EP1306539B1 - Moteur à gaz chaud à deux temps - Google Patents

Moteur à gaz chaud à deux temps Download PDF

Info

Publication number
EP1306539B1
EP1306539B1 EP02023231A EP02023231A EP1306539B1 EP 1306539 B1 EP1306539 B1 EP 1306539B1 EP 02023231 A EP02023231 A EP 02023231A EP 02023231 A EP02023231 A EP 02023231A EP 1306539 B1 EP1306539 B1 EP 1306539B1
Authority
EP
European Patent Office
Prior art keywords
piston
compression
expansion
gas
gas engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02023231A
Other languages
German (de)
English (en)
Other versions
EP1306539A3 (fr
EP1306539A2 (fr
Inventor
Andreas Gimsa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enerlyt Potsdam GmbH Energie Umwelt Planung und Analytik
Original Assignee
Enerlyt Potsdam GmbH Energie Umwelt Planung und Analytik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2001153772 external-priority patent/DE10153772C1/de
Priority claimed from DE2002116190 external-priority patent/DE10216190C1/de
Priority claimed from DE2002140347 external-priority patent/DE10240347B3/de
Priority claimed from DE2002140750 external-priority patent/DE10240750C1/de
Application filed by Enerlyt Potsdam GmbH Energie Umwelt Planung und Analytik filed Critical Enerlyt Potsdam GmbH Energie Umwelt Planung und Analytik
Publication of EP1306539A2 publication Critical patent/EP1306539A2/fr
Publication of EP1306539A3 publication Critical patent/EP1306539A3/fr
Application granted granted Critical
Publication of EP1306539B1 publication Critical patent/EP1306539B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/50Double acting piston machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/50Double acting piston machines
    • F02G2244/52Double acting piston machines having interconnecting adjacent cylinders constituting a single system, e.g. "Rinia" engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/50Double acting piston machines
    • F02G2244/54Double acting piston machines having two-cylinder twin systems, with compression in one cylinder and expansion in the other cylinder for each of the twin systems, e.g. "Finkelstein" engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2275/00Controls
    • F02G2275/20Controls for preventing piston over stroke

