EP1279016A1 - Procede et dispositif pour decouper au laser des echantillons microscopiques - Google Patents

Procede et dispositif pour decouper au laser des echantillons microscopiques

Info

Publication number
EP1279016A1
EP1279016A1 EP01940151A EP01940151A EP1279016A1 EP 1279016 A1 EP1279016 A1 EP 1279016A1 EP 01940151 A EP01940151 A EP 01940151A EP 01940151 A EP01940151 A EP 01940151A EP 1279016 A1 EP1279016 A1 EP 1279016A1
Authority
EP
European Patent Office
Prior art keywords
aperture
laser
sample
objective
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01940151A
Other languages
German (de)
English (en)
Inventor
Michael Ganser
Albrecht Weiss
Rüdiger STENZEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Microsystems CMS GmbH
Original Assignee
Leica Microsystems Wetzlar GmbH
Leica Microsystems CMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Microsystems Wetzlar GmbH, Leica Microsystems CMS GmbH filed Critical Leica Microsystems Wetzlar GmbH
Publication of EP1279016A1 publication Critical patent/EP1279016A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/32Micromanipulators structurally combined with microscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2813Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N2001/045Laser ablation; Microwave vaporisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • G01N2001/2886Laser cutting, e.g. tissue catapult
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/141With means to monitor and control operation [e.g., self-regulating means]

