EP1287523A1 - Datenspeicher - Google Patents

Datenspeicher

Info

Publication number
EP1287523A1
EP1287523A1 EP01960233A EP01960233A EP1287523A1 EP 1287523 A1 EP1287523 A1 EP 1287523A1 EP 01960233 A EP01960233 A EP 01960233A EP 01960233 A EP01960233 A EP 01960233A EP 1287523 A1 EP1287523 A1 EP 1287523A1
Authority
EP
European Patent Office
Prior art keywords
polymer film
data memory
absorber
memory according
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01960233A
Other languages
English (en)
French (fr)
Inventor
Jörn LEIBER
Bernhard MÜSSIG
Stefan Stadler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesa SE
Original Assignee
Tesa SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa SE filed Critical Tesa SE
Publication of EP1287523A1 publication Critical patent/EP1287523A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/003Recording, reproducing or erasing systems characterised by the shape or form of the carrier with webs, filaments or wires, e.g. belts, spooled tapes or films of quasi-infinite extent
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0025Recording, reproducing or erasing systems characterised by the shape or form of the carrier with cylinders or cylinder-like carriers or cylindrical sections or flat carriers loaded onto a cylindrical surface, e.g. truncated cones

Definitions

  • the invention relates to a data memory with an optically writable and readable information carrier.
  • a data memory with an optically writable and readable information carrier which has a polymer film, the refractive index of which can be changed locally by heating. If the polymer film is locally heated with the aid of a writing beam, the change in the refractive index results in a change in the reflectivity (selectivity) at the point under consideration. This can be used to store information.
  • a reading beam is used to read out the information, which is more strongly reflected by locations with increased reflectivity, which can be measured in order to record the information.
  • the polymer film which consists, for example, of polymethyl methacrylate or polypropylene, can be biased (stretched) in both surface directions during production, as a result of which a high intrinsic energy is stored in the material is.
  • a strong change in material (compression) by reshaping the refractive index changing in the desired manner.
  • an absorber for example a dye
  • a sufficiently large change in the refractive index (for example a change of approximately 0.2) can be achieved with a relatively low intensity of the write beam.
  • the information is read out in reflection so that the reading beam in the storage medium has to travel twice as long as the writing beam during the writing process.
  • the change in reflectivity with a change in the refractive index of, for example, 0.2 is only of the order of 1%. Therefore, the absorber is particularly annoying when reading, especially if the information carrier is multilayered, and there is a risk that the reading beam detector will no longer receive sufficient power.
  • the data memory according to the invention has an optically writable and readable information carrier which has a polymer film, the refractive index of which can be changed locally by heating is.
  • the polymer film is assigned an absorber which is set up to at least partially absorb a write beam and to at least partially emit the heat generated thereby locally to the polymer film.
  • the absorber is arranged so as to preferentially absorb light with a polarization direction that is matched to the orientation of the absorber.
  • the direction of polarization of which is matched to the orientation of the absorber - more precisely to the orientation of the transition dipole moment of the absorber - high absorption and thus effective local heating of the polymer film can be achieved by its refractive index to change.
  • the reading beam is polarized in a direction that is rotated with respect to the polarization direction of the write beam and is preferably perpendicular to it, the reading beam is attenuated by the absorber only to a relatively small extent or practically not at all, so that the reading beam can be used with little effort and low intensity a reliable reading of the data from the information carrier is possible.
  • the polymer film is preferably stretched, for example by being biased in its plane in two perpendicular directions during manufacture. This means that a high energy density is stored in the film material.
  • a strong change in material for example a material compression
  • the change in the refractive index in the region which is locally heated by the write beam is preferably of the order of magnitude of 0.2, which leads to a change in the local reflectivity, which can be detected well with the aid of the read beam.
  • the information units are formed in the polymer film by changing the optical properties in a region with a preferred size of less than 1 ⁇ m.
  • the information can be stored in binary form, ie the local reflectivity only takes two values. This means that if the reflectivity is above a defined threshold value, a "1" is stored, for example, at the position of the information carrier under consideration, and if it is below this threshold value or below another, lower threshold value, correspondingly a "0". However, it is also conceivable to save the information in several gray levels. This is possible if the reflectivity of the polymer film can be locally changed in a targeted manner without saturation being achieved, which can be achieved, for example, with the aid of a biaxially oriented polypropylene film.
  • the polymer film contains absorbers.
  • the absorber contained in the polymer film is preferably oriented in a preferred direction by stretching the polymer film.
  • absorber molecules can be introduced into the film mass during the production of the polymer film and aligned during the stretching process, so that the transition dipole moments of the absorber molecules have a preferred direction from a statistical point of view. If the polymer film is stretched in two directions, it may have to be stretched more in one direction after the introduction of the absorber molecules in order to achieve the desired orientation of the absorber.
  • a layer containing absorbers is arranged on the polymer film.
  • This layer can, for example, be an adhesive layer in order to connect polymer film layers arranged one above the other (see below).
  • Embodiments in which both the polymer film itself and the absorber layer arranged on the polymer film included are also possible.
  • the absorber is preferably introduced into such a layer in an oriented manner.
  • the absorber has dye molecules whose transition dipole moments are arranged in a preferred direction.
  • the dye molecules preferably have a high absorption capacity in the spectral range used for the write beam.
  • the write beam is preferably polarized parallel to the transition dipole moment of the dye molecules, while the direction of polarization of the read beam is preferably perpendicular to it.
  • the data storage device can in principle have an information carrier with a polymer film which is arranged in a single layer.
  • the information carrier has a plurality of polymer film layers through which information units can be written into a preselected polymer film layer or can be read out from a preselected polymer film layer. This results in a high storage density.
  • the write beam is defocused in the polymer film layers adjacent to the polymer film layer under consideration, so that the adjacent polymer film layers are locally only slightly warmed and the stored information is not changed there.
  • the absorber assigned to the different polymer film layers can be oriented in different directions.
  • a preselected polymer film layer can be addressed even more specifically during the writing process by optimizing the direction of polarization of the write beam to the orientation of the absorber in the preselected polymer film layer, so that maximum absorption takes place there.
  • the write beam (apart from the fact that it is defocused there) is only absorbed to a lesser extent.
  • An adhesive layer is preferably arranged in each case between adjacent polymer film layers, which, for example, can have an adhesive (for example an acrylate adhesive) and optionally contain absorbers.
  • the layers of polymer film can be glued together using the adhesive layers.
  • the refractive index of the adhesion layer deviates only slightly from the refractive index of the polymer film. Because at every interface between two layers with different refractive indices there is a reflection which in the present case weakens the intensity of the write beam and the read beam.
  • the differences in the refractive indices of the polymer film layers and the adhesive layers can be used to format the data storage device.
  • the difference in the refractive indices of polymer film layers and adhesive layers is preferably so small that the reflection at the interface is below 4% or even better below 1%. Particularly favorable conditions can be achieved if the difference in the refractive indices is less than 0.005.
  • the information carrier is wound up in a spiral.
  • the data storage device preferably has an optically transparent winding core, which is set up to accommodate a writing and reading device of a drive that is matched to the data storage device.
