EP1280993B1 - Zündanlage für eine verbrennungskraftmaschine - Google Patents

Zündanlage für eine verbrennungskraftmaschine Download PDF

Info

Publication number
EP1280993B1
EP1280993B1 EP01923517A EP01923517A EP1280993B1 EP 1280993 B1 EP1280993 B1 EP 1280993B1 EP 01923517 A EP01923517 A EP 01923517A EP 01923517 A EP01923517 A EP 01923517A EP 1280993 B1 EP1280993 B1 EP 1280993B1
Authority
EP
European Patent Office
Prior art keywords
ignition
voltage
switching means
ignition system
spark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01923517A
Other languages
English (en)
French (fr)
Other versions
EP1280993A2 (de
Inventor
Horst Meinders
Wolfgang Feiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1280993A2 publication Critical patent/EP1280993A2/de
Application granted granted Critical
Publication of EP1280993B1 publication Critical patent/EP1280993B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/0407Opening or closing the primary coil circuit with electronic switching means
    • F02P3/0435Opening or closing the primary coil circuit with electronic switching means with semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils

Definitions

  • the invention relates to an ignition system for an internal combustion engine with the features mentioned in the preamble of claim 1.
  • Ignition systems of the generic type serve to ignite a compressed fuel-air mixture in the internal combustion engine.
  • an arc discharge between two electrodes of the spark plug is generated by means of an ignition device, usually a spark plug.
  • an ignition voltage in the high voltage range is to be provided.
  • To provide this required high voltage is known to connect the spark plug to the secondary winding of an ignition coil whose primary winding with a voltage source, in motor vehicles usually the motor vehicle battery, is connectable.
  • the ignition coil works here as energy storage and as a transformer.
  • a certain minimum ignition energy is necessary.
  • the amount of this minimum ignition energy depends on the stoichiometric composition of the fuel-air mixture. Especially with lean fuel-air mixtures, that is, air is in the stoichiometric excess, an increased minimum ignition energy is necessary. Failure to provide this minimum ignition energy may result in incomplete combustion of the fuel-air mixture or misfires.
  • Known possibilities for influencing the burning process consist in the variation of the spark-burning time and / or the spark-burning current.
  • it is known to increase the energy stored in the ignition coil on the primary side for example by increasing the primary current at the primary side.
  • a correspondingly large design of an ignition coil is to be selected. This precludes optimization of the installation volume.
  • the ignition system according to the invention offers the advantage that in a simple manner, a high ignition energy can be provided, in particular for igniting lean fuel-air mixtures in any operating situation the internal combustion engine is sufficiently dimensioned.
  • the secondary windings are each connected to a spark plug and whose primary windings are acted upon by a respective switching means with the supply voltage, and a drive circuit is provided via which a staggered control of the switching means and thus the ignition coils, is advantageously possible to turn on the second ignition coil at exactly the time by the switch-off voltage leads to the secondary side formation of the high voltage in the voltage circuit of the first ignition coil.
  • an positive turn-on voltage is formed on the high-voltage side of the second ignition coil, which adds to the negative burning voltage of the ignition spark generated by the first ignition coil and thus increases the burning voltage applied to the ignition electrodes of the spark plug, in particular more than doubled.
  • a higher spark duration and a higher spark current is obtained, which leads to the overall provision of a higher ignition energy.
  • This high ignition energy is suitable for safely igniting lean fuel-air mixtures at any time.
  • FIG. 1 shows a total of 10 designated ignition system in an equivalent circuit diagram.
  • the ignition system 10 comprises a spark plug 12, to which a first ignition coil 14 and a second ignition coil 16 are assigned.
  • An electrode 18 of the ignition coil 12 is connected to the secondary winding 20 of the first ignition coil 14.
  • the second electrode 22 of the spark plug 12 is connected to the secondary coil 24 of the second ignition coil 16.
  • an ignition gap 26 is formed.
  • a resistor R 1 and R 2 is connected.
  • the primary coil 28 of the first ignition coil 14 is on the one hand with a supply voltage source U BATT , in motor vehicles in the Rule of the motor vehicle battery, connected.
  • the primary winding 28 is connected to the secondary winding and a switching means 30.
  • the switching means 30 is a three-stage Darlington transistor.
  • the secondary winding 20 may also be connected via a turn-on suppression diode D with the anode to the secondary winding and the cathode to ground.
  • the emitter of the switching means 30 is grounded.
  • the base of the switching means 30 is connected to a drive circuit not shown in detail and acted upon by a control signal 32 schematically indicated here.
  • the primary winding 34 of the second ignition coil 16 is also connected to the supply voltage source U BATT on the one hand and on the other hand to a switching means 36, which is also designed as a three-stage Darlington transistor.
  • the emitter of the switching means 36 is grounded, while the base of the switching means 36 is connected to the drive circuit and can be acted upon by a control signal 38.
  • the structure and function of ignition coils controlled via Zünddarlington transistors and the generation of a spark thereby produced are generally known, so that in the context of the present description only the features according to the invention will be discussed.
  • the control of the switching means 30 and 36 takes place with the control signals 32 and 38, whose course is shown in Figure 2.
  • the Control signals 32 and 38 are provided by the control circuit with a time delay. That is, the turn-off time of the control signal 32, that is, when this falls from the level "HIGH” to the level "LOW”, the drive signal 38 is switched on, that is, this rises from its level "LOW” to the level "HIGH” at. It can be provided that each of the switching means 30 and 36 is acted upon by a control pulse or the switching means 30 and 36 are alternately applied in each case with their control pulses 32 and 38, wherein the level "HIGH" is time-offset.
  • the switching means 30 By applying the switching means 30 with the control signal 32, this is turned on during the duty cycle, so that the primary coil 28 of the first ignition coil 14 is energized.
