DE102006030195A1 - Verfahren und Vorrichtung zur Laser-Mikrodissektion und zum Lasercatapulting - Google Patents

Verfahren und Vorrichtung zur Laser-Mikrodissektion und zum Lasercatapulting Download PDF

Info

Publication number
DE102006030195A1
DE102006030195A1 DE200610030195 DE102006030195A DE102006030195A1 DE 102006030195 A1 DE102006030195 A1 DE 102006030195A1 DE 200610030195 DE200610030195 DE 200610030195 DE 102006030195 A DE102006030195 A DE 102006030195A DE 102006030195 A1 DE102006030195 A1 DE 102006030195A1
Authority
DE
Germany
Prior art keywords
laser
catapulting
shaping element
microdissection
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200610030195
Other languages
English (en)
Inventor
Yilmaz Dr. Niyaz
Karin Dr. Schütze
Carsten LÜTHY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Microscopy GmbH
Original Assignee
PALM Microlaser Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PALM Microlaser Technologies GmbH filed Critical PALM Microlaser Technologies GmbH
Priority to DE200610030195 priority Critical patent/DE102006030195A1/de
Priority to PCT/EP2007/005485 priority patent/WO2008000389A1/de
Publication of DE102006030195A1 publication Critical patent/DE102006030195A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2813Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • G01N2001/045Laser ablation; Microwave vaporisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving
    • G01N2001/2886Laser cutting, e.g. tissue catapult

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Laser Surgery Devices (AREA)
  • Laser Beam Processing (AREA)

