EP1258168A1 - Procede et dispositif de comparaison de signaux pour le controle de transducteurs et systeme de controle de transducteurs - Google Patents

Procede et dispositif de comparaison de signaux pour le controle de transducteurs et systeme de controle de transducteurs

Info

Publication number
EP1258168A1
EP1258168A1 EP01907816A EP01907816A EP1258168A1 EP 1258168 A1 EP1258168 A1 EP 1258168A1 EP 01907816 A EP01907816 A EP 01907816A EP 01907816 A EP01907816 A EP 01907816A EP 1258168 A1 EP1258168 A1 EP 1258168A1
Authority
EP
European Patent Office
Prior art keywords
sound
information
microphone
loudspeaker
microphones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01907816A
Other languages
German (de)
English (en)
Other versions
EP1258168B1 (fr
Inventor
Jean-Philippe Thomas
Marc Emerit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP1258168A1 publication Critical patent/EP1258168A1/fr
Application granted granted Critical
Publication of EP1258168B1 publication Critical patent/EP1258168B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems

Definitions

  • the invention relates to a method for automatic comparison between information characterizing the reference values and information characterizing current values of the sound systems of a system of micropnones and of loudspeakers for monitoring the sound chain.
  • the field of the invention is that of automatic control of gains, of operation and of the position of several microphones and of several loudspeakers in the context of a videoconference system between participants located on separate sites which are generally distant.
  • the invention also applies to the control of microphones and loudspeakers installed in the same room such as a theater stage, concert, cinema,
  • the invention makes it possible to approach a situation of natural communication: when a participant changes place in a meeting room during a meeting, the sound follows him in the room or in the rooms or e ⁇ is listening through example c ur speaker to another depending on its joinedeme n t. Microphones and -.es speakers will be designated by transducers. The problem consists in detecting the changes which have occurred in the transducers between their installation and the moments at which the control is carried out.
  • the present invention therefore relates to a method of comparing information characterizing these reference values and information characterizing current values of sound chains of a system of (n) microphones v ⁇ and (p) loudspeakers hp- for the control of said sound channels characterized in that
  • a reference matrix r is saved, consisting of all the hp-iiru reference information obtained following the sending of the sound signal S,
  • step A as soon as we wish to make a comparison, we proceed step A with an audible signal S 'to obtain this current information from a matrix Q,
  • the subject of the invention is also a device for comparing information characterizing these reference values and information characterizing current values of sound chains of a subsystem.
  • n microphones m and p hp speakers for sound chain control characterized in that it includes means for measuring np-, m_ information characterizing the sound channels comprising a microphone ⁇ n and a speaker lah -, digital processing means for comparing said information and related to these digital processing means, means for saving the matrix Qr constituted by all of the information hp ⁇ ⁇ ⁇ .
  • the invention also relates to a control system of sound channels comprising several devices such as above, characterized in that the depots are distributed in several rooms and in that it comprises a high speed telecommunications network connecting said rooms and means for centralizing the management of the devices.
  • FIG. 1a represents a schematic view of a videoconference room according to the invention
  • FIG. 1 b is a diagrammatic representation of the direct paths between loudspeakers and microphones
  • FIGS. 2a) and 2b) are representations of sound chains respectively in the case of local processing and in the case where the processing is carried out in the network
  • FIGS. 3a) and 3b) respectively represent examples of white noise courses, of USASI noise on the one hand and pink noise and of pseudo random binary sequence on the other hand,
  • FIG. 4 represents the impulse response of a microphone following the sending by a loudspeaker of a random pseu ⁇ c binary sequence
  • FIG. 5 represents a schematic view of the configuration of the digital signal processing card
  • FIG. 6 is a schematic representation of a system of microphones and speakers distributed in several rooms interconnected by a multipoint bridge.
  • a videoconference is established between participants distributed in several rooms, a telecommunications network broadband has so u n ATM network being used for the transport of visual information and sound.
  • a videoconferencing room represented in FIG. 1 a is provided with a viewing screen E, several microphones m ⁇ and several speakers hp 3 allowing a spatialized rendering of the audiovisual scene of _a (or) room (s) d ⁇ stante (s).
  • the loudspeakers can be located indifferently all below the screen, all above or distributed as indicated in FIG. La, or even according to a completely different arrangement.
  • the videoconferencing room used for the invention is equipped with six microphones and six speakers, the distance between microphones and loudspeaker. speakers typically being between three and five meters.
  • the sound chains between the microphones 1 and the loudspeakers hp D of a local processing system shown in FIG. 2a) include the microphones rm, the microphone preamplifiers am x , the analog digital converters CAN X , the digital processing card, the analog digital converters CNA- ,, the amplifiers of the speakers ahp 3 , the loudspeakers hp-, and the room.
  • the sound chains between the microphones m x and the loudspeakers hp-, of a remote processing system shown in FIG. 2b include the microphones m x , the microphone preamplifiers am ,, the converters digital analog CANi, coders C lr transport network R, decoder D, digital processing card, coder C, transport network R, decoders D-, analog digital converters DAC 3 , amplifiers of high -ahp- speakers, hp- speakers, and the room.
  • Such a system A which can be controlled remotely, allows this level of the sound chain to direct from one transducer to another the information characterizing a transducer.
  • transducer (respectively loudspeaker or microphone), the transducer (respectively loudspeaker or microphone) and the elements ⁇ e the sound chain included between the digital processing card and the transducer (respectively loudspeaker or microphone).
  • Audible signal means a signal that can be emitted by the speakers and detected by the microphones. As shown in Figures 2a) and 2b), a sound signal S is sent to all p speakers hp- ,, one after the other at t x ,.
  • n rm microphones each in turn and retrieved from the n rm microphones.
  • hp ] m 1 the information characterizing the sound chain including the speaker hp-, and the microphone rm.
  • the set of these hp ⁇ rm constitutes a matrix ae dimension n * p, a row of the matrix corresponding to a loudspeaker and a column to a microphone.