Definitions

  • the invention is in the field of hot gas engines.
  • Hot-gas engines based on the Stirling principle are among the oldest heat engines. Basically, with the help of hot-gas engines according to the Stirling principle or the related principles, a higher efficiency than with steam engines, diesel or gasoline engines can be achieved. With the help of hot gas engines heat is supplied to the outside of a working gas heater without combustion in the cylinder must be done. The potential use of renewable fuels and continuous combustion ensure environmentally friendly energy efficiency in conjunction with their high efficiency.
  • Hot-gas engines based on the Stirling principle are known as alpha, beta and gamma-type engines.
  • alpha type the total working gas volume is affected by the movement of an expansion piston and a compression piston.
  • beta and gamma type a displacer moves in a space of constant volume and only the working piston affects the total gas volume.
  • a hot gas engine according to the sterling principle of the alpha-type is known.
  • the known engine is a 1-cycle engine in which an expansion piston and a compression piston are arranged along a common center axis.
  • Such a feature is also provided in a further 1-cycle hot gas engine, which is disclosed in the document DE 44 29 602 A1.
  • the object of the invention is to provide an improved two-cycle alpha-type hot gas engine with rectified gas cycles and 180 degrees phase offset, which has a simple structure and can be used flexibly for a permanent operation in various fields of application.
  • This object is achieved in a two-cycle hot gas engine with an expansion piston in an expansion cylinder component and a compression piston in a compression cylinder component according to the invention in that the expansion piston and the compression piston along a common center axis are arranged.
  • a significant advantage achieved with the invention over the prior art is that a motor structure has been provided for a two-cycle, alpha-type hot gas engine which, despite constructive simplicity, has a high power density provides.
  • the proposed engine has constructive parallels to the beta type and combines these with the benefits of an alpha-type double-acting engine.
  • the successive pistons ensure a slim gearbox and thus crankcase.
  • For the crosshead or rail slide of both connecting rods can use a common rail.
  • piston rod feedthroughs can be realized by a cylinder wall on the side of the cool compression cylinder part and thus are easy to seal.
  • phase offset between expansion piston and compression piston can be set arbitrarily.
  • the expansion volume can be varied with respect to the compression volume.
  • the symmetry ratios of the expansion and compression pistons can be used excellently for free-piston arrangements. In this way, pressure-resistant and completely pressure-tight motors can be built.
  • An expedient development of the invention provides that the expansion piston and the compression piston are arranged to operate in alignment in operation one behind the other. As a result, both pistons and their cylinder parts can be made the same diameter.
  • first gas spaces which are formed in the compression cylinder component on a lower side of the compression piston and in the expansion cylinder component on a lower side of the expansion piston, via a first heater, a first regenerator and a first radiator, and that second gas spaces formed in the compression cylinder member on an upper surface of the compression piston and in the expansion cylinder component on an upper surface of the expansion piston are connected via a second heater, a second regenerator and a second radiator.
  • the working gas connection line from the heater to the expansion cylinder component may consist, for the thermal separation of both components for each gas cycle, in part of a dimensionally defined straight tube which operates as a pulse tube
  • a compact design of the hot gas engine is supported in an advantageous embodiment of the invention in that between the expansion cylinder component and the compression cylinder component, a channel is formed, wherein in the channel, a piston rod of the expansion piston is arranged, which is pressure-tight manner through the channel. With the help of the channel, the hydraulic and, if necessary, thermal separation of the compression and the expansion cylinder component takes place.
  • a pressure-tight mounting of the piston rod of the expansion piston in the channel is facilitated in an advantageous embodiment of the invention in that the channel is formed in a connecting member which comprises at least a portion of the expansion cylinder component and at least a portion of the compression cylinder component. In this way, the channel can be created in a one-piece connector component.
  • an embodiment of the invention may advantageously provide that the piston rod of the expansion piston is movably inserted through a bore in the compression piston. In this way, a piston force propagation of the expansion piston can be realized to a transmission.
  • a movement of the compression piston along the piston rod of the expansion piston is made possible in an expedient development of the invention in that the. Piston rod of the expansion piston is movably guided through the compression piston.
  • the piston rod of the expansion piston is movably guided through an opening in a housing of the compression cylinder component.
  • the piston rod of the expansion piston To lead in the region of the compression cylinder component to the outside, for example, for coupling a connecting rod.
  • a space-saving design of the hot gas engine is made possible in a further development of the invention in that a piston attached to the compression piston has an opening, wherein the piston rod of the expansion piston is guided through the opening.
  • a common lead out of the piston rod of the compression piston and the piston rod of the expansion piston from the compression cylinder component is advantageously made possible in one embodiment of the invention in that the attached to the compression piston piston rod is pressure-tightly guided through the opening in the housing of the compression cylinder component.
  • a direct coupling of the movement of the compression piston to that of the expansion piston and the piston rod is made possible in a preferred embodiment of the invention in that the compression piston has a cavity in which a fixed to the piston rod of the expansion piston buffer piston is movably arranged so that in the cavity two buffer spaces are formed.
  • a transmission for transmitting power between the piston rod of the expansion piston and the compression piston can be saved in a development of the invention in that the two buffer spaces are formed in the cavity so that movement of the expansion piston and the attached thereto buffer piston in the cavity to a gas compression / Gas relaxation in the two buffer spaces leads to effect a movement of the compression piston.
  • a portion of the buffer space decreases, this creates an overpressure that pushes the compression piston.
  • the other portion of the buffer space increases simultaneously, so that there is a negative pressure, which pulls the compression piston.
  • a movement of the compression piston always occurs when the force resulting from the pressure difference between the two buffer space sections is greater than the required compression force.
