basic body components are connected by means of a disc-shaped perforated member and the disc-shaped perforated member has a connecting channel for guiding combustion air into the combustion chamber and a flue gas connecting channel for connecting of heat transfer surfaces for flue gas in the two main body components.
  • Figure 1 shows a schematic representation of a two-cycle HeiBgasmotors with a cylinder housing 1.
  • a cylinder housing 1 In the cylinder housing 1, an expansion piston 2 in an expansion cylinder component 3 and a compression piston 4 in a Kompressionsionszylinderbauteil 5 arranged.
  • the expansion piston 2 and the compression piston 4 are arranged one behind the other along a common center line 6.
  • the expansion cylinder component 3 and the compression cylinder component 5 are connected to one another via a connecting component 7, in which a channel 8 is formed.
  • a piston rod 9 of the expansion piston 2 is guided pressure-tight.
  • the piston rod 9 of the expansion piston 2 extends through an opening 4a in the compression piston 4 and through the compression piston 4 and a piston rod 10 of the compression piston 4 therethrough.
  • the piston rod 10 of the compression piston 4 is guided through an opening 11 in the Kompressionsionszylinderbauteil 5 through to the outside.
  • the passage of the piston rod 10 of the compression piston 4 and the piston rod 9 of the expansion piston 2 mounted thereon out of the compression cylinder component 5 is pressure-tight.
  • the piston rod 9 of the expansion piston 2 is guided through an opening 10 a in the piston rod 10.
  • To the piston rod 9 of the expansion piston 2 and the piston rod 10 of the compression piston 4 are each a connecting rod 12, 13 is coupled, so that the piston rods 9, 10 are connected to a crankshaft 14.
  • first gas spaces GH1 and GK1 are formed on an underside 15 of the compression piston 4 and on an underside 16 of the expansion piston 2, first gas spaces GH1 and GK1 are formed.
  • the first gas chambers GH1, GK1 are connected via a first connecting channel 17.
  • a first heater 18, a first regenerator 19 and a first cooler 20 are arranged in the connecting channel 17.
  • second gas spaces GK2 and GH2 are created, which communicate via a second connecting channel 23.
  • a second heater 24, a second regenerator 25 and a second cooler 26 are arranged.
  • the compression cylinder component 5 and the expansion cylinder component 3 are thermally separated. This thermal separation makes it possible to realize the removal of the piston rods 9 and 10, respectively, on the cold side of the hot gas engine in the area of the compression cylinder component 5 Sealing problems, as they often occur in the art, significantly alleviates.
  • the expansion cylinder member 3 and the expansion piston 2 may be made of a high-temperature material. In this embodiment can be by means of a wall 27 of the expansion cylinder component 3 formed heat pipe and gas channels (not shown in Figure 1) the gas spaces GH1, GH2 equally heat isothermally.
  • the compression cylinder component 5 may for example be made of Duranglas.
  • the compression piston 4 can be conveniently made of graphite.
  • FIG. 2 shows a schematic representation of a two-cycle hot gas engine, in which the reference symbols used in FIG. 1 are used for the same features.
  • the compression piston 4 has a cavity 30.
  • a buffer piston 31 is arranged, which is formed on the piston rod 9 of the expansion piston 2.
  • buffer spaces P1 and P2 are created in the cavity.
  • the working gas which is located in the buffer spaces P1, P2 is compressed / relaxed, which leads to the initiation of an upward and a downward movement of the compression piston 4.
  • the gas chambers GH1, GH2 advance in a defined manner ahead of the gas spaces GK1, GK2.
  • magnets 32a-32d By means of magnets 32a-32d, a striking of the compression piston 4 on the housing 33 of the compression cylinder component 5 is prevented.
  • the magnets 32a and 32b and 32c and 32d each have an opposite magnetic polarity.
  • a transmission for coupling the piston rod 9 of the expansion piston 2 to the compression piston 4 can be dispensed with in the embodiment shown in FIG.
  • the coupling is created by means of the buffer piston 31 and the resulting buffer spaces P1, P2.
  • the piston rod 9 of the expansion piston 2 is coupled via a crosshead 34 to the connecting rod 13.
  • FIG. 3 shows the two-cycle hot gas engine according to FIG. 2, but with an end 40 of the piston rod 9 of the expansion piston 2 extending beyond the compression cylinder component 5 being accommodated in an extension sleeve 41.
  • the extension sleeve 41 is pressure-tightly mounted on the compression cylinder component 5.
  • the piston rod 9 of the expansion piston 2 is coupled to an outer guide piston 43, which slides in a cylinder 44 of the guide piston 43.
  • the guide piston 43 in turn communicates with the connecting rod 13.
  • the guide piston 43 may be lubricated together with its cylinder 44 and be performed similarly to a gasoline engine.
  • Figure 4 shows another two-cycle hot gas engine, wherein for like features, the reference numerals used in Figures 1 to 3 are used.
  • the embodiment of Figure 4 ends a distal end 50 of the piston rod 9 of the expansion piston 2 on the buffer piston 31.
  • the piston rod 9 of the expansion piston 2 is not leading out. In this way, the cylinder housing 1 is completely closed.
  • an extension 51 is mounted, which is movably mounted in a part 52 of a linear guide.
  • the extension 51 is connected via the connecting rod 13 with the crankshaft 14.
  • Another part 53 of the linear guide is provided in the region of the connecting component 7.
  • the Linearflüirung provides for a rectilinear movement of the cylinder housing 1. Together with the cylinder housing 1, the first radiator 18, the first regenerator 19, the first heater 20, the second radiator 24, the second regenerator 25 and the second heater move 26.
  • a momentum transfer to initiate the movement of the compression piston 4 as has been described in connection with the embodiments of Figures 2 and 3, due to the gas compression in the buffer spaces P1, P2.
  • Figure 5 shows a schematic representation of another embodiment of a two-cycle hot gas engine with a cylinder housing 100, a compression cylinder member 101 and an expansion cylinder member 102.
  • a compression piston 103 is arranged in the compression cylinder member 101.
  • an expansion piston 104 is supported in the expansion cylinder member 102.
  • the compression cylinder component 101 and the expansion cylinder component 102 are connected via a connecting component 105, in which a piston rod 106 of the expansion piston 104 is mounted in a pressure-tight manner.
  • a seal 107 is provided for sealing.
  • first and second gas spaces GH1, GK1 and GH2, GK2 are formed on both sides of the compression piston 103 and the expansion piston 104.
  • the first and second gas chambers GH1, GH2, GK1, GK2 each have connections 108, 109, 110 and 111, respectively. Between the connections 108-111, heaters, regenerators and coolers are shown in FIGS. 1 to 4 (in FIG. 5) not shown) coupled.
  • the expansion piston 104 is held on the piston rod 106 by means of a piston mounting nut 112. Between a piston clamping plate 113 and the piston fixing nut 112, a tension spring 114 is mounted. A further piston clamping plate 115 is fastened to the piston rod 106 by means of a fastening pin 116.
  • a magnetic drive of the compression piston 103 is provided.
  • the magnetic drive comprises a plurality of magnetic means 121, 122, 123.
  • the plurality of magnetic means 121-123 each have disc-shaped pole plates 121a, 121b, 122a, 122b, 123a, 123b.
  • Opposed pole plates, such as the pole plates 122b and 123a have the same magnetic polarity so that repulsive forces act as the opposing pole plates move toward each other. The repulsive forces develop a large force usually, however, only at actual approach of the opposite pole plates.
  • the magnets 120-124 can be carried out by means of magnetic drums with annularly arranged bar magnets.
  • a seal 107, 126, 127, 128 is arranged around the piston rod 106 in the case of the magnets 120, 121, 123 and 124 in order to drive the piston rod 106 in a pressure-tight manner through the magnets 120, 121, 123, 124. In this way, the seals 107, 126-128 delimit the two cycles from each other.
  • the magnet 122 is fixed to the piston rod 106.
  • the seals 107, 126-128 are made of Teflon, for example.
  • the piston rod 106 of the expansion piston 104 is made of a non-magnetic and electrically poorly conductive material, such as V4A steel.
  • the cylinder component is designed in several parts and is held together by means of screw 129, 130, 131, 132.
  • a stroke S 1 of the expansion piston 103 is indicated schematically.
  • adjustment can be made such that the stroke S1 of the expansion piston 103 is greater than, equal to or smaller than a stroke S2 of the compression piston 104.
  • the compression ratio of the engine and the discontinuous piston movement of the Kompressionsionskolbens 103 can be influenced.
  • FIG. 6 shows a schematic representation of a two-cycle hot gas engine 200 with a compression cylinder component 201 and an expansion cylinder component 202.
  • a radiator 203 has a central axis 204, which is arranged substantially parallel to the central axis 205 of a further radiator 206.
  • the central axis 204 of the radiator 203 and the center axis 205 of the further radiator 206 are substantially perpendicular to a central axis 207 of the compression cylinder member 201 and the expansion cylinder member 202.
  • a central axis 208 of a regenerator 209 is substantially parallel to a central axis 210 of another regenerator 211 and Central axis 207 of the compression cylinder component 201.
  • two consecutive heating coils 212 and 213 are further shown.
  • the two heater coils 212, 213 may be implemented as a single tube or as a cylindrical split tube heater. This makes it possible, with a burner, which is arranged within the two heating coils 212, 213 located one behind the other, to heat the gas spaces of both cycles of the engine. In this way, an otherwise necessary second burner is saved.
  • Figure 7 shows a compact heater 300 which may be used in conjunction with any hot gas engines, which means that the compact heater 300 is not only advantageous in connection with the two-cycle hot gas engines described in connection with Figures 1-6 ,
  • the use for beta and gamma motors is advantageous if the spiral connections of the motor geometry can be adapted.
  • the compact heater 300 has a cylindrical sleeve 500, to which a combustion air connection 302, a first working gas port 303, a second working gas port 304 and a first working gas outlet 305 are formed.
  • a second working gas outlet is located on a side facing away from the viewer of Figure 7 back of the compact heater 300 and is therefore not seen in Figure 7.
  • a burner 307 is connected.
  • FIG. 8 shows the compact heater 300 according to FIG. 7 in section along a line AA 'in FIG. 7.
  • a heat transfer surface for combustion air 309 in the form of a channel is spirally formed on an outer circumference 308 of a cylindrical basic body 301.
  • the spiral heat transfer surface for combustion air 309 communicates with the combustion air port 302.
  • the combustion air passes through the combustion air port 302 in the spiral heat transfer surface for combustion air 309 and via a connecting pipe 310 in a combustion chamber 311, where by means of the burner 307, a fuel is burned to produce combustion heat energy. It may be provided to connect a fan to the combustion air inlet 302 to introduce the combustion air at a predetermined pressure.
  • flue gas or exhaust gas When burning in the combustion chamber 311, flue gas or exhaust gas is formed, which is transferred at the lower end of the combustion chamber 311 by means of a turning chamber plate 312 in a spiral heat transfer surface for flue gas 313, which is formed along a channel and on an inner circumference 314 of the cylindrical body 301 extends spirally.
  • the flue gas heats first working gas in heat transfer surfaces for working gas 316, 317, which are also formed on the outer periphery 308 of the cylindrical body 301.
  • the flue gas On its further way along the heat transfer surface for flue gas 313, the flue gas then heats heat transfer surface for combustion air 309.
  • FIG. 9 shows the compact heater 300 according to FIG. 7 in plan view.
  • FIGS. 10, 11 and 12 show a further compact heater 400, the same reference numerals being used for the same features as in connection with FIGS. 7, 8 and 9.
  • the cylindrical main body 301 is formed in the embodiment according to the figures 10 to 12 of two basic body components 401 and 402, which are hidden in Figure 10.
  • the two basic body components 401 and 402 are connected to one another by means of a perforated component 403.
  • a combustion air connecting passage 404 is provided in the perforated component 403, through which combustion air can pass from the spiral heat transfer surface for combustion air 309 into the combustion chamber 311.
  • the combustion air connection channel 404 assumes the function of the connection channel 310 in FIG. 8.
  • two inner sleeves 510, 511 are arranged on the inner circumference 314 of the basic body components 401, 402, two inner sleeves 510, 511 are arranged.
  • FIG. 12 shows the further compact heater 400 according to FIG. 10 in plan view.
  • the helical design of the heat transfer surfaces in the compact heater 300 and the other compact heater 400 is suitable for a design as a single-pipe heater. From today's perspective, a production of the compact heater 300 and the further compact heater 400 made of a high-temperature metal is an advantageous solution, if the conditions of high temperature resistance, a Tinder strength and a sufficient sealability of the connections are guaranteed.
  • the cylindrical body 301 may be formed by means of a mold, which then also has the spiral heat transfer surfaces.
  • suitable wall thicknesses and draft angles of the spiral channels for forming the heat transfer surfaces have to be considered. If an operating temperature does not exceed 600 ° C, a production of the insert material SiMo-alloyed cast iron with ductile iron is an expedient solution.
  • Another possibility is to form the cylindrical basic body 301 by turning and / or milling the spiral channels on the inner and outer perimeters 314, 308.
  • a cylindrical high-temperature hollow steel can be used.
  • An outer sleeve 500 is shrunk and seals the spiral heat transfer surfaces on the outer periphery 308.
  • the inner sleeve 510 is shrunk.
  • the sleeve 500 is shrunk with the ports 302-305.
  • the use of shrinkage is possible because in the compact heater 300 and the further compact heater 400, the heat of the burner 307 is always supplied from the inside.
  • the tightness is then ensured, since first the inner sleeve 510, then the cylindrical base body 301 and finally the outer sleeve 500 expand. Cooling takes place from outside to inside and is therefore also uncritical with regard to the tightness of the spiral-shaped heat transfer surfaces.
  • the compact heater 300 and the further compact heater 400 allow a compact design of heaters that can be used for any hot gas engines. In addition, a cost-effective production is possible in the described embodiment. In addition, favorable sauceüberdragungstechnik are formed, with only small pressure losses occur.
  • the embodiment of the heat transfer surface for working gas described with reference to FIGS. 7 to 12 enables the formation of at least two working gas chambers which are heated by a burner. The use of high temperature casting is possible. If the compact heater 300 and the further compact heater 400 are used in the upright arrangement shown in Figures 7, 8 and 10, 11, a direct forwarding of the flue gas to the chimney is made possible.
  • FIG. 13 shows a schematic representation of a two-cycle hot gas engine 500 connected to a work machine 600, wherein the same reference numbers are used for the same features.
  • Two membrane primary sides 601, 602 are hydraulically connected to the working gas of the working machine 600 via two gas lines 610, 611 and are set in vibration by the pressure fluctuation thereof.
  • Two membrane secondary sides 603, 604 are formed as a pump working space.
  • the membrane pumps a liquid 605 by opening at least one outlet valve 607 at positive pressure and closing at least one inlet valve 606 and closing at least one outlet valve 607 under vacuum and opening an inlet valve 606.
  • the two-cycle hot gas engine 500 is a motor that vibrates with its two working gas chambers two hydraulically isolated membranes 608, 609 or deformable surfaces with 180 ° phase offset. In this way, the work yield can be doubled and a pulse smoothing can be achieved.
  • the working gas pressure fluctuations of the engine can be used without mechanical force propagation in order to set at least one with the working gas on the primary side in the pressure composite diaphragm of a working machine of a drive or the piezoelectric surface of a power generator in vibration.
  • the working machine 600 is a double-acting diaphragm pump, the membrane primary sides are hydraulically connected to the engine working gas and the membranes are vibrated by the pressure fluctuations.
  • the deformable surface of a piezoelectric transducer is hydraulically connected to the engine working gas and is cyclically deformed by the pressure fluctuation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Reciprocating Pumps (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)
  • Pulleys (AREA)