  • these steps are repeated with a signal S 'to obtain the current values hp- j im,. and constitute a matrix Q which is compared to the matrix Q r .
  • the elements hp ] m 1 are established from signals S and S 'considered in the time domain, but we can be located in the domain at frequencies and establish the matrices Q and / or Q r from the spectral responses p - i ! microphones m x at a frequency band sent by the loudspeakers hp-,: whatever the width of the frequency band of the signals S and S 'sent by the loudspeakers hp- , only one frequency band determined will be received by m x microphones. It could be a frequency band with a width of around 200 Hz, an octave band or a third of an octave.
  • the spectral responses of the transducers will be checked by frequency band.
  • the comparison between the matrices Q and Q r makes it possible in particular to obtain information on the possible displacement of the transducers, these being directional and their directivity depending on the frequency.
  • the exploitation of the results is sometimes more complex than when one is in the time domain.
  • the sound signals S and S ′ are generally recorded in the internal memory of the digital signal processing card. They can possibly be calculated (generics) in this card.
  • These sound signals can be, for example, white noise, pink noise, a USASI oruit, a pseudo-random binary sequence represented respectively in FIGS. 3a) and 3b) or a frequency shuffle of sinusoid, filter noise by octave or third of an octave or another beep.
  • a pseudo-random Dinary sequence is purely deterministic; it is a sequence of 1 and -1 of length N. These sequences have for characteristic that their correlation function is worth N in 0 and -1 elsewhere. The latter is therefore very close to a Dirac ⁇ e distribution.
  • the method according to the invention was carried out with a pink noise sent successively to each of the speakers for one second. Between two sendings on two consecutive loudspeakers, one waits a certain time (period of silence) so that the following sound signal starts in a state a priori stable of the sound chain.
  • the invention was carried out with a period of silence of two seconds.
  • the elements np D m are determined for each hp-, at the same time t of the sound signal.
  • this difference is included in a predetermined range denoted FHP for the loudspeakers and FM for the microphones, no correction is applied, the difference being tolerable.
  • a threshold ⁇ e 3 dB is for example commonly accepted for a videoconference room.
  • a corresponding deviation is applied as a correction to the transducer, at the level of the digital signal processing card.
  • the correction could possibly apply to the gain of the transducer itself. In some cases, the correction will consist in repositioning the transducer; in other cases the correction cannot be applied due to a failure of the transducer and the defective transducer will then be changed.
  • each impulse response R ]: L provides information concerning the delay, that is to say the propagation time between a loudspeaker hp-, and a microphone m lf l ' direct wave corresponding to the direct paths between speaker hp-, and microphone lr or the room effect corresponding to the paths with one or more reflections.
  • t 0 the time at which the sound signal is sent from a speaker hp-,
  • t ⁇ 31 the time at which the microphone ⁇ . receives the direct wave
  • t 2] 1 the instant at which the room effect for the microphone m x begins.
  • Delays can be measured to check the respective position of the transducers themselves. Now calculate the matrix Q r by measuring for the first time -_the delays (hp-, TM. ! ) Qr . By triangulation we deduce from these delays the position of the transducers: if knowing for example the position of hpi and hp-, we consider .es delays (hp ⁇ m. ⁇ ) Qr and (hp-, m ⁇ ) Qr , we deduce the position microphone m x when establishing the reference matrix. So on for the other microphones. The same reasoning can be applied to determine the position of the speakers from those of the microphones.
  • the transducer When calculating the delays later (hp- j iti Q of the matrix Q, we will identify by comparison with the delays of the matrix Q r , the transducer having changed position. In some cases, a correction will be applied to the transducer, at the digital signal processing card, to compensate for the position change, in other cases, the correction will consist in repositioning the transducer itself.
  • shakes element hp 3 m x of matrices Q and Q will represent the part of the impulse response following the first peak and starting at t 2 ⁇ .
  • An application of the invention consists in evaluating the signal-to-noise ratio of the micropnones ⁇ by comparing the average values of the micropnones calculated from the established matrix Q by considering a sound signal S with those of the microphones calculated from the established matrix Q considering a signal S 'of silence.
  • the signal S can in particular be a white, pink, USASI oruit or a pseudo-random binary sequence. If the signal S is interspersed with silences, in practice, the ratio signa. To noise will be measured during a phase of silence.
  • the processing of information includes in particular the measurements, calculations, backups and ..es corrections to be made.
  • the remote processing can be carried out by a computer controlling remotely via the network, another computer located in a local area.
  • An echo phenomenon sometimes occurs: when a participant speaks in a room A, the corresponding sound signal is transmitted to the participants located in a room B by the speakers of this room B, the micropnones of this room B picking up the signal from these loudspeakers to retransmit them to room A. The speaker in room A reenten ⁇ with echo. This echo can be evaluated by measuring the level of the return signal in relation to the level of the signal sent. The control parameters of the transducer gain variation or echo cancellation algorithms are then adjusted.
  • ⁇ e transmission k channels are numbered from 1 to K, for example we will designate by r ⁇ the sound channel comprising a transmission channel k transmitting from the room to which it is connected to the PMP bridge and by e ⁇ ⁇ the sound chain comprising a transmission channel k 'transmitting from the PMP bridge to the dirt to which it is connected, which may be equal to k'.
  • the elements ⁇ p-, m will then be replaced by r k e k ' .
  • the device comprises a digital processing card for the CTN signal presented in FIG. 5.
  • This card comprises means for measuring Mes of the information hp- j i ", ! , Processing means T and means for saving files SF such as an internal memory in which one or even several sound signals are recorded.
  • This sound signal can also be calculated by the processing means T.
  • the matrix elements hp -,] ⁇ of the matrix (s) (s- Q r and possibly one or more Q matrices are also saved in the internal memory, as well as the parameters of the various elements of each of the sound chains obtained during the setting of the room (s).
  • the processing means allow to compare elements hp- j im or combinations thereof of the same matrix Q or of several matrices.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Stereophonic System (AREA)
  • Selective Calling Equipment (AREA)
  • Analogue/Digital Conversion (AREA)