Abstract

Es wird ein Laser-Mikrodissektionssystem mit einem Strahlformungselement bereitgestellt.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Laser-Mikrodissektion und zum Laser-Pressure-Catapulting (LMPC). Für das Laser-Pressure-Catapulting werden entsprechend einer Laser-Mikrodissektion biologische Objekte aus einer biologischen Masse zumindest weitgehend herausgeschnitten und dann mit einem gezielten Laserschuss bzw. Laserimpuls in einen Auffangbehälter katapultiert. Ein direktes Katapultieren interessierender Bereiche der biologischen Masse ohne verheriges Ausschneiden ist ebenfalls möglich, wobei in diesem Fall das katapultierte Gebiet maßgeblich von der Strahlintensität und dem Strahlprofil eines verwendeten Laserstrahls abhängt. Eine derartige Vorrichtung bzw. ein derartiges Verfahren ist beispielsweise aus der DE 100 15 157.4 der Anmelderin bekannt und wird unter der Bezeichnung MicroBeam vertrieben.
  • Problemstellung
  • Welches Problem löst die Erfindung
  • Der MicroBeam Verwendet sowohl zum Ausschneiden als auch zum Katapultieren denselben Laser. Das von der Strahlquelle vorgegebene Strahlprofil wird im gegenwärtigen Zustand sowohl für den Mikrodissektionsprozess als auch für den Katapult-Vorgang im Wesentlichen unverändert eingesetzt. Allerdings müssen die Laserparameter für den jeweiligen Vorgang und auf das jeweilige Präparat eingestellt werden: Während des Schneideprozesses befindet sich der fokale Punkt des Lasers auf der Objektebene. Für den Katapult-Vorgang hingegen wird der Laserstrahl defokussiert eingesetzt. Somit ergibt sich eine starke Abhängigkeit der LMPC von der Qualität und Geometrie des Ausgangsstrahls: Für das Schneiden eignen sich Strahlprofile mit enger Gauss-Verteilung, die jedoch für das Katapultieren nachteilig sind.
  • Welche Nachteile weisen bekannte Lösungen auf
  • Nicht-optimale Kompromiss-Lösung für die LMPC-Prozesse Schneiden und Katapultieren
  • Die zurzeit angewandte Strahlfokus-Anpassung über Beamexpander und Grauwert-Abschwächer stellt einen Kompromiss zwischen den gegenläufigen Anforderungen des Schneidens (optimal: enger Gauss mit hoher Amplitude) und des Katapultierens (optimal: flat-top) her. Neben der Abhängigkeit vom Ausgangsstrahl ergeben sich daher vor allem Probleme für das Katapultieren der Probe: mit der herkömmlichen Lösung wird der „Transfer-Impuls" über Defokussierung des Laserstrahls erreicht. Dies hat zur Folge, dass ein Großteil der zur Verfügung stehenden Energie nicht dem Transfer zugute kommt, sondern nur die Basis des gauss-verteilten Strahlprofils. Die restliche Energie „verpufft" entweder unterhalb der Objektebene ungenutzt oder aber wird in die Objektebene übertragen und führt zur unnötigen Belastung der Probe (Durchschuss der Probe). Dies führt zur zeitaufwändigen Praxis bei schwierig zu bearbeitenden Proben für den Schneideprozess hochnumerische Objektive einzusetzen und für den Katapultvorgang zu niedernumerischen Objektiven zu wechseln. Hinzu kommt, dass bei Verwendung z. B. Femtosekundenlaser das Katapultieren schwierig und nur begrenzt durchführbar ist, da die übertragene Energie nur auf eine sehr kleine Oberfläche verteilt werden kann.
  • Lösung
  • Dieses Problem wird gelöst durch ein Verfahren nach Anspruch 1 und eine Vorrichtung nach Anspruch 8. Die abhängigen Ansprüche definieren bevorzugte oder vorteilhafte Ausführungsbeispiele.
  • Durch Einsatz von refraktiver/defraktiver Optik kann der Strahl beliebig „geformt" werden, so dass er sowohl fein fokussiert zum Schneiden oder zur Mikroinjektion eingesetzt als auch mit einer breiten Strahlfront zum optimierten Katapultieren verwendet werden kann. Eine Abhängigkeit der Laserquelle wird somit vermindert. Zudem kann der Laserstrahl sehr schnell auf die jeweilige Anforderung moduliert werden, ohne das Veränderungen in Fokus- und Energiewerten erfolgen müssen. Des Weiteren kann auf einen Objektivwechsel zwischen Schneiden und Katapultieren auch bei schwierigen Proben verzichtet werden.
  • Weitere Vorteile:
    • – Aufgrund der optimierten Energieverteilung kann im Katapultiermodus mehr Energie auf eine größere Fläche übertragen werden, wodurch vor allem mit Objektiven mit geringerer Vergrößerung größere Probenareale transferiert werden können. Dies bringt auch für auf Glasobjektträgern aufgebrachte Proben Vorteile, da über die größere Flächenverteilung größere Areale ohne unterliegende Transfer-Membran befördert werden können.
    • – Hierdurch wird erreicht, dass der Energieeintrag in die Probe minimiert wird, was vor allem im Lebendzell-Bereich von Bedeutung ist. Des Weiteren können somit Durchschüsse der Membran verhindert werden.
    • – Der über refraktive/defraktive Optik modulierte Strahl hat nach der Umformung eine rechteckige Bestrahlungsfläche und kann daher für eine Bestrahlung der Fläche ohne Überlappungsbereiche genutzt werden (z. B. bei AutoLPC von direkt au Glasobjektträgern aufgebrachten Proben).