  • a pressure-tight leading out the piston rod of the expansion piston from the compression cylinder component is facilitated in an expedient development of the invention in that a section extending beyond the compression cylinder component the piston rod of the expansion piston is received in a sealed interior of an extension sleeve, wherein the extension sleeve is attached to the outside of the compression cylinder component.
  • the extension sleeve can be sealed to the cylinder component by means of simple means.
  • a magnetic coupling can be achieved with an outer magnetic sleeve surrounding the extension sleeve or a linear generator with an outer stationary coil former surrounding the extension sleeve.
  • a distal end of the piston rod of the expansion piston is received in the cavity of the compression piston and that the expansion cylinder member and the compression cylinder member are movably mounted in a linear guide.
  • the hollow compression piston thus has only a pressure-tight piston rod opening on the side facing the expansion piston.
  • the cylinder consisting of expansion and compression cylinder component, can be movably mounted in a linear guide. With the movement of the expansion piston, the cylinder comes into resonance and can perform work to the outside with complete pressure tightness. In this embodiment, the cylinder also moves heaters, regenerators and coolers, which can be used for improved heat transfer in the heaters and coolers.
  • the compression piston has a cavity and that the piston rod of the expansion piston is formed through the cavity, wherein in the cavity on the piston rod of the expansion piston, a magnetic piston is arranged with magnetic means which interact with other magnetic means , and opposite portions of the magnetic means and the further magnetic means have a similar magnetic polarity.
  • a magnetic piston is arranged with magnetic means which interact with other magnetic means , and opposite portions of the magnetic means and the further magnetic means have a similar magnetic polarity.
  • the necessary phase offset between the expansion piston and compression piston can be realized simpler than in the above embodiment with buffer piston in the compression piston, as only at a very small distance between opposite portions of the magnetic means and the other magnetic means a repulsive force is so great that the Movement of the compression piston occurs.
  • the necessary compression pressures may be adjusted by a suitable selection of the magnetic means and the other magnetic means.
  • a compact design of the hot gas engine is supported by the fact that the further magnetic means are arranged at least partially in the region of end faces of the compression piston.
  • a compact heater which comprises a running as unfinished component cylindrical body with a combustion chamber and a heat transfer surface for working gas, wherein the heat transfer surface for working gas in a surface layer of the cylindrical base body is formed spirally.
  • the spiral surface arrangement can create space-saving and streamlined heat transfer conditions.
  • the spiral passages can be closed by sleeves shrunk into and onto the cylindrical base body, to which the gas connecting pieces are fastened.
  • An inner sleeve, which simultaneously forms the combustion chamber, can be closed on one side and leaves below a defined Spiralgang Scheme the flue gas spiral free to form a turning chamber for the flue gas.
  • a respective heat transfer surface for combustion air and flue gas is formed spirally.
  • the use of the compact heater for two working gases is made possible in a development of the invention in that the heat transfer surface for working gas comprises a working gas spiral for a first working gas and at least one of the working gas spiral hydraulically separate further working gas spiral for a second working gas.
  • the heat transfer surface for working gas comprises a working gas spiral for a first working gas and at least one of the working gas spiral hydraulically separate further working gas spiral for a second working gas.
  • the production of the compact heater is facilitated a further development of the invention in that the heat transfer surface for working gas is formed on an outer circumference of the cylindrical body.
  • the heat transfer surface is formed for combustion air on the outer circumference of the cylindrical body.
  • the heat transfer surface for working gas in a region around the combustion chamber and the heat transfer surface for combustion air in a region above the combustion chamber of the cylindrical body are arranged so that in the combustion chamber generated heat energy initially the heat transfer surface for Working gas and then heat the heat transfer surface for combustion air.
  • the heat energy generated by means of a fuel in the combustion chamber is used efficiently in the operation of the hot gas engine.
  • a preferred embodiment of the invention provides that the cylindrical base body is designed with the aid of two basic body components, wherein the two basic body components are connected by means of a disc-shaped perforated member and the disc-shaped perforated member has a connecting channel for guiding combustion air into the combustion chamber and a flue gas connecting channel for connecting of heat transfer surfaces for flue gas in the two main body components.
  • Figure 1 shows a schematic representation of a two-cycle HeiBgasmotors with a cylinder housing 1.
  • a cylinder housing 1 In the cylinder housing 1, an expansion piston 2 in an expansion cylinder component 3 and a compression piston 4 in a Kompressionsionszylinderbauteil 5 arranged.
  • the expansion piston 2 and the compression piston 4 are arranged one behind the other along a common center line 6.
  • the expansion cylinder component 3 and the compression cylinder component 5 are connected to one another via a connecting component 7, in which a channel 8 is formed.
  • a piston rod 9 of the expansion piston 2 is guided pressure-tight.
  • the piston rod 9 of the expansion piston 2 extends through an opening 4a in the compression piston 4 and through the compression piston 4 and a piston rod 10 of the compression piston 4 therethrough.
  • the piston rod 10 of the compression piston 4 is guided through an opening 11 in the Kompressionsionszylinderbauteil 5 through to the outside.
  • the passage of the piston rod 10 of the compression piston 4 and the piston rod 9 of the expansion piston 2 mounted thereon out of the compression cylinder component 5 is pressure-tight.
  • the piston rod 9 of the expansion piston 2 is guided through an opening 10 a in the piston rod 10.
  • To the piston rod 9 of the expansion piston 2 and the piston rod 10 of the compression piston 4 are each a connecting rod 12, 13 is coupled, so that the piston rods 9, 10 are connected to a crankshaft 14.
  • first gas spaces GH1 and GK1 are formed on an underside 15 of the compression piston 4 and on an underside 16 of the expansion piston 2, first gas spaces GH1 and GK1 are formed.
  • the first gas chambers GH1, GK1 are connected via a first connecting channel 17.
  • a first heater 18, a first regenerator 19 and a first cooler 20 are arranged in the connecting channel 17.
  • second gas spaces GK2 and GH2 are created, which communicate via a second connecting channel 23.
  • a second heater 24, a second regenerator 25 and a second cooler 26 are arranged.
  • the compression cylinder component 5 and the expansion cylinder component 3 are thermally separated. This thermal separation makes it possible to realize the removal of the piston rods 9 and 10, respectively, on the cold side of the hot gas engine in the area of the compression cylinder component 5 Sealing problems, as they often occur in the art, significantly alleviates.