Description

PROCEDE ET DISPOSITIF DE COMPARAISON DE SIGNAL POUR LE CONTROLE DE TRANSDUCTEURS ET SYSTEME DE CONTROLE DE TRANSDUCTEURS
L' invention concerne un procédé de comparaison automatique entre des informations caractérisant es valeurs de référence et des informations caractérisant des valeurs courantes αe chaînes sonores d'un système αe micropnones et de haut-parleurs pour le contrôle de la chaîne sonore.
Le domaine de l' invention est celui au contrôle automatique des gains, du fonctionnement et αe la position de plusieurs microphones et de plusieurs haut- parleurs dans le contexte d' un système de visioconférence entre des participants localises sur des sites distincts généralement distants. L'invention s'applique également au contrôle de microphones et de haut-parleurs installés dans une même salle telle qu'une scène de théâtre, αe concert, de cinéma,
Elle permet de contrôler le rendu sonore spatialisε de la scène qui assure une concordance entre les images visuelles et sonores. Dans le contexte de la visioconférence, l'invention permet de se rapprocher d'une situation de communication naturelle : iorsq-'un participant change de place dans une salle αistante en cours de reunion, le son le suit dans la salle ou _es salles ou il est écoute e^ passant par exemple c' ur haut-parleur a l'autre en fonction de son déplacement. On désignera indifféremment les microphones et -.es haut-parleurs par transducteurs. Le problème consiste à détecter les changements intervenus au niveau des transducteurs entre leur installation et les moments auxquels on effectue le contrôle . La présente invention a donc pour objet un procédé de comparaison entre des informations caractérisant ces valeurs de référence et des informations caractérisant des valeurs courantes de chaînes sonores d'un système de (n) microphones v λ et de (p) haut-parleurs hp- peur le contrôle desdites chaînes sonores caractérisé en ce que
- A : pour chaque haut-parleur hp-,,
- on envoie au moins un signal sonore S sur le haut-parleur hpD , - on récupère pour chaque microphone ~._, une information notée hpDmx caractérisant la chaîne sonore comprenant le haut-parleur hp-, et le microphone ml r
- B : on sauvegarde une matrice de référence r constituée par l'ensemble des informations de référence hp-iiru obtenues suite à l'envoi du signal sonore S,
C : dès que l'on souhaite établir une comparaison, on déroule l'étape A avec un signal sonore S' pour obtenir ces informations courantes d'une matrice Q,
- D : on compare les matrices Q et Qr. L'invention a également pour objet un dispositif αe comparaison entre des informations caractérisant oes valeurs de référence et des informations caractérisant des valeurs courantes de chaînes sonores d'un svsterne de n microphones m et de p haut-parleurs hp pour le contrôle de la chaîne sonore, caractérise en ce au' il comprend des moyens ae mesure des informations np-,m_ caractérisant les cnaînes sonores comprenant un microphone τn et un laut-parleur hp-, , des moyens de traitement numérique pour comparer lesdites informations et relies a ces moyens de traitement numérique, αes moyens de sauvegarαe de la matrice Qr constituée par l'ensemble des informations hp^π^ . L'invention a aussi pour objet un système de contrôle de cnaînes sonores comprenart plusieurs αispositifs tels que pientionnes ci-dessus, caractérise en ce que les dιsposιt_fs sont repartis αans plusieurs salles et en ce qu' il comprend un reseau de télécommunication a haut débit reliant lesdites salles et des moyens pour centraliser la gestion des dispositifs .
D'autres particularités et avantages de l'invention apparaîtront clairement a la lecture αe la αescription faite a titre d'exemple non limitatif et en regarα des dessins annexes sur lesquels : la figure la) représente une vue schématique d'une salle de visioconférence selon l'invention,
- la figure lb) est une représentation schématique αes trajets αirects entre haut-parleurs et microphones ,
- les figures 2a) et 2b) sont αes représentations de chaînes sonores respectivement dans le cas d' un traitement local et dans le cas ou le traitement est effectue dans _e reseau, les figures 3a) et 3b) représentent respectivement des exemples de courues de bruit blanc, de bruit USASI d'une part et αe bruit rose et de séquence binaire pseudo aléatoire d' autre part,
- la figure 4 représente la réponse impulsionnelle d'un microphone suite a l'envoi par un haut- parleur d'une séquence binaire pseuαc aléatoire,
- la figure 5 représente une vue schématique de la configuration de la carte de traitement numérique du signal,
- la figure 6 est une représentation schématique d'un système de microphones et de haut-parleurs repartis dans plusieurs salles reliées entre elles par un pont multipoint.
Une visioconférence s'établit entre des participants repartis dans plusieurs salles, un reseau de télécommunications a haut-débit tel qu'un reseau ATM étant utilise pour le transport des informations visuelles et sonores. Une salle de visioconférence représentée figure la, est dotée d'un écran de visualisation E, de plusieurs microphones mx et de plusieurs haut-parleurs hp3 permettant un rendu spatialise de la scène audiovisuelle de _a (ou des) salle(s) dιstante(s). Les haut-parleurs peuvent se situer indifféremment tous en dessous de l'écran, tous au-dessus ou repartis comme indique sur la figure la, voire même selon une toute autre disposition. A titre indicatif, la salle de visioconférence utilisée pour l'invention est équipée de six microphones et de six haut-parleurs, la distance entre microphones et haut- parleurs étant typiquement comprise entre trois et cinq mètres .
Les chaînes sonores entre les microphones 1 et les haut-parleurs hpD d'un système à traitement local représenté figure 2a), comprennent les microphones rm, les préamplificateurs microphoniques amx, les convertisseurs analogiques numériques CANX, la carte de traitement numérique, les convertisseurs numériques analogiques CNA-,, les amplificateurs des haut-parleurs ahp3 , les haut-parleurs hp-, et la salle.
Selon un autre mode de réalisation, les chaînes sonores entre les microphones mx et les haut-parieurs hp-, d'un système à traitement à distance représenté figure 2b) , comprennent les microphones mx, les préamplificateurs microphoniques am,, les convertisseurs analogiques numériques CANi, les codeurs Cl r le réseau de transport R, le décodeur D, la carte de traitement numérique, le codeur C, le réseau de transport R, les décodeurs D-, les convertisseurs numériques analogiques CNA3 , les amplificateurs des haut-parleurs ahp-,, les haut-parleurs hp-, et la salle.
Un système d'aiguillage A obtenu par un multiplexeur /démultiplexeur dénommé également matrice de commutation que l'on trouve dans le commerce, peut éventuellement être inséré dans les chaînes sonores entre d' une part les convertisseurs analogiques- numériques CANX et les codeurs Cx et d' autre part les décodeurs D-, et les convertisseurs numériques- analogiques CNA-, . Un tel système A, pilotable à distance permet à ce niveau de la chaîne sonore, d'aiguiller d'un transducteur à l'autre les informations caractérisant un transducteur.
Chaque élément αe ces chaînes doit être réglé pour assurer une bonne transmission sonore. Lors de l'installation de ces éléments, aussi appelée alignement, les gains, les câblages et les positions des transducteurs de chaque salle sont réglés, et ces paramètres sont mémorisés dans un fichier d' une carte de traitement numérique du signal. Pour simplifier le propos, on désignera par transducteur (respectivement haut-parleur ou microphone), le transducteur (respectivement naut- parleur ou microphone) et les éléments αe la chaîne sonore compris entre la carte de traitement numérique et le transducteur (respectivement haut-parleur ou microphone) .