  • In 1A und 1B ist ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung dargestellt, wobei 1A den Strahlengang und 1B ein vollständiges Mikroskopsystem zeigt. Bis auf die nachfolgend noch zu erläuternden Elemente entspricht das Mikroskopsystem von 1B einem herkömmlichen System zur Laser-Mikrodissektion und zum Laser-Pressure-Catapulting (LMPC), wie es beispielsweise in der DE 103 58 565 der Anmelderin beschrieben ist.
  • Zur Einstellung eines gewünschten Laserstrahlprofils insbesondere für das Katapultieren dient ein Strahlformungselement 100, welches durch einen Schrittmotor wie durch einen Pfeil 110 angedeutet in den Strahlengang gefahren werden kann bzw. aus diesem heraus gefahren werden kann. Statt eines Schrittmotors sind auch andere Bewegungsmittel zum Bewegen des Strahlformungselements 100 in den Strahlengang oder aus dem Strahlengang heraus denkbar. Der Schrittmotor weist bevorzugt eine hohe Positioniergenauigkeit auf, um das Strahlprofil präzise einstellen bzw. das Strahlformungselement 100 präzise positionieren zu können. Eine mögliche Positioniergenauigkeit ist beispielsweise 0,1 mm.
  • Das Strahlformungselement 100 kann insbesondere ein Beugungselement sein oder ein solches enthalten. Beispiele für Beugungselemente sind in den weiteren Figuren dargestellt.
  • Das Beugungselement kann beispielsweise eine so genannte Asphäre sein, ein asphärisches Element, welches beispielsweise durch Lithographie wie in 9 dargestellt hergestellt werden kann. Durch ein derartiges Verfahren kann ein Beugungsgitter erzeugt werden. Mit derartigen Beugungsgittern können gewünschte Strahlprofile erzeugt werden, dafür wird das gewünschte Strahlprofil vorgegeben und nach den bekannten der Wellenoptik das nötige Beugungsprofil ermittelt. Derartige Beugungselemente sind beispielsweise auch aus der DE 102 45 558 A1 bekannt.
  • Asphärische Beugungselemente können dabei auch aus einer Kombination einer sphärischen Linse mit einem auf der Linse aufgebrachten Beugungsgitter bestehen.
  • 2 und 3A, 3B zeigen dabei Strahlprofile für eine derartige Asphäre, d. h. die Intensität des Strahls in Abhängigkeit von dem Ort. Mit z wird dabei eine Fokussierung in der jeweiligen Objektebene des Mikroskops aus 1B bezeichnet. Eine derartige Fokussierung kann entweder durch ein entsprechendes Mikroskopobjektiv oder durch eine Optik 16 in 1B erreicht werden. Wie zu sehen ist, kann mit einer derartigen Asphäre ein breites relativ homogenes Strahlprofil erzeugt werden, welches zum Katapultieren gut geeignet ist.
  • 4 zeigt schließlich den Einfluss einer Profiltiefe der Asphäre auf die Intensitätsverteilung.
  • Eine weitere Möglichkeit zur Strahlformung ist ein Array, beispielsweise ein Linsenarray. Ein derartiges Linsenarray ist in 10 schematisch dargestellt und kann durch Reflexion über Spiegel beleuchtet werden. 10 zeigt dabei ein an den Mikrolinsenabstand angepasstes Kohärenz-Management durch zwei gekreuzte Stufenspiegel. 5 und 6 zeigen Intensitätsverteilungen ähnlich 2 und 3 für ein derartiges Array. Auch in einem Array können zusätzlich oder alternativ zu Linsen Beugungselemente zum Einsatz kommen.
  • Bei derartigen Arrays kann es durch die regelmäßige Anordnung der Linen zu Interferenzerscheinungen kommen. Um dies zu vermeiden, kann als Strahlformungselement 100 auch ein so genanntes statistisches Array vorgesehen sein, welches eine Feldverteilung im Wesentlichen ohne Interferenzen ermöglicht, da bei einem derartigen statistischen Array keine für eine Interferenz nötige feste Phasenbeziehung zwischen einer Mehrzahl von Strahlen besteht. Derartige statistische Arrays sind beispielsweise in L. Erdmann et al., „MOEMS-based Lithography for the Fabrication of Mirco-Optical Components", Journal of Microlithography, Microfabrication and Microsystems, Vol. 4, Issue 4, 2005 beschrieben.
  • Es können sowohl zur Herstellung der Strahlformungselemente 100 als auch für die Strahlformungselement 100 selbst so genannte DMD-Elemente verwendet werden, welche aus der Projektionstechnik bekannt sind. Hierbei handelt es sich um eine große Anzahl von in einer Matrix angeordneten gegebenenfalls teildurchlässigen Mikrospiegel, welche einzeln angesteuert werden können.
  • Es ist zu bemerken, dass das Strahlformungselement 100 auch aus mehreren optischen Elementen, beispielsweise einer Kombination aus Beugungselementen und Linsen, bestehen kann.
  • 9 zeigt das simultane Strukturieren des gesamten optischen Elements durch holgrafische Lithografie. Dabei liegt ein geblaztes Oberflächenprofil für hohe räumliche Sequenzen vor. Aufgrund der begrenzten Profiltiefe in dem Fotolack wird ein zusätzlicher Ionen-Ätzprozess zum Einstellen der Profiltiefe verwendet.
  • Es ist möglich, für die Laser-Mikrodissektion, also für einen Schneidvorgang, den unveränderten Laserstrahl zu verwenden und zum Katapultieren das Strahlformungselement 100 in den Strahlengang zu bewegen. Es sind jedoch auch zwei verschiedene Strahlformungselemente 100 denkbar, wobei eines für das Schneiden und eines für einen Katapultvorgang in den Strahlengang gefahren wird, um jeweils ein optimales Strahlprofil zu erzeugen.