  • the drive can have a write and / or read head that moves in the interior of the transparent winding core relative to the data memory that is at rest or in which the write and / or the reading beam can be coupled into the data memory via moving optical elements. Because the data storage itself is at rest, it does not have to be balanced with regard to a rapid rotary movement.
  • Preferred materials for the polymer film are biaxially oriented polypropylene (BOPP) or polymethyl methacrylate (PMMA) with typical film thicknesses of 10 ⁇ m to 100 ⁇ m, for example approximately 50 ⁇ m or approximately 35 ⁇ m. Such film thicknesses ensure that the information on adjacent polymer film layers can be separated from one another in a readily resolvable manner with the aid of drives, such as are known in principle, for example, from DVD technology. Other materials for the polymer film are also conceivable.
  • BOPP biaxially oriented polypropylene
  • PMMA polymethyl methacrylate
  • an acrylate adhesive can be used for an adhesive layer, the layer thickness typically being between 1 ⁇ m and 40 ⁇ m and small layer thicknesses being preferred.
  • a suitable absorber should be matched to the spectral properties of the write beam.
  • the write beam and the read beam are preferably emitted by a laser, the same or the same laser being used for the write beam and the read beam.
  • a pulsed mode of operation of the laser is suitable for the write beam, and a continuous wave mode for the read beam.
  • wavelengths of 630 n or 532 nm are common; the technical development goes to shorter wavelengths, since this enables a higher storage density to be achieved.
  • the absorber is, for example, the dye Dispersrot 1 (DRI), an azo dye which is used in applications of nonlinear optics in polarized polymer films. DRI also has the advantage that the transition dipole moment lies in the direction of the molecular axis. Other absorbers are also possible. The invention is explained in more detail below with the aid of examples. The drawings show in
  • FIG. 1 shows a data storage device according to the invention, which has a spirally wound information carrier and a winding core, in a schematic perspective illustration, parts of a drive that is matched to the data storage device being arranged within the winding core, and
  • FIG. 2 shows a schematic representation of the orientation of dye molecules used as absorbers in the data memory according to the invention.
  • FIG. 1 shows a schematic representation of a data store 1 and a write and read device 2 of a drive matched to the data store 1.
  • the data memory 1 has a number of layers 10 of a polymer film 11 serving as an information carrier, which is wound spirally on an optically transparent winding core.
  • the sleeve-shaped winding core is not shown in Figure 1 for the sake of clarity; it is located within the innermost layer 10.
  • the individual layers 10 of the polymer film 11 are shown in FIG. 1 as concentric circular rings, although the layers 10 are formed by spiral-like winding of the polymer film 11.
  • An adhesive layer 12 is arranged between adjacent layers 10 of the polymer film 11. For reasons of clarity, the adhesive layers 12 are shown in FIG. 1 in a thickness that is not to scale.
  • the polymer film 11 consists of biaxially oriented polypropylene and was pretensioned in both surface directions before winding.
  • the polymer film 11 has a thickness of 35 ⁇ m; other thicknesses in the range from 10 ⁇ m to 100 ⁇ m or thicknesses outside this range are also conceivable.
  • the adhesive layers 12 are free of gas bubbles and in the exemplary embodiment consist of acrylic adhesive with a thickness of 23 ⁇ m, preferred layer thicknesses being between 1 ⁇ m and 40 ⁇ m.
  • the data memory 1 contains twenty layers 10 of the polymer film 11 and has an outer diameter of approximately 30 mm. The height of the winding cylinder is 19 mm. A different number of layers 10 or other dimensions are also possible. The number of windings or layers 10 can be, for example, between 10 and 30, but can also be greater than 30.
  • an absorber in the form of dye molecules is introduced into the polymer film 11, which, when the polymer film 11 is stretched, is statistically aligned analogously to the production of polarizing films in such a way that its transition dipole moments are oriented in a preferred direction. This is explained in more detail below.
  • the writing and reading device 2 arranged in the interior of the winding core contains a writing and reading head 20, which can be rotated in the directions of the arrows and moved axially back and forth by means of a mechanism 21.
  • the write and read head 20 has optical elements, with the aid of which a light beam (for example of the wavelength 630 nm or 532 n) generated by a laser not shown in FIG. 1 can be focused on the individual layers 10 of the polymer film 11. Since the read and write head 20 is moved by means of the mechanism 21, it can completely scan all layers 10 of the data memory 1. In the exemplary embodiment, the data memory 1 is at rest. It therefore does not have to be balanced with regard to a high rotational speed, in contrast to the read and write head 20.
  • the elements provided for balancing the read and write head 20 are shown in FIG Not shown.
  • the laser mentioned is located outside the read and write head 20 and is stationary; the laser beam is directed into the read and write head 20 via optical elements.
  • the laser in the exemplary embodiment is operated with a beam power of approximately 1 mW.
  • the laser beam serves as a write beam and is focused on a preselected layer 10 of the polymer film 11, so that the beam spot is less than 1 ⁇ m, the light energy being introduced in the form of short pulses of approximately 10 ⁇ s duration.
  • the write beam is polarized, its polarization direction being aligned parallel to the transition dipole moment of the dye molecules of the absorber in the preselected position 10. As a result, the energy of the write beam is optimally absorbed in the beam spot, which leads to local heating of the polymer film 11 and thus to a local change in the refractive index and the reflectivity.
  • the laser In order to read stored information from the data memory 1, the laser is operated in the continuous wave mode (CW mode), the laser beam serving as the reading beam also being polarized, but in a polarization direction rotated by 90 ° with respect to the write beam.
  • the reading beam is therefore practically not weakened by the absorber in the individual layers 10 of the polymer film 11 and can reach the point on which it is focused unimpeded.
  • the reading beam is reflected as a function of the stored information and the intensity of the reflected beam is detected by a detector in the writing and reading device 2.
  • FIG. 2 illustrates the orientation of the polarization directions and the transition dipole moment of the dye molecules of the absorber.
  • the transition dipole moments of the dye molecules denoted by 30 in the polymer film 11 are arranged in an oriented manner, specifically statistically preferably parallel to the x-axis in the illustration according to FIG. 2, as indicated by the double arrows.
  • the direction of polarization of the write beam also runs parallel to the x-axis, while the direction of polarization of the read beam is perpendicular to it, namely parallel to the y-axis.
  • the absorber Disperse Red 1 (DRl) is suitable for a polymer film made of polypropylene.
  • DRI is an azo dye that is roughly rod-shaped and therefore easy to align. This dye is known from applications with polarized dye-containing polymer films in non-linear optics. DRI can be introduced into a polymer film stretched only in one direction, which is then stretched in the other direction, or into an undrawn polymer film, which is subsequently stretched biaxially, but to different degrees in the two directions. In both cases, the desired alignment of the absorber molecules results.
  • Polypropylene are introduced, with temperatures in the order of 200 ° C occur, are absorbers with higher Temperature stability, such as anthraquinone or indanthrene dyes, more suitable than DRI.
  • the polymer film 11 made of biaxially oriented polypropylene contains the absorber DR1 in a concentration such that the given film thickness of 35 ⁇ m results in an optical density of 0.2.
  • the optical density at the light wavelength of the write beam is preferably in the range from 0.1 to 0.3 for a polymer film layer, but can also be smaller or larger.
  • the optical density is a parameter which is well suited for characterizing the absorption behavior.
  • T I / I 0 is the transmission through a layer of thickness d, the intensity of the incident radiation falling from I 0 to I, E is the extinction coefficient at the wavelength ⁇ used (concentration-independent substance parameter), and c is that Concentration of the absorber.
  • PET polyethylene terephthalate
  • DRI absorber dye

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

Ein Datenspeicher (1) hat einen optisch beschreibbaren und auslesbaren Informationsträger, der eine Polymerfolie (11) aufweist, deren Brechungsindex lokal durch Erwärmung veränderbar ist. Der Polymerfolie (11) ist eine Absorber zugeordnet, der dazu eingerichtet ist, einen Schreibstrahl zumindest teilweise zu absorbieren und die dabei erzeugte Wärme zumindest teilweise lokal an die Polymerfolie (11) abzugeben, wobei der Absorber orientiert anegordnet ist, um Licht mit einer auf die Orientierung des Absorbers abgestimmten Polarisationsrichtung bevorzugt zu absorbieren.