Par la suite, lors de l'utilisation de la salle de visioconférence une semaine, un mois plus tard par exemple, on pourra contrôler les modifications éventuellement intervenues sur ces paramètres pour apporter les corrections nécessaires . Les transαucteurs ont peut-être été déplacés, sont dans certains cas devenus défectueux ; la configuration de la salle a éventuellement été changée ; les amplificateurs peuvent aussi avoir subi une grande dispersion au cours du temps éventuellement provoquée par l' échaufferrent ces composants électroniques. On peut parfois préférer intervenir sur les transducteurs pour compenser -.ne défaillance d'un autre élément de la chaîne sonore. On entend par signal sonore un signal pouvant être émis par les haut-parleurs et détectes par les microphones. Comme indique figures 2a) et 2b), un signal sonore S est envoyé sur tous les p haut-parleurs hp-,, l'un après l'autre à tx, . ., t3 , ... , tD, chacun a leur tour et récupéré sur les n microphones rm . On note hp]m1 l'information caractérisant la chaîne sonore comprenant le haut-parleur hp-, et le microphone rm .
L'ensemble de ces hp^rm constitue une matrice αe dimension n*p, une ligne de la matrice correspondant a un haut-parleur et une colonne a un microphone. La première fois que cette matrice est constituée après l'alignement, ou à un autre moment préfère, elle est sauvegardée en mémoire : on la dénomme matrice de référence Qr, les éléments hp-,™.! de cette matrice étant des valeurs de référence. Lorsque par la suite, on souhaite réaliser un contrôle des paramètres de ces transducteurs, on réitère ces étapes avec un signal S' pour obtenir des valeurs courantes hp-jim,. et constituer une matrice Q que l'on compare à la matrice Qr.
Dans certains cas, il est plus simple de cnoisir un signal S' identique au signal S en particulier lorsque l'on souhaite comparer des gains correspondant au rapport entre l'énergie du signal émis et l'énergie du signal reçu. Dans d'autres cas, S est différent de S' et les éléments des matrices Qr et Q a comparer sont de nature différente. En sauvegardant S et S' et en appliquant un traitement adéquat aux éléments de Q, on peut en déduire des éléments comparables a ceux de Qr . Connaissant S, on peut choisir un signal S' permettant par exemple de mesurer la réponse impulsionnelle ou la fonction de transfert hpDm_ entre le point d'émission hp-, et le point de réception m1 ; compte tenu de S et des caractéristiques de hp-jπ^, on peut déduire des éléments hp^ de Q, des éléments comparables a ceux αe Qr en appliquant un traitement adéquat (transformée de Fouπer, ι . On peut également établir plusieurs matrices Qr en considérant plusieurs types de signaux S puis établir plusieurs matrices Q correspondantes. Si le signai S est par exemple un bruit blanc filtre dans différentes octaves, on pourra établir une matrice Qr pour chaque octave.
En gênerai les éléments hp]m1 sont établis a partir de signaux S et S' considérés dans le domaine temporel, mais on peut se situer dans le domaine αes fréquences et établir les matrices Q et/ou Qr a partir αes réponses spectrales p-jiu! des microphones mx à une bande de fréquences envoyée par les haut-parleurs hp-, : quelle que soit la largeur de la bande de fréquences des signaux S et S' envoyés par les haut-parleurs hp-,, seule une bande de fréquence déterminée sera reçue par les microphones mx . Il pourra s'agir d'une bande de fréquence d'une largeur d'environ 200 Hz, d'une bande d'octave ou de tiers d'octave. On fera ensuite glisser cette bande de fréquence pour balayer un spectre de 0 Hz à 1000 Hz par exemple. Lors de l'alignement, on vérifie la planitude du spectre de chaque transducteur, c'est-a-dire qu'on vérifie que toutes les fréquences passent sur chaque transducteur. Si l'un d'eux présente des irrégularités, on apporte les corrections nécessaires. Les microphones présentent parfois des irrégularités liées a l'effet de table (aux reflexions par la table), l'onde refléchie par la table pouvant se trouver en opposition αe phase avec l'onde directe, provoquant alors des plages noires dans la réponse spectrale : on augmentera alors le gain du microphone dans la banαe de fréquences corresponαante .
Lors des contrôles ultérieurs, on vérifiera res réponses spectrales des transducteurs par bande αe fréquences. La comparaison entre les matrices Q et Qr permet notamment d'obtenir une information sur le déplacement éventuel des transducteurs, ceux-ci étant directifs et leur directivité dépendant αe la fréquence. On peut également, en fonction des r sultats des comparaisons, apporter une correction spectrale aux transducteurs afin de réduire le couplage entre haut- parleurs et microphones et de moins déformer les signaux sonores émis par les participants. L'exploitation des résultats est parfois plus complexe que lorsque l'on se situe dans le domaine temporel.
Les signaux sonores S et S' sont généralement enregistres dans la mémoire interne de la carte de traitement numérique du signal. Ils peuvent éventuellement être calculés (génères ) dans cette carte.
Ces signaux sonores peuvent être par exemple un bruit blanc, un bruit rose, un oruit USASI, une séquence binaire pseudo aléatoire respectivement représentés figure 3a) et 3b) ou un caiayage fréquentiel de sinusoïde, un bruit filtre par octave ou tiers d'octave, ou encore un autre signal sonore. A la différence d'un bruit aléatoire, une séquence Dinaire pseudo aléatoire est purement déterministe ; c'est une séquence de 1 et de -1 de longueur N. Ces séquences ont pour caractéristique que leur fonction de corrélation vaut N en 0 et -1 ailleurs. Cette dernière est donc très proche d'une distribution αe Dirac.
Le procédé selon l'invention a été réalise avec ur bruit rose envoyé successivement sur chacun αes naut- parleurs pendant une seconde. Entre deux envois sur deux haut-parleurs consécutifs, on attenα un certain temps (période de silence) pour que le signal sonore suivant démarre dans un état a priori stable de la chaîne sonore. L'invention a été réalisée avec une période de silence de deux secondes. Les éléments npDm sont déterminés pour chaque hp-, au même instant t du signal sonore. Si par exemple, hpiirii, hpιm2, , hpiir sont déterminés à t= début du signal sonore + 0.9 seconde, hp2mι, ..., hp2mn le seront à t + 3 secondes, hp3mι, , hp3mn a t+ 6 secondes, etc.
En sommant et moyennant chaque ligne et chaque colonne des matrices Qr et Q, éventuellement après traitement des éléments d'une matrice pour obtenir des éléments directement comparables à ceux de l'autre matrice, on obtient respectivement une valeur moyenne HP-,Qr, HP]Q pour chaque haut-parleur hpD et MlQr, MlQ pour chaque microphone mx . En calculant HP-,Q/HP-,Q::, on obtient l'écart du haut-parleur considère par rapport a sa valeur de référence. De même en calculant MlQ/MlQr, on obtient l'écart du microphone considéré par rapport a sa valeur de référence. Si pour les haut-parleurs ainsi que pour les microphones, cet écart est compris αans une fourchette prédéterminée notée FHP pour les naut- parleurs et FM pour les microphones, on n'applique pas de correction, l'écart étant tolérable. Un seuil αe 3 dB est par exemple couramment admis pour une salle de visioconférence. Pour des écarts en dehors de la fourchette prédéterminée, on applique comme correction au transducteur, au niveau de la carte αe traitement numérique au signal, un écart correspondant. La correction pourra éventuellement s'appliquer au gain du transducteur lui-même. Dans certains cas, la correction consistera à repositionner le transducteur ; dans d'autres cas la correction ne pourra pas être appliquée en raison d'une panne du transducteur et le transducteur défectueux sera alors changé.