  • a cut-off voltage (clamp voltage), which leads to the secondary coil 20 to induce a high voltage.
  • This high voltage is applied across the resistor R 1 to the electrode 18 and leads to the formation of a spark between the electrodes 18 and 22 of the spark plug 12.
  • the switching means 36 is controlled by driving with the control signal 38, so that the primary coil 34th the second ignition coil 16 is energized.
  • a positive turn-on voltage is induced in the secondary winding 24 of the second ignition coil 16, which adds to the negative burning voltage of the spark generated by the ignition coil 14.
  • This will be the on the electrodes Increased 18 and 22 applied burning voltage.
  • the high voltage supplied from the first ignition coil 14 is in the range of 800 V to 1200 V, while the positive on-voltage of the second ignition coil is in the range of 1200 V to 1700 V.
  • the voltage applied to the electrodes 18 and 22 burning voltage is more than doubled by connecting the second switching means 36 and thus the second ignition coil 16. This increased ignition voltage increases the spark duration of the spark and the spark current, allowing higher energy to be transferred to the burning spark.
  • FIG 3 shows the course of the collector current of the switching means 30 (characteristic 40), the collector current of the switching means 36 (characteristic 42), the course of the ignition current (characteristic 44) on the spark plug 12 and the course of the clamping voltage of the switching means 30 (characteristic curve 46). shown.
  • This temporary drop of the commutated at the primary side of the ignition coil 16 current is based on the heating of the primary winding 34.
  • the characteristic 40 illustrates that at the shutdown time t 2 of the switching means 30, the charging current of the ignition coil 14 drops. It is clear that according to the characteristic curve 40, the charging current in the primary circuit of the ignition coil 14 slowly rises with a relatively flat loading ramp, while in the primary circuit of the ignition coil 16, the charging current - as explained - increases abruptly.
  • the ignition current at the spark plug 12 (characteristic 44) abruptly increases with switching off of the switching means 30 to a maximum value and drops over the burning time of the spark until the time t 3 .
  • the primary circuit of the ignition coil 16 is turned off, so that the fuel flow flows in the opposite direction and initially drops to a negative maximum value, and then rise again to zero.
  • the course of the clamping voltage (characteristic curve 46) of the switching means 30 illustrates the Voltage jump at the switch-off time t 2 , which leads to the ignition of the spark, and a voltage jump at time t 3 .
  • FIG. 4 shows the characteristic curve 46 (clamp voltage U CE ) of the switching means 30 again. Furthermore, the course of the clamping voltage U CE (characteristic curve 48) of the switching means 36 is shown. FIG. 5 shows the course of the clamping voltages U CE of the switching means 30 or 36 from the time t 3 .
  • characteristic curve 46 in Figure 4 the increase of the clamping voltage at time t 2 during the ignition of the spark, subsequent reaction of the burning spark on the primary winding 28 and a voltage peak at time t 3 , from the then the clamping voltage decays to the supply voltage. At time t 3 , a coupling oscillation therefore occurs on the primary coil 28 of the ignition coil 14.
  • the clamping voltage 48 of the switching element 36 drops from the supply voltage level to the saturation voltage level at time t 2 .
  • the clamping voltage of the switching means 36 increases abruptly and then sounds to the transformed burning voltage of the spark from.
  • the voltage jump at time t 3 at the clamp voltage of the switching means 30 is again shown in the characteristic curve 46.
  • a decay on the transformed burning voltage of the spark is again shown in the characteristic curve 46.
  • the use of such high-voltage diodes is not possible by the coupling of the secondary sides of the two ignition coils 14 and 16.
  • separate, not shown in the figures, known per se for reducing voltage circuits can be used.
  • FIG. 8 shows a modified circuit arrangement of the ignition system 10. The same parts as in Figure 1 are provided with the same reference numerals and not explained again.
  • the collector of the switching means 30 is connected via a resistor R 3 to the cathode of a Zenerdi 60 ode.
  • the anode of the Zener diode 60 is connected on the one hand to the base of a transistor 62 and on the other hand to a first terminal of a capacitor C whose further terminal is grounded.
  • the emitter of the transistor 62 is also grounded, while the collector of the transistor 62 is connected to the base of another transistor 64 and a resistor R 4 .
  • An emitter of the transistor 64 is connected to the supply voltage U BATT , while the collector of the transistor 64 is connected via a resistor R 5 to the base of the switching means 36 (Zünddarlington).
  • a breakdown voltage of the Zener diode 60 is, for example, 20 V.
  • the transistor 62 is driven by the transformed firing voltage of the spark when it exceeds the breakdown voltage of the zener diode 60, in this case 20 V.
  • the resistor R 3 serves as a current limiting resistor. If the transistor 62 is turned on, this switches the transistor 64, which then connects the supply voltage U BATT to the base of the switching means 36, so that this also controls.
  • the capacitance C serves to attenuate the emitter-base path of the transistor 62 due to the fluctuating burning voltage applied to the base of the transistor 62.
  • FIG. 9 shows a circuit variant modified with respect to FIG. 8, in which the collector of the switching means 30 is connected to the cathode of a Zener diode 60 '. At the same time, the collector of the switching means 30 is connected to an emitter terminal of a transistor 66 whose collector is connected to the base of the transistor 62 via the resistor R 3 . Further, the collector of the transistor 66 is connected via a resistor R 6 to ground. The base of the transistor 66 is connected via a resistor R 6 to the supply voltage U BATT .
  • the transistor 62 is then turned on when the transformed burning voltage rises above the supply voltage U BATT .
  • the resistors R 6 serve as high-resistance protective resistors for the transistor 62 when the switching means 30 are clamped.
  • the zener diode 60 ' has a breakdown voltage of, for example, 50 V, so that the maximum collector-emitter voltage of the transistor 66 is limited.
  • the spark plug 12 has two electrodes 18 and 22 insulated from each other and insulated from each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