Description

Datenspeicher
Die Erfindung betrifft einen Datenspeicher mit einem optisch beschreibbaren und auslesbaren Informationsträger.
Aus der DE 298 16 802 Ul ist ein Datenspeicher mit einem optisch beschreibbaren und auslesbaren Informationsträger bekannt, der eine Polymerfolie aufweist, deren Brechungsindex lokal durch Erwärmung veränderbar ist. Wenn die Polymerfolie mit Hilfe eines Schreibstrahls lokal erwärmt wird, hat die Änderung des Brechungsindex eine Änderung des Reflexionsvermögens (Re lektivität) an der betrachteten Stelle zur Folge. Dies kann zum Speichern von Information ausgenutzt werden. Zum Auslesen der Information wird ein Lesestrahl verwendet, der von Stellen mit erhöhter Reflektivität stärker reflektiert wird, was sich messen läßt, um die Information zu erfassen. Die Polymerfolie, die zum Beispiel aus Polymethylmethacrylat oder Polypropylen besteht, kann bei der Herstellung in beiden Flächenrichtungen vorgespannt (verstreckt) werden, wodurch im Material eine hohe Eigenenergie gespeichert ist. Bei einer lokalen Erwärmung durch den Schreibstrahl findet bei einer derartigen Ausgestaltung der Polymerfolie eine starke Materialänderung (Verdichtung) durch Rückverformung statt, wobei sich der Brechungsindex in der gewünschten Weise ändert. Bei dem vorbekannten Datenspeicher kann der Polymerfolie ein Absorber (zum Beispiel ein Farbstoff) zugeordnet sein, der den Schreibstrahl bevorzugt absorbiert und die dabei erzeugte Wärme lokal an die Polymerfolie abgibt. Mit Hilfe eines Absorbers läßt sich eine ausreichend große Änderung des Brechungsindex (zum Beispiel eine Änderung von etwa 0,2) bereits mit einer relativ geringen Intensität des Schreibstrahls erzielen.
Das Auslesen der Information erfolgt in Reflexion, so daß der Lesestrahl im Speichermedium einen doppelt so langen Weg zurück- legen muß wie der Schreibstrahl beim Schreibvorgang. Außerdem liegt die Änderung der Reflektivität bei einer Änderung des Brechungsindex von zum Beispiel 0,2 nur in der Größenordnung von 1 %. Daher stört der Absorber gerade beim Lesen beträchtlich, besonders wenn der Informationsträger mehrlagig ist, und es besteht die Gefahr, daß am Lesestrahldetektor nicht mehr genügend Leistung ankommt.
Es ist Aufgabe der Erfindung, eine Möglichkeit zu schaffen, um bei einem Datenspeicher der vorgenannten Art die Vorteile eines Absorbers für den Schreibvorgang nutzen zu können, ohne dabei die Nachteile für den Lesevorgang in Kauf nehmen zu müssen.
Diese Aufgabe wird gelöst durch einen Datenspeicher mit den Merkmalen des Anspruchs 1. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen. Der Anspruch 16 betrifft die Verwendung eines derartigen Datenspeichers in einem darauf abgestimmten Laufwerk.
Der erfindungsgemäße Datenspeicher hat einen optisch beschreib- baren und auslesbaren Informationsträger, der eine Polymerfolie aufweist, deren BrechungsIndex lokal durch Erwärmung veränderbar ist. Der Polymerfolie ist ein Absorber zugeordnet, der dazu eingerichtet ist, einen Schreibstrahl zumindest teilweise zu absorbieren und die dabei erzeugte Wärme zumindest teilweise lokal an die Polymerfolie abzugeben. Erfindungsgemäß ist der Absorber orientiert angeordnet, um Licht mit einer auf die Orientierung des Absorbers abgestimmten Polarisationsrichtung bevorzugt zu absorbieren.
Beim Schreiben von Information mit Hilfe eines polarisierten Schreibstrahls, dessen Polarisationsrichtung auf die Orientierung des Absorbers - genauer gesagt auf die Orientierung des Übergangsdipolmoments des Absorbers - abgestimmt ist, läßt sich somit eine hohe Absorption und damit eine effektive lokale Erwärmung der Polymerfolie erreichen, um deren Brechungsindex zu ändern. Wenn der Lesestrahl in einer Richtung polarisiert ist, die gegenüber der Polarisationsrichtung des SchreibStrahls gedreht ist und vorzugsweise senkrecht dazu steht, wird der Lesestrahl von dem Absorber nur in verhältnismäßig geringem Maße oder praktisch gar nicht abgeschwächt, so daß mit geringem Aufwand und niedriger Intensität des Lesestrahls ein sicheres Auslesen der Daten von dem Informationsträger möglich ist.
Vorzugsweise ist die Polymerfolie verstreckt, zum Beispiel indem sie bei der Herstellung innerhalb ihrer Ebene in zwei senkrecht aufeinanderstehenden Richtungen vorgespannt wird. Dies führt dazu, daß im Folienmaterial eine hohe Energiedichte gespeichert ist. Durch Deposition einer verhältnismäßig geringen Energiemenge pro Flächeneinheit mit Hilfe eines Schreibstrahls kann dann eine starke Materialänderung (zum Beispiel eine Materialverdichtung) durch Rückverformung erhalten werden, die in einer lokalen Änderung des Brechungsindex und einer Änderung der optischen Weglänge im Material resultiert. Vorzugsweise liegt die Änderung des Brechungsindex in dem Bereich, der durch den Schreibstrahl lokal erwärmt wird, in der Größenordnung von 0,2, was zu einer Änderung der lokalen Reflektivität führt, die sich mit Hilfe des Lesestrahls gut erfassen läßt. In der Polymerfolie sind die Informationseinheiten durch Änderung der optischen Eigenschaften in einem Bereich mit einer bevorzugten Größe von weniger als 1 μm ausgebildet. Dabei kann die Information binär gespeichert sein, d.h. die lokale Reflektivität nimmt nur zwei Werte an. Das heißt, wenn die Reflektivität oberhalb eines festgelegten Schwellenwerts liegt, ist an der betrachteten Stelle des Informationsträgers z.B. eine "1" gespeichert, und wenn sie unterhalb dieses Schwellenwerts oder unterhalb eines anderen, niedrigeren Schwellenwerts liegt, entsprechend eine "0". Es ist aber auch denkbar, die Information in mehreren Graustufen abzuspeichern. Dies ist möglich, wenn sich die Reflektivität der Polymerfolie lokal auf gezielte Weise definiert verändern läßt, ohne daß dabei eine Sättigung erreicht wird, was zum Beispiel mit Hilfe einer biaxial orientierten Polypropylenfolie erreichbar ist.
Bei einer bevorzugten Ausgestaltung der Erfindung enthält die Polymerfolie Absorber. Dabei ist der in der Polymerfolie enthaltene Absorber vorzugsweise durch Verstreckung der Polymer- folie in einer Vorzugsrichtung orientiert. Dazu können bei der Herstellung der Polymerfolie Absorbermoleküle in die Folienmasse eingebracht und beim Verstreckungsvorgang ausgerichtet werden, so daß die Übergangsdipolmomente der Absorbermoleküle statistisch gesehen eine Vorzugsrichtung haben. Wenn die Polymerfolie in zwei Richtungen verstreckt ist, muß sie gegebenenfalls nach dem Einbringen der Absorbermoleküle in einer Richtung stärker verstreckt sein, um die gewünschte Orientierung des Absorbers zu erreichen.
Es ist auch denkbar, daß auf der Polymerfolie eine Schicht angeordnet ist, die Absorber enthält. Diese Schicht kann zum Beispiel eine Adhäsionsschicht sein, um übereinander angeordnete Polymerfolienlagen miteinander zu verbinden (siehe unten). Ausgestaltungen, bei denen sowohl die Polymerfolie selbst als auch die auf der Polymerfolie angeordnete Schicht Absorber enthalten, sind ebenfalls möglich. In eine derartige Schicht wird der Absorber vorzugsweise orientiert eingebracht.