  • the expansion cylinder member 3 and the expansion piston 2 may be made of a high-temperature material. In this embodiment can be by means of a wall 27 of the expansion cylinder component 3 formed heat pipe and gas channels (not shown in Figure 1) the gas spaces GH1, GH2 equally heat isothermally.
  • the compression cylinder component 5 may for example be made of Duranglas.
  • the compression piston 4 can be conveniently made of graphite.
  • FIG. 2 shows a schematic representation of a two-cycle hot gas engine, in which the reference symbols used in FIG. 1 are used for the same features.
  • the compression piston 4 has a cavity 30.
  • a buffer piston 31 is arranged, which is formed on the piston rod 9 of the expansion piston 2.
  • buffer spaces P1 and P2 are created in the cavity.
  • the working gas which is located in the buffer spaces P1, P2 is compressed / relaxed, which leads to the initiation of an upward and a downward movement of the compression piston 4.
  • the gas chambers GH1, GH2 advance in a defined manner ahead of the gas spaces GK1, GK2.
  • magnets 32a-32d By means of magnets 32a-32d, a striking of the compression piston 4 on the housing 33 of the compression cylinder component 5 is prevented.
  • the magnets 32a and 32b and 32c and 32d each have an opposite magnetic polarity.
  • a transmission for coupling the piston rod 9 of the expansion piston 2 to the compression piston 4 can be dispensed with in the embodiment shown in FIG.
  • the coupling is created by means of the buffer piston 31 and the resulting buffer spaces P1, P2.
  • the piston rod 9 of the expansion piston 2 is coupled via a crosshead 34 to the connecting rod 13.
  • FIG. 3 shows the two-cycle hot gas engine according to FIG. 2, but with an end 40 of the piston rod 9 of the expansion piston 2 extending beyond the compression cylinder component 5 being accommodated in an extension sleeve 41.
  • the extension sleeve 41 is pressure-tightly mounted on the compression cylinder component 5.
  • the piston rod 9 of the expansion piston 2 is coupled to an outer guide piston 43, which slides in a cylinder 44 of the guide piston 43.
  • the guide piston 43 in turn communicates with the connecting rod 13.
  • the guide piston 43 may be lubricated together with its cylinder 44 and be performed similarly to a gasoline engine.
  • Figure 4 shows another two-cycle hot gas engine, wherein for like features, the reference numerals used in Figures 1 to 3 are used.
  • the embodiment of Figure 4 ends a distal end 50 of the piston rod 9 of the expansion piston 2 on the buffer piston 31.
  • the piston rod 9 of the expansion piston 2 is not leading out. In this way, the cylinder housing 1 is completely closed.
  • an extension 51 is mounted, which is movably mounted in a part 52 of a linear guide.
  • the extension 51 is connected via the connecting rod 13 with the crankshaft 14.
  • Another part 53 of the linear guide is provided in the region of the connecting component 7.
  • the Linearflüirung provides for a rectilinear movement of the cylinder housing 1. Together with the cylinder housing 1, the first radiator 18, the first regenerator 19, the first heater 20, the second radiator 24, the second regenerator 25 and the second heater move 26.
  • a momentum transfer to initiate the movement of the compression piston 4 as has been described in connection with the embodiments of Figures 2 and 3, due to the gas compression in the buffer spaces P1, P2.
  • Figure 5 shows a schematic representation of another embodiment of a two-cycle hot gas engine with a cylinder housing 100, a compression cylinder member 101 and an expansion cylinder member 102.
  • a compression piston 103 is arranged in the compression cylinder member 101.
  • an expansion piston 104 is supported in the expansion cylinder member 102.
  • the compression cylinder component 101 and the expansion cylinder component 102 are connected via a connecting component 105, in which a piston rod 106 of the expansion piston 104 is mounted in a pressure-tight manner.
  • a seal 107 is provided for sealing.
  • first and second gas spaces GH1, GK1 and GH2, GK2 are formed on both sides of the compression piston 103 and the expansion piston 104.
  • the first and second gas chambers GH1, GH2, GK1, GK2 each have connections 108, 109, 110 and 111, respectively. Between the connections 108-111, heaters, regenerators and coolers are shown in FIGS. 1 to 4 (in FIG. 5) not shown) coupled.
  • the expansion piston 104 is held on the piston rod 106 by means of a piston mounting nut 112. Between a piston clamping plate 113 and the piston fixing nut 112, a tension spring 114 is mounted. A further piston clamping plate 115 is fastened to the piston rod 106 by means of a fastening pin 116.
  • a magnetic drive of the compression piston 103 is provided.
  • the magnetic drive comprises a plurality of magnetic means 121, 122, 123.
  • the plurality of magnetic means 121-123 each have disc-shaped pole plates 121a, 121b, 122a, 122b, 123a, 123b.
  • Opposed pole plates, such as the pole plates 122b and 123a have the same magnetic polarity so that repulsive forces act as the opposing pole plates move toward each other. The repulsive forces develop a large force usually, however, only at actual approach of the opposite pole plates.
  • the magnets 120-124 can be carried out by means of magnetic drums with annularly arranged bar magnets.
  • a seal 107, 126, 127, 128 is arranged around the piston rod 106 in the case of the magnets 120, 121, 123 and 124 in order to drive the piston rod 106 in a pressure-tight manner through the magnets 120, 121, 123, 124. In this way, the seals 107, 126-128 delimit the two cycles from each other.
  • the magnet 122 is fixed to the piston rod 106.
  • the seals 107, 126-128 are made of Teflon, for example.
  • the piston rod 106 of the expansion piston 104 is made of a non-magnetic and electrically poorly conductive material, such as V4A steel.
  • the cylinder component is designed in several parts and is held together by means of screw 129, 130, 131, 132.
  • a stroke S 1 of the expansion piston 103 is indicated schematically.
  • adjustment can be made such that the stroke S1 of the expansion piston 103 is greater than, equal to or smaller than a stroke S2 of the compression piston 104.
  • the compression ratio of the engine and the discontinuous piston movement of the Kompressionsionskolbens 103 can be influenced.
  • FIG. 6 shows a schematic representation of a two-cycle hot gas engine 200 with a compression cylinder component 201 and an expansion cylinder component 202.
  • a radiator 203 has a central axis 204, which is arranged substantially parallel to the central axis 205 of a further radiator 206.
  • the central axis 204 of the radiator 203 and the center axis 205 of the further radiator 206 are substantially perpendicular to a central axis 207 of the compression cylinder member 201 and the expansion cylinder member 202.
  • a central axis 208 of a regenerator 209 is substantially parallel to a central axis 210 of another regenerator 211 and Central axis 207 of the compression cylinder component 201.
  • two consecutive heating coils 212 and 213 are further shown.
  • the two heater coils 212, 213 may be implemented as a single tube or as a cylindrical split tube heater. This makes it possible, with a burner, which is arranged within the two heating coils 212, 213 located one behind the other, to heat the gas spaces of both cycles of the engine. In this way, an otherwise necessary second burner is saved.