Description

  • Die Erfindung liegt auf dem Gebiet von Heißgasmotoren.
  • Heißgasmotoren nach dem Stirling-Prinzip gehören zu den ältesten Wärmekraftmaschinen. Grundsätzlich kann mit Hilfe von Heißgasmotoren nach dem Stirling-Prinzip oder den damit verwandten Prinzipien ein höherer Wirkungsgrad als mit Dampfmaschinen, Diesel- oder Ottomotoren erreicht werden. Mit Hilfe von Heißgasmotoren wird von außen einem Arbeitsgas-Erhitzer Wärme zugeführt, ohne daß eine Verbrennung im Zylinder erfolgen muß. Der mögliche Einsatz nachwachsender Brennstoffe und die kontinuierliche Verbrennung sichern im Zusammenhang mit dem hohen Wirkungsgrad eine umweltschonende Energieeffizienz.
  • Heißgasmotoren nach dem Stirling-Prinzip sind als Motoren vom Alpha-, Beta- und Gamma-Typ bekannt. Beim Alpha-Typ wird das Arbeitsgasgesamtvolumen durch die Bewegung eines Expansionskolbens und eines Kompressionskolbens beeinflußt. Beim Beta- und Gamma-Typ bewegt sich ein Verdränger in einem Raum konstanten Volumens und lediglich der Arbeitskolben beeinflußt das Gasgesamtvolumen.
  • Aus dem Dokument US 5,146,750 ist ein Heißgasmotor nach dem Sterling-Prinzip vom Alpha-Typ bekannt. Bei dem bekannten Motor handelt es sich um einen 1-Zyklen-Motor, bei dem ein Expansionskolben und ein Kompressionskolben entlang einer gemeinsamen Mittelachse angeordnet sind. Ein solches Merkmal ist darüber hinaus bei einem weiteren 1-Zyklen-Heißgasmotor vorgesehen, der in dem Dokument DE 44 29 602 A1 offenbart ist.
  • Trotz der mit Hilfe von Heißgasmotoren möglichen effizienten Energieumwandlung werden derartige Motoren bisher noch nicht in großem Umfang für die Erzeugung mechanischer Energie eingesetzt.
  • Aufgabe der Erfindung ist es, einen verbesserten Zwei-Zyklen-Heißgasmotor vom Alpha-Typ mit gleichgerichteten Gaszyklen und 180 Grad Phasenversatz anzugeben, der einen einfachen Aufbau aufweist und für einen dauerhaften Betrieb auf verschiedene Anwendungsgebieten flexibel einsetzbar ist.
  • Diese Aufgabe wird bei einem Zwei-Zyklen-Heißgasmotor mit einem Expansionskolben in einem Expansionszylinderbauteil und einem Kompressionskolben in einem Kompressionszylinderbauteil erfindungsgemäß dadurch gelöst, daß der Expansionskolben und der Kompressionskolben entlang einer gemeinsamen Mittelachse angeordnet sind.
  • Ein wesentlicher Vorteil, welcher mit der Erfindung gegenüber dem Stand der Technik erreicht wird, besteht darin, daß ein Motoraufbau für einen Zwei-Zyklen-Heißgasmotor vom Alpha-Typ geschaffen wurde, der trotz konstruktiver Einfachheit eine hohe Leistungsdichte zur Verfügung stellt. Der vorgeschlagene Motor weist konstruktive Parallelen zum Beta-Typ auf und vereint diese mit den Vorteilen eines doppelt wirkenden Motors vom Alpha-Typ. Die hintereinander arbeitenden Kolben gewährleisten ein schlankes Getriebe und damit auch Kurbelgehäuse. Für die Kreuzkopf- oder Profilschienenschlitten beider Pleuel lässt sich eine gemeinsame Laufschiene verwenden.
  • Innerhalb eines Zylinderbauteils wird wegen der gleichen Temperatur kein Wärmestrom induziert. Das betrifft die Zylinderbauteilwand und die Kolben gleichermaßen. Damit wird eine größere Annäherung an isotherme Verhältnisse erreicht.
  • Ein weiterer Vorteil der Erfindung besteht darin, daß Kolbenstangendurchfühmngen durch eine Zylinderwand auf der Seite des kühlen Kompressionszylinderteiles realisiert werden können und damit leicht abzudichten sind.
  • Darüber hinaus läßt sich der Phasenversatz zwischen Expansionskolben- und Kompressionskolben beliebig einstellen. Das Expansionsvolumen läßt sich gegenüber dem Kompressionsvolumen variieren.
  • Des weiteren können die Symmetrieverhältnisse des Expansions- und des Kompressionskolbens hervorragend für Freikolben-Anordnungen genutzt werden. Auf diese Weise lassen sich druckfeste und vollkommen druckdichte Motoren aufbauen.
  • Die bei dem erfindungsgemäßen Aufbau des Heißgasmotors ermöglichten zwei gegenläufigen Zyklen erlauben eine Regelbarkeit über einen Zyklen-Kurzschluss. Auch bei drucklosem Getriebe sind die Kolbenkräfte wegen der beiden gegenläufigen Zyklen gering.
  • Eine zweckmäßige Weiterbildung der Erfindung sieht vor, daß der Expansionskolben und der Kompressionskolben angeordnet sind, um beim Betrieb fluchtend hintereinander zu arbeiten. Hierdurch können beide Kolben und deren Zylinderteile durchmessergleich ausgeführt werden.
  • Bei einer Fortbildung der Erfindung kann vorgesehen sein, daß erste Gasräume, die in dem Kompressionszylinderbauteil auf einer Unterseite des Kompressionskolben und in dem Expansionszylinderbauteil auf einer Unterseite des Expansionskolbens gebildet sind, über einen ersten Erhitzer, einen ersten Regenerator und einen ersten Kühler verbunden sind, und daß zweite Gasräume, die in dem Kompressionszylinderbauteil auf einer Oberseite des Kompressionskolbens und in dem Expansionszylinderbauteil auf einer Oberseite des Expansionskolbens gebildet sind, über einen zweiten Erhitzer, einen zweiten Regenerator und einen zweiten Kühler verbunden sind. Mit dieser Anordnung werden zwei Gaszyklen geschaffen, die gleichgerichtet mit 180 Grad Phasenversatz arbeiten. Die Arbeitsgasverbindungsleitung vom Erhitzer zum Expansionszylinderbauteil kann zur thermischen Trennung beider Bauteile für jeden Gaszyklus zum Teil aus einem, in den Abmessungen definierten, geraden Rohr bestehen, das als Pulsrohr arbeitet
  • Eine kompakte Bauweise des Heißgasmotors wird bei einer zweckmäßigen Ausführungsform der Erfindung dadurch unterstützt, daß zwischen dem Expansionszylinderbauteil und dem Kompressionszylinderbauteil ein Kanal gebildet ist, wobei in dem Kanal eine Kolbenstange des Expansionskolbens angeordnet ist, die druckdicht durch den Kanal hindurch geführt ist. Mit Hilfe des Kanals erfolgt die hydraulische und, wenn nötig, thermische Trennung des Kompressions- und des Expansionszylinderbauteils.
  • Eins druckdichte Lagerung der Kolbenstange des Expansionskolbens in dem Kanal ist bei einer vorteilhaften Ausfllhrungsfonn der Erfindung dadurch erleichtert, daß der Kanal in einem Verbindungsbauteil gebildet ist, welches zumindest einen Teilabschnitt des Expansionszylinderbauteils und zumindest einen Teilabschnitt des Kompressionszylinderbauteils umfaßt. Auf diese Weise kann der Kanal in einem einteiligen Verbindungsbauteil geschaffen werden.
  • Zum Unterstützen einer möglichst kompakten Bauweise des Heißgasmotors kann eine Ausgestaltung der Erfindung zweckmäßig vorsehen, daß die Kolbenstange des Expansionskolbens bewegbar durch eine Bohrung in dem Kompressionskolben eingeführt ist. Auf diese Weise kann eine Kolbenkraftfortleitung des Expansionskolbens zu einem Getriebe realisiert werden.
  • Eine Bewegung des Kompressionskolbens entlang der Kolbenstange des Expansionskolbens ist bei einer zweckmäßigen Fortbildung der Erfindung dadurch ermöglicht, daß die. Kolbenstange des Expansionskolbens bewegbar durch den Kompressionskolben hindurch geführt ist.
  • Zweckmäßig kann bei einer Weiterbildung vorgesehen sein, daß die Kolbenstange des Expansionskolbens bewegbar durch eine Öffnung in einem Gehäuse des Kompressionszylinderbauteils hindurch geführt ist. Auf diese Weise ist es möglich, die Kolbenstange des Expansionskolbens im Bereich des Kompressionszylinderbauteils nach außen zu führen, beispielsweise zum Ankoppeln eines Pleuels.
  • Eine platzsparende Bauweise des Heißgasmotors ist bei einer Fortbildung der Erfindung dadurch ermöglicht, daß eine an dem Kompressionskolben angebrachte Kolbenstange einen Durchbruch aufweist, wobei die Kolbenstange des Expansionskolben durch den Durchbruch hindurch geführt ist.
  • Ein gemeinsames Herausführen der Kolbenstange des Kompressionskolbens und der Kolbenstange des Expansionskolbens aus dem Kompressionszylinderbauteil ist bei einer Ausführungsform der Erfindung vorteilhaft dadurch ermöglicht, daß die an dem Kompressionskolben angebrachte Kolbenstange druckdicht durch die Öffnung im Gehäuse des Kompressionszylinderbauteils hindurch geführt ist.