Bei einer bevorzugten Ausgestaltung der Erfindung weist der Absorber Farbstoff oleküle auf, deren Übergangsdipolmomente in einer Vorzugsrichtung orientiert angeordnet sind. Die Farbstoff- moleküle haben vorzugsweise ein hohes Absorptionsvermögen in dem für den Schreibstrahl verwendeten Spektralbereich. Der Schreibstrahl ist vorzugsweise parallel zum Übergangsdipolmoment der Farbstoffmoleküle polarisiert, während die Polarisationsrichtung des Lesestrahls vorzugsweise senkrecht dazu steht.
Der erfindungsgemäße Datenspeicher kann im Prinzip einen Informationsträger mit einer Polymerfolie haben, die in einer einzigen Lage angeordnet ist. Bei einer bevorzugten Ausführungsform der Erfindung weist der Informationsträger jedoch mehrere Polymerfolienlagen auf, durch die hindurch Informationseinheiten in eine vorgewählte Polymerfolienlage schreibbar oder aus einer vorgewählten Polymerfolienlage auslesbar sind. Dadurch wird eine hohe Speicherdichte erreicht. Durch Fokussieren des Schreibstrahls und des Lesestrahls auf die vorgewählte Polymerfolienlage läßt sich Information gezielt in diese Polymerfolienlage einschreiben bzw. daraus auslesen. Beim Schreibvorgang ist der Schreibstrahl in den zu der betrachteten Polymerfolienlage benachbarten Polymerfolienlagen defokussiert, so daß die benachbarten Polymerfolienlagen lokal nur geringfügig erwärmt werden und dort die gespeicherte Information nicht verändert wird.
Der unterschiedlichen Polymerfolienlagen zugeordnete Absorber kann bei einer Ausgestaltung der Erfindung in unterschiedlichen Richtungen orientiert sein. In diesem Fall läßt sich eine vorgewählte Polymerfolienlage beim Schreibvorgang noch gezielter ansprechen, indem die Polarisationsrichtung des Schreibstrahls auf die Orientierung des Absorbers in der vorgewählten Polymerfolienlage optimiert wird, so daß dort maximale Absorption erfolgt. In den zu der vorgewählten Polymerfolienlage benachbarten Polymerfolienlagen wird der Schreibstrahl dagegen (abgesehen davon, daß er dort defokuss'iert ist) nur in geringerem Maße absorbiert .
Zwischen benachbarten Polymerfolienlagen ist vorzugsweise jeweils eine Adhäsionsschicht angeordnet, die zum Beispiel einen Kleber (zum Beispiel einen Acrylatkleber) aufweisen kann und optional Absorber enthält. Mit Hilfe der Adäsionsschichten lassen sich die Polymerfolienlagen aufeinanderkleben.
Es ist vorteilhaft, wenn der Brechungsindex der AdhäsionsSchicht nur geringfügig vom Brechungsindex der Polymerfolie abweicht. Denn an jeder Grenzfläche zwischen zwei Schichten mit unter- schiedlichem Brechungsindex findet eine Reflexion statt, die im vorliegenden Fall die Intensität des Schreibstrahls und des Lesestrahls schwächt. Andererseits lassen sich die Unterschiede in den Brechungsindizes der Polymerfolienlagen und der Adhäsionsschichten zur Formatierung des Datenspeichers nutzen. Vorzugs- weise ist der Unterschied der Brechungsindizes von Polymerfolienlagen und Adhäsionsschichten so gering, daß die Reflexion an der Grenzfläche unter 4 % oder noch besser unter 1 % liegt. Besonders günstige Verhältnisse lassen sich erreichen, wenn der Unterschied der Brechungsindizes kleiner als 0,005 ist.
Bei einer bevorzugten Ausführungsform der Erfindung ist der Informationsträger spiralartig aufgewickelt. Auf diese Weise läßt sich mit Hilfe einer einzigen Polymerfolie ein viellagiger Aufbau des Datenspeichers erreichen, der eine hohe Speicherdichte und eine große Speicherkapazität ermöglicht. Dabei hat der Datenspeicher vorzugsweise einen optisch transparenten Wickelkern, der zur Aufnahme einer Schreib- und Leseeinrichtung eines auf den Datenspeicher abgestimmten Laufwerks eingerichtet ist. Das Laufwerk kann einen Schreib- und/oder Lesekopf haben, der sich im Innenraum des transparenten Wickelkerns relativ zu dem in Ruhe befindlichen Datenspeicher bewegt oder bei dem der Schreib- und/oder Lesestrahl über bewegte optische Elemente in den Datenspeicher eingekoppelt werden. Weil dabei der Datenspeicher selbst ruht, braucht er nicht im Hinblick auf eine schnelle Drehbewegung ausgewuchtet zu sein.
Bevorzugte Materialien für die Polymerfolie sind biaxial orientiertes Polypropylen (BOPP) oder Polymethylmethacrylat (PMMA) bei typischen Foliendicken von 10 um bis 100 um, zum Beispiel ca. 50 μ oder ca. 35 um. Derartige Foliendicken stellen sicher, daß die Informationen auf benachbarten Polymerfolienlagen mit Hilfe von Laufwerken, wie sie im Prinzip beispielsweise aus der DVD-Technologie bekannt sind, gut auflösbar voneinander getrennt werden können. Andere Materialien für die Polymerfolie sind ebenfalls denkbar.
Für eine Adhäsionsschicht kann zum Beispiel ein Acrylatkleber verwendet werden, wobei die Schichtdicke typischerweise zwischen 1 μm und 40 μm liegt und geringe Schichtdicken bevorzugt sind.
Ein geeigneter Absorber sollte auf die spektralen Eigenschaften des Schreibstrahls abgestimmt sein. Vorzugsweise werden der Schreibstrahl und der Lesestrahl von einem Laser emittiert, wobei für den Schreibstrahl und den Lesestrahl der gleiche oder derselbe Laser benutzt wird. Für den Schreibstrahl eignet sich eine gepulste Betriebsweise des Lasers, für den Lesestrahl ein Continuous-Wave-Modus . Derzeit sind Wellenlängen von 630 n oder 532 nm üblich; die technische Entwicklung geht zu kürzeren Wellenlängen, da sich damit eine höhere Speicherdichte erzielen läßt. Als Absorber kommt zum Beispiel der Farbstoff Dispersrot 1 (DRl) in Frage, ein Azofarbstof , der bei Anwendungen der nichtlinearen Optik in gepolten Polymerfilmen eingesetzt wird. DRl hat zudem den Vorteil, daß das Übergangsdipolmoment in Richtung der Molekülachse liegt. Andere Absorber sind ebenfalls möglic . Im folgenden wird die Erfindung anhand von Beispielen näher erläutert. Die Zeichnungen zeigen in
Figur 1 einen erfindungsgemäßen Datenspeicher, der einen spiralartig aufgewickelten Informationsträger und einen Wickelkern aufweist, in schematischer perspektivischer Darstellung, wobei innerhalb des Wickelkerns Teile eines auf den Datenspeicher abgestimmten Laufwerks angeordnet sind, und
Figur 2 eine schematische Darstellung der Orientierung von in dem erfindungsgemäßen Datenspeicher als Absorber benutzten Farbstoffmolekülen.
Figur 1 zeigt in schematischer Darstellung einen Datenspeicher 1 und eine Schreib- und Leseeinrichtung 2 eines auf den Datenspeicher 1 abgestimmten Laufwerks . Der Datenspeicher 1 weist eine Anzahl von Lagen 10 einer als Informationsträger dienenden Polymerfolie 11 auf, die spiralartig auf einen optisch trans- parenten Wickelkern aufgewickelt ist. Der hülsenförmige Wickelkern ist in Figur 1 der Übersichtlichkeit halber nicht dargestellt; er befindet sich innerhalb der innersten Lage 10. Zur besseren Veranschaulichung sind die einzelnen Lagen 10 der Polymerfolie 11 in Figur 1 als konzentrische Kreisringe gezeigt, obwohl die Lagen 10 durch spiralartiges Wickeln der Polymerfolie 11 ausgebildet sind. Zwischen benachbarten Lagen 10 der Polymerfolie 11 ist jeweils eine AdhäsionsSchicht 12 angeordnet. Aus Gründen der Übersichtlichkeit sind die Adhäsionsschichten 12 in Figur 1 in nicht maßstäblich vergrößerter Dicke eingezeichnet .