  • Figure 7 shows a compact heater 300 which may be used in conjunction with any hot gas engines, which means that the compact heater 300 is not only advantageous in connection with the two-cycle hot gas engines described in connection with Figures 1-6 ,
  • the use for beta and gamma motors is advantageous if the spiral connections of the motor geometry can be adapted.
  • the compact heater 300 has a cylindrical sleeve 500, to which a combustion air connection 302, a first working gas port 303, a second working gas port 304 and a first working gas outlet 305 are formed.
  • a second working gas outlet is located on a side facing away from the viewer of Figure 7 back of the compact heater 300 and is therefore not seen in Figure 7.
  • a burner 307 is connected.
  • FIG. 8 shows the compact heater 300 according to FIG. 7 in section along a line AA 'in FIG. 7.
  • a heat transfer surface for combustion air 309 in the form of a channel is spirally formed on an outer circumference 308 of a cylindrical basic body 301.
  • the spiral heat transfer surface for combustion air 309 communicates with the combustion air port 302.
  • the combustion air passes through the combustion air port 302 in the spiral heat transfer surface for combustion air 309 and via a connecting pipe 310 in a combustion chamber 311, where by means of the burner 307, a fuel is burned to produce combustion heat energy. It may be provided to connect a fan to the combustion air inlet 302 to introduce the combustion air at a predetermined pressure.
  • flue gas or exhaust gas When burning in the combustion chamber 311, flue gas or exhaust gas is formed, which is transferred at the lower end of the combustion chamber 311 by means of a turning chamber plate 312 in a spiral heat transfer surface for flue gas 313, which is formed along a channel and on an inner circumference 314 of the cylindrical body 301 extends spirally.
  • the flue gas heats first working gas in heat transfer surfaces for working gas 316, 317, which are also formed on the outer periphery 308 of the cylindrical body 301.
  • the flue gas On its further way along the heat transfer surface for flue gas 313, the flue gas then heats heat transfer surface for combustion air 309.
  • FIG. 9 shows the compact heater 300 according to FIG. 7 in plan view.
  • FIGS. 10, 11 and 12 show a further compact heater 400, the same reference numerals being used for the same features as in connection with FIGS. 7, 8 and 9.
  • the cylindrical main body 301 is formed in the embodiment according to the figures 10 to 12 of two basic body components 401 and 402, which are hidden in Figure 10.
  • the two basic body components 401 and 402 are connected to one another by means of a perforated component 403.
  • a combustion air connecting passage 404 is provided in the perforated component 403, through which combustion air can pass from the spiral heat transfer surface for combustion air 309 into the combustion chamber 311.
  • the combustion air connection channel 404 assumes the function of the connection channel 310 in FIG. 8.
  • two inner sleeves 510, 511 are arranged on the inner circumference 314 of the basic body components 401, 402, two inner sleeves 510, 511 are arranged.
  • FIG. 12 shows the further compact heater 400 according to FIG. 10 in plan view.
  • the helical design of the heat transfer surfaces in the compact heater 300 and the other compact heater 400 is suitable for a design as a single-pipe heater. From today's perspective, a production of the compact heater 300 and the further compact heater 400 made of a high-temperature metal is an advantageous solution, if the conditions of high temperature resistance, a Tinder strength and a sufficient sealability of the connections are guaranteed.
  • the cylindrical body 301 may be formed by means of a mold, which then also has the spiral heat transfer surfaces.
  • suitable wall thicknesses and draft angles of the spiral channels for forming the heat transfer surfaces have to be considered. If an operating temperature does not exceed 600 ° C, a production of the insert material SiMo-alloyed cast iron with ductile iron is an expedient solution.
  • Another possibility is to form the cylindrical basic body 301 by turning and / or milling the spiral channels on the inner and outer perimeters 314, 308.
  • a cylindrical high-temperature hollow steel can be used.
  • An outer sleeve 500 is shrunk and seals the spiral heat transfer surfaces on the outer periphery 308.
  • the inner sleeve 510 is shrunk.
  • the sleeve 500 is shrunk with the ports 302-305.
  • the use of shrinkage is possible because in the compact heater 300 and the further compact heater 400, the heat of the burner 307 is always supplied from the inside.
  • the tightness is then ensured, since first the inner sleeve 510, then the cylindrical base body 301 and finally the outer sleeve 500 expand. Cooling takes place from outside to inside and is therefore also uncritical with regard to the tightness of the spiral-shaped heat transfer surfaces.
  • the compact heater 300 and the further compact heater 400 allow a compact design of heaters that can be used for any hot gas engines. In addition, a cost-effective production is possible in the described embodiment. In addition, favorable sauceüberdragungstechnik are formed, with only small pressure losses occur.
  • the embodiment of the heat transfer surface for working gas described with reference to FIGS. 7 to 12 enables the formation of at least two working gas chambers which are heated by a burner. The use of high temperature casting is possible. If the compact heater 300 and the further compact heater 400 are used in the upright arrangement shown in Figures 7, 8 and 10, 11, a direct forwarding of the flue gas to the chimney is made possible.
  • FIG. 13 shows a schematic representation of a two-cycle hot gas engine 500 connected to a work machine 600, wherein the same reference numbers are used for the same features.
  • Two membrane primary sides 601, 602 are hydraulically connected to the working gas of the working machine 600 via two gas lines 610, 611 and are set in vibration by the pressure fluctuation thereof.
  • Two membrane secondary sides 603, 604 are formed as a pump working space.
  • the membrane pumps a liquid 605 by opening at least one outlet valve 607 at positive pressure and closing at least one inlet valve 606 and closing at least one outlet valve 607 under vacuum and opening an inlet valve 606.
  • the two-cycle hot gas engine 500 is a motor that vibrates with its two working gas chambers two hydraulically isolated membranes 608, 609 or deformable surfaces with 180 ° phase offset. In this way, the work yield can be doubled and a pulse smoothing can be achieved.
  • the working gas pressure fluctuations of the engine can be used without mechanical force propagation in order to set at least one with the working gas on the primary side in the pressure composite diaphragm of a working machine of a drive or the piezoelectric surface of a power generator in vibration.
  • the working machine 600 is a double-acting diaphragm pump, the membrane primary sides are hydraulically connected to the engine working gas and the membranes are vibrated by the pressure fluctuations.
  • the deformable surface of a piezoelectric transducer is hydraulically connected to the engine working gas and is cyclically deformed by the pressure fluctuation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pulleys (AREA)
  • Valve Device For Special Equipments (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Reciprocating Pumps (AREA)

