EP1016781B1 - Kalorische Maschine - Google Patents

Kalorische Maschine Download PDF

Info

Publication number
EP1016781B1
EP1016781B1 EP99125201A EP99125201A EP1016781B1 EP 1016781 B1 EP1016781 B1 EP 1016781B1 EP 99125201 A EP99125201 A EP 99125201A EP 99125201 A EP99125201 A EP 99125201A EP 1016781 B1 EP1016781 B1 EP 1016781B1
Authority
EP
European Patent Office
Prior art keywords
working
charging
cylinder
piston
transfer block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99125201A
Other languages
English (en)
French (fr)
Other versions
EP1016781A2 (de
EP1016781A3 (de
Inventor
Jürgen Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1016781A2 publication Critical patent/EP1016781A2/de
Publication of EP1016781A3 publication Critical patent/EP1016781A3/de
Application granted granted Critical
Publication of EP1016781B1 publication Critical patent/EP1016781B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/044Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines having at least two working members, e.g. pistons, delivering power output

Definitions

  • the present invention relates to a caloric machine, operated with a working medium in two work cycles becomes.
  • the invention relates to a motor unit for Providing mechanical energy.
  • An object of the present invention is therefore to to take up the well-known principle of caloric machines and to provide a technical realization that has the disadvantages previous similar machines avoided or strong reduced. It's supposed to be a caloric machine available be made using the simplest mechanical Components can continuously release mechanical energy. In addition, it is particularly desirable to this machine so design that linear forces can be delivered. After all It is an object of the present invention to provide a motor unit taking advantage of a corresponding caloric Specify machine.
  • caloric Machine solved with a working medium in two work cycles is operated and a first working piston, in a first working cylinder runs and a first push rod coupled to a linear power transfer block, in the direction of movement of the first working piston is displaceable; a first charging piston, which in one first load cylinder runs and over a parallel to the first Push rod arranged second push rod to the linear power transfer block is coupled; a second working piston, in a second cylinder in the first Working piston opposite working direction runs and via a third push rod to the linear power transfer block is coupled; a second charging piston, which in one second loading cylinder in opposite to the first charging piston Working direction runs and over a parallel to the third Push rod arranged fourth push rod to the linear power transfer block is coupled; a heating cavity, in which heat is supplied to the working medium; and a cooling cavity in which heat is extracted from the working medium is included; wherein during the first working cycle the heated working fluid from the heating cavity over a first working valve in the first working cylinder and off the second working working
  • This caloric machine has the advantage that the Working and loading pistons are arranged so that they linear forces deliver directly to a linear power transfer block can, without further transmission elements are required. In this way, lateral forces are avoided. With that you can also in conventional constructions mostly high friction losses be significantly reduced.
  • By the symmetrical Linkage of two power pistons and two loading pistons can from the machine according to the invention in both work cycles mechanical energy are released, so that each provided amount of energy relatively evenly over the Time is distributed. To overcome the remaining Dead centers only a small amount of energy is required whereby, for example, flywheels to be used small can be kept.
  • the structure of the invention provides also the advantage that the machine is self-starting, whereby conventional starter aids can be saved.
  • caloric machine is governed by the strictly linear principle deviated and come in place of the push rods connecting rods to use the working and loading pistons over pins connect with a crankshaft.
  • the two piston pairs In this case, 180 ° out of phase engage the crankshaft.
  • calorific engine possess the warming cavity and the Cooling cavity each having a constant volume
  • the Volume of the two cavities can also be identical.
  • a modified embodiment is characterized by that the linear power transfer block on a guide columns slidably mounted frame, which is on a first Side to the first piston and the first charging piston and on a second, the first opposite side coupled to the second piston and the second charging piston is.
  • This embodiment allows a special simple mechanical construction, in which the first working piston and the first charging piston on the one hand and the second Working piston and the second charging piston on the other hand parallel are arranged to each other, wherein in each case the working piston and the loading pistons are moved in opposite directions to each other and introduce the forces linearly into the linear force transfer block or received from this.
  • Valves are mechanically actuated by the linear force transfer block. This allows complex electrical or electronic Control mechanisms are eliminated. This leads to a very robust and reliable construction of the caloric machine.
  • the valves also be controlled by electrical signals and For example, be designed as solenoid valves or as be formed hydraulic valves. This is for example then expedient if a high precision in terms of Switching times of the valves and a high switching speed are desired.
  • a further developed embodiment is by a linear force transfer block with a rack attached to it characterized in that two counter-rotating freewheel gear engage the rack and the alternating Linear motion over a coordinate gear in one implement constant rotational movement.
  • This embodiment can be used to advantage if the available Asked linear force can be converted into a rotational movement should, as desirable for example in motor vehicles is.
  • the gearbox can be used to convert the Linear motion in a rotary motion accounts.
  • An advantageous embodiment is characterized by that the heating cavity designed as a solar collector is. The heat is then directly by sunlight.
  • the Pressure and volume conditions in the caloric machine be chosen according to the laws of thermodynamics so that in the cooling cavity an expansion of the working medium takes place, which has a cooling to follow.
  • the provided thereby "Cooling source” can be used for cooling or air conditioning the environment are used.
  • the o.g. Tasks are also solved by a motor unit, in which at least two caloric machines of the invention Art are interconnected, preferably four caloric machines each 90 ° out of phase be interconnected.
  • a motor unit in which at least two caloric machines of the invention Art are interconnected, preferably four caloric machines each 90 ° out of phase be interconnected.
  • Fig. 1 is a caloric machine according to the invention in illustrated a block diagram, wherein the machine in this representation is located in a first work cycle.