Les caractéristiques des séquences binaires pseudo aléatoires en font un signal privilégié pour mesurer avec une bonne précision la réponse impulsionnelle d'un système selon l'invention. L'utilisation d'une séquence binaire pseudo aléatoire comme signal sonore envoyé sur les haut-parleurs hp-, permet donc de mesurer les réponses impulsionnelles en fonction du temps RD1 de tous les microphones mx . Selon l'instant auquel on considère la réponse impulsionnelle, chaque réponse impulsionnelle R]:L fournit des informations concernant le retard c'est-à-dire le temps de propagation entre un haut-parleur hp-, et un microphone ml f l'onde directe correspondant aux trajets directs entre haut-parleur hp-, et microphone l r ou encore l'effet de salle correspondant aux trajets avec une ou plusieurs réflexions .
Sur la figure 4 sont notés t0] l'instant auquel le signal sonore est envoyé d'un haut-parleur hp-, , tι31 l'instant auquel le microphone ^. reçoit l'onde directe et t2]1 l'instant auquel débute l'effet de salle pour le microphone mx .
On peut mesurer les retards pour vérifier la position respective des transducteurs eux-mêmes. Or calcule la matrice Qr en mesurant une première fois -_es retards ( hp-,™.! ) Qr . Par triangulation on déduit de ces retards la position des transducteurs : si connaissant par exemple la position de hpi et hp-, , on consiαere .es retards (hpιm.ι)Qr et (hp-,mι)Qr, on en déduit la position du microphone mx au moment de l'établissement de la matrice de référence. Ainsi de suite pour les autres microphones. On peut appliquer le même raisonnement pour déterminer la position des haut-parleurs a partir de celles des microphones. Lorsque l'on calcule ultérieurement les retards (hp-jiti Q de la matrice Q, on identifiera par comparaison avec les retards de la matrice Qr, le transducteur ayant changé de position. Dans certains cas, on appliquera une correction au transducteur, au niveau de la carte de traitement numérique du signal, pour compenser le cnangement de position, dans d'autres cas, la correction consistera a repositionner le transducteur lui-même.
On peut aussi évaluer l'onde directe résultant du trajet direct entre le haut-parleur hp-, et le microphone ± . Chaque élément hp-^ des matrices Q et Qr représente alors le premier pic de la réponse impulsionnelle .
Lorsqu'il s'agira d'évaluer l'effet de salle dû aux trajets indirects entre le haut-parleur hp-, et _-e microphone mx, c'est-a-dire les trajets des signaux ayant subi αiverses reflexions sur les murs de _a salle, sur les meubles ou tout autre obstacle, chaoue élément hp3mx des matrices Q et Q, représentera la partie de la réponse impulsionnelle succédant au premier pic et débutant a t2^.
Une application de l'invention consiste a évaluer le rapport signal sur bruit des micropnones ^ en comparant les valeurs moyennes des micropnones calculées a partir de la matrice Q établie en considérant un signal sonore S avec celles des microphones calculées a partir de la matrice Q établie en considérant un signal S' de silence.
Le signal S peut être en particulier un oruit blanc, rose, USASI ou une séquence binaire pseudo aléatoire. Si le signal S est entrecoupe de silences, dans la pratique, on mesurera le rapport signa., sur bruit pendant une phase de silence.
On peut également traiter a distance les informations caractérisant les signaux provenant d' une salle locale, un reseau de télécommunication ou informatique reliant les salles entre p-lles. Le traitement αes informations inclut notamment les mesures, les calculs, les sauvegarαes et ..es corrections a apporter. Le traitement a αistance peut être effectue par un ordinateur pilotant a distance via le reseau, un autre ordinateur situe αans une sa le locale.
On peut également traiter dans la salle loca_e, le cas de la (ou des) salle (s) distante (s) en envoyant i le reseau de télécommunication les signaux S et S' et récupérer dans la salle locale via le reseau des informations caractérisant le résultat de ces signaux dans la (ou les) salle(s) dιstante(s) On utilise le même procédé que décrit précédemment et on affecte, au niveau de la carte de traitement numérique au signal, des coefficients aux informations caractérisant les signaux transmis et récupères pour avoir un système équilibré.
Un phénomène d'écho survient parfois : lorsqu'un participant parle dans une salle A, le signal sonore correspondant est transmis aux participants situés αans une salle B par les haut-parleurs de cette salle B, les micropnones de cette salle B reprenant le signal issu de ces haut-parleurs pour les retransmettre vers la salle A. Le locuteur de la salle A se réentenα avec de l'écho. On peut évaluer cet écho en mesurant le niveau du signal de retour par rapport au niveau au signal envoyé. On règle alors les paramètres de contrôle des algorithmes de variation de gain des transducteurs ou d'annulation d'écho.
On peut également traiter globalement les informations hp]m1 dans le réseau de télécommunication, par exemple au niveau d'un pont multi-point PMP reliant plusieurs salles Sa distantes entre elles, représentés figure 6. Les signaux S et S' sont envoyés de ce pont vers chaque salle Sa via le réseau et récupères en ce pont via le réseau. On ne αispose pas toujours d' informations précises sur les équipements de cnaque salle. Les éléments hp3mx ne sont donc plus αirectement liés aux transducteurs mais aux chaînes sonores comprenant les canaux de transmission k existant entre le pont PMP et chaque salle Sa, ces chaînes sonores résultant cependant pour chaque salle des chaînes sonores internes à ces salles et comprenant les naut- parleurs np-, et les microphones λ . Chaque salle Sa peut être reliée au pont PMP par un ou plusieurs canaux de transmission K. On pourra par exemple utiliser pour une salle deux canaux pour obtenir un renαu stéréophonique ou quatre pour un rendu quadriphonique . Si les canaux αe transmission k sont numérotes de 1 à K, on désignera par exemple par rκ la cnaîne sonore comprenant un canal de transmission k transmettant de la salle à laquelle il est relié vers le pont PMP et par eι< la chaîne sonore comprenant un canal de transmission k' transmettant du pont PMP vers la salie à laquelle il est relié, pouvant être égal à k' . Les éléments πp-,m: seront alors remplacés par rkek' .
Le dispositif selon l'invention comprend une carte de traitement numérique du signal CTN présentée figure 5. Cette carte comprend des moyens de mesure Mes des informations hp-ji",!, des moyens de traitement T et des moyens de sauvegarde de fichiers SF tels qu'une mémoire interne dans laquelle est enregistré un signal sonore voire plusieurs. Ce signal sonore peut également être calculé par les moyens de traitement T. Les éléments matriciels hp-,]^ de la (ou des) matrice (s- Qr et éventuellement d'une ou de plusieurs matrices Q sont aussi sauvegardés dans la mémoire interne, ainsi que les paramètres des divers éléments de chacune αes chaînes sonores obtenus lors du réglage de la (ou ces) salle (s) . Les moyens de traitement permettent de comparer des éléments hp-jim ou des combinaisons de ceux- ci d'une même matrice Q ou de plusieurs matrices. Ils permettent également de calculer les corrections a apporter a un ou plusieurs éléments αe la cnaîne sonore et de les appliquer. Ils pourront par exemple corriger le gain d'un haut-parleur hp3 et/ou d'un microphone mλ . Ils permettent aussi αe générer un signal sonore. Ces moyens de traitement T seront réalises de manière classique par un microprocesseur P et une mémoire programme M associée comportant un programme apte a effectuer les mesures, les comparaisons, les calculs et les corrections a apporter.