Claims (27)

  1. Moteur à gaz chaud à deux temps fonctionnant selon le principe de Stirling du type alpha, les deux temps travaillant dans le même sens avec un décalage de phase de 180°, avec un piston d'expansion (2 ; 104) dans un composant de cylindre d'expansion (3 ; 102) et un piston de compression (4 ; 103) dans un composant de cylindre de compression (5 ; 101), caractérisé en ce que le piston d'expansion (2 ; 104) et le piston de compression (4 ; 103) sont disposés le long d'un axe central (6) commun.
  2. Moteur à gaz chaud à deux temps selon la revendication 1, caractérisé en ce que le piston d'expansion (2 ; 104) et le piston de compression (4 ; 103) sont disposés afin de travailler l'un derrière l'autre en alignement lors de l'exploitation.
  3. Moteur à gaz chaud à deux temps selon la revendication 1 ou 2, caractérisé en ce que des premiers espaces de gaz (GH1 et GK1), qui sont formés dans le composant de cylindre de compression (5) sur un côté inférieur (15) du piston de compression (4) ou dans le composant de cylindre d'expansion (3) sur un côté inférieur (16) du piston d'expansion (2), sont reliés au moyen d'un premier réchauffeur (18), d'un premier régénérateur (19) et d'un premier refroidisseur (20), et en ce que des seconds espaces de gaz (GH2 et GK2), qui sont formés dans le composant de cylindre de compression (5) sur un côté supérieur (21) du piston de compression (4) ou dans le composant de cylindre d'expansion (3) sur un côté supérieur (22) du piston d'expansion (2), sont reliés au moyen d'un second réchauffeur (24), d'un second régénérateur (25) et d'un second refroidisseur (26).
  4. Moteur à gaz chaud à deux temps selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un canal (8) est formé entre le composant de cylindre d'expansion (3) et le composant de cylindre de compression (5), une tige de piston (9 ; 106) du piston d'expansion (2) étant disposée dans le canal (8), laquelle tige est guidée de façon étanche à la pression à travers le canal (8).
  5. Moteur à gaz chaud à deux temps selon la revendication 4, caractérisé en ce que le canal (8) est formé dans un composant de liaison (7 ; 105), qui comprend au moins une section partielle du composant de cylindre d'expansion (3 ; 102) et au moins une section partielle du composant de cylindre de compression (5 ; 101).
  6. Moteur à gaz chaud à deux temps selon l'une quelconque des revendications précédentes, caractérisé en ce que la tige de piston (9 ; 106) du piston d'expansion (2 ; 104) est introduite de façon mobile à travers un perçage (4a) dans le piston de compression (4 ; 103) dans le piston de compression (4 ; 103).
  7. Moteur à gaz chaud à deux temps selon la revendication 6, caractérisé en ce que la tige de piston (9; 106) du piston d'expansion (2; 104) est guidée de façon mobile à travers le piston de compression (4 ; 103).
  8. Moteur à gaz chaud à deux temps selon la revendication 7, caractérisé en ce que la tige de piston (9 ; 106) du piston d'expansion (2 ; 104) est guidée de façon mobile à travers un alésage (11) dans un boîtier du composant de cylindre de compression (5 ; 101).
  9. Moteur à gaz chaud à deux temps selon la revendication 7 ou 8, caractérisé en ce qu'une tige de piston (10) placée sur le piston de compression (4) présente un passage (10a), la tige de piston (9) du piston d'expansion (2) étant guidée à travers le passage (10a).
  10. Moteur à gaz chaud à deux temps selon les revendications 8 et 9, caractérisé en ce que la tige de piston (10) placée sur le piston de compression (4) est guidée de façon étanche à la pression à travers l'alésage (11) dans le boîtier du composant de cylindre de compression (5).
  11. Moteur à gaz chaud à deux temps selon la revendication 6, caractérisé en ce que le piston de compression (4 ; 103) présente une cavité (30) dans laquelle un piston tampon (31) fixé sur la tige de piston (9) du piston d'expansion (2 ; 104) est disposé de façon mobile, de sorte que deux espaces tampons (P1, P2) sont formés dans la cavité (30).
  12. Moteur à gaz chaud à deux temps selon la revendication 11, caractérisé en ce que les deux espaces tampons (P1, P2) sont formés dans la cavité (30) de telle sorte qu'un déplacement du piston d'expansion (2 ; 104) et du piston tampon (31) fixé dessus aboutit dans la cavité (30) à une compression/détente d'un gaz de travail dans les deux espaces tampons (P1, P2), afin d'entraîner un déplacement du piston de compression (4 ; 103) .
  13. Moteur à gaz chaud à deux temps selon la revendication 11 ou 12, caractérisé en ce qu'une section (40), s'étendant au-delà du composant de cylindre de compression (5), de la tige de piston (9) du piston d'expansion (2) est réceptionnée dans un espace intérieur rendu étanche d'une douille de prolongement (41), la douille de prolongement (41) étant placée à l'extérieur sur le composant de cylindre de compression (5).
  14. Moteur à gaz chaud à deux temps selon l'une quelconque des revendications précédentes, caractérisé en ce que les variations de pression du gaz de travail sont utilisées pour mettre en vibration au moins une membrane, en liaison de pression avec le gaz de travail côté primaire, d'une machine de travail, d'un entraînement ou une surface piézo-électrique d'un générateur de courant.
  15. Moteur à gaz chaud à deux temps selon la revendication 14, caractérisé en ce que la machine de travail est une pompe à diaphragme (600) à effet double, dont les cotés primaires de diaphragme (601, 602) sont reliés de façon hydraulique au gaz de travail et par les vibrations de pression de laquelle les diaphragmes (608, 609) sont mis en vibration.
  16. Moteur à gaz chaud à deux temps selon la revendication 15, caractérisé en ce que des côtés secondaires de la pompe à diaphragme (600) sont configurés comme des espaces de travail de pompe et le diaphragme pompe un liquide du fait qu'au moins une soupape d'échappement (607) est fermée et une soupape d'admission (606) est ouverte dans le cas d'une surpression.
  17. Moteur à gaz chaud à deux temps selon la revendication 11 ou 12, caractérisé en ce qu'une extrémité (50) distale de la tige de piston (9) du piston d'expansion (2) est réceptionnée dans la cavité (30) du piston de compression (4) et le composant de cylindre de compression (5) et le composant de cylindre d'expansion (3) sont logés de façon mobile dans un guide inerte (52, 53).
  18. Moteur à gaz chaud à deux temps selon la revendication 6, caractérisé en ce que le piston de compression (103) présente une cavité (30), un piston à aimant étant disposé avec des moyens magnétiques (122) dans la cavité (30) sur la tige de piston (106) du piston d'expansion (104), lesquels moyens interagissent avec d'autres moyens magnétiques (121, 123), et des parties (121b, 122a ; 122b, 123a) se faisant face des moyens magnétiques (122) et des autres moyens magnétiques (121, 123) présentant une polarisation magnétique similaire.
  19. Moteur à gaz chaud à deux temps selon la revendication 18, caractérisé en ce que les autres moyens magnétiques (121, 123) sont disposés au moins partiellement dans la zone de surfaces frontales du piston de compression (103).
  20. Moteur à gaz chaud à deux temps selon l'une quelconque des revendications précédentes, caractérisé par un réchauffeur compact (300 ; 400) qui comprend un corps de base (301) cylindrique réalisé sous la forme d'un composant non assemblé avec un espace de combustion (311) et une surface de transfert de chaleur pour le gaz de travail, la surface de transfert de chaleur pour le gaz de travail étant formée en forme de spirale dans une couche de surface du corps de base (301) cylindrique.
  21. Moteur à gaz chaud à deux temps selon la revendication 20, caractérisé en ce qu'une surface de transfert de chaleur respective pour l'air de combustion et le gaz de fumée est formée en forme de spirale dans la zone d'une surface du corps de base (301) cylindrique.
  22. Moteur à gaz chaud à deux temps selon la revendication 20 ou 21, caractérisé en ce que la surface de transfert de chaleur pour un gaz de travail comprend une spirale de gaz de travail pour un premier gaz de travail et au moins une autre spirale de gaz de travail séparée au plan hydraulique de la spirale de gaz de travail pour un second gaz de travail.
  23. Moteur à gaz chaud à deux temps selon la revendication 20 ou 22, caractérisé en ce que la surface de transfert de chaleur pour le gaz de travail est formée sur un pourtour extérieur (308) du corps de base (301) cylindrique.
  24. Moteur à gaz chaud à deux temps selon l'une quelconque des revendications 21 à 23, caractérisé en ce que la surface de transfert de chaleur pour l'air de combustion est formée sur le pourtour extérieur (308) du corps de base (301) cylindrique.
  25. Moteur à gaz chaud à deux temps selon l'une quelconque des revendications 21 à 24, caractérisé en ce que la surface de transfert de chaleur pour le gaz de fumée est formée sur un pourtour intérieur (314) du corps de base cylindrique (301).
  26. Moteur à gaz chaud à deux temps selon l'une quelconque des revendications 20 à 25, caractérisé en ce que la surface de transfert de chaleur pour le gaz de travail est disposée dans une zone autour de l'espace de combustion (311) et la surface de transfert de chaleur pour l'air de combustion est disposée dans une zone au-dessus de l'espace de combustion (311) du corps de base (301) cylindrique, de telle sorte que l'énergie thermique générée dans l'espace de combustion (311) peut réchauffer d'abord la surface de transfert de chaleur pour le gaz de travail et ensuite la surface de transfert de chaleur pour l'air de combustion.
  27. Moteur à gaz chaud à deux temps selon l'une quelconque des revendications 20 à 26, caractérisé en ce que le corps de base (301) cylindrique est réalisé à l'aide de deux composants du corps de base (401, 402), les deux composants du corps de base (401, 402) étant reliés au moyen d'un composant à trou (403) en forme de disque et le composant à trou (403) en forme de disque présente un canal de liaison (404) pour l'acheminement de l'air de combustion dans l'espace de combustion (311) et un canal de liaison de gaz de fumée (405) pour la liaison des surfaces de transfert de chaleur pour le gaz de fumée dans les deux composants du corps de base (401 ; 402).
EP02023231A 2001-10-24 2002-10-16 Moteur à gaz chaud à deux temps Expired - Lifetime EP1306539B1 (fr)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE10153772 2001-10-24
DE2001153772 DE10153772C1 (de) 2001-10-24 2001-10-24 2-Zyklen-Heissgasmotor mit einem Expansionskolben und einem Kompressionskolben die fluchtend in Reihe angeordnet sind
DE10216190 2002-04-05
DE2002116190 DE10216190C1 (de) 2001-10-24 2002-04-05 2-Zyklen-Heißgasmotor mit magnetischem Antrieb des Kompressionskolbens
DE10240347 2002-08-28
DE2002140347 DE10240347B3 (de) 2001-10-24 2002-08-28 Spiralerhitzer für Heißgasmotoren
DE10240750 2002-08-29
DE2002140750 DE10240750C1 (de) 2001-10-24 2002-08-29 Getriebeloser Heißgasmotor