  • Eine unmittelbare Kopplung der Bewegung des Kompressionskolbens an die des Expansionskolbens und dessen Kolbenstange ist bei einer bevorzugten Ausführungsform der Erfindung dadurch ermöglicht, daß der Kompressionskolben einen Hohlraum aufweist, in welchem ein an die Kolbenstange des Expansionskolbens befestigter Pufferkolben bewegbar angeordnet ist, so daß in dem Hohlraum zwei Pufferräume gebildet sind.
  • Ein Getriebe zur Kraftübertragung zwischen der Kolbenstange des Expansionskolbens und dem Kompressionskolben kann bei einer Weiterbildung der Erfindung dadurch eingespart werden, daß die zwei Pufferräume in dem Hohlraum so gebildet sind, daß eine Bewegung des Expansionskolbens und des hieran befestigten Pufferkolbens in dem Hohlraum zu einer Gasverdichtung/Gasentspannung in den zwei Pufferräumen führt, um eine Bewegung des Kompressionskolbens zu bewirken. Wenn sich ein Abschnitt des Pufferraums verkleinert, entsteht hier ein Überdruck, der den Kompressionskolben schiebt. Der andere Abschnitt des Pufferraums vergrößert sich gleichzeitig, so daß dort ein Unterdruck entsteht, der den Kompressionskolben zieht. Eine Bewegung des Kompressionskolbens tritt immer dann ein, wenn die Kraft, die sich aus der Druckdifferenz zwischen den beiden Pufferaumabschnitten ergibt, größer ist als die benötigte Kompressionskraft.
  • Ein druckdichtes Herausführen der Kolbenstange des Expansionskolbens aus dem Kompressionszylinderbauteil wird bei einer zweckmäßigen Fortbildung der Erfindung dadurch erleichtert, daß ein sich über das Kompressionszylinderbauteil hinaus erstreckender Abschnitt der Kolbenstange des Expansionskolbens in einem abgedichteten Innenraum einer Verlängerungshülse aufgenommen ist, wobei die Verlängerungshülse außen an dem Kompressionszylinderbauteil angebracht ist. Im Vergleich zum druckdichten Hindurchfiihren der Kolbenstange des Expansionskolbens durch ein Gehäuse des Kompressionsylinderbauteils kann die Verlängerungshülse mit Hilfe einfacher Mittel abgedichtet an dem Zylinderbauteil montiert werden. Mit Hilfe der Befestigung von Permanentmagneten an dem sich über das Kompressionszylinderbauteil hinaus erstreckendem Abschnitt der Kolbenstange des Expansionskolbens läßt sich eine Magnetkupplung mit einem äußeren die Verlängerungshülse umschließenden magnetischen beweglichen Teil oder ein Lineargenerator mit einem äußeren feststehenden die Verlängerungshülse umschließenden Spulenkörper erreichen.
  • Bei einer bevorzugten Ausgestaltung der Erfindung ist vorgesehen, daß ein distales Ende der Kolbenstange des Expansionskolbens in dem Hohlraum des Kompressionskolbens aufgenommen ist und daß das Expansionszylinderbauteil und das Kompressionszylinderbauteil in einer Linearführung bewegbar gelagert sind. Der hohle Kompressionskolben hat somit nur eine druckdichte Kolbenstangen-Öffnung auf der Seite, die dem Expansionskolben zugewandt ist. Der Zylinder, bestehend aus Expansions- und Kompressionszylinderbauteil, kann in einer Linearfiihrung beweglich gelagert werden. Mit der Bewegung des Expansionskolbens gerät der Zylinder in Resonanz und kann nach außen bei völliger Druckdichtigkeit Arbeit verrichten. Bei dieser Ausführungsform bewegen sich mit dem Zylinder auch Erhitzer, Regeneratoren und Kühler, was für eine verbesserte Wärmeübertragung in den Erhitzern und Kühlern genutzt werden kann.
  • Bei einer bevorzugten Fortbildung der Erfindung kann vorgesehen sein, daß der Kompressionskolben einen Hohlraum aufweist und daß die Kolbenstange des Expansionskolbens durch den Hohlraum hindurch gebildet ist, wobei in dem Hohlraum an der Kolbenstange des Expansionskolbens ein Magnetkolben mit Magnetmitteln angeordnet ist, die mit weiteren Magnetmitteln wechselwirken, und wobei gegenüberliegende Abschnitte der Magnetmittel und der weiteren Magnetmittel eine gleichartige magnetische Polung aufweisen. An Stelle des beschriebenen hydraulischen Antriebs mit dem Pufferkolben wird so ein phasenversetzter magnetischer Antrieb des Kompressionskolbens erreicht. Der Magnetkolben braucht im Kompressionskolben nicht abgedichtet zu werden. Auf diese Weise ist ein magnetischer Antrieb geschaffen. Der Antrieb des Kompressionskolbens erfolgt direkt über den Expansionskolben. Die Netto-Arbeit kann an der Kolbenstange des Expansionskolbens abgegriffen werden, ohne daß hierfür das übliche Getriebe benötigt wird. Mit Hilfe der Magnetmittel und der weiteren Magnetmittel läßt sich der notwendige Phasenversatz zwischen dem Expansionskolben und Kompressionskolben einfacher als bei der oben genannten Ausführungsform mit Pufferkolben im Kompressionskolben realisieren, da erst bei einem sehr geringen Abstand zwischen gegenüberliegenden Abschnitten der Magnetmittel und der weiteren Magnetmittel eine Absto-ßungkraft so groß wird, daß die Bewegung des Kompressionskolbens eintritt. Die notwendigen Kompressionsdrücke können durch eine geeignete Auswahl der Magnetmittel und der weiteren Magnetmittel eingestellt werden.
  • Eine kompakte Bauweise des Heißgasmotors wird dadurch unterstützt, daß die weiteren Magnetmittel zumindest teilweise im Bereich von Stimflächen des Kompressionskolben angeordnet sind.
  • Der Vorteil beim hydraulischen und magnetischen Antrieb des Kompressionskolbens gegenüber einem mechanischen liegt darin, daß die Kompressionskraft nicht über das Getriebe geleitet werden muß. An der Kolbenstange des Expansionskolbens kann folglich die Netto-Arbeit abgegriffen werden.
  • Eine effiziente Nutzung der zum Erhitzen des Expansionszylinderbauteils genutzten Energie ist bei einer vorteilhaften Ausgestaltung der Erfindung dadurch erreicht, daß ein Kompakterhitzer vorgesehen ist, welcher einen als ungefügtes Bauteil ausgeführten zylindrischen Grundkörper mit einem Brennraum und einer Wärmeübertragungsfläche für Arbeitsgas umfaßt, wobei die Wärmeübertragungsfläche für Arbeitsgas in einer Oberflächenschicht des zylindrischen Grundkörpers spiralförmig gebildet ist. Durch die spiralförmige Flächenanordnung können platzsparende und strömungsgünstige Wärmeübertragungsbedingungen geschaffen. Um die Spiralgänge zu verschließen und die Anbindungen für das Arbeitsgas vorzusehen, können die Spiralgänge durch in und auf den zylindrischen Grundkörper geschrumpfte Hülsen, an denen die Gasanschlussstutzen befestigt sind, verschlossen werden. Eine Innenhülse, die gleichzeitig den Brennraum bildet, kann einseitig verschlossen sein und läßt unten einen definierten Spiralgangbereich der Rauchgasspirale frei, um eine Wendekammer für das Rauchgas auszubilden.
  • Vorteilhaft kann vorgesehen sein, daß im Bereich einer Oberfläche des zylindrischen Grundkörpers eine jeweilige Wärmeübertragungsfläche für Verbrennungsluft und Rauchgas spiralförmig gebildet ist.
  • Die Nutzung des Kompakterhitzers für zwei Arbeitsgase ist bei einer Fortbildung der Erfindung dadurch ermöglicht, daß die Wärmeübertragungsfläche für Arbeitsgas eine Arbeitsgaspirale für ein erstes Arbeitsgas und mindestens eine von der Arbeitsgasspirale hydraulisch getrennte weitere Arbeitsgasspirale für ein zweites Arbeitsgas umfaßt. Auf diese Weise kann ein einzelner Kompakterhitzer für den Betrieb der oben beschrieben Ausführungsformen der Heißgasmotoren genutzt werden.
  • Die Fertigung des Kompakterhitzers wird einer Weiterbildung der Erfindung dadurch erleichtert, daß die Wärmeübertragungsfläche für Arbeitsgas auf einem Außenumfang des zylindrischen Grundkörpers gebildet ist.
  • Zum Unterstützen einer platzsparenden Konstruktion des Kompakterhitzers kann bei einer vorteilhaften Weiterbildung der Erfindung vorgesehen sein, daß die Wärmeübertragungsfläche für Verbrennungsluft auf dem Außenumfang des zylindrischen Grundkörpers gebildet ist.
  • Eine optimierte Ausnutzung der Oberfläche des zylindrischen Grundkörpers ist bei einer bevorzugten Weiterbildung der Erfindung dadurch gewährleistet, daß die Wärmeübertragungsfläche für Rauchgas auf einen Innenumfang des zylindrischen Grundkörpers gebildet ist.