Claims (10)

  1. Verfahren zur Laser-Mikrodissektion und zum Katapultieren eines biologischen Objekts, wobei das biologische Objekt mit einem Laserstrahl bestrahlt wird, wobei zumindest zur Dissektion oder zum Katapultieren ein Strahlformungselement (100) in den Strahlengang des Laserstrahls bewegt wird.
  2. Verfahren nach Anspruch 1, wobei zur Dissektion kein Strahlformungselement in den Strahlengang bewegt wird, und wobei zum Katapultieren ein Strahlformungselement in den Strahlengang bewegt wird.
  3. Verfahren nach Anspruch 1, wobei zur Dissektion ein erstes Strahlformungselement in den Strahlengang bewegt wird, und wobei zum Katapultieren ein zweites Strahlformungselement in den Strahlengang bewegt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Strahlformungselement ein Beugungselement umfasst.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Strahlformungselement ein Brechungselement umfasst.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Strahlformungselement ein asphärisches Beugungselement, ein Linsenarray und/oder ein statistisches Array umfasst.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei, wenn sich das Strahlformungselement im Strahlengang befindet, eine Intensitätsverteilung des Laserstrahls breiter ist als ohne das Strahlformungselement.
  8. Vorrichtung zur Mikrodissektion und zum Katapultieren von biologischen Objekten, mit einem Laser zur Erzeugung eines Laserstrahls, und mit einem Strahlformungselement, welches in einen Strahlengang des Laserstrahls bewegbar ist.
  9. Vorrichtung nach Anspruch 8, mit einem Schrittmotor zum Bewegen des Strahlformungselements in den Strahlengang.
  10. Vorrichtung nach Anspruch 8 oder 9, wobei die Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7 ausgestaltet ist.
DE200610030195 2006-06-30 2006-06-30 Verfahren und Vorrichtung zur Laser-Mikrodissektion und zum Lasercatapulting Withdrawn DE102006030195A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE200610030195 DE102006030195A1 (de) 2006-06-30 2006-06-30 Verfahren und Vorrichtung zur Laser-Mikrodissektion und zum Lasercatapulting
PCT/EP2007/005485 WO2008000389A1 (de) 2006-06-30 2007-06-21 Verfahren und vorrichtung zur behandlung biologischer objekte mittels laserstrahlung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610030195 DE102006030195A1 (de) 2006-06-30 2006-06-30 Verfahren und Vorrichtung zur Laser-Mikrodissektion und zum Lasercatapulting

Publications (1)

Publication Number Publication Date
DE102006030195A1 true DE102006030195A1 (de) 2008-01-03

Family

ID=38445696

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200610030195 Withdrawn DE102006030195A1 (de) 2006-06-30 2006-06-30 Verfahren und Vorrichtung zur Laser-Mikrodissektion und zum Lasercatapulting