  • the caloric machine has a first working piston 1, which runs in a first working cylinder 2.
  • a first push rod 3 is attached, the essentially in a straight line up to a central one arranged linear power transfer block 4 extends and on a first side 5 of this linear power transfer block 4th is attached.
  • a first charging piston 7 is provided, which runs in a first loading cylinder 8 and a second push rod 9 also to the first side 5 of the linear power transmission block 4 is coupled.
  • the second push rod 9 is substantially parallel to the first push rod 3.
  • the working volume of the first working cylinder 2 is designed to be significantly larger than the working volume of the first loading cylinder 8.
  • a second piston 11 is provided which again runs in a second cylinder 12 and over a third push rod 13 to the linear power transfer block 4 is coupled.
  • the third push rod 13 is at a attached to the second side 14 of the linear force transfer block 4, wherein the second side 14 of the first page 5 in essentially parallel to each other.
  • a second charging piston 16 which works in a second loading cylinder 17 and over a fourth push rod 18 also with the second side 14th of the linear power transmission block 4 is in communication.
  • the Working volume of the second working cylinder 12 corresponds to essentially the working volume of the first working cylinder 2, while the working volume of the second loading cylinder 17 in essentially the working volume of the first loading cylinder. 8 corresponds to and smaller than the working volume of the working cylinder is.
  • the caloric machine has a heating cavity 20 and a cooling cavity 21, preferably a have invariable volume, in particular the heating cavity 20 and the cooling cavity 21 is a nearly identical Have volume.
  • a working medium preferably substances with relatively low boiling point, such as water, alcohol, ether or helium for use, wherein the special substance considering the respective one Purpose and the operating temperatures used is.
  • the working fluid is continuously in the heating cavity Heat supplied. This is an external heat source used. For heating, for example, heating fuels be incinerated or used in the respective application Available waste heat serve as a heat source.
  • the heating cavity as Sun collector can also be particularly advantageous, the heating cavity as Sun collector to design or suitable other Make the heat energy provided by solar radiation supply.
  • the formation of the heating cavity as Solar collector has proven to be particularly easy and useful proved, on the one hand the working medium in a simple Guide way through the solar panels and on the other hand the exploited solar energy available for free stands.
  • the first working cycle of the caloric Machine described in detail.
  • the first work cycle flows over a first hot medium line 25 and a opened first working valve 26, the heated working fluid in the first working cylinder 2, whereby the first Working piston 1 is driven out and about the first Push rod 3 a linear acting force on the linear power transfer block 4 exercises.
  • the linear force transfer block 4 performs a straight line movement from left to right, as indicated by the arrow is.
  • the first charging piston 7 from the first loading cylinder. 8 moved out, so that cold working medium over an open first charging valve 27 and a first charging line 28 in the first charging cylinder 8 can flow.
  • the available standing force is dependent on the amount of heat supplied, because this is about the expansion of the working fluid in the heating cavity and thus about the volume amount in the first Working cylinder 2 is pressed, decides.
  • the provided by the first piston 1 force is the linear power transfer block 4 also to the third push rod 13 and the fourth push rod 18 transmitted.
  • the located in the second loading cylinder 17 cooled working fluid expelled from the second charging piston 16 and flows via a first return line 29 and a opened second loading valve 30 back into the heating cavity 20, in which it is reheated and a volume expansion experiences.
  • the relatively warm working fluid is in the cooling cavity 21st Heat deprived.
  • the linear force transfer block 4 is provided with guide sleeves 40 mounted on guide columns 41, so that a low-friction linear movement can be performed.
  • FIG. 2 the flow conditions in the caloric machine during the second Work cycle explained.
  • the position of each piston in The cylinders shown in Fig. 2 correspond to those shown in Figs from Fig. 1, but during an opposite movement, which in turn is indicated by an arrow in the area of the linear force transfer block is shown.
  • the movement shown from right to left flows hot Working medium from the heating cavity 20 via a second Hot medium line 45 through the now open third Working valve 33 in the second working cylinder 12.
  • the in the second working cylinder 12 under pressure inflowing Working medium causes a displacement of the second working piston 11, this movement over the third push rod 13 on the second side 14 of the linear force transfer block 4 is headed.
  • FIGS. 1 and 2 causes the linear power transfer block 4 each substantially at the reversal points of the linear movement switching said control valves, so that to maintain the force required by the movement alternately from first working piston and provided by the second working piston becomes.
  • the material stresses are therefore lower, which in connection with the relatively low working speeds to a long life of the machine and leads to a remarkable smooth running.
  • the invention can also the crankshaft principle use.
  • a rack 50 mounted, in which a gear 51 engages is in the illustrated embodiment on the linear power transfer block 4, a rack 50 mounted, in which a gear 51 engages. Due to the described two-stroke operation of the caloric machine results in an alternating linear motion the rack 50, in a rotational movement of the gear 51 results in changing sense of direction.
  • Fig. 3 shows a simplified schematic representation of a Possibility of this rotational movement with changing sense of direction to convert into a rotary motion with constant sense of direction.
  • the rack 50 is in this case with a first freewheel gear 52 and a second freewheel gear 53 engaged, in turn, each in a central gear 54 intervene.
  • the freewheel gear 52, 53 are arranged so that depending on the direction of movement of the rack 50 always only one freewheel gear a power transmission to the central gear 54 performs, so that this in a rotary motion is offset with the same sense of direction.
  • At the central gear 54 can then attached to an output shaft be.
  • the caloric machine according to the invention can also be used with any other types of transmissions are equipped. It is the same possible, the control of valves not on mechanical but in electrical, hydraulic or other ways make.
  • the illustrated caloric machine can as compact unit be built so that the interconnection several such units without difficulty possible is. In this way, for example, motors build, which combine several of these units in itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)
  • Actuator (AREA)
  • Saccharide Compounds (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)