Definitions

  • the invention relates to a method for laser cutting microscopic samples.
  • the invention further relates to a device for laser cutting microscopic samples, the device comprising a microscope with at least one objective for viewing a sample to be cut, the objective defining an optical axis and an objective aperture, a laser which generates a laser beam, and at least one optical system that couples the laser beam into the lens.
  • the German patent application DE-196 16 216.5 describes such a method, the so-called laser pressure catapulting method (LPC method).
  • LPC method laser pressure catapulting method
  • a sample part is cut out of a sample stored on a transparent slide using a laser.
  • the cut-out sample part is removed from the total sample by an induced laser process.
  • a collecting device the inner surface of which is coated with an adhesive, is guided over the cut-out sample part by means of a support arm.
  • this sample part is exposed to a flat laser bombardment of suitable power, by means of which the cut-out sample part is catapulted upwards out of the total sample. That way Detached sample is collected from the adhesive surface of the collecting device and can then be used for further examinations.
  • the laser pulse used to catapult the specimens can damage the tissue.
  • sample particles detached from the cutting line can be deposited on the sample area to be examined due to the cutting process. This problem occurs especially when using inverted microscopes.
  • the cutting quality of the laser can be adjusted by changing the laser intensity and the focus position.
  • the aperture of the laser light beam used in these known systems is determined by the lens aperture, which in turn must be as large as possible for maximum image quality.
  • the constant cut quality is difficult to achieve in the devices or methods of the prior art.
  • the quality of the cuts depends on the one hand on the focus position of the specimen and its thickness and on the other hand on the laser intensity. This must be varied by the user in order to optimize the cutting quality.
  • the invention is based on the object of designing a device for laser cutting microscopic samples in such a way that an approximately constant cutting quality is ensured for a broad spectrum of samples.
  • the solution to this problem is characterized in that an aperture is provided which generates a dimmed laser beam, a laser aperture generated by the objective being smaller than the aperture of the objective.
  • Another object of the invention is to describe a method for laser cutting microscopic specimens, which enables an approximately constant cutting quality for a wide range of samples.
  • a process which comprises the following steps: a) inserting a slide with a sample to be cut into a microscope which comprises at least one objective; b) determining a region of the sample to be cut out with the objective; c) defining a cutting line around the area; d) generating a dimmed laser beam by means of an aperture, so that its diameter is reduced such that a laser aperture generated by the objective is smaller than the objective aperture of the objective itself; and e) cutting the sample along the defined cutting line.
  • An advantage of the invention is that by reducing the laser aperture, the laser light cone becomes slimmer, which leads to an increase in the depth of field. As a result of the greater depth of field of the laser light, the requirement for focusing accuracy is reduced and thus leads to a uniform and narrow cutting channel.
  • Another advantage of the configuration of the device according to the invention is that the size of the objective aperture is maintained during the cutting process. This enables the specimen to be observed at all times with the full objective aperture. This ensures the best possible definition of the sample plane and maximum image quality for assessing the sample.
  • Objective apertures up to about 0.8 are necessary for detailed imaging and a targeted selection of areas of the sample. Of course, this requires a shallow depth of field, so that the specimen can be fixed at different levels. However, a shallow depth of field is undesirable for cutting with a laser beam.
  • the invention now combines the relatively large objective aperture with a dimmed laser beam in such a way that the laser aperture generated by the objective is smaller than the aperture of the objective itself. The objective can be used for simultaneous observation and cutting of the sample while the aperture remains the same.
  • the optical system contains a dichroic splitter which reflects the laser light and into the lens couples in, and at the same time lets the light from the observation beam path through to the eyepieces or the camera.
  • the laser cut can be controlled simultaneously via an imaging system, camera. If it is determined during the evaluation of the images that either the preparation was not completely severed during laser bombardment or that the cutting geometry is inadequate, individual system parameters such as the laser intensity and / or the focus position of the laser beam and / or or the size of the aperture in the laser beam can be set using a computer. This simultaneous control reduces the total cutting time with improved quality.
  • FIG. 3 shows a graphic representation of the cutting width as a function of the aperture of the laser beam.
  • the microscope 1 shown is a microscope in which the illumination system 3 is on the microscope stand 5 below the work table
  • a lens 6 of the microscope 1 is arranged above the work table 2 and the sample 12.
  • the objective 6 defines an optical axis 14, in which the lighting system 3 is also arranged.
  • laser cutting can of course also be carried out with inverted microscopes, in which the illumination system
  • Illumination system 3 emitted light is directed via a condenser lens 7 from below onto the object carrier 10 and sample 12 arranged on the work table 2.
  • the light penetrating the sample 12 reaches the objective 6 of the microscope 1.
  • the light is transmitted via lenses and mirrors (not shown) to at least one eyepiece 8
  • Microscope 1 is fed through which an operator can view the sample arranged on the work table 2.
  • An optical system 16 is provided in the stand 5 of the microscope 1 in the optical axis of the objective 6.
  • the optical system 16 can be a dichroic splitter, for example.
  • the optical system 16 consists of several optical components. This is the case when the laser 4 has to be steered around several corners.
  • an aperture 18 is provided in the laser beam 4a, with which the diameter of the laser beam can be limited in a corresponding manner.
  • the aperture 18 can be designed, for example, as a fixed aperture. In this case, a plurality of fixed diaphragms are arranged in a corresponding manner, for example on a turret disk, in order to move the required diaphragm 18 into the beam path.
  • the method can be carried out manually by the user or by motor.
  • the diaphragm 18 is designed as a vario diaphragm, for example as an iris diaphragm, the diameter of which is controlled by a motor 20.
  • the motor 20 receives the necessary control signals from a computer 22 for setting the required diaphragm diameter.
  • the microscope 1 is also provided with a camera 24, which takes an image of the sample 12 to be cut. This image can be displayed on a monitor 26 which is connected to the computer 22.
  • the system of computer 22, camera 24 and monitor 26 can be used so that the cutting process can be observed and monitored by laser 4.
  • the area of the sample 12 to be cut out can be bypassed on the monitor 26 by means of a mouse pointer.
  • the cutting process is then carried out by the laser 4 along the cutting line marked in this way.
  • FIG. 2 shows the beam path in the area of the sample 12 to be cut.
  • the diameter of the laser beam 4a coming from the laser 4 is limited by the diaphragm 18.
  • a dimmed laser beam 4b with a smaller diameter emerges.
  • the laser beam 4b strikes the optical system 16, which is designed as a dichromatic splitter, and is thereby directed through the objective 6 onto the sample 12 to be cut.
  • the lens 6 is symbolically represented in FIG. 2 by a lens.
  • the sample 12 applied to a slide 10 is illuminated via the condenser lens 7.
  • the objective 6 generates an imaging beam path 6a, which has a greater width than the laser beam 4b after the aperture 18.
  • FIG. 3 illustrates the advantage of a dimmed laser beam 4b which is narrower than the imaging beam path 6a or as a non-dimmed laser beam which fills the entire lens opening 32, through which the largest possible beam cross section is defined.
  • the sample 12 has a thickness 30 which can be greater than the depth of field of the objective 6 used. The user can focus on different planes in the sample 12 in order to find points relevant for the further examination.
  • the lens 6 If the sample 12 is cut with a non-dimmed laser beam, the cross section of which corresponds to the lens opening 32 of the lens 6, the lens 6 generates a maximum laser aperture which is equal to that Lens aperture 34 is. Due to the maximum laser aperture generated, a maximum cutting channel 34b with a width 34a is generated in the sample 12.
  • a reduced laser aperture 36 is generated by the objective 6, which creates a reduced cut channel 36b with a width 36a in the sample 12.
  • the aperture 18 By arranging the aperture 18 to limit the laser beam cross section in front of the optical system 16 outside the observation beam path, it is ensured that the depth of field of the objective 6 for viewing the sample 12 remains unchanged during the cutting process, regardless of the set laser aperture. As a result, the image quality is retained even during the cutting process.
  • the aperture 18 delimiting the laser beam 4a is adapted to the thickness 30 of the sample 12 to be cut.
  • a first possibility is that the aperture 18 required for an optimal cut is determined from a table (not shown) and the aperture is set manually by the user.
  • the aperture 18 required for an optimal cut can be determined by the computer 22 from a stored table (not shown). The setting of the diaphragm 18 is then carried out automatically by the computer 22. For this purpose, the computer 22 sends appropriate signals to the motor 20, which causes the diaphragm 18 to be adjusted.
  • a further possibility for an optimal cut is that the computer 22 is connected to the microscope 1 with an image evaluation system (not shown) in such a way that individual system parameters, such as the laser intensity, the focus position of the laser beam and the size of the aperture 18, automatically Optimum can be set.
  • the setting can also be changed automatically during the cutting process in order to take account of possible fluctuations in the thickness of the sample 12.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Microscoopes, Condenser (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Laser Beam Processing (AREA)