Claims

REVENDICATIONS
1. Procédé de comparaison entre des informations caractérisant des valeurs de référence et des informations caractérisant des valeurs courantes de chaînes sonores d'un système de (n) microphones mx et de (p) haut-parieurs hp-, pour le contrôle desdites chaînes sonores caractérisé en ce que
- A : pour chaque haut-parleur hp-, ,
- on envoie au moins un signal sonore S sur le haut-parleur hpD , - on récupère pour chaque microphone rm, une information notée hp-jm.! caractérisant la chaîne sonore comprenant le haut-parleur hp-, et le microphone m!,
- B : on sauvegarde une matrice de référence Qr constituée par l'ensemble des informations de référence hp-jim,. obtenues suite à l'envoi du signal sonore S,
C : dès que l'on souhaite établir une comparaison, on déroule l'étape A avec un signal sonore S' pour obtenir des informations courantes d'une matrice Q,
- D : on compare les matrices Q et Qr.
2. Procédé selon la revendication 1 caractérisé en ce que lorsque les informations hp^ de Q ne sont pas directement comparables aux informations de Qr, on applique aux hp-jnij. de Q ou de Qr au choix, avant l'étape D, un traitement apte à les convertir en des informations directement comparables aux informations de l'autre matrice.
3. Procédé selon l'une des revendications 1 ou 2 caractérisé en ce que les informations hpDm1 de Qr et/ou de Q sont les réponses spectrales de chaque sous- système incluant un haut-parleur hp-, et un microphone ± .
4. Procédé selon la revendication 3, caractérisé en ce que les signaux envoyés par les haut-parleurs r.p-, sont émis dans une bande de fréquences d'une largeur déterminée, et en ce qu'on fait glisser ladite bande de fréquences pour balayer le spectre de fréquences souhaité .
5. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que les informations hp^! de Qr et/ou de Q sont les réponses impulsionnelles de chaque sous- système incluant un haut-parleur hp3 et un microphone mx.
6. Procédé selon l'une des revendications 1 ou 2 , caractérisé en ce que les informations hpmx de Qr et/ou de Q sont les fonctions de transfert de chaque sous- système incluant un haut-parleur hp3 et un microphone
ITlr.
7. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que les informations hp-jim de Qr et/ou de Q sont les gains entre les microphones rm et les haut-parieurs hp-, suite aux signaux envoyés par les haut-parleurs hp-, .
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que à partir des matrices Q et Qr ,
- on calcule respectivement les valeurs moyennes des haut-parleurs hp-,, notées HP3Q et HP-,Qr en calculant: 1/p * ∑x hp^rr^, et lorsque la valeur HP]Q/HP-]Qr est en dehors d'une fourchette pour haut-parleur FHP prédéterminée, on corrige la chaîne sonore comprenant un haut-parleur hp-, d' un écart correspondant à HP-, r/HP]Q.
9. Procédé selon la revendication 8, caractérisé en ce que dans la chaîne sonore comprenant le haut-parleur hp-, , on corrige le gain du haut-parleur hp-, .
10. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que à partir des matrices Q et Qr,
- on calcule respectivement les valeurs moyennes des microphones ml r notées MlQ et MlQr en calculant : 1/n * ∑-, p-,™.!, - et lorsque la valeur MlQ/MlQr est en dehors d'une fourchette pour microphone FM prédéterminée, on corrige la chaîne sonore comprenant le microphone rm d'un écart correspondant à MlQr/MlQ.
11. Procède selon la revendication 10, caractérise en ce que dans la chaîne sonore comprenant le microphone l r on corrige le gain du microphone 1 .
12. Procédé selon l'une des revendications 1 a 11 caractérisé en ce que les informations p-,™.! des matrices Q et Qr à comparer représentent des retards entre l'émission du signal sonore par chaque haut- parleur hp-, et la réception dudit signal sonore par les microphones ir .
13. Procédé selon l'une des revendications 8 à 11, les informations hp-jim,. de Qr et de Q étant les réponses impulsionnelles de chaque sous-système incluant un haut-parleur hp3 et un microphone m1( caractérise en ce que les informations hp-,!".! représentent les signaux reçus par le microphone mx et ayant parcouru le trajet direct entre le haut-parleur hp3 et le microphone m1 .
14. Procédé selon l'une des revendications 8 a 11, les informations hp-jim,. de Qr et de Q étant les réponses impulsionnelles de chaque sous-systeme incluant un haut-parleur hp3 et un microphone l r caractérisé en ce que les informations hp3m1 représentent les signaux reçus par le microphone mx et ayant parcouru entre le haut-parleur hp-, et le microphone mx, les trajets avec une ou plusieurs réflexions.
15. Procédé selon l'une des revendications 1 a 14, caractérisé en ce que le signal S' est un signal de silence et en ce qu' à partir des matrices Q et Qr, an calcule respectivement les valeurs moyennes des microphones mx, notées MlQ et MlQr en calculant : 1/n * ∑. hp3m1/ pour ainsi obtenir le rapport signal/bruit MlQr/MlQ des microphones mx .
16. Procédé selon l'une des revendications précédentes, caractérisé en ce que les informations hp-jirir sont traitées à distance via un réseau de télécommunication ou informatique.
17. Procédé selon l'une des revendications 1 à 15 caractérisé en ce que les signaux S et S' proviennent d'une salle distante reliée à une salle locale via un réseau de télécommunication et en ce que les informations hp-,!-! sont traitées dans la salle locale.
18. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que les informations hp-jiri! de Qr et Q à comparer représentent l'écho et en ce que les signaux S et S' proviennent d'une salle distante reliée à une salle locale via un réseau de télécommunication.
19. Procédé de comparaison d'informations caractérisant des chaînes sonores, en un point d'un réseau de télécommunication reliant des salles distantes équipées d' un système de n microphones rm et de p haut-parleurs hp3, chaque salle étant reliée au point du réseau par un ou plusieurs canaux de transmission k, caractérisé en ce que les chaînes sonores rke. comprenant un canal de transmission k et un canal de transmission k' résultent d' une ou plusieurs chaînes sonores hp3mx internes a chaque salle traitées selon l'une des revendications 1 a 18, et en ce que les éléments des matrices Q et Qr représentent des informations caractérisant les chaînes sonores rkek' •
20. Procède selon l'une des revendications précédentes, caractérise en ce que les signaux S et/ou S' sont constitues par un bruit blanc ou un bruit rose ou un bruit USASI ou une séquence binaire pseudo aléatoire .
21. Procède selon l'une des revendications 1 a 20, caractérise en ce qu' il consiste a utiliser le même signal S pour obtenir les matrices Qr et Q.
22. Dispositif de comparaison entre αes informations caractérisant des valeurs de référence et des informations caractérisant des valeurs courantes αe chaînes sonores d' un système de n microphones mx et de p haut-parleurs hp3 pour le contrôle de la chaîne sonore, caractérise en ce qu' il comprend des moyens de mesure des informations hp3m1 caractérisant les chaînes sonores comprenant un microphone m et un haut-parleur hp3, αes moyens de traitement numérique pour comparer lesdites informations hp3mr et relies a ces moyens de traitement numérique, des moyens de sauvegarde de la matrice Q constituée par l'ensemble des informations hp3m1
23. Dispositif selon la revendication 22, caractérisé en ce que les moyens de traitement numérique comprennent des moyens de comparaison de la matrice Qr et d'une matrice Q constituée par les informations hpjirii caractérisant les valeurs courantes.
24. Dispositif selon la revendication 22 ou 23, caractérisé en ce que les moyens de traitement numérique comprennent des moyens pour générer des signaux sonores (S) sur les haut-parleurs hp3.
25. Dispositif selon la revendication 24, caractérisé en ce que les signaux sonores (S) peuvent être un bruit blanc ou un bruit rose ou un bruit USASI ou une séquence binaire pseudo aléatoire.
26. Dispositif selon l'une des revendications 22 à 25, caractérisé en ce que les moyens de traitement comprennent des moyens pour corriger la chaîne sonore comprenant un haut-parleur hpj et un microphone mi .
27. Dispositif selon la revendication 26, caractérisé en ce que dans la chaîne sonore comprenant le haut-parleur hp3 , on corrige le gain du haut-parleur hp3.
28 . Dispos iti f selon la revendication 26 , caractérisé en ce que dans la chaîne sonore comprenant le microphone m± , on corrige le gain du microphone mλ .
29. Système de contrôle de chaînes sonores comprenant plusieurs αispositifs selon l'une des revendications 22 a 28, caractérise en ce que les dispositifs sont repartis dans plusieurs salles et en ce qu' il comprend un reseau de télécommunication a naut débit reliant lesdites salles et des moyens pour centraliser la gestion des dispositifs.
30. Système selon la revendication 29, caractérise en ce que les moyens pour centraliser la gestion des dispositifs sont situes en un point du reseau αe télécommunication reliant les salles distantes, cnaque salle étant reliée au point du reseau par un ou plusieurs canaux de transmission k, en ce que les chaînes sonores rkek' comprenant un canal de transmission k et un canal de transmission k' résultent d'une ou plusieurs chaînes sonores hp^irta. internes a chaque salle et en ce qu' il comprend des moyens pour corriger les chaînes sonores rkek' .
EP01907816A 2000-02-17 2001-02-15 Procede et dispositif de comparaison de signaux pour le controle de transducteurs et systeme de controle de transducteurs Expired - Lifetime EP1258168B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0001976A FR2805433A1 (fr) 2000-02-17 2000-02-17 Procede et dispositif de comparaison de signaux pour le controle de transducteurs et systeme de controle de transducteurs
FR0001976 2000-02-17
PCT/FR2001/000457 WO2001062044A1 (fr) 2000-02-17 2001-02-15 Procede et dispositif de comparaison de signaux pour le controle de transducteurs et systeme de controle de transducteurs