Description

Die vorliegende Erfindung betrifft eine kalorische Maschine, die mit einem Arbeitsmedium in zwei Arbeitstakten betrieben wird. Außerdem betrifft die Erfindung eine Motoreinheit zur Bereitstellung mechanischer Energie.
Als kalorische Maschinen werden im weitesten Sinne Wärmekraftmaschinen verstanden, bei denen unter Ausnutzung der thermodynamischen Gesetzmäßigkeiten Wärmeenergie in mechanische Energie umgewandelt wird. Dabei wird einem Arbeitsmedium Wärmeenergie zugeführt, was die Volumenausdehnung des Arbeitsmediums bewirkt, welche zur Verrichtung von mechanischer Arbeit genutzt werden kann. In einem nachfolgenden Arbeitstakt wird dem Arbeitsmedium Wärmeenergie entzogen, wodurch eine Volumenverringerung eintritt. Bei kalorischen Maschinen laufen diese beiden Arbeitstakte in einem Kreisprozeß ab, so daß die Maschine kontinuierlich mechanische Energie bereitstellen kann.
Bekannte Wärmekraftmaschinen, die in vielfältigen Varianten als Motoren entwickelt wurden, sind die Stirling-Maschinen, bei denen das erstmals von Robert Stirling eingesetzte Arbeitsverfahren zum Einsatz kommt. Stirling-Maschinen sind üblicherweise ohne Steuerventile aufgebaut. Sofern zur Regelung des Arbeitsprozesses Steuerventile eingesetzt werden, spricht man häufig von Ericsson-Maschinen. Die vorliegende Erfindung kann im weitesten Sinne als Ericsson-Maschine bezeichnet werden, verwendet jedoch einen neuartigen konstruktiven Aufbau, der zu besonderen Vorteilen führt.
Das kalorische Prinzip wird in praktisch relevantem Umfang bislang zumeist bei Kältemaschinen realisiert.
Ein Überblick über die Arbeitsprinzipien von Wärmekraftmaschinen im allgemeinen und Stirling-Maschinen im besonderen, sowie über die verschiedensten Ausführungsformen derartiger Maschinen ist dem Buch "Stirling-Maschinen" von Martin Werdich, Ökobuch Verlag Staufen bei Freiburg, 1994 (ISBN 3-922964-35-4) entnehmbar. Die darin gezeigten funktionsfähigen Ausführungsformen von Stirling-Maschinen wurden bislang nur vereinzelt, beispielsweise im Rahmen von Modellversuchen eingesetzt. Eine serienmäßige industrielle Anwendung derartiger Maschinen zur Bereitstellung mechanischer Energie ist bis heute an den vielfältigen konstruktiven Schwierigkeiten bei der Realisierung des bekannten Prinzips gescheitert. Zwar ist seit langer Zeit anerkannt, daß die in kalorischen Maschinen eingesetzten Arbeitsprinzipien zur Energiewandlung mit guten Wirkungsgraden verwendbar sind und gegenüber den weit verbreiteten Verbrennungskraftmaschinen vielfältige Vorteile bieten. Trotzdem haben technische Realisierungsschwierigkeiten bisher einen erfolgreichen Einsatz von kalorischen Maschinen im Bereich der Bereitstellung mechanischer Energie verhindert. Häufig scheiterte der Einsatz solcher Maschinen an im Einzelfall komplizierten Aufbauten, die einem störungsfreien Langzeitbetrieb entgegenstehen.
Aus der DE 38 34 070 ist eine nach dem Stirling-Prinzip arbeitende Wärmekraftmaschine bekannt, die zwei Zylinderpaare aus jeweils einem Kalt- und einem Heißzylinder aufweist. Jedem Zylinderpaar ist ein separater Kreislauf für das Arbeitsmedium zugeordnet, so daß zwei Kühler, zwei Regeneratoren und zwei Erhitzer benötigt werden. Dies bedingt einen teuren und störanfälligen Aufbau.
Eine Aufgabe der vorliegenden Erfindung besteht somit darin, das bekannte Prinzip kalorischer Maschinen aufzugreifen und eine technische Realisierung bereitzustellen, die die Nachteile bisheriger gleichartiger Maschinen vermeidet oder stark verringert. Es soll eine kalorische Maschine zur Verfügung gestellt werden, die unter Einsatz einfachster mechanischer Bauelemente kontinuierlich mechanische Energie abgeben kann. Außerdem ist es besonders wünschenswert, diese Maschine so zu gestalten, daß Linearkräfte abgegeben werden können. Schließlich ist es ein Ziel der vorliegenden Erfindung, eine Motoreinheit unter Ausnutzung einer entsprechenden kalorischen Maschine anzugeben.
Diese Aufgaben werden durch die erfindungsgemäße kalorische Maschine gelöst, die mit einem Arbeitsmedium in zwei Arbeitstakten betrieben wird und einen ersten Arbeitskolben, der in einem ersten Arbeitszylinder läuft und über eine erste Schubstange an einen Linearkraftübertragungsblock gekoppelt ist, der in der Bewegungsrichtung des ersten Arbeitskolbens verschiebbar ist; einen ersten Ladekolben, der in einem ersten Ladezylinder läuft und über eine parallel zur ersten Schubstange angeordnete zweite Schubstange an den Linearkraftübertragungsblock gekoppelt ist; einen zweiten Arbeitskolben, der in einem zweiten Arbeitszylinder in zum ersten Arbeitskolben entgegengesetzter Arbeitsrichtung läuft und über eine dritte Schubstange an den Linearkraftübertragungsblock gekoppelt ist; einen zweiten Ladekolben, der in einem zweiten Ladezylinder in zum ersten Ladekolben entgegengesetzter Arbeitsrichtung läuft und über eine parallel zur dritten Schubstange angeordnete vierte Schubstange an den Linearkraftübertragungsblock gekoppelt ist; einen Erwärmungshohlraum, im welchem dem Arbeitsmedium Wärme zugeführt wird; und einen Kühlhohlraum, in welchem dem Arbeitsmedium Wärme entzogen wird, umfaßt; wobei während des ersten Arbeitstaktes das erwärmte Arbeitsmedium aus dem Erwärmungshohlraum über ein erstes Arbeitsventil in den ersten Arbeitszylinder und aus dem zweiten Arbeitszylinder über ein zweites Arbeitsventil in den Kühlhohlraum strömt, während das abgekühlte Arbeitsmedium aus dem Kühlhohlraum über ein erstes Ladeventil in den ersten Ladezylinder und aus dem zweiten Ladezylinder über ein zweites Ladeventil in den Erwärmungshohlraum strömt; und wobei während des zweiten Arbeitstaktes das warme Arbeitsmedium aus dem Erwärmungshohlraum über ein drittes Arbeitsventil in den zweiten Arbeitszylinder und aus dem ersten Arbeitszylinder über ein viertes Arbeitsventil in den Kühlhohlraum strömt, während das kalte Arbeitsmedium aus dem Kühlhohlraum über ein drittes Ladeventil in den zweiten Ladezylinder und aus dem ersten Ladezylinder über ein viertes Ladeventil in den Erwärmungshohlraum strömt; und wobei während des ersten Motortaktes das dritte und vierte Arbeitsventil und das dritte und vierte Ladeventil geschlossen sind und während des zweiten Motortaktes das erste und zweite Arbeitsventil und das erste und zweite Ladeventil geschlossen sind.