Publications (3)

Publication Number Publication Date
EP1306539A2 EP1306539A2 (fr) 2003-05-02
EP1306539A3 EP1306539A3 (fr) 2003-10-22
EP1306539B1 true EP1306539B1 (fr) 2006-04-12

Family

ID=27438026

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02023231A Expired - Lifetime EP1306539B1 (fr) 2001-10-24 2002-10-16 Moteur à gaz chaud à deux temps

Country Status (6)

Country Link
US (1) US6968688B2 (fr)
EP (1) EP1306539B1 (fr)
JP (1) JP2003184649A (fr)
AT (1) ATE323223T1 (fr)
DE (1) DE50206371D1 (fr)
HK (1) HK1057389A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7134279B2 (en) * 2004-08-24 2006-11-14 Infinia Corporation Double acting thermodynamically resonant free-piston multicylinder stirling system and method
GB0526436D0 (en) * 2005-12-23 2006-02-08 Microgen Energy Ltd A stirling machine
US7690199B2 (en) * 2006-01-24 2010-04-06 Altor Limited Lc System and method for electrically-coupled thermal cycle
DE102007053873A1 (de) 2007-11-09 2009-05-14 Enerlyt Technik Gmbh Geteilter Kolbenring für Heißgasmotoren mit einer Vorspannung, die bei Betriebstemperatur verschwindet
GB0803021D0 (en) * 2008-02-19 2008-03-26 Isis Innovation Linear multi-cylinder stirling cycle machine
US20100186405A1 (en) * 2009-01-27 2010-07-29 Regen Power Systems, Llc Heat engine and method of operation
US8096118B2 (en) 2009-01-30 2012-01-17 Williams Jonathan H Engine for utilizing thermal energy to generate electricity
JP5487710B2 (ja) * 2009-05-11 2014-05-07 いすゞ自動車株式会社 スターリングエンジン
DE102009052491A1 (de) 2009-11-11 2011-05-12 Enerlyt Technik Gmbh Heißgasmotor mit Hochtemperatur- Expansionszylindern und Bornitrid-Dispersionsschicht-Laufflächen
US8726857B2 (en) * 2010-01-19 2014-05-20 Altor Limited Lc System and method for electrically-coupled heat engine and thermal cycle
CZ2010812A3 (cs) * 2010-11-09 2012-07-04 Libiš@Jirí Dvojcinný prehánec s oddeleným teplým a studeným prostorem a tepelný stroj s dvojcinným prehánecem
DE102011103765A1 (de) 2011-06-01 2012-12-06 Enerlyt Technik Gmbh Doppelt wirkender Stirlingmotor mit Faltenbalg
KR101405194B1 (ko) 2012-10-24 2014-06-13 현대자동차 주식회사 차량용 스털링 냉동기
CN105716225B (zh) * 2014-12-22 2020-08-11 株式会社堀场Stec 流体加热器、加热块和汽化系统
FR3041040B1 (fr) * 2015-09-14 2017-11-03 Vianney Rabhi Cylindre detendeur a double effet a support adaptatif
DE112018002662T5 (de) * 2017-05-25 2020-02-27 National University Corporation Tokyo University Of Agriculture And Technology Wärmeübertragungsvorrichtung und ofen, der damit versehen ist