  • Die Erfindung betrifft eine Zündanlage für eine Verbrennungskraftmaschine mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.
  • Stand der Technik
  • Aus der GB 1557046 ist bereits eine Zündanlage mit zwei Zündspulen und einer Zündkerze bekannt.
  • Zündanlagen der gattungsgemäßen Art sind bekannt. Diese dienen dazu, ein verdichtetes Kraftstoff-LuftGemisch in der Verbrennungskraftmaschine zu zünden. Hierzu wird mittels einer Zündeinrichtung, in der Regel einer Zündkerze, eine Lichtbogenentladung zwischen zwei Elektroden der Zündkerze erzeugt. Um diese Lichtbogenentladung zu erzeugen, ist eine Zündspannung im Hochspannungsbereich bereitzustellen. Zum Bereitstellen dieser erforderlichen Hochspannung ist bekannt, die Zündkerze mit der Sekundärwicklung einer Zündspule zu verbinden, deren Primärwicklung mit einer Spannungsquelle, in Kraftfahrzeugen in der Regel der Kraftfahrzeugbatterie, verbindbar ist. Die Zündspule arbeitet hierbei als Energiespeicher und als Transformator. Während der Schließzeit des primärseitigen Schaltmittels wird im Magnetfeld der Zündspule die aus der Spannungsquelle bereitgestellte elektrische Energie gespeichert und im Zündzeitpunkt als Hochspannungszündimpuls zur Verfügung gestellt.
  • Zum Zünden des verdichteten Kraftstoff-Luft-Gemisches ist eine bestimmte Mindest-Zündenergie notwendig. Die Höhe dieser Mindest-Zündenergie ist abhängig von der stöchiometrischen Zusammensetzung des Kraftstoff-Luft-Gemisches. Insbesondere bei mageren Kraftstoff-Luft-Gemischen, das heißt, Luft liegt im stöchiometrischen Überschuss vor, ist eine erhöhte Mindest-Zündenergie notwendig. Wird diese Mindest-Zündenergie nicht bereitgestellt, kann es zu einer unvollständigen Verbrennung des Kraftstoff-Luft-Gemisches oder zu Zündaussetzern kommen. Bekannte Möglichkeiten zur Beeinflussung des Brennvorganges bestehen in der Variation der Funkenbrenndauer und/oder des Funkenbrennstromes. Zur Erhöhung der Funkenbrenndauer und/oder des Funkenbrennstromes ist bekannt, die primärseitig gespeicherte Energie in der Zündspule zu erhöhen, indem beispielsweise der Primärstrom an der Primärseite erhöht wird. Hierbei besteht allerdings der Nachteil, dass eine entsprechend große Bauform einer Zündspule zu wählen ist. Dies steht einer Optimierung des Einbauvolumens entgegen.
  • Vorteile der Erfindung
  • Die erfindungsgemäße Zündanlage mit den im Anspruch 1 genannten Merkmalen bietet den Vorteil, dass in einfacher Weise eine hohe Zündenergie bereitgestellt werden kann, die insbesondere auch zum Zünden von mageren Kraftstoff-Luft-Gemischen in jeder Betriebssituation der Verbrennungskraftmaschine ausreichend bemessen ist. Dadurch, dass zwei Zündspulen vorgesehen sind, deren Sekundärwicklungen jeweils mit einer Zündkerze verbunden sind und deren Primärwicklungen durch jeweils ein Schaltmittel mit der Versorgungsspannung beaufschlagbar sind, und eine Ansteuerschaltung vorgesehen ist, über die eine zeitlich versetzte Ansteuerung der Schaltmittel und somit der Zündspulen erfolgt, ist vorteilhaft möglich, die zweite Zündspule genau in dem Zeitpunkt einzuschalten, indem im Spannungskreis der ersten Zündspule die Abschaltspannung zur sekundärseitigen Entstehung der Hochspannung führt. Hierdurch bildet sich auf der Hochspannungsseite der zweiten Zündspule eine positive Einschaltspannung, die sich zu der negativen Brennspannung des von der ersten Zündspule generierten Zündfunkens addiert und somit sich die an den Zündelektroden der Zündkerze anliegende Brennspannung erhöht, insbesondere mehr als verdoppelt. Hierdurch wird eine höhere Zündfunkendauer und ein höherer Zündfunkenstrom erhalten, der insgesamt zur Bereitstellung einer höheren Zündenergie führt. Diese hohe Zündenergie ist geeignet, auch magere Kraftstoff-Luft-Gemische jederzeit sicher zu zünden. Durch alternierendes Zuschalten der jeweils anderen Zündspule in der Abschaltphase der zuvor zugeschalteten Zündspule lässt sich wiederholend das Funkenbrennen auf einen längeren Zeitraum ausdehnen.
  • Bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.
  • Zeichnungen
  • Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
  • Figur 1
    schematisch eine Zündanlage in einem Schaltbild;
    Figuren 2 bis 7
    verschiedene Kennlinien der Zündanlage und