Die Polymerfolie 11 besteht im Ausführungsbeispiel aus biaxial orientiertem Polypropylen und wurde vor dem Wickeln in beiden Flächenrichtungen vorgespannt. Im Ausführungsbeispiel hat die Polymerfolie 11 eine Dicke von 35 μm; andere Dicken im Bereich von 10 μm bis 100 μm oder auch außerhalb dieses Bereichs liegende Dicken sind ebenfalls denkbar. Die Adhäsionsschichten 12 sind gasblasenfrei und bestehen im Ausführungsbeispiel aus Acrylat- kleber bei einer Dicke von 23 μm, wobei bevorzugte Schichtdicken zwischen 1 μm und 40 μm liegen. Im Ausführungsbeispiel enthält der Datenspeicher 1 zwanzig Lagen 10 der Polymerfolie 11 und hat einen Außendurchmesser von etwa 30 mm. Die Höhe des Wickelzylin- ders beträgt 19 mm. Eine andere Anzahl von Lagen 10 oder andere Abmessungen sind ebenfalls möglich. Die Anzahl der Wicklungen oder Lagen 10 kann zum Beispiel zwischen 10 und 30 liegen, aber auch größer als 30 sein.
In die Polymerfolie 11 wird bei oder nach der Herstellung ein Absorber in Form von Farbstoffmolekülen eingebracht, die beim Verstrecken der Polymerfolie 11 analog zur Herstellung von Polarisationsfolien statistisch so ausgerichtet werden, daß ihre Übergangsdipolmomente in einer Vorzugsrichtung orientiert angeordnet sind. Dies ist weiter unten näher erläutert.
Die im Innenraum des Wickelkerns angeordnete Schreib- und Leseeinrichtung 2 enthält einen Schreib- und Lesekopf 20, der mit Hilfe einer Mechanik 21 in den Richtungen der eingezeichenten Pfeile gedreht und axial hin- und herbewegt werden kann. Der Schreib- und Lesekopf 20 weist optische Elemente auf, mit deren Hilfe ein von einem in Figur 1 nicht dargestellten Laser erzeugter Lichtstrahl (zum Beispiel der Wellenlänge 630 nm oder 532 n ) auf die einzelnen Lagen 10 der Polymerfolie 11 fokussiert werden kann. Da der Schreib- und Lesekopf 20 mit Hilfe der Mechanik 21 bewegt wird, kann er alle Lagen 10 des Datenspeichers 1 vollständig abtasten. Im Ausführungsbeispiel ruht dabei der Datenspeicher 1. Er braucht also nicht im Hinblick auf eine hohe Rotationsgeschwindigkeit ausgewuchtet zu sein, im Gegensatz zu dem Schreib- und Lesekopf 20. Der Übersichtlichkeit halber sind in Figur 1 die zum Auswuchten des Schreib- und Lesekopfs 20 vorgesehenen Elemente nicht gezeigt. Der erwähnte Laser befindet sich außerhalb des Schreib- und Lesekopfes 20 und ist stationär; der Laserstrahl wird über optische Elemente in den Schreib- und Lesekopf 20 gelenkt. Zum Speichern oder Einschreiben von Information in den Datenspeicher 1 wird der Laser im Ausführungsbeispiel mit einer Strahlleistung von etwa 1 mW betrieben. Der Laserstrahl dient dabei als Schreibstrahl und wird auf eine vorgewählte Lage 10 der Polymerfolie 11 fokussiert, so daß der Strahlfleck kleiner als 1 μm ist, wobei die Lichtenergie in Form kurzer Pulse von etwa 10 μs Dauer eingebracht wird. Der Schreibstrahl ist polarisiert, wobei seine Polarisationsrichtung parallel zu dem Übergangsdipolmoment der Farbstoffmoleküle des Absorbers in der vor- gewählten Lage 10 ausgerichtet ist. Dadurch wird die Energie des Schreibstrahls optimal in dem Strahlfleck absorbiert, was zu einer lokalen Erwärmung der Polymerfolie 11 und damit zu einer lokalen Änderung des Brechungsindex und der Reflektivität führt.
Um gespeicherte Information aus dem Datenspeicher 1 auszulesen, wird der Laser im Continuous-Wave-Modus (CW-Modus) betrieben, wobei der als Lesestrahl dienende Laserstrahl ebenfalls polarisiert ist, aber in einer gegenüber dem Schreibstrahl um 90° gedrehten Polarisationsrichtung. Der Lesestrahl wird daher von dem Absorber in den einzelnen Lagen 10 der Polymerfolie 11 praktisch nicht abgeschwächt und kann ungehindert zu der Stelle gelangen, auf die er fokussiert ist. In Abhängigkeit von der gespeicherten Information wird der Lesestrahl reflektiert, und die Intensität des reflektierten Strahls wird von einem Detektor in der Schreib- und Leseeinrichtung 2 erfaßt.
Figur 2 veranschaulicht die Orientierung der Polarisations- richtungen und des Übergangsdipolmoments der Farbstoffmoleküle des Absorbers. Die Übergangsdipolmomente der mit 30 bezeichneten Farbstoffmoleküle in der Polymerfolie 11 sind orientiert angeordnet, und zwar in der Darstellung gemäß Figur 2 statistisch bevorzugt parallel zur x-Achse, wie durch die Doppelpfeile angedeutet. Die Polarisationsrichtung des Schreibstrahls verläuft ebenfalls parallel zur x-Achse, während die Polarisationsrichtung des Lesestrahls senkrecht dazu steht, und zwar parallel zur y- Achse . Es gibt verschiedene Verfahren, um eine Polymerfolie mit einem orientierten Absorber herzustellen. Eine Übersicht findet sich in J. Michl und E.W. Thulstrup, "Spectroscopy with Polarized Light", VCH Publishers Inc., New York, 1986, im Abschnitt 3.1.3. Zum Einbringen von Absorbermolekülen in das Folienmaterial gibt es die grundätzliehen Möglichkeiten, (i) einen Polymerfilm aus einer Lösung zu gießen, die Polymer und Absorbermoleküle enthält, und anschließend das Lösungsmittel zu verdampfen, (ü) einen Polymerfilm in einer Lösung mit Absorbermolekülen quellen zu lassen und anschließend das Lösungsmittel zu verdampfen, (iii) Absorbermoleküle in der Dampfphase in einen Polymerfilm zu diffundieren und (iv) die Farbstoffmoleküle in geschmolzenem Polymer zu lösen. Für eine Polymerfolie aus Polypropylen eignen sich alle vier Methoden, wobei die Methode (ii) bevorzugt ist. Wenn geeignete Absorbermoleküle in eine noch nicht verstreckte Polymerfolie eingebracht werden und die Polymerfolie anschließend verstreckt wird, orientieren sich die Absorbermoleküle, so daß sie Licht mit einer auf die Orientierung der Absorbermoleküle abgestimmten Polarisationsrichtung bevorzugt absorbieren.
Für eine Polymerfolie aus Polypropylen eignet sich der Absorber Dispersrot 1 (DRl). DRl ist ein Azofarbstoff, der annähernd stäbchenförmig ist und sich daher gut ausrichten läßt. Dieser Farbstoff ist aus Anwendungen mit gepolten farbstoffhaltigen Polymerfilmen in der nichtlinearen Optik bekannt. DRl kann in eine nur in einer Richtung verstreckte Polymerfolie eingebracht werden, die anschließend in der anderen Richtung verstreckt wird, oder auch in eine unverstreckte Polymerfolie, die anschließend biaxial verstreckt wird, aber in den beiden Richtungen in unterschiedlichem Grade. In beiden Fällen ergibt sich die gewünschte Ausrichtung der Absorbermoleküle.
Soll der Absorber gemäß der Methode (iv) in geschmolzenes
Polypropylen eingebracht werden, wobei Temperaturen in der Größenordnung von 200°C auftreten, sind Absorber mit höherer Temperaturstabilität, wie z.B. Anthrachinon- oder Indanthrenfarbstoffe, besser geeignet als DRl.
In dem oben erläuterten Ausführungsbeispiel enthält die Polymer- folie 11 aus biaxial orientiertem Polypropylen den Absorber DRl in einer derartigen Konzentration, daß sich bei der gegebenen Foliendicke von 35 μm eine optische Dichte von 0,2 ergibt. Vorzugsweise liegt die optische Dichte bei der Lichtwellenlänge des Schreibstrahls im Bereich von 0,1 bis 0,3 für eine Polymerfo- lienlage, kann aber auch kleiner oder größer sein.
Die optische Dichte ist eine zur Charakterisierung des Absorptionsverhaltens gut geeignete Größe. Für die optische Dichte D gilt: D = log(l/T) = βx c d
Hierbei ist T = I/I0 die Transmission durch eine Schicht der Dicke d, wobei die Intensität der einfallenden Strahlung von I0 auf I abfällt, E ist der Extinktionskoeffizient bei der verwendeten Wellenlänge λ (konzentrationsunabhängiger Stoff- parameter), und c ist die Konzentration des Absorbers.
Andere Materialien für die Polymerfolie sind ebenfalls denkbar. So läßt sich zum Beispiel Polyethylenterephthalat (PET) ver- wenden, auch im Zusammenhang mit dem Absorberfarbstoff DRl.