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE31128C (de) * G. A. BUSCHBAUM in Darmstadt, Liebigstr. 25 Neuerung an geschlossenen Heifsluftmaschinen
US1128860A (en) * 1914-05-08 1915-02-16 George W Stahl Caloric engine.
US1356427A (en) * 1919-06-05 1920-10-19 Braunstein Julius Fluid-heater
US2183893A (en) * 1937-01-12 1939-12-19 Sirius Corp Fluid heater
NL69322C (fr) * 1948-10-12 1952-01-15
US2657528A (en) * 1948-12-24 1953-11-03 Hartford Nat Bank & Trust Co Hot gas engine enclosing two thermodynamic cycles
NL78623C (fr) * 1950-10-09
US2651294A (en) * 1951-08-16 1953-09-08 Horne Robert Jackson Fluid heater
GB761122A (en) * 1951-10-03 1956-11-14 Shell Refining & Marketing Co Improvements in machines operating according to a modified stirling cycle
NL142220B (nl) * 1965-01-20 1974-05-15 Philips Nv Heetgaszuigermachine.
DE2156773C3 (de) * 1971-11-16 1974-09-19 Motoren Werke Mannheim Ag Verfahren zur lastabhängigen Regelung der Leistung eines doppeltwirkenden Heißgasmotors
GB1350055A (en) * 1972-09-26 1974-04-18 United Stirling Ab & Co Hot gas engine power control devices
US3835294A (en) * 1973-04-06 1974-09-10 Binks Mfg Co High pressure electric fluid heater
DE2421398C2 (de) * 1974-05-03 1983-11-24 Audi Nsu Auto Union Ag, 7107 Neckarsulm Wärmekraftmaschine für den Antrieb eines Kraftfahrzeuges
US3994136A (en) * 1975-07-03 1976-11-30 Josam Manufacturing Co. Hot gas engine
US4209061A (en) * 1977-06-02 1980-06-24 Energy Dynamics, Inc. Heat exchanger
US4199945A (en) * 1977-07-27 1980-04-29 Theodor Finkelstein Method and device for balanced compounding of Stirling cycle machines
DE2820526C2 (de) * 1978-05-11 1982-04-22 Schneider, Christian, Dipl.-Ing., 8650 Kulmbach Heißgas-Hubkolbenmotor mit elektromagnetisch angetriebenem Verdränger
JPS6047465B2 (ja) * 1979-11-28 1985-10-22 松下電器産業株式会社 熱ガス機関
EP0055769B1 (fr) * 1980-07-14 1986-05-28 Mechanical Technology Incorporated Moteur stirling
US4357909A (en) * 1981-02-13 1982-11-09 Takashi Kagoshima Fluid heater with spiral hot gas flow
US4622813A (en) * 1983-11-02 1986-11-18 Mitchell Matthew P Stirling cycle engine and heat pump
US5365888A (en) * 1993-08-02 1994-11-22 Gas Research Institute Fluid heater and method
FR2747155A1 (fr) * 1996-04-09 1997-10-10 Mondesert Louis Xavier Moteur stirling a liaison cinematique pistons-arbre moteur par cames
US5822964A (en) * 1996-12-03 1998-10-20 Kerpays, Jr.; Rudy Hot-gas engine electric heater
JP2003507618A (ja) * 1999-08-11 2003-02-25 エネルリット ポツダム ゲーエムベーハー 互いに動く複数のピストンを有する熱ガス機関
DE19938023C2 (de) * 1999-08-11 2000-08-24 Enerlyt Potsdam Gmbh En Umwelt Heißgasmotor mit einem Arbeitskolben, der sich innerhalb eines Verdrängerkolbens bewegt
US6435174B1 (en) * 2000-10-31 2002-08-20 Siout Steam Cleaner Corporation Fluid heater coil configuration and fabrication method

Also Published As

Publication number Publication date
EP1306539A3 (fr) 2003-10-22
DE50206371D1 (de) 2006-05-24
US6968688B2 (en) 2005-11-29
EP1306539A2 (fr) 2003-05-02
JP2003184649A (ja) 2003-07-03
HK1057389A1 (en) 2004-04-02
ATE323223T1 (de) 2006-04-15
US20030074882A1 (en) 2003-04-24

Similar Documents

Publication Publication Date Title
EP1306539B1 (fr) Moteur à gaz chaud à deux temps
DE69732929T2 (de) Einlass- System für eine Stirlingmaschine
EP2173988B1 (fr) Dispositif à piston libre et procédé de commande et/ou de réglage d'un dispositif à piston libre
DE3709266C2 (fr)
EP2224580B1 (fr) Piston libre avec entrainement linéaire électrique
DE60224261T2 (de) Antriebseinheit mit linearer hubbewegung auf grundlage eines stirlingmotors und bei dem antriebssystem verwendetes verfahren
DE1933159B2 (de) Nach dem Stfrling-ProzeB arbeitende Kolbenmaschine
DE69518926T2 (de) Zentrierungssystem mit rückschlagventil für eine freikolbenmaschine
DE102008050655B4 (de) Abgasanlage für Kraftfahrzeuge mit integrierter Wärmekraftmaschine
EP1917434A1 (fr) Machine de stirling a 4 cycles comprenant deux unites a double piston
DE112010004335T5 (de) Gamma-Typ Freikolben-Stirlingmaschinen Konfiguration
EP0188742A2 (fr) Moteur thermique
DE10329977B4 (de) 2-Zyklen-Heißgasmotor mit erhöhtem Verdichtungsverhältnis
DE102006021497A1 (de) Wärmekraftmaschine nach dem Stirling-Prinzip
DE102005016469A1 (de) Freikolbenmotor mit hydrostatischer und elektrischer Leistungsabgabe
DE102010018654B4 (de) Zyklisch arbeitende Wärme-Kraftmaschine
DE102008050653A1 (de) Wärmekraftmaschine nach dem Pulsröhrenprinzip
DE3922986A1 (de) Verbrennungsmotor mit lineargenerator
EP0585430B1 (fr) Machine frigorifique et calorifique regenerative, chauffee de l'exterieur
DE102015101726B4 (de) Stirlingmaschine sowie Anordnung zur Erzeugung von elektrischer Energie
DE2059996A1 (de) Thermomagnetischer Generator mit beweglichem Geraet
DE10153772C1 (de) 2-Zyklen-Heissgasmotor mit einem Expansionskolben und einem Kompressionskolben die fluchtend in Reihe angeordnet sind
EP1016781B1 (fr) Machine calorifique
DE10209858B4 (de) Elektromechanischer Energiewandler
DE4320356A1 (de) Stirling-Wärmekraftmaschine in Verdrängerbauweise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040326

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060412

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060412

REF Corresponds to:

Ref document number: 50206371

Country of ref document: DE

Date of ref document: 20060524

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ENERLYT POTSDAM GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060723

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1057389

Country of ref document: HK

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ENERLYT POTSDAM GMBH

Effective date: 20060705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060912

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070629

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

BERE Be: lapsed

Owner name: ENERLYT POTSDAM G.M.B.H.

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060713

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20071024

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20071024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120412 AND 20120418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141022

Year of fee payment: 13

Ref country code: GB

Payment date: 20141021

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151016

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102