    Figuren 8 bis 9
    Schaltbilder von Zündanlagen in weiteren Ausführungsvarianten.
    Beschreibung der Ausführungsbeispiele .
  • Figur 1 zeigt eine insgesamt mit 10 bezeichnete Zündanlage in einem Ersatzschaltbild. Die Zündanlage 10 umfasst eine Zündkerze 12, der eine erste Zündspule 14 und eine zweite Zündspule 16 zugeordnet ist. Eine Elektrode 18 der Zündspule 12 ist mit der Sekundärwicklung 20 der ersten Zündspule 14 verbunden. Die zweite Elektrode 22 der Zündkerze 12 ist mit der Sekundärspule 24 der zweiten Zündspule 16 verbunden. Zwischen den Elektroden 18 und .22 ist eine Zündstrecke 26 ausgebildet. Zwischen den Elektroden 18 beziehungsweise 22 und den Sekundärspulen 20 beziehungsweise 24 ist jeweils ein Widerstand R1 beziehungsweise R2 geschaltet. Die Primärspule 28 der ersten Zündspule 14 ist einerseits mit einer Versorgungsspannungsquelle UBATT, in Kraftfahrzeugen in der Regel der Kraftfahrzeugbatterie, verbunden. Andererseits ist die Primärwicklung 28 mit der Sekundärwicklung und einem Schaltmittel 30 verbunden. Das Schaltmittel 30 ist ein dreistufiger Darlington-Transistor. Alternativ kann die Sekundärwicklung 20 auch über eine Einschaltunterdrückungsdiode D mit der Anode zur Sekundärwicklung und der Kathode zur Masse geschaltet sein. Der Emitter des Schaltmittels 30 liegt an Masse. Die Basis des Schaltmittels 30 ist mit einer nicht näher gezeigten Ansteuerschaltung verbunden und mit einem hier schematisch angedeuteten Steuersignal 32 beaufschlagt. Die Primärwicklung 34 der zweiten Zündspule 16 ist ebenfalls mit der Versorgungsspannungsquelle UBATT einerseits und andererseits mit einem Schaltmittel 36, das ebenfalls als dreistufiger Darlington-Transistor ausgebildet ist, verbunden. Der Emitter des Schaltmittels 36 liegt an Masse, während die Basis des Schaltmittels 36 mit der Ansteuerschaltung verbunden und mit einem Steuersignal 38 beaufschlagbar ist.
  • Die Funktion der Zündanlage 10 wird anhand der in den Figuren 2 bis 9 gezeigten Kennlinien erläutert:
  • Der Aufbau und die Funktion von über Zünddarlington-Transistoren angesteuerten Zündspulen und das hierdurch erfolgte Generieren eines Zündfunkens sind allgemein bekannt, so dass im Rahmen der vorliegenden Beschreibung nur auf die erfindungsgemäßen Besonderheiten eingegangen wird. Die Ansteuerung der Schaltmittel 30 und 36 erfolgt mit den Steuersignalen 32 und 38, deren Verlauf in Figur 2 dargestellt ist. Die Steuersignale 32 und 38 werden hierbei von der Ansteuerschaltung zeitversetzt bereitgestellt. Das heißt, dem Abschaltzeitpunkt des Steuersignales 32, das heißt, wenn dieses vom Pegel "HIGH" auf den Pegel "LOW" abfällt, wird das Ansteuersignal 38 zugeschaltet, das heißt, dieses steigt von seinem Pegel "LOW" auf den Pegel "HIGH" an. Hierbei kann vorgesehen sein, dass jedes der Schaltmittel 30 und 36 mit einem Steuerimpuls beaufschlagt wird oder die Schaltmittel 30 und 36 werden alternierend jeweils mit ihren Steuerimpulsen 32 beziehungsweise 38 beaufschlagt, wobei der Pegel "HIGH" jeweils zeitversetzt ist.
  • Durch Beaufschlagen des Schaltmittels 30 mit dem Steuersignal 32 wird dieses während der Einschaltdauer durchgesteuert, so dass die Primärspule 28 der ersten Zündspule 14 bestromt wird. Im Abschaltzeitpunkt des Schaltmittels 30 entsteht im Kollektor des Schaltmittels 30 eine Abschaltspannung (Klammerspannung), die an der Sekundärspule 20 zur Induktion einer Hochspannung führt. Diese Hochspannung liegt über dem Widerstand R1 an der Elektrode 18 an und führt zur Ausbildung eines Zündfunkens zwischen den Elektroden 18 und 22 der Zündkerze 12. Exakt zu diesem Zeitpunkt wird das Schaltmittel 36 durch Ansteuerung mit dem Steuersignal 38 durchgesteuert, so dass die Primärspule 34 der zweiten Zündspule 16 bestromt wird. Hierdurch wird in der Sekundärwicklung 24 der zweiten Zündspule 16 eine positive Einschaltspannung induziert, die sich zu der negativen Brennspannung des von der Zündspule 14 generierten Zündfunkens addiert. Hiermit wird die an den Elektroden 18 und 22 anliegende Brennspannung erhöht. Die von der ersten Zündspule 14 gelieferte Hochspannung liegt im Bereich von 800 V bis 1200 V, während die positive Einschaltspannung der zweiten Zündspule im Bereich von 1200 V bis 1700 V liegt. Somit wird die an den Elektroden 18 und 22 anliegende Brennspannung durch Zuschalten des zweiten Schaltmittels 36 und somit der zweiten Zündspule 16 mehr als verdoppelt. Durch diese vergrößerte Zündspannung wird die Brenndauer des Zündfunkens und der Zündfunkenstrom vergrößert, so dass eine höhere Energie in den brennenden Funken transferiert werden kann.