Abstract

L"invention concerne un procédé et un dispositif permettant de découper au laser des échantillons microscopiques. Le dispositif prévu pour découper au laser des échantillons microscopiques comprend un microscope (1) avec au moins un objectif (6) pour observer un échantillon (12) à découper. Ledit objectif (6) définit un axe optique (14) et une ouverture d"objectif (34). En outre, un laser (4) est connecté au microscope (1). Le laser (4) produit un faisceau laser (4a) qui est injecté dans l"objectif (6) par au moins un système optique (16). Il est prévu un diaphragme (18) qui produit un faisceau laser (4b) diaphragmé, une ouverture de laser (36) induite par l"objectif (6) étant inférieure à l"ouverture (34) de l"objectif (6).
EP01940151A 2000-04-13 2001-04-10 Procede et dispositif pour decouper au laser des echantillons microscopiques Withdrawn EP1279016A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10018255 2000-04-13
DE10018255A DE10018255C2 (de) 2000-04-13 2000-04-13 Laserschneid-Verfahren und Laserschneid-Vorrichtung zum Laserschneiden mit mikroskopischer Proben
PCT/DE2001/001414 WO2001079806A1 (fr) 2000-04-13 2001-04-10 Procede et dispositif pour decouper au laser des echantillons microscopiques

Publications (1)

Publication Number Publication Date
EP1279016A1 true EP1279016A1 (fr) 2003-01-29

Family

ID=7638554

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01940151A Withdrawn EP1279016A1 (fr) 2000-04-13 2001-04-10 Procede et dispositif pour decouper au laser des echantillons microscopiques

Country Status (7)