Country Status (2)

Country Link
DE (1) DE102006030195A1 (de)
WO (1) WO2008000389A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007030320B4 (de) * 2007-06-29 2015-04-02 Carl Zeiss Microscopy Gmbh Laser-Mikrodissektionsverfahren und Laser-Mikrodissektionssystem

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011156A2 (en) * 1995-09-19 1997-03-27 Bova G Steven Laser cell purification system
WO1998014816A1 (en) * 1996-10-02 1998-04-09 Cell Robotics Inc. Microscope with laser port
DE10018255A1 (de) * 2000-04-13 2001-10-25 Leica Microsystems Verfahren und Vorrichtung zum Laserschneiden mikroskopischer Proben
DE10043506C1 (de) * 2000-09-01 2001-12-06 Leica Microsystems Verfahren und Vorrichtung zur Laser-Mikrodissektion
DE10043504A1 (de) * 2000-09-01 2002-03-28 Leica Microsystems Verfahren zur Laser-Mikrodissektion und Verwendung einer Vorrichtung zur Laser-Mikrodissektion
US20030227611A1 (en) * 2002-06-10 2003-12-11 Howard Fein Microdissection optical system
US20040084426A1 (en) * 2002-10-31 2004-05-06 Olympus Corporation Microdissection apparatus and method
DE10346458A1 (de) * 2003-10-02 2005-05-12 Leica Microsystems Verfahren zur Laser-Mikrodissektion
DE102004023262A1 (de) * 2004-05-11 2005-12-08 P.A.L.M. Microlaser Technologies Ag Verfahren zur Bearbeitung einer Masse mittels Laserbestrahlung und Steuersystem

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10015157A1 (de) * 2000-03-27 2001-10-18 P A L M Gmbh Verfahren zur Bearbeitung einer biologischen Masse und Steuersystem für eine Vorrichtung zur Bearbeitung einer biologischen Masse
US6639208B2 (en) * 2001-06-06 2003-10-28 University Of Chicago Optical peristaltic pumping with optical traps
DE10245558A1 (de) * 2002-09-30 2004-04-08 Carl Zeiss Jena Gmbh Abbildungsoptik

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011156A2 (en) * 1995-09-19 1997-03-27 Bova G Steven Laser cell purification system
WO1998014816A1 (en) * 1996-10-02 1998-04-09 Cell Robotics Inc. Microscope with laser port
DE10018255A1 (de) * 2000-04-13 2001-10-25 Leica Microsystems Verfahren und Vorrichtung zum Laserschneiden mikroskopischer Proben
DE10043506C1 (de) * 2000-09-01 2001-12-06 Leica Microsystems Verfahren und Vorrichtung zur Laser-Mikrodissektion
DE10043504A1 (de) * 2000-09-01 2002-03-28 Leica Microsystems Verfahren zur Laser-Mikrodissektion und Verwendung einer Vorrichtung zur Laser-Mikrodissektion
US20030227611A1 (en) * 2002-06-10 2003-12-11 Howard Fein Microdissection optical system
US20040084426A1 (en) * 2002-10-31 2004-05-06 Olympus Corporation Microdissection apparatus and method
DE10346458A1 (de) * 2003-10-02 2005-05-12 Leica Microsystems Verfahren zur Laser-Mikrodissektion
DE102004023262A1 (de) * 2004-05-11 2005-12-08 P.A.L.M. Microlaser Technologies Ag Verfahren zur Bearbeitung einer Masse mittels Laserbestrahlung und Steuersystem

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007030320B4 (de) * 2007-06-29 2015-04-02 Carl Zeiss Microscopy Gmbh Laser-Mikrodissektionsverfahren und Laser-Mikrodissektionssystem