  • Zweckmäßig kann bei einer Ausgestaltung der Erfindung vorgesehen sein, daß die Wärmeübertragungsfläche für Arbeitsgas in einem Bereich um dem Brennraum herum und die Wärmeübertragungsfläche für Verbrennungsluft in einem Bereich oberhalb des Brennraums des zylindrischen Grundkörpers so angeordnet sind, daß in dem Brennraum erzeugte Wärmeenergie zunächst die Wärmeübertragungsfläche für Arbeitsgas und anschließend die Wärmeübertragungsfläche für Verbrennungsluft erhitzen kann. Hierdurch wird die mit Hilfe eines Brennstoffes im Brennraum erzeugte Wärmeenergie effizient beim Betrieb des Heißgasmotors genutzt.
  • Eine bevorzugte Fortbildung der Erfindung sieht vor, daß der zylindrischen Grundkörper mit Hilfe von zwei Grundkörperbauteilen ausgeführt ist, wobei die zwei Grundkörperbauteile mittels eines scheibenförmigen Lochbauteils verbunden sind und das scheibenförmige Lochbauteil einen Verbindungskanal zum Leiten von Verbrennungsluft in den Brennraum sowie einen Rauchgas-Verbindungskanal zum Verbinden von Wärmeübertragungsflächen für Rauchgas in den zwei Grundkörperbauteilen aufweist. Hierdurch ist es möglich, an einem der beiden Grundkörperbauteile eine durchgehende spiralförmige Wärmeübertragungsfläche für die Verbrennungsluft zu schaffen, die mittels Drehens geschaffen werden kann, so daß das aufwendige Fräsen der Wänneübertragungsfläche eingespart wird.
  • Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf eine Zeichnung näher erläutert. Hierbei zeigen:
  • Figur 1
    eine schematische Darstellung eines Zwei-Zyklen-Heißgasmotors im Querschnitt;
    Figur 2
    eine schematische Darstellung eines Zwei-Zyklen-Heißgasmotors im Querschnitt, wobei ein Kompressionskolben einen Hohlraum aufweist;
    Figur 3
    den Zwei-Zyklen-Heißgasmotor nach Figur 2, wobei ein Ende einer Kolbenstange eines Expansionskolbens in einer Verlängerungshülse aufgenommen ist;
    Figur 4
    eine schematische Darstellung eines Zwei-Zyklen-Heißgasmotors mit einer Linearführung im Querschnitt;
    Figur 5
    eine schematische Darstellung eines Zwei-Zyklen-Heißgasmotors mit magnetischem Antrieb im Querschnitt;
    Figur 6
    eine schematische Darstellung eines Zwei-Zyklen-Heißgasmotors, wobei eine Mittelachse eines Spiralerhitzers parallel zu einer Mittelachse eines Zylinders gebildet ist;
    Figur 7
    einen Kompakterhitzer;
    Figur 8
    den Kompakterhitzer nach Figur 7 im Schnitt entlang einer Linie AA' in Figur 7;
    Figur 9
    den Kompakterhitzer nach Figur 7 in Draufsicht;
    Figur 10
    einen weiteren Kompakterhitzer;
    Figur 11
    den weiteren Kompakterhitzer nach Figur 10 im Schnitt entlang einer Linie BB' in Figur 10;
    Figur 12
    den weiteren Komapaktserhitzer nach Figur 10 in Draufsicht; und
    Figur 13
    eine schematische Darstellung eines Zwei-Zyklen-Heißgasmotors.
  • Figur 1 zeigt eine schematische Darstellung eines Zwei-Zyklen-HeiBgasmotors mit einem Zylindergehäuse 1. In dem Zylindergehäuse 1 sind ein Expansionskolben 2 in einem Expansionszylinderbauteil 3 und ein Kompressionskolben 4 in einem Kompresssionszylinderbauteil 5 angeordnet. Der Expansionskolben 2 und der Kompressionskolben 4 sind entlang einer gemeinsamen Mittellinie 6 hintereinander angeordnet. Das Expansionszylinderbauteil 3 und das Kompressionszylinderbauteil 5 sind über ein Verbindungsbauteil 7 miteinander verbunden, in welchem ein Kanal 8 gebildet ist. In dem Kanal 8 ist eine Kolbenstange 9 des Expansionskolbens 2 druckdicht geführt. Die Kolbenstange 9 des Expansionskolbens 2 erstreckt sich durch eine Öffnung 4a in den Kompressionskolben 4 hinein und durch den Kompressionskolben 4 und eine Kolbenstange 10 des Kompressionskolbens 4 hindurch.
  • Die Kolbenstange 10 des Kompressionskolbens 4 ist durch eine Öffnung 11 in dem Kompresssionszylinderbauteil 5 hindurch nach außen geführt. Die Durchführung der Kolbenstange 10 des Kompressionskolbens 4 und der hierin gelagerten Kolbenstange 9 des Expansionskolbens 2 aus dem Kompressionszylinderbauteil 5 heraus ist druckdicht. Die Kolbenstange 9 des Expansionskolbens 2 ist durch einen Durchbruch 10a in der Kolbenstange 10 geführt. An die Kolbenstange 9 des Expansionskolbens 2 und die Kolbenstange 10 des Kompressionskolbens 4 ist jeweils ein Pleuel 12, 13 gekoppelt, so daß die Kolbenstangen 9, 10 mit einer Kurbelwelle 14 verbunden sind.
  • Auf einer Unterseite 15 des Kompressionskolbens 4 und auf einer Unterseite 16 des Expansionskolbens 2 sind erste Gasräume GH1 bzw. GK1 gebildet. Die ersten Gasräume GH1, GK1 sind über einen ersten Verbindungskanal 17 verbunden. In den Verbindungskanal 17 integriert sind ein erster Erhitzer 18, ein erster Regenerator 19 und ein erster Kühler 20.
  • Auf einer Oberseite 21 des Kompressionskolbens 4 sowie auf einer Oberseite 22 des Expansionskolbens 2 sind zweite Gasräume GK2 bzw. GH2 geschaffen, die über einen zweiten Verbindungskanal 23 in Verbindung stehen. In dem zweiten Verbindungskanal 23 sind ein zweiter Erhitzer 24, ein zweiter Regenerator 25 und ein zweiter Kühler 26 angeordnet.
  • Bei dem in Figur 1 dargestellten Zwei-Zyklen-Heißgasmotor sind das Kompressionszylinderbauteil 5 und das Expansionszylinderbauteil 3 thermisch getrennt Diese thermische Trennung erlaubt es, das Herausführen der Kolbenstangen 9 bzw. 10 auf der kalten Seite des Heißgasmotors im Bereich des Kompressionszylinderbauteils 5 zu realisieren, was Dichtungsprobleme, wie sie im Stand der Technik häufig auftreten, wesentlich lindert.
  • Das Expansionszylinderbauteil 3 und der Expansionskolben 2 können aus einem Hochtemperaturmaterial sein. Bei dieser Ausführung lassen sich mittels in einer Wandung 27 des Expansionszylinderbauteils 3 ausgebildeten Heatpipe- und Gas-Kanälen (in Figur 1 nicht dargestellt) die Gasräume GH1, GH2 gleichermaßen isotherm erhitzen. Das Kompressionszylinderbauteil 5 kann beispielsweise aus Duranglas sein. Der Kompressionskolben 4 kann zweckmäßig aus Graphit gefertigt werden.
  • Figur 2 zeigt eine schematische Darstellung eines Zwei-Zyklen-Heißgasmotors, bei dem für gleiche Merkmale die in Figur 1 verwendeten Bezugszeichen genutzt werden. Im Unterschied zum Zwei-Zyklen-Heißgasmotor nach Figur 1 weist der Kompressionskolben 4 einen Hohlraum 30 auf. In dem Hohlraum 30 ist ein Pufferkolben 31 angeordnet, welcher an der Kolbenstange 9 des Expansionskolbens 2 gebildet ist. Mit Hilfe des Pufferkolbens 31 sind in dem Hohlraum 30 Pufferräume P1 und P2 geschaffen. Bei einer Bewegung des Expansionskolbens 2 wird das Arbeitsgas, welches sich in den Pufferräumen P1, P2 befindet verdichtet/entspannt, was zum Anstoßen einer Aufwärts- bzw. einer Abwärtsbewegung des Kompressionskolbens 4 führt. Auf diese Weise eilen die Gasräume GH1, GH2 den Gasräumen GK1, GK2 in definierter Weise voraus. Mit Hilfe von Magneten 32a-32d wird ein Anschlagen des Kompressionskolbens 4 am Gehäuse 33 des Kompressionszylinderbauteils 5 verhindert. Zu diesem Zweck weisen die Magnete 32a und 32b bzw. 32c und 32d jeweils eine entgegengesetzte magnetische Polung auf.
  • Aufgrund des Vorsehens des Pufferkolbens 31 kann bei der in Figur 2 dargestellten Ausführungsform auf ein Getriebe zur Kopplung der Kolbenstange 9 des Expansionskolbens 2 an den Kompressionskolben 4 verzichtet werden. Die Kopplung wird mit Hilfe des Pufferkolbens 31 und der hierdurch entstehenden Pufferräume P1, P2 geschaffen. Gemäß Figur 2 ist die Kolbenstange 9 des Expansionskolbens 2 über einen Kreuzkopf 34 an das Pleuel 13 gekoppelt.
  • Figur 3 zeigt den Zwei-Zyklen-Heißgasmotor nach Figur 2, wobei jedoch ein sich über das Kompressionszylinderbauteil 5 hinaus erstreckendes Ende 40 der Kolbenstange 9 des Expansionskolbens 2 in einer Verlängerungshülse 41 aufgenommen ist. Die Verlängerungshülse 41 ist druckdicht auf das Kompressionszylinderbauteil 5 aufgesetzt. Mit Hilfe einer Magnetkupplung 42 ist die Kolbenstange 9 des Expansionskolbens 2 an einen äußeren Führungskolben 43 gekoppelt, welcher in einem Zylinder 44 des Führungskolbens 43 gleitet. Der Führungskolben 43 wiederum steht mit dem Pleuel 13 in Verbindung. Der Führungskolben 43 kann zusammen mit seinem Zylinder 44 geschmiert werden und einem Ottomotor ähnlich ausgeführt sein.