Country Link
US (1) US20020164678A1 (fr)
EP (1) EP1279016A1 (fr)
JP (1) JP4236844B2 (fr)
AU (1) AU2001273838A1 (fr)
DE (1) DE10018255C2 (fr)
TW (1) TW496958B (fr)
WO (1) WO2001079806A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10157890B4 (de) * 2001-11-26 2008-06-19 Alpha Laser Gmbh Laserbearbeitungsvorrichtung
US6951627B2 (en) * 2002-04-26 2005-10-04 Matsushita Electric Industrial Co., Ltd. Method of drilling holes with precision laser micromachining
US7880117B2 (en) 2002-12-24 2011-02-01 Panasonic Corporation Method and apparatus of drilling high density submicron cavities using parallel laser beams
DE10300091A1 (de) * 2003-01-04 2004-07-29 Lubatschowski, Holger, Dr. Mikrotom
US9217694B2 (en) * 2003-10-21 2015-12-22 Leica Microsystems Cms Gmbh Method for automatically generating laser cutting lines in laser microdissection processes
DE102006030195A1 (de) * 2006-06-30 2008-01-03 P.A.L.M. Microlaser Technologies Gmbh Verfahren und Vorrichtung zur Laser-Mikrodissektion und zum Lasercatapulting
DE102007016301A1 (de) * 2007-04-04 2008-10-09 P.A.L.M. Microlaser Technologies Gmbh Laser-Mikrodissektionsverfahren und Laser-Mikrodissektionsvorrichtung
US20080302226A1 (en) * 2007-06-07 2008-12-11 Credo Technology Corporation Power tool having imaging device and display device
DE102007035582A1 (de) * 2007-07-30 2009-02-05 P.A.L.M. Microlaser Technologies Gmbh Verfahren und Vorrichtung zum Bearbeiten eines biologischen Objekts mit Laserstrahlung
US8921114B2 (en) * 2007-08-24 2014-12-30 Sysmex Corporation Diagnosis support system for cancer, diagnosis support information providing method for cancer, and computer program product
DE102011001474A1 (de) * 2011-03-22 2012-09-27 Carl Zeiss Microimaging Gmbh Laser-Mikrodissektionsverfahren und Laser-Mikrodissektionsvorrichtung
DE102013216938B3 (de) 2013-08-26 2015-01-08 Leica Microsystems Cms Gmbh Verfahren zur Kalibrierung einer Laserablenkeinrichtung einesLasermikrodissektionssystems und Lasermikrodissektionssystem
DE102014202646A1 (de) 2014-02-13 2015-08-13 Leica Microsystems Cms Gmbh Verfahren zum Herstellen eines Objekts aus einem Werkstoff und/oder zum Bearbeiten eines Objekts
DE102016217250A1 (de) 2016-09-09 2018-03-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrofluidische Vorrichtung für Zellkulturexperimente und Verwendungen hiervon
CN109668765B (zh) * 2019-01-18 2021-11-09 南京理工大学 一种基于飞秒激光加工的多取向介观拉伸样品制备方法
DE102020100587A1 (de) * 2020-01-13 2021-07-15 Leica Microsystems Cms Gmbh Verfahren zum Überprüfen eines Dissektiervorgangs in einem Laser-Mikrodissektionssystem und Mittel zu dessen Durchführung

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642007A (en) * 1969-08-12 1972-02-15 Thomas G Roberts Continuous wave laser surgical device
GB1584779A (en) * 1976-09-24 1981-02-18 Agfa Gevaert Laserbeam recording
FR2555039B1 (fr) * 1983-11-21 1986-04-04 Centre Nat Rech Scient Ophtalmoscope catadioptrique a balayage
JPS60164487A (ja) * 1984-02-06 1985-08-27 Hitachi Ltd 細胞融合方法
JPH0638742B2 (ja) * 1986-02-19 1994-05-25 株式会社日立製作所 生試料加工方法
JPS6359875A (ja) * 1986-08-29 1988-03-15 Mitsubishi Electric Corp レ−ザ細胞加工装置
US4731158A (en) * 1986-09-12 1988-03-15 International Business Machines Corporation High rate laser etching technique
US4840175A (en) * 1986-12-24 1989-06-20 Peyman Gholam A Method for modifying corneal curvature
JPS63202369A (ja) * 1987-02-18 1988-08-22 Hitachi Ltd レ−ザ穿孔方法および装置
US5057100A (en) * 1988-04-11 1991-10-15 I.L. Med., Inc. Laser head and microscope attachment assembly with swivel capability
JP3170023B2 (ja) * 1992-02-27 2001-05-28 ホーヤ株式会社 レーザ加工装置
DE4232915A1 (de) * 1992-10-01 1994-04-07 Hohla Kristian Vorrichtung zur Formung der Cornea durch Abtragen von Gewebe
DE4300698A1 (de) * 1993-01-13 1994-07-14 Raimund Schuetze Vorrichtung und Verfahren zur Handhabung, Bearbeitung und Beobachtung kleiner Teilchen, insbesondere biologischer Teilchen
US5611946A (en) * 1994-02-18 1997-03-18 New Wave Research Multi-wavelength laser system, probe station and laser cutter system using the same
US6040139A (en) * 1995-09-19 2000-03-21 Bova; G. Steven Laser cell purification system
WO1997029354A1 (fr) * 1996-02-05 1997-08-14 Bayer Aktiengesellschaft Procede et dispositif pour trier et recuperer des objets biologiques deposes sur un support plat, tels que des cellules biologiques ou des organites cellulaires, des coupes histologiques, des particules de chromosomes etc., au moyen de faisceaux laser
WO1998014816A1 (fr) * 1996-10-02 1998-04-09 Cell Robotics Inc. Microscope a fenetre pour laser
US6469779B2 (en) * 1997-02-07 2002-10-22 Arcturus Engineering, Inc. Laser capture microdissection method and apparatus
JPH11148887A (ja) * 1997-11-17 1999-06-02 Japan Science & Technology Corp 生体サンプルの切断方法および切断片回収方法、 並びにそのための装置
JPH10216966A (ja) * 1998-02-20 1998-08-18 Hoya Corp レーザ加工装置
ES2230877T3 (es) * 1998-07-30 2005-05-01 The Government Of The Usa, As Represented By The Secretary, Department Of Health And Human Services Microdiseccion de precision por captura con laser utilizando longitud de pulso corta.
DE10018251C2 (de) * 2000-04-13 2003-08-14 Leica Microsystems Laserschneid-Vorrichtung mit Mikroskop
DE10043504C2 (de) * 2000-09-01 2002-07-04 Leica Microsystems Verfahren zur Laser-Mikrodissektion und Verwendung einer Vorrichtung zur Laser-Mikrodissektion
DE10043506C1 (de) * 2000-09-01 2001-12-06 Leica Microsystems Verfahren und Vorrichtung zur Laser-Mikrodissektion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0179806A1 *