Diese kalorische Maschine bietet den Vorteil, daß die Arbeits- und Ladekolben so angeordnet sind, daß sie Linearkräfte direkt an einen Linearkraftübertragungsblock abgeben können, ohne daß weitere Getriebeelemente erforderlich sind. Auf diese Weise werden Querkräfte vermieden. Damit können auch die bei herkömmlichen Aufbauten zumeist hohen Reibungsverluste deutlich verringert werden. Durch die symmetrische Verknüpfung von zwei Arbeitskolben und zwei Ladekolben kann von der erfindungsgemäßen Maschine in beiden Arbeitstakten mechanische Energie abgegeben werden, so daß die jeweils bereitgestellte Energiemenge relativ gleichmäßig über die Zeit verteilt ist. Zur Überwindung der verbleibenden Totpunkte ist nur ein geringer Energiebetrag erforderlich, wodurch beispielsweise einzusetzende Schwungmassen klein gehalten werden können. Der erfindungsgemäße Aufbau bietet auch den Vorteil, daß die Maschine selbstanlaufend ist, wodurch übliche Starterhilfsmittel eingespart werden können.
Bei einer abgewandelten Ausführungsform der erfindungsgemäßen kalorischen Maschine wird von dem streng linearen Prinzip abgewichen und an Stelle der Schubstangen kommen Pleuelstangen zum Einsatz, die die Arbeits- und Ladekolben über Zapfen mit einer Kurbelwelle verbinden. Die beiden Kolbenpaare greifen dabei 180° phasenversetzt an der Kurbelwelle an.
Bei einer bevorzugten Ausführungsform der erfindungsgemäßen kalorischen Maschine besitzen der Erwärmungshohlraum und der Kühlhohlraum jeweils ein konstantes Volumen, wobei das Volumen der beiden Hohlräume auch identisch sein kann.
Eine abgewandelte Ausführungsform zeichnet sich dadurch aus, daß der Linearkraftübertragungsblock ein auf Führungssäulen verschiebbar gelagertes Gestell ist, welches auf einer ersten Seite an den ersten Arbeitskolben und den ersten Ladekolben und an einer zweiten, der ersten gegenüberliegenden Seite an den zweiten Arbeitskolben und den zweiten Ladekolben gekoppelt ist. Diese Ausführungsform ermöglicht einen besonders einfachen mechanischen Aufbau, bei welchem der erste Arbeitskolben und der erste Ladekolben einerseits und der zweite Arbeitskolben und der zweite Ladekolben andererseits parallel zueinander angeordnet sind, wobei jeweils die Arbeitskolben und die Ladekolben gegenläufig zueinander bewegt werden und die Kräfte linear in den Linearkraftübertragungsblock einleiten bzw. von diesem empfangen.
Bei einer besonders zweckmäßigen Ausführungsform werden alle Ventile mechanisch vom Linearkraftübertragungsblock betätigt. Dadurch können aufwendige elektrische bzw. elektronische Steuermechanismen entfallen. Dies führt zu einem sehr robusten und zuverlässigen Aufbau der kalorischen Maschine. Bei abgewandelten Ausführungsformen können die Ventile jedoch auch durch elektrische Signale angesteuert werden und beispielsweise als Magnetventile ausgelegt sein oder als hydraulische Ventile ausgebildet sein. Dies ist zum Beispiel dann zweckmäßig, wenn eine hohe Präzision hinsichtlich der Schaltzeitpunkte der Ventile und eine hohe Schaltgeschwindigkeit erwünscht sind.
Eine weitergebildete Ausführungsform ist durch einen Linearkraftübertragungsblock mit einer daran befestigten Zahnstange gekennzeichnet, wobei zwei gegenläufig wirkende Freilaufgetriebe in die Zahnstange eingreifen und die alternierende Linearbewegung über ein beigeordnetes Zahnrad in eine gleichbleibende Drehbewegung umsetzen. Diese Ausführungsform läßt sich vorteilhaft einsetzen, wenn die zur Verfügung gestellte Linearkraft in eine Drehbewegung umgesetzt werden soll, wie dies beispielsweise in Kraftfahrzeugen wünschenswert ist.
Bei einer abgewandelten Ausführungsform wird anstelle der Zahnstange eine langgestreckte elektrische Erregerwicklung am Linearkraftübertragungsblock angekoppelt, um welche elektrische Spulen positioniert werden. Damit ist die Bereitstellung von elektrischer Energie möglich.
Sofern die Kolben über Pleuelstangen an eine Kurbelwelle angekoppelt sind, kann das Getriebe zur Umwandlung der Linearbewegung in eine Drehbewegung entfallen.
Eine vorteilhafte Ausführungsform zeichnet sich dadurch aus, daß der Erwärmungshohlraum als Sonnenkollektor ausgestaltet ist. Die Wärmezufuhr erfolgt dann direkt durch Sonneneinstrahlung. In Weiterbildung dieser Ausführungsform können die Druck- und Volumenbedingungen in der kalorischen Maschine gemäß den Gesetzen der Thermodynamik so gewählt werden, daß im Kühlhohlraum eine Expansion des Arbeitsmediums erfolgt, welche eine Abkühlung zur folge hat. Die dadurch bereitgestellte "Kältequelle" kann zur Kühlung bzw. Klimatisierung der Umgebung genutzt werden.
Die o.g. Aufgaben werden auch durch eine Motoreinheit gelöst, bei welcher mindestens zwei kalorische Maschinen der erfindungsgemäßen Art zusammengeschaltet sind, wobei vorzugsweise vier kalorische Maschinen jeweils um 90° phasenversetzt zusammengeschaltet werden. Durch eine derartige Anordnung mehrerer erfindungsgemäßer kalorischer Maschinen lassen sich die Gesamtleistung erhöhen und die Laufeigenschaften einer entsprechenden Motoreinheit verbessern. Da die einzelnen Maschinen phasenversetzt arbeiten ergibt sich eine gleichmäßigere Verteilung der bereitgestellten mechanischen Energie, da die Totpunkte ebenfalls um 90° phasenversetzt liegen.
Weitere Vorteile, Einzelheiten und Weiterbildungen ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen der vorliegenden Erfindung, unter Bezugnahme auf die Zeichnung. Es zeigen:
Fig. 1