  • Figur 4 zeigt einen anderen Zwei-Zyklen-Heißgasmotor, wobei für gleiche Merkmale die in Figuren 1 bis 3 verwendeten Bezugszeichen genutzt werden. Bei der Ausführungsform nach Figur 4 endet ein distales Ende 50 der Kolbenstange 9 des Expansionskolbens 2 an dem Pufferkolben 31. Im Unterschied zu den Ausführungsformen in den Figuren 1 bis 3 ist bei dem Heißgasmotor nach Figur 4 kein Herausführen der Kolbenstange 9 des Expansionskolbens 2 aus dem Kompressionszylinderbauteil 5 vorgesehen. Auf diese Weise ist das Zylindergehäuse 1 vollkommen geschlossen.
  • An dem Kompressionszylinderbauteil 5 ist eine Verlängerung 51 angebracht, die in einem Teil 52 einer Linearführung bewegbar gelagert ist. Die Verlängerung 51 ist über das Pleuel 13 mit der Kurbelwelle 14 verbunden. Ein weiteres Teil 53 der Linearführung ist im Bereich des Verbindungsbauteils 7 vorgesehen. Die Linearflüirung sorgt für eine geradlinige Bewegung des Zylindergehäuses 1. Zusammen mit dem Zylindergehäuse 1 bewegen sich der erste Kühler 18, der erste Regenerator 19, der erste Erhitzer 20, der zweite Kühler 24, der zweite Regenerator 25 und der zweite Erhitzer 26. Eine Impulsübertragung zum Anstoßen der Bewegung des Kompressionskolbens 4 erfolgt, wie dieses in Verbindung mit den Ausführungsformen nach den Figuren 2 und 3 beschrieben wurde, aufgrund der Gasverdichtung in den Pufferräumen P1, P2.
  • Figur 5 zeigt eine schematische Darstellung einer weiteren Ausführungsform eines Zwei-Zyklen-Heißgasmotors mit einem Zylindergehäuse 100, einem Kompressionszylinderbauteil 101 und einem Expansionszylinderbauteil 102. In dem Kompressionszylinderbauteil 101 ist ein Kompressionskolben 103 angeordnet. In dem Expansionszylinderbauteil 102 ist ein Expansionskolben 104 gelagert. Das Kompressionszylinderbauteil 101 und das Expansionszylinderbauteil 102 sind über ein Verbindungsbauteil 105 verbunden, in welchem eine Kolbenstange 106 des Expansionskolbens 104 druckdicht gelagert ist. Zum Abdichten ist eine Dichtung 107 vorgesehen.
  • Wie bei den Ausfühnuigsformen nach den Figuren 1 bis 4 sind beidseitig des Kompressionskolbens 103 und des Expansionskolbens 104 erste und zweite Gasräume GH1, GK1 bzw. GH2, GK2 gebildet. Die ersten und zweiten Gasräume GH1, GH2, GK1, GK2 verfügen jeweils über Anschlüsse 108, 109, 110 bzw. 111. Zwischen die Anschlüsse 108-111 sind gemäß den Erläuterungen zu den Figuren 1 bis 4 Erhitzer, Regeneratoren und Kühler (in Figur 5 nicht dargestellt) gekoppelt. Der Expansionskolben 104 wird mit Hilfe einer Kolbenbefestigungsmutter 112 an der Kolbenstange 106 gehalten. Zwischen einer Kolbenspannplatte 113 und der Kolbenbefestigungsmutter 112 ist eine Spannfeder 114 montiert. Eine weitere Kolbenspannplatte 115 ist mit Hilfe eines Befestigungsstifts 116 an der Kolbenstange 106 befestigt.
  • Im Unterschied zu der Ausführungsform nach den Figuren 1 bis 4 ist bei dem Heißgasmotor nach Figur 5 ein magnetischer Antrieb des Kompressionskolbens 103 vorgesehen. Der magnetische Antrieb umfaßt mehrere Magnetmittel 121, 122, 123. Die mehreren Magnetmittel 121-123 verfügen jeweils über scheibenförmige Polplatten 121a, 121b, 122a, 122b, 123a, 123b. Einander gegenüberliegende Polplatten, beispielsweise die Polplatten 122b und 123a weisen eine gleiche magnetische Polung auf, so daß Abstoßkräfte wirken, wenn sich die einander gegenüberliegenden Polplatten aufeinander zu bewegen. Die Abstoßkräfte entfalten eine große Kraftwirkung in der Regel jedoch erst bei tatsächlicher Annäherung der einander gegenüberliegenden Polplatten. Im Vergleich zu den Ausführungsformen nach den Figuren 2 bis 4 entfällt bei der Verwendung des magnetischen Antriebs die Notwendigkeit einer Abdichtung des Pufferkolbens 31 gegenüber dem Kompressionskolben 103, da der Anstoß zur Bewegung des Kompressionskolbens 103 nicht aufgrund einer Gasverdichtung in Pufferräumen P1, P2 (vgl. Figuren 2 bis 4), sondern durch die magnetische Abstoßkraft zwischen einander gegenüberliegenden Polplatten erfolgt. Magnetmittel 120, 124, die ebenfalls über Polplatten 120a, 124a verfügen, sind vorgesehen, um das Anschlagen des Kompressionskolbens 103 an dem Kompressionszylinderbauteil 101 zu verhindern.
  • Die Magnete 120-124 können mit Hilfe von Magnettrommeln mit ringförmig angeordneten Stabmagneten ausgeführt werden. Um die Kolbenstange 106 herum ist bei den Magneten 120, 121, 123 und 124 jeweils eine Dichtung 107, 126, 127, 128 angeordnet, um die Kolbenstange 106 druckdicht durch die Magnete 120, 121, 123, 124 zu fuhren. Auf diese Weise grenzen die Dichtungen 107, 126-128 die beiden Zyklen gegeneinander ab. Der Magnet 122 ist an der Kolbenstange 106 fixiert. Die Dichtungen 107, 126-128 sind beispielsweise aus Teflon.
  • Die Kolbenstange 106 des Expansionskolbens 104 ist aus einem nicht magnetischen und elektrisch schlecht leitenden Material, beispielsweise V4A-Stahl. Das Zylinderbauteil ist mehrteilig ausgeführt und wird mit Hilfe von Schraubverbindungen 129, 130, 131, 132 zusammengehalten.
  • In Figur 5 ist ein Hubweg S 1 des Expansionskolbens 103 schematisch angedeutet. Über eine Veränderung einer hohlen Länge H1 des Kompressionskolbens 103 und einer hohlen Länge H2 des Kompressionszylinderbauteils 101 kann eine Anpassung derart erfolgen, daß der Hubweg S1 des Expansionskolbens 103 größer, gleich oder kleiner als ein Hubweg S2 des Kompressionskolbens 104 ist. Hierdurch können das Kompressionsverhältnis des Motors und die diskontinuierliche Kolbenbewegung des Kompresssionskolbens 103 beeinflußt werden.
  • Figur 6 zeigt eine schematische Darstellung eines Zwei-Zyklen-Heißgasmotors 200 mit einem Kompressionszylinderbauteil 201 und einem Expansionszylinderbauteil 202. Ein Kühler 203 weist eine mittlere Achse 204 auf, die im wesentlichen parallel zur mittleren Achse 205 eines weiteren Kühlers 206 angeordnet ist. Die Mittelachse 204 des Kühlers 203 und die Mittelachse 205 des weiteren Kühlers 206 sind im wesentlichen senkrecht zu einer Mittelachse 207 des Kompressionszylinderbauteils 201 und des Expansionszylinderbauteils 202. Eine Mittelachse 208 eines Regenerators 209 ist im wesentlichen parallel zu einer Mittelachse 210 eines weiteren Regenerators 211 und der Mittelachse 207 des Kompressionszylinderbauteils 201. In Figur 6 sind weiterhin zwei hintereinander liegende Erhitzerspiralen 212 und 213 gezeigt. Für Motoren mit kleiner Leistung lassen sich die zwei Erhitzerspiralen 212, 213 als Einrohrerhitzer oder als zylindrische Spaltrohrerhitzer ausführen. Hierdurch besteht die Möglichkeit, mit einem Brenner, welcher innerhalb der zwei hintereinanderliegenden Erhitzerspiralen 212, 213 angeordnet ist, die Gasräume beider Zyklen des Motors zu erhitzen. Auf diese Weise wird ein sonst notwendiger zweiter Brenner eingespart.
  • Figur 7 zeigt einen Kompakterhitzer 300, welcher in Verbindung mit beliebigen Heißgasmotoren verwendet werden kann, was bedeutet, daß der Kompakterhitzer 300 nicht nur im Zusammenhang mit den Zwei-Zyklen-Heißgasmotoren vorteilhaft einsetzbar ist, die in Verbindung mit den Figuren 1 bis 6 beschrieben wurden. Auch der Einsatz für Beta- und Gammamotoren ist vorteilhaft, sofern die Spiralanschlüsse der Motorgeometrie angepaßt werden können.
  • Der Kompakterhitzer 300 weist eine zylindrische Hülse 500 auf, an die ein Verbrennungsluftanschluß 302, ein erster Arbeitsgasanschluß 303, ein zweiter Arbeitsgasanschluß 304 sowie ein erster Arbeitsgasausgang 305 gebildet sind. Ein zweiter Arbeitsgasausgang befindet sich auf einer vom Betrachter der Figur 7 abgewandten Rückseite des Kompakterhitzers 300 und ist deshalb in Figur 7 nicht zu sehen. An einem unteren Ende 306 des Kompakterhitzers 300 ist ein Brenner 307 angeschlossen.