  • Beim Ausschalten der zweiten Zündspule 16 entsteht analog eine Brennspannung mit umgekehrter Polarität. Wenn nachfolgend in dem Abschaltvorgang der Zündspule 16 das Zuschalten der Zündspule 14 in analoger Weise erfolgt, wird wiederum zu der Brennspannung des neuen Zündfunkens die positive Einschaltspannung der ersten Zündspule 14 hinzu addiert.
  • In Figur 3 ist der Verlauf des Kollektorstromes des Schaltmittels 30 (Kennlinie 40), der Kollektorstrom des Schaltmittels 36 (Kennlinie 42), der Verlauf des Zündstromes (Kennlinie 44) an der Zündkerze 12 und der Verlauf der Klammerspannung des Schaltmittels 30 (Kennlinie 46) gezeigt.
  • Anhand der Kennlinien wird deutlich, dass über die Hochspannungsseite der Zündspule 14 und die Hochspannungsseite der Zündspule 16, die beim Schließen eines Zündstromes verbunden sind, in der Primärwicklung 34 der zweiten Zündspule 16 eine Spannung induziert wird, die zu einer Stromkommutation an der Primärseite der Zündspule 16 führt. Diese Stromkommutation erfolgt mit Zünden des Zündfunkens schlagartig in die zuvor noch nicht bestromte - also kalte - Primärwicklung 34. Der Kennlinienverlauf der Kennlinie 42 verdeutlicht, dass zum Abschaltzeitpunkt t2 des ersten Schaltmittels 30 der Zündfunke zündet und somit der an der Primärwicklung 34 der Zündspule 16 fließende kommutierte Strom mit einer steilen Flanke schlagartig ansteigt, anschließend abfällt, um dann wieder anzusteigen. Dieses vorübergehende Abfallen des an der Primärseite der Zündspule 16 kommutierten Stromes beruht auf der Erwärmung der Primärwicklung 34. Die Kennlinie 40 verdeutlicht, dass zum Abschaltzeitpunkt t2 des Schaltmittels 30 der Ladestrom der Zündspule 14 abfällt. Deutlich wird, dass gemäß der Kennlinie 40 der Ladestrom im Primärkreis der Zündspule 14 mit einer relativ flachen Laderampe langsam ansteigt, während im Primärkreis der Zündspule 16 der Ladestrom - wie erläutert - schlagartig ansteigt.
  • Der Zündstrom an der Zündkerze 12 (Kennlinie 44) steigt mit Abschalten des Schaltmittels 30 schlagartig auf einen Maximalwert an und fällt über die Brenndauer des Zündfunkens bis zum Zeitpunkt t3 ab. Zum Zeitpunkt t3 wird der Primärkreis der Zündspule 16 abgeschaltet, so dass der Brennstrom in entgegengesetzter Richtung fließt und zunächst auf einen negativen Maximalwert abfällt, um anschließend wieder auf Null anzusteigen. Der Verlauf der Klammerspannung (Kennlinie 46) des Schaltmittels 30 verdeutlicht den Spannungssprung zum Abschaltzeitpunkt t2, der zur Zündung des Zündfunkens führt, und einen Spannungssprung zum Zeitpunkt t3.
  • In Figur 4 ist die Kennlinie 46 (Klammerspannung UCE) des Schaltmittels 30 nochmals dargestellt. Ferner ist der Verlauf der Klammerspannung UCE (Kennlinie 48) des Schaltmittels 36 dargestellt. Figur 5 zeigt den Verlauf der Klammerspannungen UCE der Schaltmittel 30 beziehungsweise 36 ab dem Zeitpunkt t3. Anhand der Figuren 4 und 5 wird deutlich, dass gemäß Kennlinie 46 in Figur 4 das Ansteigen der Klammerspannung zum Zeitpunkt t2 während der Zündung des Zündfunkens, anschließender Rückwirkung des brennenden Zündfunkens auf die Primärwicklung 28 und eine Spannungsspitze zum Zeitpunkt t3, von der aus anschließend die Klammerspannung auf die Versorgungsspannung abklingt. Zum Zeitpunkt t3 kommt es also zu einer Koppelschwingung auf die Primärspule 28 der Zündspule 14. Die Klammerspannung 48 des Schaltmittels 36 fällt zum Zeitpunkt t2 von dem Versorgungsspannungsniveau auf das Sättigungsspannungsniveau. Zum Zeitpunkt t3 steigt die Klammerspannung des Schaltmittels 36, wie der Kennlinienverlauf 48 in Figur 5 verdeutlicht, sprunghaft an und klingt anschließend auf die transformierte Brennspannung des Zündfunkens ab. In Figur 5 ist in der Kennlinie 46 nochmals der Spannungssprung zum Zeitpunkt t3 bei der Klammerspannung des Schaltmittels 30 gezeigt. Hier erfolgt anschließend ebenfalls ein Abklingen auf die transformierte Brennspannung des Zündfunkens.