Claims

Patentansprüche
1. Datenspeicher, mit einem optisch beschreibbaren und auslesbaren Informationsträger, der eine Polymerfolie (11) auf- weist, deren Brechungsindex lokal durch Erwärmung veränderbar ist, und mit einem der Polymerfolie (11) zugeordneten Absorber (30), der dazu eingerichtet ist, einen Schreibstrahl zumindest teilweise zu absorbieren und die dabei erzeugte Wärme zumindest teilweise lokal an die Polymer- folie (11) abzugeben, wobei der Absorber (30) orientiert angeordnet ist, um Licht mit einer auf die Orientierung des Absorbers (30) abgestimmten Polarisationsrichtung bevorzugt zu absorbieren.
2. Datenspeicher nach Anspruch 1, dadurch gekennzeichnet, daß die Polymerfolie (11) verstreckt ist.
3. Datenspeicher nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Polymerfolie (11) Absorber (30) enthält.
4. Datenspeicher nach Anspruch 3, dadurch gekennzeichnet, daß der in der Polymerfolie (11) enthaltene Absorber (30) durch Verstreckung der Polymerfolie (11) in einer Vorzugsrichtung orientiert ist.
5. Datenspeicher nach einem der Ansprüche 1 bis 4 , dadurch gekennzeichnet, daß auf der Polymerfolie (11) eine Schicht (12) angeordnet ist, die Absorber enthält.
6. Datenspeicher nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Absorber (30) Farbstoffmoleküle aufweist, deren Übergangsdipolmomente in einer Vorzugsrichtung orientiert angeordnet sind.
7. Datenspeicher nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Informationsträger mehrere Polymer- folienlagen (10) aufweist, durch die hindurch Informationseinheiten in eine vorgewählte Polymerfolienlage (10) schreibbar oder aus einer vorgewählten Polymerfolienlage (10) auslesbar sind.
8. Datenspeicher nach Anspruch 7, dadurch gekennzeichnet, daß der unterschiedlichen Polymerfolienlagen (10) zugeordnete Absorber (30) in unterschiedlichen Richtungen orientiert ist.
9. Datenspeicher nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß zwischen benachbarten Polymerfolienlagen (10) jeweils eine Adhäsionsschicht (12) angeordnet ist, die optional Absorber enthält.
10. Datenspeicher nach Anspruch 9, dadurch gekennzeichnet, daß die Adhäsionsschicht (12) einen Kleber aufweist.
11. Datenspeicher nach Anspruch 9 oder 10, dadurch gekennzeich- net, daß der Brechungsindex der Adhäsionsschicht (12) nur geringfügig vom Brechungsindex der Polymerfolie (11) abweicht.
12. Datenspeicher nach einem der Ansprüche 7 bis 11, dadurch ge- kennzeichnet, daß der Informationsträger spiralartig aufgewickelt ist.
13. Datenspeicher nach Anspruch 12, gekennzeichnet durch einen optisch transparenten Wickelkern, der zur Aufnahme einer Schreib- und . Leseeinrichtung (2) eines auf den Datenspeicher (1) abgestimmten Laufwerks eingerichtet ist.
14. Datenspeicher nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Polymerfolie (11) biaxial orientier- tes Polypropylen aufweist.
15. Datenspeicher nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß der Absorber (30) den Farbstoff Dispersrot 1 aufweist.
16. Verwendung eines Datenspeichers nach einem der Ansprüche 1 bis 15 in einem darauf abgestimmten Laufwerk, wobei zum Schreiben von Information in eine vorgewählte Polymerfolienlage (10) ein polarisierter Schreibstrahl verwendet wird, dessen Polarisationsrichtung auf bevorzugte Absorption, vorzugsweise maximale Absorption, in dem dieser Polymerfolienlage (10) zugeordneten orientierten Absorber (30) abgestimmt ist, und wobei zum Lesen von Information aus dieser Polymerfolienlage (10) ein polarisierter Lesestrahl verwendet wird, dessen Polarisationsrichtung zu der Polari- sationsrichtung des vorgenannten Schreibstrahls gedreht ist, vorzugsweise um 90°.
EP01960233A 2000-06-07 2001-05-21 Datenspeicher Withdrawn EP1287523A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10028113 2000-06-07
DE10028113A DE10028113A1 (de) 2000-06-07 2000-06-07 Datenspeicher
PCT/EP2001/005834 WO2001095318A1 (de) 2000-06-07 2001-05-21 Datenspeicher

Publications (1)

Publication Number Publication Date
EP1287523A1 true EP1287523A1 (de) 2003-03-05

Family

ID=7644948

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01960233A Withdrawn EP1287523A1 (de) 2000-06-07 2001-05-21 Datenspeicher

Country Status (5)

Country Link
US (1) US20030165105A1 (de)
EP (1) EP1287523A1 (de)
JP (1) JP2003536191A (de)
DE (1) DE10028113A1 (de)
WO (1) WO2001095318A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19932900C2 (de) 1999-07-12 2003-04-03 Tesa Ag Datenspeicher, Verfahren zur Herstellung des Datenspeichers und Verwendung des Datenspeichers in einem Laufwerk
DE19932902A1 (de) 1999-07-12 2001-01-25 Beiersdorf Ag Datenspeicher
DE10008328A1 (de) * 2000-02-23 2002-01-31 Tesa Ag Datenspeicher
DE10029702A1 (de) * 2000-06-16 2002-01-03 Beiersdorf Ag Datenspeicher
DE10039372C2 (de) * 2000-08-11 2003-05-15 Tesa Scribos Gmbh Holographischer Datenspeicher
DE10039370A1 (de) * 2000-08-11 2002-02-28 Eml Europ Media Lab Gmbh Holographischer Datenspeicher
DE10128901A1 (de) * 2001-06-15 2002-12-19 Tesa Ag Verfahren zum Eingeben von Information in einen optisch beschreibbaren und auslesbaren Datenspeicher
DE10128902A1 (de) * 2001-06-15 2003-10-16 Tesa Scribos Gmbh Holographischer Datenspeicher
DE102004058975A1 (de) * 2004-12-06 2005-08-18 Tesa Ag Datenspeichersystem
JP4605236B2 (ja) * 2008-03-26 2011-01-05 ソニー株式会社 光記録再生装置および光記録再生方法