Publications (2)

Publication Number Publication Date
EP1258168A1 true EP1258168A1 (fr) 2002-11-20
EP1258168B1 EP1258168B1 (fr) 2011-04-13

Family

ID=8847099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01907816A Expired - Lifetime EP1258168B1 (fr) 2000-02-17 2001-02-15 Procede et dispositif de comparaison de signaux pour le controle de transducteurs et systeme de controle de transducteurs

Country Status (8)

Country Link
US (2) US20030108208A1 (fr)
EP (1) EP1258168B1 (fr)
JP (1) JP4691304B2 (fr)
AT (1) ATE505911T1 (fr)
AU (1) AU2001235692A1 (fr)
DE (1) DE60144420D1 (fr)
FR (1) FR2805433A1 (fr)
WO (1) WO2001062044A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336793B2 (en) * 2003-05-08 2008-02-26 Harman International Industries, Incorporated Loudspeaker system for virtual sound synthesis
US20080284409A1 (en) * 2005-09-07 2008-11-20 Biloop Tecnologic, S.L. Signal Recognition Method With a Low-Cost Microcontroller
US8208645B2 (en) * 2006-09-15 2012-06-26 Hewlett-Packard Development Company, L.P. System and method for harmonizing calibration of audio between networked conference rooms
US8620976B2 (en) 2009-11-12 2013-12-31 Paul Reed Smith Guitars Limited Partnership Precision measurement of waveforms
CN102770856B (zh) 2009-11-12 2016-07-06 保罗-里德-史密斯-吉塔尔斯股份合作有限公司 用于精确波形测量的域识别和分离
JP5706910B2 (ja) * 2009-11-12 2015-04-22 ポール リード スミス ギターズ、リミテッド パートナーシップ デジタル信号処理のための方法、コンピュータ可読ストレージ媒体および信号処理システム
US10295434B2 (en) 2011-05-27 2019-05-21 Marcos Underwood Direct field acoustic testing system, controls, and method
JP6247219B2 (ja) * 2011-10-27 2017-12-13 ラーキン,ポール 直接音場音響試験の駆動信号分配
US8873821B2 (en) 2012-03-20 2014-10-28 Paul Reed Smith Guitars Limited Partnership Scoring and adjusting pixels based on neighborhood relationships for revealing data in images
US9596553B2 (en) * 2013-07-18 2017-03-14 Harman International Industries, Inc. Apparatus and method for performing an audio measurement sweep
WO2015073985A2 (fr) * 2013-11-15 2015-05-21 Msi Dfat Llc Réduction des ondes stationnaires lors d'essais acoustiques en champ direct
JP6518530B2 (ja) * 2015-06-26 2019-05-22 京セラ株式会社 電子機器
US10306129B1 (en) * 2016-06-28 2019-05-28 Amazon Technologies, Inc. Local and remote video-camera control
US9837064B1 (en) 2016-07-08 2017-12-05 Cisco Technology, Inc. Generating spectrally shaped sound signal based on sensitivity of human hearing and background noise level