  • In den Figuren 6 und 7 sind der Verlauf der Einschaltspannung UCE (Kennlinie 50), der Verlauf des Einschaltstromes IC (Kennlinie 52) des Schaltmittels 30 und der Verlauf der Sekundärspannung (Kennlinie 54) der Zündspule 14 bei einer Standardzündanlage (Figur 6) und bei der erfindungsgemäßen Doppelspulen-Zündanlage 10 (Figur 7) gegenüber gestellt. Es wird deutlich, dass bei der Doppelspulen-Zündanlage 10 die Einschaltspannung UCE den gleichen Verlauf und den gleichen Hub wie bei der bekannten Zündanlage aufweist. Zur Vermeidung sogenannter Einschaltfunken beim Einschalten des Schaltmittels 30 werden bei den bekannten Zündanlagen Hochspannungsdioden eingesetzt. Bei der erfindungsgemäßen Doppel-Zündanlage 10 ist durch die Kupplung der Sekundärseiten der beiden Zündspulen 14 und 16 ein Einsatz derartiger Hochspannungsdioden nicht möglich. Hierzu sind gesonderte, in den Figuren nicht näher dargestellte, an sich zur Spannungsreduzierung bekannte Schaltungsanordnungen einsetzbar.
  • In Figur 8 ist eine abgewandelte Schaltungsanordnung der Zündanlage 10 gezeigt. Gleiche Teile wie in Figur 1 sind mit gleichen Bezugszeichen versehen und nicht nochmals erläutert.
  • Der Unterschied zu der in Figur 1 gezeigten Schaltungsvariante besteht darin, dass hier das zweite Schaltmittel 36 nicht über ein Steuersignal 38 von der Ansteuerschaltung betätigt wird, sondern das Durchsteuern des Schaltmittels 36 abhängig von der Brennspannung des Zündfunkens der Zündkerze 12 ist.
  • Hierzu ist der Kollektor des Schaltmittels 30 über einen Widerstand R3 mit der Kathode einer Zenerdi ode 60 verbunden. Die Anode der Zenerdiode 60 ist einerseits mit der Basis eines Transistors 62 verbunden und andererseits mit einem ersten Anschluss einer Kapazität C, deren weiterer Anschluss an Masse liegt. Der Emitter des Transistors 62 liegt ebenfalls an Masse, während der Kollektor des Transistors 62 mit der Basis eines weiteren Transistors 64 und einem Widerstand R4 verbunden ist. Ein Emitter des Transistors 64 ist mit der Versorgungsspannung UBATT verbunden, während der Kollektor des Transistors 64 über einen Widerstand R5 mit der Basis des Schaltmittels 36 (Zünddarlington) verbunden ist. Eine Durchbruchsspannung der Zenerdiode 60 beträgt beispielsweise 20 V.
  • Durch die in Figur 8 gezeigte Schaltungsanordnung wird erreicht, dass der Transistor 62 durch die transformierte Brennspannung des Zündfunkens dann angesteuert wird, wenn diese die Durchbruchsspannung der Zenerdiode 60, hier 20 V, übersteigt. Der Widerstand R3 dient hierbei als Strombegrenzungswiderstand. Wird der Transistor 62 durchgesteuert, schaltet dieser den Transistor 64, der daraufhin die Versorgungsspannung UBATT mit der Basis des Schaltmittels 36 verbindet, so dass dieser ebenfalls durchsteuert. Die Kapazität C dient hierbei der Dämpfung der Emitter-Basis-Strecke des Transistors 62 aufgrund der schwankenden Brennspannung, die an der Basis des Transistors 62 anliegt.
  • Figur 9 zeigt eine gegenüber Figur 8 abgewandelte Schaltungsvariante, bei der der Kollektor des Schaltmittels 30 mit der Kathode einer Zenerdiode 60' verbunden ist. Gleichzeitig ist der Kollektor des Schaltmittels 30 mit einem Emitteranschluss eines Transistors 66 verbunden, dessen Kollektor über den Widerstand R3 mit der Basis des Transistors 62 verbunden ist. Ferner ist der Kollektor des Transistors 66 über einen Widerstand R6 mit Masse verbunden. Die Basis des Transistors 66 ist über einen Widerstand R6 mit der Versorgungsspannung UBATT verbunden.
  • Durch die in Figur 9 gezeigte Schaltungsanordnung wird der Transistor 62 dann durchgesteuert, wenn die transformierte Brennspannung über die Versorgungsspannung UBATT ansteigt. Die Widerstände R6 dienen als hochohmige Schutzwiderstände für den Transistor 62 bei Klammerung des Schaltmittels 30. Die Zenerdiode 60' besitzt eine Durchbruchsspannung von beispielsweise 50 V, so dass die maximale Kollektor-Emitter-Spannung des Transistors 66 begrenzt wird.
  • Bei den in den Figuren 1, 8 und 9 gezeigten Schaltungsvarianten ist davon ausgegangen worden, dass die Zündkerze 12 zwei gegeneinander isoliert und gegen Masse isoliert angeordnete Elektroden 18 und 22 aufweist.