ein Prinzipschaltbild einer kalorischen Maschine, dargestellt während eines ersten Arbeitstaktes;
Fig. 2
das Prinzipschaltbild der kalorischen Maschine, dargestellt während eines zweiten Arbeitstaktes;
Fig. 3
eine vereinfachte Darstellung eines Zahnstangengetriebes der kalorischen Maschine.
In Fig. 1 ist eine erfindungsgemäße kalorische Maschine in einem Prinzipschaltbild dargestellt, wobei sich die Maschine in dieser Darstellung in einem ersten Arbeitstakt befindet. Die kalorische Maschine besitzt einen ersten Arbeitskolben 1, der in einem ersten Arbeitszylinder 2 läuft. Am ersten Arbeitskolben 1 ist eine erste Schubstange 3 befestigt, die sich im wesentlichen in gerader Linie bis zu einem zentral angeordneten Linearkraftübertragungsblock 4 erstreckt und an einer ersten Seite 5 dieses Linearkraftübertragungsblocks 4 befestigt ist. Weiterhin ist ein erster Ladekolben 7 vorgesehen, der in einem ersten Ladezylinder 8 läuft und über eine zweite Schubstange 9 ebenfalls an die erste Seite 5 des Linearkraftübertragungsblocks 4 gekoppelt ist. Die zweite Schubstange 9 verläuft im wesentlichen parallel zur ersten Schubstange 3. Das Arbeitsvolumen des ersten Arbeitszylinders 2 ist deutlich größer ausgelegt als das Arbeitsvolumen des ersten Ladezylinders 8.
Auf der gegenüberliegenden Seite des Linearkraftübertragungsblocks 4 ist ein zweiter Arbeitskolben 11 vorgesehen, der wiederum in einem zweiten Arbeitszylinder 12 läuft und über eine dritte Schubstange 13 an den Linearkraftübertragungsblock 4 gekoppelt ist. Die dritte Schubstange 13 ist an einer zweiten Seite 14 des Linearkraftübertragungsblocks 4 befestigt, wobei die zweite Seite 14 der ersten Seite 5 im wesentlichen parallel gegenüberliegt. Komplementär zum ersten Ladekolben 7 ist weiterhin ein zweiter Ladekolben 16 vorgesehen, der in einem zweiten Ladezylinder 17 arbeitet und über eine vierte Schubstange 18 ebenfalls mit der zweiten Seite 14 des Linearkraftübertragungsblocks 4 in Verbindung steht. Das Arbeitsvolumen des zweiten Arbeitszylinders 12 entspricht im wesentlichen dem Arbeitsvolumen des ersten Arbeitszylinders 2, während das Arbeitsvolumen des zweiten Ladezylinders 17 im wesentlichen dem Arbeitsvolumen des ersten Ladezylinders 8 entspricht und kleiner als das Arbeitsvolumen der Arbeitszylinder ist.
Im übrigen besitzt die kalorische Maschine einen Erwärmungshohlraum 20 und einen Kühlhohlraum 21, die vorzugsweise ein unveränderliches Volumen haben, wobei insbesondere der Erwärmungshohlraum 20 und der Kühlhohlraum 21 ein nahezu identisches Volumen aufweisen. Sowohl im Erwärmungshohlraum 20 als auch im Kühlhohlraum 21 und darüber hinaus in den Zylindern und den zwischen diesen verlaufenden Verbindungsleitungen befindet sich ein Arbeitsmedium dessen Strömungsrichtung durch einzelne Pfeile angedeutet ist. Als Arbeitsmedium kommen vorzugsweise Stoffe mit relativ geringem Siedepunkt, wie Wasser, Alkohol, Äther oder Helium zur Anwendung, wobei der spezielle Stoff unter Berücksichtigung des jeweiligen Einsatzzweckes und der verwendeten Arbeitstemperaturen auszuwählen ist. Dem Arbeitsmedium wird kontinuierlich im Erwärmungshohlraum Wärme zugeführt. Dazu wird eine externe Wärmequelle genutzt. Zur Erwärmung können beispielsweise Heizstoffe verbrannt werden oder im jeweiligen Einsatzfall zur Verfügung stehende Abwärme als Wärmequelle dienen. Es kann auch besonders vorteilhaft sein, den Erwärmungshohlraum als Sonnenkollektor auszulegen oder ihm in geeigneter anderer Weise die durch Sonneneinstrahlung bereitgestellte Wärmeenergie zuzuführen. Die Ausbildung des Erwärmungshohlraums als Sonnenkollektor hat sich als besonders einfach und nützlich erwiesen, das sich einerseits das Arbeitsmedium in einfacher Weise durch die Sonnenkollektoren leiten läßt und andererseits die ausgenutzte Sonnenenergie kostenlos zur Verfügung steht.
Um das Prinzip der Wärmekraftmaschine zu realisieren, wird dem Arbeitsmedium im Kühlhohlraum Wärme entzogen, so daß die Temperatur des Arbeitsmediums beim Verlassen des Kühlhohlraums geringer ist als beim Eintritt in diesen.
Nachfolgend wird der erste Arbeitstakt der kalorischen Maschine detailliert beschrieben. Während des ersten Arbeitstaktes strömt über eine erste Heißmediumleitung 25 und ein geöffnetes erstes Arbeitsventil 26 das erwärmte Arbeitsmedium in den ersten Arbeitszylinder 2 ein, wodurch der erste Arbeitskolben 1 ausgetrieben wird und dabei über die erste Schubstange 3 eine linear wirkende Kraft auf den Linearkraftübertragungsblock 4 ausübt. Der Linearkraftübertragungsblock 4 führt eine geradlinige Bewegung von links nach rechts aus, wie dies durch den eingezeichneten Pfeil deutlich gemacht ist. Durch die Kopplung über die zweite Schubstange 9 wird auch der erste Ladekolben 7 aus dem ersten Ladezylinder 8 hinausbewegt, so daß kaltes Arbeitsmedium über ein geöffnetes erstes Ladeventil 27 und eine erste Ladeleitung 28 in den ersten Ladezylinder 8 einströmen kann. Die zur Verfügung stehende Kraft ist abhängig von der zugeführten Wärmemenge, da dies über die Ausdehnung des Arbeitsmediums im Erwärmungshohlraum und damit über die Volumenmenge, die in den ersten Arbeitszylinder 2 eingepreßt wird, entscheidet.
Die durch den ersten Arbeitskolben 1 bereitgestellte Kraft wird über den Linearkraftübertragungsblock 4 auch an die dritte Schubstange 13 und die vierte Schubstange 18 übertragen. Dadurch wird das im zweiten Ladezylinder 17 befindliche abgekühlte Arbeitsmedium vom zweiten Ladekolben 16 ausgetrieben und strömt über eine erste Rückführleitung 29 und ein geöffnetes zweites Ladeventil 30 zurück in den Erwärmungshohlraum 20, in welchem es erneut erwärmt wird und eine Volumenausdehnung erfährt. Ebenso wird das noch relativ warme Arbeitsmedium, welches sich im zweiten Arbeitszylinder 12 befindet, durch den zweiten Arbeitskolben 11 ausgetrieben, so daß es über eine zweite Rückführleitung 31 und ein geöffnetes zweites Arbeitsventil 32 in den Kühlhohlraum 21 zurückströmt. Dem relativ warmen Arbeitsmedium wird im Kühlhohlraum 21 Wärme entzogen.