  • Figur 8 zeigt den Kompakterhitzer 300 nach Figur 7 im Schnitt entlang einer Linie AA' in Figur 7. Auf einem Außenumfang 308 eines zylindrischen Grundkörpers 301 ist spiralförmig eine Wärmeübertragungsfläche für Verbrennungsluft 309 in Form eines Kanals gebildet. Die spiralförmige Wärmeübertragungsfläche für Verbrennungsluft 309 steht mit dem Verbrennungsluftanschluß 302 in Verbindung. Die Verbrennungsluft gelangt über den Verbrennungsluftanschluß 302 in die spiralförmige Wärmeübertragungsfläche für Verbrennungsluft 309 und über ein Verbindungsrohr 310 in einen Brennraum 311, wo mittels des Brenners 307 ein Brennstoff verbrannt wird, um Brennwärmeenergie zu erzeugen. Es kann vorgesehen sein, dem Anschluß für Verbrennungsluft 302 einen Lüfter vorzuschalten, um die Verbrennungsluft mit einem vorbestimmten Druck einzuführen. Bei der Verbrennung in dem Brennraum 311 entsteht Rauchgas bzw. Abgas, was am unteren Ende des Brennraums 311 mit Hilfe eines Wendekammerblechs 312 in eine spiralförmige Wärmeübertragungsfläche für Rauchgas 313 überführt wird, die entlang eines Kanals gebildet ist und sich auf einem Innenumfang 314 des zylindrischen Grundkörpers 301 spiralförmig erstreckt. Über die spiralförmige Wärmeübertragungsfläche für Rauchgas 313 gelangt das Rauchgas zum Schornstein 315. Auf seinem Weg zum Schornstein 315 erwärmt das Rauchgas zunächst Arbeitsgas in Wärmeübertra gungsflächen für Arbeitsgas 316, 317, die ebenfalls auf dem Außenumfang 308 des zylindrischen Grundkörpers 301 gebildet sind. Auf seinem weiteren Weg entlang der Wärmeübertragungsfläche für Rauchgas 313 erwärmt das Rauchgas dann Wärmeübertragungsfläche für Verbrennungsluft 309.
  • Figur 9 zeigt den Kompakterhitzer 300 nach Figur 7 in Draufsicht.
  • In den Figuren 10, 11 und 12 ist ein weiterer Kompakterhitzer 400 dargestellt, wobei für gleiche Merkmale die gleichen Bezugszeichen wie in Verbindung mit den Figuren 7, 8 und 9 verwendet werden. Der zylindrische Grundkörper 301 ist bei der Ausführungsform nach den Figuren 10 bis 12 von zwei Grundkörperbauteilen 401 und 402 gebildet, die in Figur 10 verdeckt sind. Die beiden Grundkörperbauteile 401 und 402 sind mittels eines Lochbauteils 403 miteinander verbunden. Gemäß Figur 11 ist in dem Lochbauteil 403 ein Verbrennungsluft-Verbindungskanal 404 vorgesehen, durch welchen die Verbrennungsluft aus der spiralförmigen Wärmeübertragungsfläche für Verbrennungsluft 309 in den Brennraum 311 gelangen kann. Der Verbrennungsluft-Verbindungskanal 404 übernimmt bei der Ausführungsform nach den Figuren 10 bis 12 somit die Funktion des Verbindungskanals 310 in Figur 8. Auf dem Innenumfang 314 der Grundkörperbauteile 401, 402 sind zwei Innenhülsen 510, 511 angeordnet.
  • Figur 12 zeigt den weiteren Kompakterhitzer 400 nach Figur 10 in Draufsicht.
  • Für Heißgasmotoren mit geringen Leistungen und Drehzahlen zwischen 100 und 500 U/min besteht die Möglichkeit, Einrohrerhitzer zu verwenden. Der in den Figuren 7 bis 9 gezeigte Kompakterhitzer 300 sowie der in den Figuren 10 bis 12 gezeigte weitere Kompakterhitzer 400 gehören zu dieser Art Einrohrerhitzer. Wesentlicher Grund für den Einsatz von Einrohrerhitzern ist die Tatsache, daß bei bereits gebauten Heißgasmotoren die Kosten für den Erhitzer die Gesamtsystemkosten maßgeblich beeinflussen.
  • Die spiralförmige Gestaltung der Wärmeübertragungsflächen bei dem Kompakterhitzer 300 sowie dem weiteren Kompakterhitzer 400 ist für eine Ausführung als Einrohrerhitzer geeignet. Aus heutiger Sicht ist eine Fertigung des Kompakterhitzers 300 und des weiteren Kompakterhitzers 400 aus einem Hochtemperatur-Metall eine vorteilhafte Lösung, wenn die Voraussetzungen einer hohen Temperaturbelastbarkeit, einer Zunderfestigkeit und einer ausreichenden Abdichtbarkeit der Anschlüsse gewährleistet sind.
  • Bei dem Kompakterhitzer 300 und dem weiteren Kompakterhitzer 400 kann der zylinderische Grundkörper 301 mit Hilfe einer Gußform gebildet werden, welche dann auch die spiralförmigen Wärmeübertragungsflächen aufweist. Hier sind geeignete Wandstärken und Formschrägen der spiralförmigen Kanäle zum Bilden der Wärmeübertragungsflächen zu berücksichtigen. Sofern eine Betriebstemperatur 600°C nicht übersteigt, ist eine Fertigung aus dem Einsatzwerkstoff SiMo-legiertes Gußeisen mit Kugelgraphit eine zweckmäßige Lösung. Eine andere Möglichkeit besteht darin, den zylinderischen Grundkörper 301 mittels Drehens und/oder Fräsens der spiralförmigen Kanäle auf dem Innen- und dem Außenumfang 314, 308 auszubilden. Hierbei kann ein zylindrischer Hochtemperatur-Hohlstahl verwendet werden. Eine Außenhülse 500 wird aufgeschrumpft und verschließt die spriralförmigen Wärmeübertragungsflächen auf dem Außenumfang 308. Zum Abdecken der Wärmeübertragungsfläche für Rauchgas 313 wird die Innenhülse 510 eingeschrumpft. Die Hülse 500 wird mit den Anschlüssen 302-305 aufgeschrumpft. Die Verwendung des Schrumpfens ist möglich, weil bei dem Kompakterhitzer 300 und dem weiteren Kompakterhitzer 400 die Wärme des Brenners 307 stets von innen zugeführt wird. Die Dichtigkeit ist dann gewährleistet, da sich zunächst die Innenhülse 510, dann der zylinderische Grundkörper 301 und schließlich die Außenhülse 500 ausdehnen. Eine Abkühlung erfolgt von außen nach innen und ist somit hinsichtlich der Dichtheit der spiralförmigen Wärmeübertragungsflächen ebenfalls unkritisch.
  • Der Kompakterhitzer 300 und der weitere Kompakterhitzer 400 erlauben eine kompakte Bauform von Erhitzern, die für beliebige Heißgasmotoren verwendet werden können. Darüber hinaus ist bei der beschriebenen Ausgestaltung eine kostengünstige Herstellung ermöglicht. Es sind darüber hinaus günstige Wärmeüberdragungsverhältnisse ausgebildet, wobei nur geringe Druckverluste auftreten. Die unter Bezugnahme auf die Figuren 7 bis 12 beschriebene Ausgestaltung der Wärmeüberleitunsgfläche für Arbeitsgas ermöglicht die Ausbildung von mindestens zwei Arbeitsgasräumen, die mit einem Brenner erhitzt werden. Der Einsatz von Hochtemperaturguß ist ermöglicht. Wenn der Kompakterhitzer 300 und der weitere Kompakterhitzer 400 in der in den Figuren 7, 8 bzw. 10, 11 dargestellten aufrechten Anordnung genutzt werden, ist eine direkte Weiterleitung des Rauchgases zum Schornstein ermöglicht.
  • Figur 13 zeigt eine schematische Darstellung eines Zwei-Zyklen-Heißgasmotors 500, der mit einer Arbeitsmaschine 600 verbunden ist, wobei für gleiche Merkmale die in den Figuren 1 bis 5 verwendeten Bezugszeichen genutzt werden. Zwei Membran-Primärseiten 601, 602 sind mit dem Arbeitsgas der Arbeitsmaschine 600 über zwei Gasleitungen 610, 611 hydraulisch verbunden und werden durch dessen Druckschwankung in Schwingung versetzt. Zwei Membran-Sekundärseiten 603, 604 sind als Pumpenarbeitsraum ausgebildet. Somit pumpt die Membran eine Flüssigkeit 605, indem bei Überdruck mindestens ein Auslaßventil 607 geöffnet und mindestens ein Einlaßventil 606 geschlossen und bei Unterdruck mindestens ein Auslaßventil 607 geschlossen und ein Einlaßventil 606 geöffnet wird.
  • Für diese Anwendung ist es vorteilhaft, daß der Zwei-Zyklen-Heißgasmotor 500 ein Motor ist, der mit seinen beiden Arbeitsgasräumen zwei hydraulisch getrennte Membranen 608, 609 oder verformbare Oberflächen mit 180° Phasenversatz in Schwingung versetzt. Auf diese Art kann die Arbeitsausbeute verdoppelt und eine Impulsglättung erreicht werden.
  • Bei dem Zwei-Zyklen-Heißgasmotor 500 können ohne mechanische Kraftfortleitung die Arbeitsgas-Druckschwankungen des Motors genutzt werden, um mindestens eine mit dem Arbeitsgas primärseitig im Druckverbund stehende Membran einer Arbeitsmaschine eines Antriebes oder die piezoelektrische Oberfläche eines Stromerzeugers in Schwingung zu versetzen. Zweckmäßig kann vorgesehen sein, daß die Arbeitsmaschine 600 eine doppelt wirkende Membranpumpe ist, deren Membran-Primärseiten mit dem Motorarbeitsgas hydraulisch verbunden sind und durch deren Druckschwankungen die Membranen in Schwingung versetzt werden.
  • In Verbindung mit dem Zwei-Zyklen-Heißgasmotor 500 kann vorteilhaft vorgesehen sein, daß bei einem Stromerzeuger die verformbare Oberfläche eines piezoelektrischen Wandlers mit dem Motorarbeitsgas hydraulisch verbunden ist und durch dessen Druckschwankung zyklisch verformt wird.
  • Die in Verbindung mit Figur 13 beschriebene Nutzung des Zwei-Zyklen-Heißgasmotors 500 kann auch für die Motoren nach den Figuren 1 bis 6 vorgesehen sein.
  • Die in der vorstehenden Beschreibung, den Ansprüchen und der Zeichnung offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausftihrungsformen von Bedeutung sein.