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1221551B (de) * 1964-02-12 1966-07-21 Agfa Gevaert Ag Filmpatrone fuer fotografische Kameras
JPS5118138B1 (de) * 1969-07-31 1976-06-08
US3862115A (en) * 1973-07-09 1975-01-21 Martin E Gerry Distortionless magnetic components such as record and reproduce heads
US3976354A (en) * 1973-12-14 1976-08-24 Honeywell Inc. Holographic memory with moving memory medium
US4069049A (en) * 1974-12-02 1978-01-17 Yeda Research & Development Co., Ltd. Process for recording holographic information
US4085501A (en) * 1975-09-18 1978-04-25 Environmental Research Institute Of Michigan Method for fabrication of integrated optical circuits
US4252400A (en) * 1978-08-09 1981-02-24 Honeywell Inc. Nondestructive dynamic controller for thermoplastic development
US4320489A (en) * 1980-03-03 1982-03-16 Rca Corporation Reversible optical storage medium and a method for recording information therein
US4599718A (en) * 1981-04-07 1986-07-08 Tdk Electronics Co., Ltd. Method for erasing a light recording medium
JPH0697513B2 (ja) * 1982-01-12 1994-11-30 大日本インキ化学工業株式会社 光記録媒体
JPS58155543A (ja) * 1982-03-10 1983-09-16 Toshiba Corp 情報記録方法
US4888759A (en) * 1982-09-09 1989-12-19 Burroughs Corporation Laser optical memory system having beam combining and separating apparatus for combining and separating reading and writing laser beams
US4638335A (en) * 1983-12-29 1987-01-20 Xerox Corporation Optical recording member
US4581317A (en) * 1984-03-01 1986-04-08 E. I. Du Pont De Nemours And Company Optical recording element
US4933221A (en) * 1984-07-31 1990-06-12 Canon Kabushiki Kaisha Optical recording device
US4651172A (en) * 1984-11-29 1987-03-17 Hitachi, Ltd. Information recording medium
JPS61133065A (ja) * 1984-12-03 1986-06-20 Hitachi Ltd 光情報記録装置
US4731754A (en) * 1985-09-12 1988-03-15 The United States Of America As Represented By The Secretary Of The Navy Erasable optical memory material from a ferroelectric polymer
DE3603268A1 (de) * 1986-02-04 1987-09-24 Roehm Gmbh Verfahren zur reversiblen, optischen datenspeicherung (iii)
JPS62231437A (ja) * 1986-03-31 1987-10-12 Nec Corp 光記録媒体と光記録方法
KR920010028B1 (ko) * 1986-04-10 1992-11-13 세이꼬 엡슨 가부시끼가이샤 광기록 매체
US4860273A (en) * 1986-07-31 1989-08-22 Fuji Photo Film Co., Ltd. Method of recording information and information recording medium employed for the same
JPS6357286A (ja) * 1986-08-28 1988-03-11 Fuji Photo Film Co Ltd 情報記録媒体
AU612602B2 (en) * 1986-10-29 1991-07-18 Dai Nippon Insatsu Kabushiki Kaisha Draw type optical recording medium
JPH01501665A (ja) * 1986-12-15 1989-06-08 インスティテュト プロブレム モデリロバニア ベー エネルゲティケ アカデミイ ナウク ウクラインスコイ エスエスエール 情報記憶装置
US4970707A (en) * 1987-09-04 1990-11-13 Hitachi, Ltd. Optical tape apparatus with a tracking control mechanism and/or a focusing control mechanism
US4918682A (en) * 1988-02-05 1990-04-17 Tandy Corporation Ablative and bump-forming optical recording media including a metallic reflective layer
US5090008A (en) * 1988-02-05 1992-02-18 Tandy Corporation Erasable recording media
US5014259A (en) * 1988-02-05 1991-05-07 Tandy Corporation Recording medium having an insulating layer
DE3810722A1 (de) * 1988-03-30 1989-10-12 Roehm Gmbh Vorrichtung zur reversiblen optischen datenspeicherung
US5137991A (en) * 1988-05-13 1992-08-11 The Ohio State University Research Foundation Polyaniline compositions, processes for their preparation and uses thereof
US5205178A (en) * 1988-05-28 1993-04-27 Bruker-Franzen Analytik Gmbh Method for non-intrusive continuous and automatic taking of samples, storing and supplying of samples and data for a possible evaluation
US5090009A (en) * 1988-07-30 1992-02-18 Taiyo Yuden Co., Ltd. Optical information recording medium
JPH0281332A (ja) * 1988-09-19 1990-03-22 Hitachi Ltd 超小形光メモリ装置
US5272689A (en) * 1988-10-12 1993-12-21 Sanyo Electric Co., Ltd. Optical head system with transparent contact member
US5019476A (en) * 1988-11-16 1991-05-28 Olympus Optical Co., Ltd. Optical recording medium
US5215800A (en) * 1989-01-17 1993-06-01 Teijin Limited Erasable optical recording medium and method for writing, reading and/or erasing thereof
DE3906521A1 (de) * 1989-03-02 1990-09-13 Basf Ag Verfahren zum auslesen von informationen, die in duennen polymerschichten gespeichert sind
US5077724A (en) * 1989-05-22 1991-12-31 Del Mar Avionics Optical tape cartridge
JP2516071B2 (ja) * 1989-06-23 1996-07-10 日本ビクター株式会社 光記録媒体
US5188863A (en) * 1989-06-30 1993-02-23 E. I. Du Pont De Nemours And Company Direct effect master/stamper for optical recording
DE3924554A1 (de) * 1989-07-25 1991-01-31 Roehm Gmbh Anisotrope fluessigkristalline polymer-filme
JPH03168931A (ja) * 1989-11-27 1991-07-22 Sony Corp 回転光学ヘッド
US5651172A (en) * 1990-01-26 1997-07-29 Ste. Ateliers De La Haute-Garonne-Ets Auriol Et Cie Process for the assembly of materials and riveting member for carrying out the process
US5234799A (en) * 1990-02-17 1993-08-10 Mitsubishi Denki Kabushiki Kaisha Photochromic material and rewritable optical recording medium
EP0463784B1 (de) * 1990-06-19 1998-10-14 Canon Kabushiki Kaisha Optisches Aufzeichnungsmedium, Verfahren zur optischen Aufzeichnung und Verfahren zur optischen Wiedergabe
JP2642776B2 (ja) * 1990-09-10 1997-08-20 三田工業株式会社 情報記録媒体及び情報記録方法
US5368789A (en) * 1990-09-28 1994-11-29 Canon Kabushiki Kaisha Method for forming substrate sheet for optical recording medium
JP3047002B2 (ja) * 1990-11-29 2000-05-29 株式会社リコー 記録方法
US5384221A (en) * 1990-12-12 1995-01-24 Physical Optics Corporation Birefringent azo dye polymer erasable optical storage medium
KR920022235A (ko) * 1991-05-20 1992-12-19 강진구 열변형 기록층을 갖는 광학 기록 테이프의 기록 정보 소거 방법 및 그 장치
EP0519633A1 (de) * 1991-06-11 1992-12-23 Imperial Chemical Industries Plc Datenspeichermedien
US5289407A (en) * 1991-07-22 1994-02-22 Cornell Research Foundation, Inc. Method for three dimensional optical data storage and retrieval
JPH05282706A (ja) * 1991-08-01 1993-10-29 Canon Inc 光記録媒体とその製造方法及び光記録媒体用基板
JP3014553B2 (ja) * 1991-10-21 2000-02-28 三星電子株式会社 光記録テープの記録及び/又は再生装置
CA2086467A1 (en) * 1992-01-07 1993-07-08 Kenji Kato Optical tape
US5764219A (en) * 1992-09-25 1998-06-09 Ibm Corporation Controller for improved computer pointing devices
JPH06106857A (ja) * 1992-09-28 1994-04-19 Pioneer Electron Corp 光記録媒体およびそれに記録された情報の再生方法
US5519517A (en) * 1993-08-20 1996-05-21 Tamarack Storage Devices Method and apparatus for holographically recording and reproducing images in a sequential manner
KR950007299B1 (ko) * 1993-08-31 1995-07-07 대우전자주식회사 라벨층이 증착된 광 디스크 제조법
US5553265A (en) * 1994-10-21 1996-09-03 International Business Machines Corporation Methods and system for merging data during cache checking and write-back cycles for memory reads and writes
US5510171A (en) * 1995-01-19 1996-04-23 Minnesota Mining And Manufacturing Company Durable security laminate with hologram
KR960030149A (ko) * 1995-01-28 1996-08-17 김광호 유기광기록매체
GB9504145D0 (en) * 1995-03-02 1995-04-19 De La Rue Holographics Ltd Improvements relating to packaging
JP3431386B2 (ja) * 1995-03-16 2003-07-28 株式会社東芝 記録素子およびドリフト移動度変調素子
US5843626A (en) * 1995-04-19 1998-12-01 Pioneer Video Corporation Method for manufacturing a master disc for optical discs
KR100402169B1 (ko) * 1995-04-27 2004-03-10 닛폰콜롬비아 가부시키가이샤 다층구조광정보매체
FR2737669B1 (fr) * 1995-08-09 1997-09-19 Rhone Poulenc Fibres Procede de separation d'un catalyseur au palladium
US5838653A (en) * 1995-10-04 1998-11-17 Reveo, Inc. Multiple layer optical recording media and method and system for recording and reproducing information using the same
US5998007A (en) * 1995-12-19 1999-12-07 Prutkin; Vladimir Multidirectionally stretch-crazed microencapsulated polymer film and a method of manufacturing thereof
US5669995A (en) * 1996-01-29 1997-09-23 Hong; Gilbert H. Method for writing and reading data on a multi-layer recordable interferometric optical disc and method for fabricating such
US5656360A (en) * 1996-02-16 1997-08-12 Minnesota Mining And Manufacturing Company Article with holographic and retroreflective features
US5855979A (en) * 1996-08-08 1999-01-05 Mitsui Chemicals, Inc. Optical recording medium
CN1147846C (zh) * 1996-12-20 2004-04-28 西巴特殊化学品控股有限公司 复合多次甲基染料及其用途
JP4104718B2 (ja) * 1997-04-11 2008-06-18 富士ゼロックス株式会社 光記録方法
DE19741878A1 (de) * 1997-09-23 1999-03-25 Hoechst Diafoil Gmbh Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
US6017618A (en) * 1997-10-29 2000-01-25 International Business Machines Corporation Ultra high density storage media and method thereof
US5879774A (en) * 1997-12-03 1999-03-09 Eastman Kodak Company Multilayer laminate elements having an adhesive layer
US6016210A (en) * 1997-12-15 2000-01-18 Northrop Grumman Corporation Scatter noise reduction in holographic storage systems by speckle averaging
US5890674A (en) * 1998-01-16 1999-04-06 Formall, Inc. Involute reel guide
US6168682B1 (en) * 1998-02-10 2001-01-02 3M Innovative Properties Company Method of manufacturing an optical recording medium
US6372341B1 (en) * 1998-04-27 2002-04-16 3M Innovative Properties Company Tampa-indicating article for reusable substrates
US6214443B1 (en) * 1998-06-15 2001-04-10 American Bank Note Holographics, Inc. Tamper evident holographic devices and methods of manufacture
JP2000082213A (ja) * 1998-09-03 2000-03-21 Fuji Xerox Co Ltd 光記録方法、光記録装置、光読み取り方法および光読み取り装置
DE29816802U1 (de) * 1998-09-19 2000-02-10 Noehte Steffen Optischer Datenspeicher
US6016984A (en) * 1998-10-30 2000-01-25 Eastman Kodak Company Spoolless film takeup chamber with improved spooling spring
US6450642B1 (en) * 1999-01-12 2002-09-17 California Institute Of Technology Lenses capable of post-fabrication power modification
US6266166B1 (en) * 1999-03-08 2001-07-24 Dai Nippon Printing Co., Ltd. Self-adhesive film for hologram formation, dry plate for photographing hologram, and method for image formation using the same
IL129011A0 (en) * 1999-03-16 2000-02-17 Omd Devices L L C Multi-layered optical information carriers with fluorescent reading and methods of their production
DE19932899C2 (de) * 1999-07-12 2003-06-05 Tesa Scribos Gmbh Datenspeicher und Verwendung des Datenspeichers in einem Laufwerk
DE19935776A1 (de) * 1999-07-26 2001-02-08 Beiersdorf Ag Datenspeicher
DE19935775A1 (de) * 1999-07-26 2001-02-08 Beiersdorf Ag Datenspeicher und Verfahren zum Schreiben von Information in einen Datenspeicher
US6310850B1 (en) * 1999-07-29 2001-10-30 Siros Technologies, Inc. Method and apparatus for optical data storage and/or retrieval by selective alteration of a holographic storage medium
US6364233B1 (en) * 1999-11-01 2002-04-02 Storage Technology Corporation Take-up reel assembly with cushioning member
US6383690B1 (en) * 1999-12-09 2002-05-07 Autologic Information International, Inc. Platemaking system and method using an imaging mask made from photochromic film
JP2002079756A (ja) * 2000-03-17 2002-03-19 Fuji Photo Film Co Ltd 光記録媒体および光記録方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0195318A1 *