Während des soeben beschriebenen ersten Arbeitstaktes befinden sich ein zwischen dem Erwärmungshohlraum 20 und dem zweiten Arbeitszylinder 12 liegendes drittes Arbeitsventil 33, ein zwischen den zweiten Ladezylinder 17 und den Kühlhohlraum 21 geschaltetes drittes Ladeventil 34, ein zwischen den Kühlhohlraum 21 und den ersten Ladezylinder 2 geschaltetes viertes Arbeitsventil 35 und ein zwischen den ersten Ladezylinder 8 und den Erwärmungshohlraum 20 geschaltetes viertes Ladeventil 36 in geschlossenem Zustand. Diese Ventilsteuerung bewirkt, daß von jeweils zwei Leitungen, die an jeden Zylinder angeschlossen sind, nur eine Leitung geöffnet ist, wodurch definierte Strömungsverhältnisse vorliegen. Die Steuerung der genannten Ventile erfolgt bei der dargestellten Ausführungsform auf mechanische Weise über Steuerstangen, die mit dem Linearkraftübertragungsblock 4 kommunizieren.
Der Linearkraftübertragungsblock 4 ist mit Führungshülsen 40 auf Führungssäulen 41 gelagert, so daß eine reibungsarme lineare Bewegung ausgeführt werden kann.
Unter Bezugnahme auf Fig. 2 werden nun die Strömungsverhältnisse in der kalorischen Maschine während des zweiten Arbeitstaktes erläutert. Die Stellung der einzelnen Kolben in den Zylindern, die in Fig. 2 gezeigt ist, entspricht derjenigen aus Fig. 1, jedoch während einer entgegengesetzten Bewegung, die wiederum durch einen Pfeil im Bereich des Linearkraftübertragungsblocks dargestellt ist. Während dieser gezeigten Bewegung von rechts nach links strömt das heiße Arbeitsmedium aus dem Erwärmungshohlraum 20 über eine zweite Heißmediumleitung 45 durch das nunmehr geöffnete dritte Arbeitsventil 33 in den zweiten Arbeitszylinder 12. Das in den zweiten Arbeitszylinder 12 unter Druck einströmende Arbeitsmedium bewirkt eine Verschiebung des zweiten Arbeitskolbens 11, wobei diese Bewegung über die dritte Schubstange 13 auf die zweite Seite 14 des Linearkraftübertragungsblocks 4 geleitet wird. Auf der gegenüberliegenden Seite des Linearkraftübertragungsblocks werden die Kolben in die Zylinder hineingeschoben, so daß der erste Ladekolben 7 das Medium aus dem ersten Ladezylinder 8 herausdrückt, wobei dieses über eine dritte Rückführleitung 46 durch das geöffnete vierte Ladeventil 36 in den Erwärmungshohlraum 20 einströmt, in welchem es wiederum erwärmt wird. Weiterhin wird aus dem Kühlhohlraum 21 kaltes Arbeitsmedium über eine zweite Ladeleitung 47 durch das geöffnete dritte Ladeventil 34 in den zweiten Ladezylinder 17 eingesaugt, da sich der zweite Ladekolben 16 aus diesem herausbewegt. Demgegenüber wird das Arbeitsmedium vom ersten Arbeitskolben 1 aus dem ersten Arbeitszylinder 2 herausgepreßt, wobei es über eine vierte Rückführleitung 48 durch das geöffnete vierte Arbeitsventil 35 in den Kühlhohlraum 21 strömt, in welchem ihm Wärme entzogen wird. Während des zweiten Arbeitstaktes sind das erste Arbeitsventil 26, das zweite Arbeitsventil 32, das erste Ladeventil 27 und das vierte Ladeventil 36 geschlossen.
Bei der in den Fig.n 1 und 2 dargestellten Ausführungsform bewirkt der Linearkraftübertragungsblock 4 jeweils im wesentlichen an den Umkehrpunkten der Linearbewegung die Umschaltung der genannten Steuerventile, so daß die zur Aufrechterhaltung der Bewegung erforderliche Kraft abwechselnd vom ersten Arbeitskolben und vom zweiten Arbeitskolben bereitgestellt wird. Aufgrund der streng linearen Kraftführung werden bei dieser Ausführungsform keine Kurbelwellen und Pleuelstangen benötigt, wie dies bei herkömmlichen Verbrennungskraftmaschinen der Fall ist. Die Materialbeanspruchungen sind daher geringer, was in Verbindung mit den relativ geringen Arbeitsgeschwindigkeiten zu einer hohen Lebensdauer der Maschine und zu einer bemerkenswerten Laufruhe führt. Abgewandelte Ausführungsformen der Erfindung können aber auch das Kurbelwellenprinzip nutzen.
Um die bereitgestellte mechanische Energie beispielsweise zu Antriebszwecken zu nutzen ist bei der dargestellten Ausführungsform an dem Linearkraftübertragungsblock 4 eine Zahnstange 50 angebracht, in welche ein Zahnrad 51 eingreift. Aufgrund der beschriebenen zweitaktigen Arbeitsweise der kalorischen Maschine ergibt sich eine alternierende Linearbewegung der Zahnstange 50, die in einer Drehbewegung des Zahnrads 51 mit wechselndem Richtungssinn resultiert.
Fig. 3 zeigt eine vereinfachte Prinzipdarstellung einer Möglichkeit, diese Drehbewegung mit wechselndem Richtungssinn in eine Drehbewegung mit gleichbleibendem Richtungssinn umzuwandeln. Die Zahnstange 50 steht in diesem Fall mit einem ersten Freilaufgetriebe 52 und einem zweiten Freilaufgetriebe 53 in Eingriff, die ihrerseits jeweils in ein zentrales Zahnrad 54 eingreifen. Die Freilaufgetriebe 52, 53 sind so angeordnet, daß je nach Bewegungsrichtung der Zahnstange 50 immer nur ein Freilaufgetriebe eine Kraftübertragung an das zentrale Zahnrad 54 durchführt, so daß dieses in eine Drehbewegung mit gleichbleibendem Richtungssinn versetzt wird. An dem zentralen Zahnrad 54 kann dann eine Abtriebswelle befestigt sein.
Die erfindungsgemäße kalorische Maschine kann auch mit beliebigen anderen Getriebearten ausgerüstet werden. Ebenso ist es möglich, die Steuerung der Ventile nicht auf mechanische sondern auf elektrische, hydraulische oder sonstige Weise vorzunehmen. Die erläuterte kalorische Maschine kann als kompakte Einheit aufgebaut werden, so daß die Zusammenschaltung mehrerer solcher Einheiten ohne Schwierigkeiten möglich ist. Auf diese Weise lassen sich beispielsweise Motoren aufbauen, die mehrere dieser Einheiten in sich vereinen.
Ebenso ist es möglich, die lineare Kraftführung durch ein Kurbelwellenprinzip zu ersetzen, wobei alle Kolben über Pleuelstangen an eine gemeinsame Kurbelwelle gekoppelt werden.