Also Published As

Publication number Publication date
DE10018255A1 (de) 2001-10-25
JP2003531369A (ja) 2003-10-21
JP4236844B2 (ja) 2009-03-11
TW496958B (en) 2002-08-01
WO2001079806A1 (fr) 2001-10-25
DE10018255C2 (de) 2003-08-28
US20020164678A1 (en) 2002-11-07
AU2001273838A1 (en) 2001-10-30

Similar Documents

Publication Publication Date Title
DE10018255C2 (de) Laserschneid-Verfahren und Laserschneid-Vorrichtung zum Laserschneiden mit mikroskopischer Proben
EP2906984B1 (fr) Microscope et procédé de microscopie spim
DE10043506C1 (de) Verfahren und Vorrichtung zur Laser-Mikrodissektion
DE102005028062B4 (de) Laser-Mikrodissektionsverfahren und Vorrichtung zur Laser-Mikrodissektion
DE102010034666B4 (de) Röntgenanalysevorrichtung und Röntgenanalyseverfahren
WO2004061425A1 (fr) Microtome
DE10043504C2 (de) Verfahren zur Laser-Mikrodissektion und Verwendung einer Vorrichtung zur Laser-Mikrodissektion
DE102009022912B4 (de) Korrelative optische und Teilchenstrahl-Mikroskopie
WO2019011627A1 (fr) Appareil de contrôle de dureté par indentation
DE10233549B4 (de) Scanmikroskop mit Manipulationslichtstrahl und Verfahren zur Scanmikroskopie
DE102011001474A1 (de) Laser-Mikrodissektionsverfahren und Laser-Mikrodissektionsvorrichtung
DE102019102330B3 (de) Optisches System für ein Mikroskop, Mikroskop mit einem optischen System und Verfahren zur Abbildung eines Objekts unter Verwendung eines Mikroskops
DE102014118025B4 (de) Vorrichtung zur Lichtblattmikroskopie
DE10102034A1 (de) Objektträger, Mikrodissektionseinrichtung mit Objektträger und Verfahren zur Mikrodissektion
WO2005033669A1 (fr) Procede de microdissection au laser
DE2742957A1 (de) Mikroskop
WO2015128447A1 (fr) Système et procédé de microdissection laser
DE102016111781B3 (de) Kontaminationsschutzeinrichtung für ein Lasermikrodissektionssystem und Lasermikrodissektionssystem
DE102016111938B4 (de) Lasermikrodissektionsverfahren und Lasermikrodissektionssysteme
DE102007035582A1 (de) Verfahren und Vorrichtung zum Bearbeiten eines biologischen Objekts mit Laserstrahlung
DE102013209964B4 (de) Lasermikrodissektionssystem mit Benutzerinformationseinheit und Verfahren zur Lasermikrodissektion
DE102009019290B4 (de) Mikroskopvorrichtung
EP1989527A1 (fr) Procédé pour travailler une masse au moyen d'un rayon laser et dispositif correspondant
WO2020160913A1 (fr) Procédé de microdissection laser, système de microdissection laser et programme d'ordinateur
DE10336962B4 (de) Vorrichtung zur konfokalen Abbildung eines Objektes in einer Bildebene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020924

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20050330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050810