Claims (27)

  1. Zwei-Zyklen-Heißgasmotor nach dem Stirling-Prinzip vom Alpha Typ wobei die zwei Gaszyklen gleichgerichtet mit 180° Phasenversatz arbeiten mit einem Expansionskolben (2; 104) in einem Expansionszylinderbauteil (3; 102) und einem Kompressionskolben (4; 103) in einem Kompressionszylinderbauteil (5; 101), dadurch gekennzeichnet, daß der Expansionskolben (2; 104) und der Kompressionskolben (4; 103) entlang einer gemeinsamen Mittelachse (6) angeordnet sind.
  2. Zwei-Zyklen-Heißgasmotor nach Anspruch 1, dadurch gekennzeichnet, daß der Expansionskolben (2; 104) und der Kompressionskolben (4; 103) angeordnet sind, um beim Betrieb fluchtend hintereinander zu arbeiten.
  3. Zwei-Zyklen-Heißgasmotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß erste Gasräume (GH1 bzw. GK1), die in dem Kompressionszylinderbauteil (5) auf einer Unterseite (15) des Kompressionskolbens (4) bzw. in dem Expansionszylinderbauteil (3) auf einer Unterseite (16) des Expansionskolbens (2) gebildet sind, über einen ersten Erhitzer (18), einen ersten Regenerator (19) und einen ersten Kühler (20) verbunden sind, und daß zweite Gasräume (GH2 bzw. GK2), die in dem Kompressionszylinderbauteil (5) auf einer Oberseite (21) des Kompressionskolbens (4) bzw. in dem Expansionszylinderbauteil (3) auf einer Oberseite (22) des Expansionskolbens (2) gebildet sind, über einen zweiten Erhitzer (24), einen zweiten Regenerator (25) und einen zweiten Kühler (26) verbunden sind.
  4. Zwei-Zyklen-Heißgasmotor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß zwischen dem Expansionszylinderbauteil (3) und dem Kompressionszylinderbauteil (5) ein Kanal (8) gebildet ist, wobei in dem Kanal (8) eine Kolbenstange (9; 106) des Expansionskolbens (2) angeordnet ist, die druckdicht durch den Kanal (8) hindurch geführt ist.
  5. Zwei-Zyklen-Heißgasmotor nach Anspruch 4, dadurch gekennzeichnet, daß der Kanal (8) in einem Verbindungsbauteil (7; 105) gebildet ist, welches zumindest einen Teilabschnitt des Expansionszylinderbauteils (3; 102) und zumindest einen Teilabschnitt des Kompressionszylinderbauteils (5; 101) umfaßt.
  6. Zwei-Zyklen-Heißgasmotor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Kolbenstange (9; 106) des Expansionskolbens (2; 104) bewegbar durch eine Bohrung (4a) in dem Kompressionskolben (4; 103) in den Kompressionskolben (4; 103) eingeführt ist.
  7. Zwei-Zyklen-Heißgasmotor nach Anspruch 6, dadurch gekennzeichnet, daß die Kolbenstange (9; 106) des Expansionskolbens (2; 104) bewegbar durch den Kompressionskolben (4; 103) hindurch geführt ist.
  8. Zwei-Zyklen-Heißgasmotor nach Anspruch 7, dadurch gekennzeichnet, daß die Kolbenstange (9; 106) des Expansionskolbens (2; 104) bewegbar durch eine Bohrung (11) in einem Gehäuse des Kompressionszylinderbauteils (5; 101) hindurch geführt ist.
  9. Zwei-Zyklen-Heißgasmotor nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß eine an dem Kompressionskolben (4) angebrachte Kolbenstange (10) einen Durchbruch (10a) aufweist, wobei die Kolbenstange (9) des Facpansionskolbens (2) durch den Durchbruch (10a) hindurch geführt ist.
  10. Zwei-Zyklen-Heißgasmotor nach den Ansprüchen 8 und 9, dadurch gekennzeichnet, daß die an dem Kompressionskolben (4) angebrachte Kolbenstange (10) druckdicht durch die Bohrung (11) im Gehäuse des Kompressionszylinderbauteils (5) hindurch geführt ist.
  11. Zwei-Zyklen-Heißgasmotor nach Anspruch 6, dadurch gekennzeichnet, daß der Kompressionskolben (4; 103) einen Hohlraum (30) aufweist, in welchem ein an der Kolbenstange (9) des Expansionskolbens (2; 104) befestigter Pufferkolben (31) bewegbar angeordnet ist, so daß in dem Hohlraum (30) zwei Pufferräume (P1, P2) gebildet sind.
  12. Zwei-Zyklen-Heißgasmotor nach Anspruch 11, dadurch gekennzeichnet, daß die zwei Pufferräume (P1, P2) in dem Hohlraum (30) so gebildet sind, daß eine Bewegung des Expansionskolbens (2; 104) und des hieran befestigten Pufferkolbens (31) in dem Hohlraum (30) zu einer Gasverdichtung/Gasentspannung eines Arbeitsgases in den zwei Pufferräumen (P1, P2) führt, um eine Bewegung des Kompressionskolbens (4; 103) zu bewirken.
  13. Zwei-Zyklen-Heißgasmotor nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß ein sich über das Kompressionszylinderbauteil (5) hinaus erstreckender Abschnitt (40) der Kolbenstange (9) des Expansionskolbens (2) in einem abgedichteten Innenraum einer Verlängerungshülse (41) aufgenommen ist, wobei die Verlängerungshülse (41) außen an dem Kompressionszylinderbauteil (5) angebracht ist.
  14. Zwei-Zyklen-Heißgasmotor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß Druckschwankungen des Arbeitsgases genutzt werden, um mindestens eine mit dem Arbeitsgas primärseitig im Druckverbund stehende Membran einer Arbeitsmaschine, eines Antriebs oder eine piezoleketrische Oberfläche eines Stromerzeugers in Schwingung zu versetzen.
  15. Zwei-Zyklen-Heißgasmotor nach Anspruch 14, dadurch gekennzeichnet, daß das die Arbeitsmaschine eine doppeltwirkende Membranpumpe (600) ist, deren Membran-Primärseiten (601, 602) mit dem Arbeitsgas hydraulisch verbunden sind und durch deren Druckschwankungen die Membranen (608, 609) in Schwingung versetzt werden.
  16. Zwei-Zyklen-Heißgasmotor nach Anspruch 15, dadurch gekennzeichnet, daß Sekundärseiten der Membranpumpe (600) als Pumpenarbeitsräume ausgeführt sind und die Membran eine Flüssigkeit pumpt, indem bei einem Überdruck mindestens ein Auslaßventil (607) geschlossen und ein Einlaßventil (606) geöffnet wird.
  17. Zwei-Zyklen-Heißgasmotor nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß ein distales Ende (50) der Kolbenstange (9) des Expansionskolbens (2) in dem Hohlraum (30) des Kompressionskolbens (4) aufgenommen ist und daß das Kompressionszylinderbauteil (5) und das Expansionszylinderbauteil (3) in einer Linearführung (52, 53) bewegbar gelagert sind.
  18. Zwei-Zyklen-Heißgasmotor nach Anspruch 6, dadurch gekennzeichnet, daß der Kompressionskolben (103) einen Hohlraum (30) aufweist, wobei in dem Hohlraum (30) an der Kolbenstange (106) des Expansionskolbens (104) ein Magnetkolben mit Magnetmitteln (122) angeordnet ist, die mit weiteren Magnetmitteln (121, 123) wechselwirken, und wobei gegenüberliegende Abschnitte (121b, 122a; 122b, 123a) der Magnetmittel (122) und der weiteren Magnetmittel (121, 123) eine gleichartige magnetische Polung aufweisen.
  19. Zwei-Zyklen-Heißgasmotor nach Anspruch 18, dadurch gekennzeichnet, daß die weiteren Magnetmittel (121, 123) zumindest teilweise im Bereich von Stirnflächen des Kompressionskolbens (103) angeordnet sind.
  20. Zwei-Zyklen-Heißgasmotor nach einem der vorangehenden Ansprüche, gekennzeichnet durch einen Kompakterhitzer (300; 400), welcher einen als ungefügtes Bauteil ausgeführten zylindrischen Grundkörper (301) mit einem Brennraum (311) und einer Wärmeübertragungsfläche für Arbeitsgas umfaßt, wobei die Wärmeübertragungsfläche für Arbeitsgas in einer Oberflächenschicht des zylindrischen Grundkörpers (301) spiralförmig gebildet ist.
  21. Zwei-Zyklen-Heißgasmotor nach Anspruch 20, dadurch gekennzeichnet, daß im Bereich einer Oberfläche des zylindrischen Grundkörpers (301) eine jeweilige Wärmeübertragungsfläche für Verbrennungsluft und Rauchgas spiralförmig gebildet ist.
  22. Zwei-Zyklen-Heißgasmotor nach Anspruch 20 oder 21, dadurch gekennzeichnet, daß die Wärmeübertragungsfläche für Arbeitsgas eine Arbeitsgaspirale für ein erstes Arbeitsgas und mindestens eine von der Arbeitsgasspirale hydraulisch getrennte weitere Arbeitsgasspirale für ein zweites Arbeitsgas umfaßt.
  23. Zwei-Zyklen-Heißgasmotor nach Anspruch 20 bis 22, dadurch gekennzeichnet, daß die Wärmeübertragungsfläche für Arbeitsgas auf einem Außenumfang (308) des zylindrischen Grundkörpers (301) gebildet ist.
  24. Zwei-Zyklen-Heißgasmotor nach einem der Ansprüche 21 bis 23, dadurch gekennzeichnet, daß die Wärmeübertragungsfläche für Verbrennungsluft auf dem Außenumfang (308) des zylindrischen Grundkörpers (301) gebildet ist.
  25. Zwei-Zyklen-Heißgasmotor nach einem der Ansprüche 21 bis 24, dadurch gekennzeichnet, daß die Wärmeübertragungsfläche für Rauchgas auf einem Innenumfang (314) des zylindrischen Grundkörpers (301) gebildet ist.
  26. Zwei-Zyklen-Heißgasmotor nach einem der Ansprüche 20 bis 25, dadurch gekennzeichnet, daß die Wärmeübertragungsfläche für Arbeitsgas in einem Bereich um dem Brennraum (311) herum und die Wärmeübertragungsfläche für Verbrennungsluft in einem Bereich oberhalb des Brennraums (311) des zylindrischen Grundkörpers (301) so angeordnet sind, daß in dem Brennraum (311) erzeugte Wärmeenergie zunächst die Wärmeübertragungsfläche für Arbeitsgas und anschließend die Wanneübertragungsflache für Verbrennungsluft erhitzen kann.
  27. Zwei-Zyklen-Heißgasmotor nach einem der Ansprüche 20 bis 26, dadurch gekennzeichnet, daß der zylindrische Grundkörper (301) mit Hilfe von zwei Grundkörperbauteilen (401; 402) ausgeführt ist, wobei die zwei Grundkörperbauteile (401; 402) mittels eines scheibenförmigen Lochbauteils (403) verbunden sind und das scheibenförmige Lochbauteil (403) einen Verbindungskanal (404) zum Leiten von Verbrennungsluft in den Brennraum (311) sowie einen Rauchgas-Verbindungskanal (405) zum Verbinden von Wärmeübertragungsflächen für Rauchgas in den zwei Grundkörperbauteilen (401; 402) aufweist.
EP02023231A 2001-10-24 2002-10-16 Zwei-Zyklen-Heissgasmotor Expired - Lifetime EP1306539B1 (de)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE10153772 2001-10-24
DE2001153772 DE10153772C1 (de) 2001-10-24 2001-10-24 2-Zyklen-Heissgasmotor mit einem Expansionskolben und einem Kompressionskolben die fluchtend in Reihe angeordnet sind
DE10216190 2002-04-05
DE2002116190 DE10216190C1 (de) 2001-10-24 2002-04-05 2-Zyklen-Heißgasmotor mit magnetischem Antrieb des Kompressionskolbens
DE10240347 2002-08-28
DE2002140347 DE10240347B3 (de) 2001-10-24 2002-08-28 Spiralerhitzer für Heißgasmotoren
DE2002140750 DE10240750C1 (de) 2001-10-24 2002-08-29 Getriebeloser Heißgasmotor
DE10240750 2002-08-29