Claims (9)

  1. Kalorische Maschine, die mit einem Arbeitsmedium in zwei Arbeitstakten betrieben wird, umfassend:
    einen ersten Arbeitskolben (1), der in einem ersten Arbeitszylinder (2) läuft und über eine erste Schubstange (3) an einen Linearkraftübertragungsblock (4) gekoppelt ist, welcher in der Bewegungsrichtung des ersten Arbeitskolbens verschiebbar ist;
    einen ersten Ladekolben (7), der in einem ersten Ladezylinder (8) läuft und über eine parallel zur ersten Schubstange (3) angeordnete zweite Schubstange (9) an den Linearkraftübertragungsblock (4) gekoppelt ist;
    einen zweiten Arbeitskolben (11), der in einem zweiten Arbeitszylinder (12) in zum ersten Arbeitskolben (1) entgegengesetzter Arbeitsrichtung läuft und über eine dritte Schubstange (13) an den Linearkraftübertragungsblock (4) gekoppelt ist;
    einen zweiten Ladekolben (16), der in einem zweiten Ladezylinder (17) in zum ersten Ladekolben (7) entgegengesetzter Arbeitsrichtung läuft und über eine parallel zur dritten Schubstange (13) angeordnete vierte Schubstange (18) an den Linearkraftübertragungsblock (4) gekoppelt ist;
    einen Erwärmungshohlraum (20), in welchem dem Arbeitsmedium Wärme zugeführt wird; und
    einen Kühlhohlraum (21), in welchem dem Arbeitsmedium Wärme entzogen wird;
    wobei während des ersten Arbeitstaktes das erwärmte Arbeitsmedium aus dem Erwärmungshohlraum (20) über ein erstes Arbeitsventil (26) in den ersten Arbeitszylinder (2) und aus dem zweiten Arbeitszylinder (12) über ein zweites Arbeitsventil (32) in den Kühlhohlraum (21) strömt, während das abgekühlte Arbeitsmedium aus dem Kühlhohlraum (21) über ein erstes Ladeventil (28) in den ersten Ladezylinder (8) und aus dem zweiten Ladezylinder (17) über ein zweites Ladeventil (30) in den Erwärmungshohlraum (20) strömt; und wobei während des zweiten Arbeitstaktes das erwärmte Arbeitsmedium aus dem Erwärmungshohlraum (20) über ein drittes Arbeitsventil (33) in den zweiten Arbeitszylinder (12) und aus dem ersten Arbeitszylinder (2) über ein viertes Arbeitsventil (35) in den Kühlhohlraum (21) strömt, während das abgekühlte Arbeitsmedium aus dem Kühlhohlraum (21) über ein drittes Ladeventil (34) in den zweiten Ladezylinder (17) und aus dem ersten Ladezylinder (8) über ein viertes Ladeventil (36) in den Erwärmungshohlraum (20) strömt; und wobei während des ersten Arbeitstaktes das dritte und vierte Arbeitsventil (33, 35) und das dritte und vierte Ladeventil (34, 36) geschlossen sind und während des zweiten Arbeitstaktes das erste und zweite Arbeitsventil (26, 32) und das erste und zweite Ladeventil (27, 30) geschlossen sind.
  2. Kalorische Maschine nach Anspruch 1 , dadurch gekennzeichnet, daß Erwärmungshohlraum (20) und Kühlhohlraum (21) jeweils ein konstantes Volumen besitzen.
  3. Kalorische Maschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Linearkraftübertragungsblock (4) ein durch Führungssäulen (41) und Führungshülsen (40) verschiebbar gelagertes Gestell ist, welches auf einer ersten Seite (5) an den ersten Arbeitskolben (1) und den ersten Ladekolben (7) und an einer zweiten, der ersten gegenüberliegenden Seite (14) an den zweiten Arbeitskolben (11) und den zweiten Ladekolben (16) gekoppelt ist.
  4. Kalorische Maschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß alle Ventile (26, 27, 30, 32-36) mechanisch vom Linearkraftübertragungsblock (4) betätigt werden.
  5. Kalorische Maschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß am Linearkraftübertragungsblock (4) eine Zahnstange (50) angeordnet ist, in die zwei gegenläufig wirkende Freilaufgetriebe (52, 53) eingreifen, die ihrerseits mit einem Zahnrad (54) in Eingriff stehen, so daß die alternierende Linearbewegung in eine kontinuierliche Drehbewegung umgesetzt wird.
  6. Kalorische Maschine nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß am Linearkraftübertragungsblock eine langgestreckte elektrische Erregerwicklung angeordnet ist, die in umgebenden elektrischen Spulen linear bewegt wird, so daß in diesen Spulen eine elektrische Spannung induziert wird.
  7. Kalorische Maschine nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Erwärmungshohlraum (20) als Sonnenkollektor ausgebildet ist.
  8. Motoreinheit zur Bereitstellung mechanischer Energie, dadurch gekennzeichnet, daß mindestens zwei kalorische Maschinen nach einem der Ansprüche 1 bis 7 zusammengeschaltet sind.
  9. Motoreinheit nach Anspruch 8, dadurch gekennzeichnet, daß vier kalorische Maschinen, die jeweils um 90° phasenversetzt arbeiten, zusammengeschaltet sind.
EP99125201A 1998-12-29 1999-12-17 Kalorische Maschine Expired - Lifetime EP1016781B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19860522 1998-12-29
DE19860522A DE19860522C1 (de) 1998-12-29 1998-12-29 Kalorische Maschine