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090032A (en) * 1976-05-05 1978-05-16 Wm. A. Holmin Corporation Control system for audio amplifying system having multiple microphones
NL8800745A (nl) * 1988-03-24 1989-10-16 Augustinus Johannes Berkhout Werkwijze en inrichting voor het creeren van een variabele akoestiek in een ruimte.
US5046101A (en) * 1989-11-14 1991-09-03 Lovejoy Controls Corp. Audio dosage control system
US5091953A (en) * 1990-02-13 1992-02-25 University Of Maryland At College Park Repetitive phenomena cancellation arrangement with multiple sensors and actuators
DE69323874T2 (de) * 1992-05-20 1999-12-02 Industrial Research Ltd., Lower Hutt Verbesserungen in einem breitband-nachhallsystem
FR2696036B1 (fr) * 1992-09-24 1994-10-14 France Telecom Procédé de mesure de ressemblance entre échantillons sonores et dispositif de mise en Óoeuvre de ce procédé.
JP2737595B2 (ja) * 1993-03-26 1998-04-08 ヤマハ株式会社 音場制御装置
JP3147618B2 (ja) * 1993-09-21 2001-03-19 ヤマハ株式会社 音響特性補正装置
JPH0684499U (ja) * 1993-05-14 1994-12-02 セイコー電子工業株式会社 車載用オーディオ装置
US6760451B1 (en) * 1993-08-03 2004-07-06 Peter Graham Craven Compensating filters
JPH0750900A (ja) * 1993-08-05 1995-02-21 Mitsubishi Electric Corp 音響再生装置
AU8006094A (en) * 1993-10-15 1995-05-04 Industrial Research Limited Improvements in reverberators for use in wide band assisted reverberation systems
DE19612981A1 (de) * 1995-03-31 1996-11-21 Fraunhofer Ges Forschung Akustische Prüfung von Lautsprechern
CA2186416C (fr) * 1995-09-26 2000-04-18 Suehiro Shimauchi Methode et appareil de communication multicanal
JPH09330094A (ja) * 1996-06-10 1997-12-22 Takako Ito テンポ可変機能付き音声再生装置
JP3388570B2 (ja) * 1997-03-14 2003-03-24 日本電信電話株式会社 多チャネル音響結合評価方法
US5991385A (en) * 1997-07-16 1999-11-23 International Business Machines Corporation Enhanced audio teleconferencing with sound field effect
US6072878A (en) * 1997-09-24 2000-06-06 Sonic Solutions Multi-channel surround sound mastering and reproduction techniques that preserve spatial harmonics
JPH11167383A (ja) * 1997-12-03 1999-06-22 Alpine Electron Inc 適応等化システムの接続確認方式
JP3299712B2 (ja) * 1998-03-13 2002-07-08 松下電器産業株式会社 明瞭度改善方法および音場制御装置
JP3347664B2 (ja) * 1998-03-17 2002-11-20 日本電信電話株式会社 音声通信会議方法及びシステム装置
JPH11285100A (ja) * 1998-03-30 1999-10-15 Sony Corp 音響診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0162044A1 *

Also Published As

Publication number Publication date
WO2001062044A1 (fr) 2001-08-23
DE60144420D1 (de) 2011-05-26
US20030108208A1 (en) 2003-06-12
JP2003523674A (ja) 2003-08-05
JP4691304B2 (ja) 2011-06-01
ATE505911T1 (de) 2011-04-15
AU2001235692A1 (en) 2001-08-27
US7804963B2 (en) 2010-09-28
FR2805433A1 (fr) 2001-08-24
US20070286430A1 (en) 2007-12-13
EP1258168B1 (fr) 2011-04-13

Similar Documents

Publication Publication Date Title
EP1258168A1 (fr) Procede et dispositif de comparaison de signaux pour le controle de transducteurs et systeme de controle de transducteurs
EP0790753B1 (fr) Système de spatialisation sonore, et procédé pour sa mise en oeuvre
FR2473233A1 (fr) Systeme d&#39;egalisation perfectionne
FR2651077A1 (fr) Dispositif de traitement d&#39;echo notamment acoustique dans une ligne telephonique
FR2997257A1 (fr) Systeme et procede de test d&#39;un equipement audio
EP2262216B1 (fr) Procédé de détection d&#39;une situation de double parole pour dispositif téléphonique &#34;mains libres&#34;
EP3381204A1 (fr) Procede et dispositif pour estimer la reverberation acoustique
EP0884926B1 (fr) Procédé et dispositif de traitement optimisé d&#39;un signal perturbateur lors d&#39;une prise de son
EP0789233B1 (fr) Procédé de test d&#39;une antenne acoustique en réseau
CA2060935C (fr) Systeme d&#39;evaluation des performances d&#39;un filtre electrique
FR2770359A1 (fr) Procedes et organes de compensation d&#39;echo pour lignes telephoniques
EP0741471B1 (fr) Procédé et dispositif de mesure sans intrusion de la qualité de transmission d&#39;une ligne téléphonique
WO2004112370A1 (fr) Procede et dispositif de traitement d’echo
EP0983678A1 (fr) Procede et dispositif de reduction d&#39; echo acoustique multivoies et de spatialisation sonore
FR2580882A1 (fr) Dispositif de commande d&#39;activation de microphones pour des systemes de teleconference
WO2006048537A1 (fr) Configuration dynamique d&#39;un systeme sonore
EP0633673B1 (fr) Procédé de transmission acoustique sous-marine et dispositif pour l&#39;amélioration de l&#39;intelligibilité de telles transmissions
EP0066515B1 (fr) Appareil générateur de bruit et dispositif de contrôle de l&#39;isolement phonique dans des bâtiments
WO2024156849A1 (fr) Procédé de contrôle d&#39;un champ acoustique, système de contrôle et programme d&#39;ordinateur associés
EP4297425A1 (fr) Parametres audio fonction de la lumiere
WO1999027520A1 (fr) Procede et dispositif d&#39;insonorisation active
EP4072162A1 (fr) Procede d&#39;auto-diagnostic d&#39;un equipement de restitution audio
EP1944909A1 (fr) Procédé de mesure de la sensibilité d&#39;un terminal de réception de services numériques
FR2790845A1 (fr) Procede de controle de la qualite d&#39;un signal audionumerique distribue
FR2810478A1 (fr) Attenuation du bruit de salve dans un appareil de radiotelephonie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20071213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60144420

Country of ref document: DE

Date of ref document: 20110526

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60144420

Country of ref document: DE

Effective date: 20110526

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110816

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110714

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

26N No opposition filed

Effective date: 20120116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60144420

Country of ref document: DE

Effective date: 20120116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

BERE Be: lapsed

Owner name: FRANCE TELECOM

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200123

Year of fee payment: 20

Ref country code: DE

Payment date: 20200121

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200122

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60144420

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210214