Claims (7)

  1. Zündanlage für eine Verbrennungskraftmaschine mit einer Zündeinrichtung, die zum Zünden eines Zündfunkens eine Hochspannung benötigt, dadurch gekennzeichnet, dass eine Sekundärwicklung (20) einer ersten Zündspule (14) mit einer ersten Elektrode (18) einer Zündkerze (12, 12') und eine Sekundärwicklung (24) einer zweiten Zündspule (16) mit einer zweiten Elektrode (22) der Zündkerze (12, 12') verbunden sind, dass Primärwicklungen (28, 34) der ersten und zweiten Zündspule (14, 16) durch jeweils ein Schaltmittel (30, 36) mit einer Versorgungsspannung verbindbar sind, und eine Ansteuerschaltung vorgesehen ist, über die eine zeitlich versetzte Ansteuerung der Zündspulen (14, 16) erfolgt.
  2. Zündanlage nach Anspruch 1, dadurch gekennzeichnet, dass die Schaltmittel (30, 36) Darlington-Transistoren sind.
  3. Zündanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Steuersignale (32, 38) der Schaltmittel (30, 36) von einer externen Ansteuerschaltung (Motorsteuergerät) bereitgestellt sind.
  4. Zündanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Steuersignal (32) für das Schaltmittel (30) von der externen Ansteuerschaltung bereitgestellt ist und das Steuersignal (38) für das Schaltmittel (36) abhängig von einem Betriebsparameter der Zündanlage (10) bereitgestellt ist.
  5. Zündanlage nach Anspruch 6, dadurch gekennzeichnet, dass das Steuersignal (38) bei Überschreiten einer vorgebbaren Brennspannung des Zündfunkens der Zündkerze (12, 12') bereitgestellt ist.
  6. Zündanlage nach einem der Ansprüche 4 und 5, dadurch gekennzeichnet, dass die vorgebbare Brennspannung durch die Durchbruchsspannung einer Zenerdiode (60) bestimmt ist.
  7. Zündanlage nach einem der Ansprüche 4 und 5, dadurch gekennzeichnet, dass die vorgebbare Brennspannung durch eine Höhe einer Versorgungsspannung (UBATT) bestimmt ist.
EP01923517A 2000-04-29 2001-03-15 Zündanlage für eine verbrennungskraftmaschine Expired - Lifetime EP1280993B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10021170A DE10021170A1 (de) 2000-04-29 2000-04-29 Zündanlage für eine Verbrennungskraftmaschine
DE10021170 2000-04-29
PCT/DE2001/000991 WO2001083982A2 (de) 2000-04-29 2001-03-15 Zündanlage für eine verbrennungskraftmaschine