Also Published As

Publication number Publication date
WO2008000389A1 (de) 2008-01-03

Similar Documents

Publication Publication Date Title
EP2867715B1 (de) Mikroskop und verfahren zur spim mikroskopie
EP3100011B1 (de) Strahlpropagationskamera und verfahren zur lichtstrahlanalyse
DE112012006900T5 (de) Steuerverfahren für optische Modulation, Steuerprogramm, Steuervorrichtung und Laserlicht-Bestrahlungsvorrichtung
EP3917716B1 (de) Anordnung und verfahren zum formen eines laserstrahls
EP3140628B9 (de) System und verfahren zur analyse eines von einer strahlführungsoptik geführten lichtstrahls
DE102017119479A1 (de) Optische Anordnung zum Scannen von Anregungsstrahlung und/oder Manipulationsstrahlung in einem Laser-Scanning-Mikroskop und Laser-Scanning-Mikroskop
EP2689230B1 (de) Laser-mikrodissektionsverfahren und laser-mikrodissektionsvorrichtung
DE102020109734B4 (de) Verfahren und Bestrahlungsvorrichtung in der Reflexionsmikroskopie
EP3359928B1 (de) Verfahren und vorrichtung zur strahlanalyse
DE102006030195A1 (de) Verfahren und Vorrichtung zur Laser-Mikrodissektion und zum Lasercatapulting
DE102006043874B4 (de) Verfahren und Vorrichtung zur Reparatur von Photolithographiemasken
DE102019102330C5 (de) Optisches System für ein Mikroskop, Mikroskop mit einem optischen System und Verfahren zur Abbildung eines Objekts unter Verwendung eines Mikroskops
DE102021104871A1 (de) Verfahren und Vorrichtung zur lichtblattmikroskopischen Untersuchung einer Probe
DE10322393A1 (de) Beleuchtungssystem für eine Mikrolithographie-Projektionsbelichtungsanlage
WO2008011944A1 (de) Verfahren und vorrichtung zum bearbeiten von biologischen objekten
EP3450083B1 (de) Vorrichtung und verfahren zur materialbearbeitung
WO2016045913A1 (de) Vorrichtung zur abbildung einer probe
DE102008001448A1 (de) Verfahren und Vorrichtung zum Messen mindestens eines Abbildungsfehlers eines optischen Abbildungssystems
DE102016120312B3 (de) Verfahren zum Beleuchten von Fokuspositionen objektseitig eines Objektivs eines Mikroskops und Mikroskop
EP3867684A1 (de) Verfahren und mikroskop zur bestimmung der dicke eines deck- oder tragglases
WO2018060126A1 (de) Projektionsbelichtungsanlage mit fluessigkeitsschicht zur wellenfrontkorrektur
DE102007035582A1 (de) Verfahren und Vorrichtung zum Bearbeiten eines biologischen Objekts mit Laserstrahlung
DE102006059435A1 (de) Mikroskop und Mikroskopierverfahren zur ortsaufgelösten Vermessung einer vorbestimmten Struktur, insbesondere einer Struktur einer Lithographiemaske
DE102022103051A1 (de) Vorrichtung für die mikroskopie mit strukturierter beleuchtung, verfahren zum beleuchten einer probe und verfahren zur mikroskopie mit strukturierter beleuchtung
DE102021211232A1 (de) Vorrichtung und Verfahren zur Charakterisierung eines Laserstrahls eines ophthalmischen Lasersystems

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
R082 Change of representative

Representative=s name: PATENT- UND RECHTSANWAELTE KRAUS & WEISERT, DE

R081 Change of applicant/patentee

Owner name: CARL ZEISS MICROSCOPY GMBH, DE

Free format text: FORMER OWNER: P.A.L.M. MICROLASER TECHNOLOGIES GMBH, 82347 BERNRIED, DE

Effective date: 20120914

R082 Change of representative

Representative=s name: KRAUS & WEISERT PATENTANWAELTE PARTGMBB, DE

Effective date: 20120914

Representative=s name: PATENT- UND RECHTSANWAELTE KRAUS & WEISERT, DE

Effective date: 20120914

R005 Application deemed withdrawn due to failure to request examination

Effective date: 20130702