Publications (3)

Publication Number Publication Date
EP1306539A2 EP1306539A2 (de) 2003-05-02
EP1306539A3 EP1306539A3 (de) 2003-10-22
EP1306539B1 true EP1306539B1 (de) 2006-04-12

Family

ID=27438026

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02023231A Expired - Lifetime EP1306539B1 (de) 2001-10-24 2002-10-16 Zwei-Zyklen-Heissgasmotor

Country Status (6)

Country Link
US (1) US6968688B2 (de)
EP (1) EP1306539B1 (de)
JP (1) JP2003184649A (de)
AT (1) ATE323223T1 (de)
DE (1) DE50206371D1 (de)
HK (1) HK1057389A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2578934C (en) * 2004-08-24 2010-07-06 Infinia Corporation Double acting thermodynamically resonant free-piston multicylinder stirling system and method
GB0526436D0 (en) * 2005-12-23 2006-02-08 Microgen Energy Ltd A stirling machine
US7690199B2 (en) * 2006-01-24 2010-04-06 Altor Limited Lc System and method for electrically-coupled thermal cycle
DE102007053873A1 (de) 2007-11-09 2009-05-14 Enerlyt Technik Gmbh Geteilter Kolbenring für Heißgasmotoren mit einer Vorspannung, die bei Betriebstemperatur verschwindet
GB0803021D0 (en) * 2008-02-19 2008-03-26 Isis Innovation Linear multi-cylinder stirling cycle machine
US20100186405A1 (en) * 2009-01-27 2010-07-29 Regen Power Systems, Llc Heat engine and method of operation
US8096118B2 (en) 2009-01-30 2012-01-17 Williams Jonathan H Engine for utilizing thermal energy to generate electricity
JP5487710B2 (ja) * 2009-05-11 2014-05-07 いすゞ自動車株式会社 スターリングエンジン
DE102009052491A1 (de) 2009-11-11 2011-05-12 Enerlyt Technik Gmbh Heißgasmotor mit Hochtemperatur- Expansionszylindern und Bornitrid-Dispersionsschicht-Laufflächen
US8726857B2 (en) 2010-01-19 2014-05-20 Altor Limited Lc System and method for electrically-coupled heat engine and thermal cycle
CZ303266B6 (cs) * 2010-11-09 2012-07-04 Libiš@Jirí Dvojcinný prehánec s oddeleným teplým a studeným prostorem a tepelný stroj s dvojcinným prehánecem
DE102011103765A1 (de) 2011-06-01 2012-12-06 Enerlyt Technik Gmbh Doppelt wirkender Stirlingmotor mit Faltenbalg
KR101405194B1 (ko) 2012-10-24 2014-06-13 현대자동차 주식회사 차량용 스털링 냉동기
KR102409471B1 (ko) * 2014-12-22 2022-06-16 가부시키가이샤 호리바 에스텍 유체 가열기
FR3041040B1 (fr) * 2015-09-14 2017-11-03 Vianney Rabhi Cylindre detendeur a double effet a support adaptatif
US11248858B2 (en) * 2017-05-25 2022-02-15 National University Corporation Tokyo University Of Agriculture And Technology Heat transfer device and furnace using same

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE31128C (de) * G. A. BUSCHBAUM in Darmstadt, Liebigstr. 25 Neuerung an geschlossenen Heifsluftmaschinen
US1128860A (en) * 1914-05-08 1915-02-16 George W Stahl Caloric engine.
US1356427A (en) * 1919-06-05 1920-10-19 Braunstein Julius Fluid-heater
US2183893A (en) * 1937-01-12 1939-12-19 Sirius Corp Fluid heater
NL69322C (de) * 1948-10-12 1952-01-15
US2657528A (en) * 1948-12-24 1953-11-03 Hartford Nat Bank & Trust Co Hot gas engine enclosing two thermodynamic cycles
NL78623C (de) * 1950-10-09
US2651294A (en) * 1951-08-16 1953-09-08 Horne Robert Jackson Fluid heater
GB761122A (en) * 1951-10-03 1956-11-14 Shell Refining & Marketing Co Improvements in machines operating according to a modified stirling cycle
NL142220B (nl) * 1965-01-20 1974-05-15 Philips Nv Heetgaszuigermachine.
DE2156773C3 (de) * 1971-11-16 1974-09-19 Motoren Werke Mannheim Ag Verfahren zur lastabhängigen Regelung der Leistung eines doppeltwirkenden Heißgasmotors
GB1350055A (en) * 1972-09-26 1974-04-18 United Stirling Ab & Co Hot gas engine power control devices
US3835294A (en) * 1973-04-06 1974-09-10 Binks Mfg Co High pressure electric fluid heater
DE2421398C2 (de) * 1974-05-03 1983-11-24 Audi Nsu Auto Union Ag, 7107 Neckarsulm Wärmekraftmaschine für den Antrieb eines Kraftfahrzeuges
US3994136A (en) * 1975-07-03 1976-11-30 Josam Manufacturing Co. Hot gas engine
US4209061A (en) * 1977-06-02 1980-06-24 Energy Dynamics, Inc. Heat exchanger
US4199945A (en) * 1977-07-27 1980-04-29 Theodor Finkelstein Method and device for balanced compounding of Stirling cycle machines
DE2820526C2 (de) * 1978-05-11 1982-04-22 Schneider, Christian, Dipl.-Ing., 8650 Kulmbach Heißgas-Hubkolbenmotor mit elektromagnetisch angetriebenem Verdränger
JPS6047465B2 (ja) * 1979-11-28 1985-10-22 松下電器産業株式会社 熱ガス機関
JPS57501295A (de) * 1980-07-14 1982-07-22
US4357909A (en) * 1981-02-13 1982-11-09 Takashi Kagoshima Fluid heater with spiral hot gas flow
US4622813A (en) * 1983-11-02 1986-11-18 Mitchell Matthew P Stirling cycle engine and heat pump
US5365888A (en) * 1993-08-02 1994-11-22 Gas Research Institute Fluid heater and method
FR2747155A1 (fr) * 1996-04-09 1997-10-10 Mondesert Louis Xavier Moteur stirling a liaison cinematique pistons-arbre moteur par cames
US5822964A (en) * 1996-12-03 1998-10-20 Kerpays, Jr.; Rudy Hot-gas engine electric heater
DE10082399D2 (de) * 1999-08-11 2001-12-13 Enerlyt Potsdam Gmbh Heißgasmotor mit ineinander laufenden Kolben
DE19938023C2 (de) * 1999-08-11 2000-08-24 Enerlyt Potsdam Gmbh En Umwelt Heißgasmotor mit einem Arbeitskolben, der sich innerhalb eines Verdrängerkolbens bewegt
US6435174B1 (en) * 2000-10-31 2002-08-20 Siout Steam Cleaner Corporation Fluid heater coil configuration and fabrication method

Also Published As

Publication number Publication date
DE50206371D1 (de) 2006-05-24
JP2003184649A (ja) 2003-07-03
EP1306539A3 (de) 2003-10-22
US6968688B2 (en) 2005-11-29
HK1057389A1 (en) 2004-04-02
ATE323223T1 (de) 2006-04-15
EP1306539A2 (de) 2003-05-02
US20030074882A1 (en) 2003-04-24

Similar Documents

Publication Publication Date Title
EP1306539B1 (de) Zwei-Zyklen-Heissgasmotor
DE69732929T2 (de) Einlass- System für eine Stirlingmaschine
EP2173988B1 (de) Freikolbenvorrichtung und verfahren zur steuerung und/oder regelung einer freikolbenvorrichtung
DE102006060147B4 (de) Fluidarbeitsmaschine
DE3709266C2 (de)
DE60224261T2 (de) Antriebseinheit mit linearer hubbewegung auf grundlage eines stirlingmotors und bei dem antriebssystem verwendetes verfahren
EP1398863B1 (de) Freikolbenvorrichtung mit elektrischem Lineartrieb
DE2421398A1 (de) Vorrichtung zur umwandlung von thermischer energie in mechanische energie
DE102008050655B4 (de) Abgasanlage für Kraftfahrzeuge mit integrierter Wärmekraftmaschine
EP1917434A1 (de) 4-zyklen-stirlingmaschine mit 2 doppelkolbeneinheiten
DE112010004335T5 (de) Gamma-Typ Freikolben-Stirlingmaschinen Konfiguration
EP0188742A2 (de) Wärmekraftmaschine
DE10329977B4 (de) 2-Zyklen-Heißgasmotor mit erhöhtem Verdichtungsverhältnis
DE102005016469B4 (de) Freikolbenmotor mit hydrostatischer und elektrischer Leistungsabgabe
DE102006021497A1 (de) Wärmekraftmaschine nach dem Stirling-Prinzip
DE102010018654B4 (de) Zyklisch arbeitende Wärme-Kraftmaschine
DE102008050653A1 (de) Wärmekraftmaschine nach dem Pulsröhrenprinzip
DE3922986A1 (de) Verbrennungsmotor mit lineargenerator
EP0585430B1 (de) Aussenbeheizte, regenerative wärme- und kältemaschine
DE102020213400A1 (de) Kompressor
DE102015101726B4 (de) Stirlingmaschine sowie Anordnung zur Erzeugung von elektrischer Energie
DE10006916B4 (de) Stirlingmaschine in α-Bauweise (Rider)
DE10153772C1 (de) 2-Zyklen-Heissgasmotor mit einem Expansionskolben und einem Kompressionskolben die fluchtend in Reihe angeordnet sind
EP1016781B1 (de) Kalorische Maschine
DE10209858B4 (de) Elektromechanischer Energiewandler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040326

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060412

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060412

REF Corresponds to:

Ref document number: 50206371

Country of ref document: DE

Date of ref document: 20060524

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ENERLYT POTSDAM GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060723

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1057389

Country of ref document: HK

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ENERLYT POTSDAM GMBH

Effective date: 20060705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060912

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070629

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

BERE Be: lapsed

Owner name: ENERLYT POTSDAM G.M.B.H.

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060713

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20071024

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20071024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120412 AND 20120418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141022

Year of fee payment: 13

Ref country code: GB

Payment date: 20141021

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151016

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102