Publications (2)

Publication Number Publication Date
EP1280993A2 EP1280993A2 (de) 2003-02-05
EP1280993B1 true EP1280993B1 (de) 2006-01-18

Family

ID=7640415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01923517A Expired - Lifetime EP1280993B1 (de) 2000-04-29 2001-03-15 Zündanlage für eine verbrennungskraftmaschine

Country Status (6)

Country Link
US (1) US6684866B2 (de)
EP (1) EP1280993B1 (de)
JP (1) JP2003532024A (de)
CZ (1) CZ20023503A3 (de)
DE (2) DE10021170A1 (de)
WO (1) WO2001083982A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588021B2 (en) * 2006-04-14 2009-09-15 Federal-Mogul Worldwide, Inc Spark plug circuit
US20090029179A1 (en) * 2007-05-14 2009-01-29 Fujifilm Corporation Two-liquid composition, hydrophilic composition and hydrophilic member
DE102007060242A1 (de) * 2007-12-14 2009-06-18 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines elektrischen Antriebs mithilfe einer Phasenanschnittssteuerung
JP6170852B2 (ja) * 2014-03-10 2017-07-26 本田技研工業株式会社 内燃機関の燃焼制御装置
JP2015175249A (ja) * 2014-03-13 2015-10-05 本田技研工業株式会社 内燃機関の燃焼制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1557046A (en) 1976-08-02 1979-12-05 Ford Research & Dev Ltd Eric H Ignition systems
JPS5337245A (en) 1976-09-20 1978-04-06 Mitsubishi Motors Corp Ignition system
JPH0726607B2 (ja) * 1987-02-23 1995-03-29 株式会社日立製作所 多気筒内燃機関用電子配電式点火装置
JP2590995B2 (ja) * 1987-12-26 1997-03-19 アイシン精機株式会社 イグニッシヨン装置
JPH01224475A (ja) 1988-03-01 1989-09-07 Mitsubishi Electric Corp 点火信号検出回路
US5370099A (en) * 1990-08-24 1994-12-06 Robert Bosch Gmbh Ignition system for internal combustion engines
KR950002633B1 (ko) * 1991-10-15 1995-03-23 미쯔비시 덴끼 가부시기가이샤 내연기관용 점화장치 및 방법

Also Published As

Publication number Publication date
DE10021170A1 (de) 2001-10-31
WO2001083982A2 (de) 2001-11-08
CZ20023503A3 (cs) 2003-04-16
EP1280993A2 (de) 2003-02-05
WO2001083982A3 (de) 2002-05-23
JP2003532024A (ja) 2003-10-28
US20030164165A1 (en) 2003-09-04
US6684866B2 (en) 2004-02-03
DE50108751D1 (de) 2006-04-06

Similar Documents

Publication Publication Date Title
DE2340865C3 (de) Zündvorrichtung für eine Brennkraftmaschine
DE102007034390B4 (de) Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
EP1254313B1 (de) Verfahren zur erzeugung einer folge von hochspannungszündfunken und hochspannungszündvorrichtung
DE2307443A1 (de) Zuendkontrollsystem
WO2012130649A1 (de) Verfahren und vorrichtung zur verlängerung der brenndauer eines von einer zündkerze gezündeten funkens in einem verbrennungsmotor
DE10062892A1 (de) Zündeinrichtung für Brennkraftmaschinen
DE102007034399B4 (de) Verfahren zum Betreiben eines Zündsystems für einen fremdzündbaren Verbrennungsmotor eines Kraftfahrzeugs und Zündsystem
EP0640761A2 (de) Steuerbare Zündanlage
DE2242325B2 (de) Zuendanlage fuer brennkraftmaschinen mit einem magnetzuender
DE3535365A1 (de) Hochspannungs-kondensator-zuendgeraet fuer brennkraftmaschinen
DE2927058A1 (de) Steuereinrichtung fuer eine zuendspule einer brennkraftmaschine
EP1280993B1 (de) Zündanlage für eine verbrennungskraftmaschine
EP0489264B1 (de) Elektronisches Zündsystem
DD244660A5 (de) Schaltungsanordnung zur erzeugung von hochspannungsimpulsen
EP0244633B1 (de) Zündanlage für Brennkraftmaschinen
WO1991002153A1 (de) Vollelektronische zündeinrichtung für eine brennkraftmaschine
DE3404245A1 (de) Hochspannungs-generatorschaltung fuer ein kraftfahrzeugzuendsystem
WO1999015788A2 (de) Vorrichtung zur unterdrückung unerwünschter zündungen bei einem ottomotor
DE60012073T2 (de) Zündsystem für eine fahrzeugantreibende Brennkraftmaschine
DE2237837A1 (de) Zuendeinrichtung fuer einen verbrennungskraftmotor
DE102012218698B3 (de) Vorrichtung und Verfahren zum Zünden einer Zündkerze eines Kraftfahrzeugs
DE10155972A1 (de) Zündanlage und Verfahren zum Betreiben einer Zündanlage
DE2623612C3 (de) Hochspannungs-Kondensatorzündvorrichtung für Brennkraftmaschinen
DE102014215369A1 (de) Zündsystem und Verfahren zum Steuern eines Zündsystems für eine fremdgezündete Brennkraftmaschine
DE102007060214A1 (de) Zündspulenanordnung für eine Brennkraftmaschine und Verfahren zur Ansteuerung einer derartigen Zündspulenanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021129

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17Q First examination report despatched

Effective date: 20050523

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060118

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060118

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50108751

Country of ref document: DE

Date of ref document: 20060406

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061003

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061019

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060118