Publications (3)

Publication Number Publication Date
EP1016781A2 EP1016781A2 (de) 2000-07-05
EP1016781A3 EP1016781A3 (de) 2001-06-27
EP1016781B1 true EP1016781B1 (de) 2005-02-23

Family

ID=7892981

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99125201A Expired - Lifetime EP1016781B1 (de) 1998-12-29 1999-12-17 Kalorische Maschine

Country Status (6)

Country Link
EP (1) EP1016781B1 (de)
AT (1) ATE289656T1 (de)
CY (1) CY1105562T1 (de)
DE (2) DE19860522C1 (de)
ES (1) ES2238808T3 (de)
PT (1) PT1016781E (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085991A (ja) * 2003-09-09 2005-03-31 Canon Inc 露光装置及び該装置を用いたデバイス製造方法
CN103912405B (zh) * 2014-04-30 2016-04-06 郭远军 一种平行运动热能动力机器及其做功方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3834070A1 (de) * 1988-10-06 1990-04-12 Heidelberg Goetz Waermekraftmaschine nach dem stirling-prinzip oder dem ericsen-prinzip
US5180939A (en) * 1992-02-24 1993-01-19 Cummins Power Generation, Inc. Mechanically commutated linear alternator
WO1993022551A1 (en) * 1992-05-06 1993-11-11 Balanced Engines, Inc. Balanced compound engine
US5693991A (en) * 1996-02-09 1997-12-02 Medis El Ltd. Synchronous twin reciprocating piston apparatus

Also Published As

Publication number Publication date
CY1105562T1 (el) 2010-07-28
DE19860522C1 (de) 2000-04-20
PT1016781E (pt) 2005-06-30
ES2238808T3 (es) 2005-09-01
EP1016781A2 (de) 2000-07-05
ATE289656T1 (de) 2005-03-15
EP1016781A3 (de) 2001-06-27
DE59911656D1 (de) 2005-03-31

Similar Documents

Publication Publication Date Title
DE3709266C2 (de)
DE69732929T2 (de) Einlass- System für eine Stirlingmaschine
DE102006043250B4 (de) Mehrfachzylinder-Freikolben-Stirlingmaschinen und -Wärmepumpen in Alpha-Anordnung mit abgestuften Kolben
DE3709790C2 (de)
DE1933159B2 (de) Nach dem Stfrling-ProzeB arbeitende Kolbenmaschine
DE2942212A1 (de) Thermodynamische maschine
DE1949191B2 (de) Hubkolbenmaschine mit einem heissgasteil und einem kaltgasteil
DE2148842A1 (de) Waermekraftmaschine oder -pumpe
DE4018943A1 (de) Kolbenmaschine
EP3942172B1 (de) Stirlingmotor
DE2539878C2 (de) Thermodynamische Maschine mit geschlossenem Kreislauf
DE102007039912B4 (de) Asynchroner Stromgenerator mit Freikolbenmotor
EP1016781B1 (de) Kalorische Maschine
DE3408480A1 (de) Heissgasmotor nach dem prinzip des stirling-motors
DE102005016469A1 (de) Freikolbenmotor mit hydrostatischer und elektrischer Leistungsabgabe
DE102010018654B4 (de) Zyklisch arbeitende Wärme-Kraftmaschine
EP1509690B1 (de) Verfahren und einrichtung zur umwandlung von wärmeenergie in kinetische energie
DE1601459C3 (de) Vorrichtung mit einem Heißgasmotor und einer mit ihm gekuppelten anzutreibenden Vorrichtung
DE102008006137B4 (de) Taumelgetriebe und Taumelgetriebesystem
DE69816446T2 (de) Thermische maschine
DE102006013468A1 (de) Heißgasmaschine
DE4320356A1 (de) Stirling-Wärmekraftmaschine in Verdrängerbauweise
DE886827C (de) Freikolben-Brennkraftmaschine
DE3315493A1 (de) Heissgasgenerator mit raedertriebwerk
DE102011087790B4 (de) Vorrichtung und Verfahren zur Stromerzeugung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011107

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050223

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59911656

Country of ref document: DE

Date of ref document: 20050331

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050523

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050523

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050429

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20050401626

Country of ref document: GR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20050509

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2238808

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

26N No opposition filed

Effective date: 20051124

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20081117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20121218

Year of fee payment: 14

Ref country code: CY

Payment date: 20121019

Year of fee payment: 14

Ref country code: DE

Payment date: 20121018

Year of fee payment: 14

Ref country code: CH

Payment date: 20121218

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20121228

Year of fee payment: 14

Ref country code: IT

Payment date: 20121220

Year of fee payment: 14

Ref country code: PT

Payment date: 20121205

Year of fee payment: 14

Ref country code: GB

Payment date: 20121218

Year of fee payment: 14

Ref country code: ES

Payment date: 20121217

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121217

Year of fee payment: 14

Ref country code: AT

Payment date: 20121214

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20121217

Year of fee payment: 14

Ref country code: FR

Payment date: 20130123

Year of fee payment: 14

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20140617

BERE Be: lapsed

Owner name: *HOFFMANN JURGEN

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59911656

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 289656

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131217

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131217

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131217

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20050401626

Country of ref document: GR

Effective date: 20140702

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59911656

Country of ref document: DE

Effective date: 20140701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140702

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131217

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131217