Also Published As

Publication number Publication date
US20030165105A1 (en) 2003-09-04
JP2003536191A (ja) 2003-12-02
WO2001095318A1 (de) 2001-12-13
DE10028113A1 (de) 2001-12-20

Similar Documents

Publication Publication Date Title
DE3038532C2 (de) Aufzeichnungsträger
EP1112570B1 (de) Optischer datenspeicher
EP1307881B1 (de) Holographischer datenspeicher, seine verwendung und verfahren zur dateneingabe
WO2002015180A1 (de) Holographischer datenspeicher
EP1287523A1 (de) Datenspeicher
WO2002103689A1 (de) Holographischer datenspeicher
DE19932899C2 (de) Datenspeicher und Verwendung des Datenspeichers in einem Laufwerk
EP1198794B1 (de) Datenspeicher und verfahren zum schreiben von information in einen datenspeicher
DE10008328A1 (de) Datenspeicher
EP1196916B1 (de) Datenspeicher
DE69126407T2 (de) Optisches Aufzeichnungsmedium
DE19932900C2 (de) Datenspeicher, Verfahren zur Herstellung des Datenspeichers und Verwendung des Datenspeichers in einem Laufwerk
DE10029702A1 (de) Datenspeicher
DE19935776A1 (de) Datenspeicher
DE10028086C2 (de) Verfahren zum Herstellen eines Datenspeichers
EP1214710A1 (de) Datenspeicher
WO2002103690A1 (de) Verfahren zum eingeben von information in einen optisch beschreibbaren und auslesbaren datenspeicher
WO2001075870A1 (de) Energiesparendes schreiben in einen optischen datenspeicher
DE102004058979A1 (de) Datenspeichersystem
DE102005017155A1 (de) Optisches Speichermedium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TESA AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061201