EP1247015B1 - Verfahren zum warmlaufen einer brennkraftmaschine - Google Patents

Verfahren zum warmlaufen einer brennkraftmaschine Download PDF

Info

Publication number
EP1247015B1
EP1247015B1 EP00988674A EP00988674A EP1247015B1 EP 1247015 B1 EP1247015 B1 EP 1247015B1 EP 00988674 A EP00988674 A EP 00988674A EP 00988674 A EP00988674 A EP 00988674A EP 1247015 B1 EP1247015 B1 EP 1247015B1
Authority
EP
European Patent Office
Prior art keywords
factor
internal combustion
combustion engine
load
fla
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00988674A
Other languages
English (en)
French (fr)
Other versions
EP1247015A2 (de
Inventor
Gerd Grass
Ruediger Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1247015A2 publication Critical patent/EP1247015A2/de
Application granted granted Critical
Publication of EP1247015B1 publication Critical patent/EP1247015B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up

Definitions

  • the invention relates to a method for warming up an internal combustion engine, in particular of a motor vehicle, in which fuel is injected into an intake pipe or into a combustion chamber, and in which a warm-up factor for increasing the injected fuel quantity is determined below an operating temperature of the internal combustion engine.
  • the invention also relates to a corresponding internal combustion engine and to a corresponding control unit for such an internal combustion engine.
  • Such a method such an internal combustion engine and such a control unit are for example of a so-called intake manifold injection such as US-A-4,711,217 known.
  • intake manifold injection such as US-A-4,711,217 known.
  • fuel is injected in a homogeneous operation during the intake in the intake manifold of the internal combustion engine, to then be sucked into the combustion chamber of the same.
  • direct-injection internal combustion engines the fuel is injected directly into the combustion chamber during the intake phase or during the compression phase and burned there.
  • the known determination of the warm-up factor is based on intake manifold injections and thus can not be used flexibly.
  • the known determination of the warm-up factor can be used only conditionally for direct-injection internal combustion engines.
  • the object of the invention is to provide a method for warming up an internal combustion engine with which a greater flexibility and in particular a simplified application with simultaneously improved warm-up behavior of the internal combustion engine can be achieved.
  • the warm-up factor is determined from a basic factor and a load-dependent factor.
  • the object is achieved according to the invention.
  • the latter factor can be determined for different operating modes independently of the basic factor.
  • the determination of the warm-up factor according to the invention in direct-injection internal combustion engines is possible.
  • the invention is also readily applicable to intake manifold injections.
  • the independent application of the basic factor and the load-dependent factor is advantageously noticeable.
  • the load-dependent factor is determined as a function of an integrated air mass and / or an integrated fuel mass and / or engine temperature of the internal combustion engine and / or the load-dependent factor as a function of a relative air charge and / or a relative amount of fuel and / or an actual or desired lambda and / or an actual or desired torque of the internal combustion engine.
  • the basic factor is determined as a function of the engine temperature. This represents a particularly simple, but nevertheless sufficient possibility for determining the basic factor.
  • the load-dependent factor and the basic factor are additively linked together.
  • the present invention independently determined factors are summarized again to the warm-up factor.
  • the load-dependent factor or the sum of the load-dependent factor and the basic factor as a function of the speed of the internal combustion engine is weighted.
  • the weighting thus influences either the load-dependent factor alone or the sum of the load-dependent factor and the basic factor.
  • the method according to the invention in the form of a control element which is provided for a control unit of an internal combustion engine, in particular of a motor vehicle.
  • a program is stored on the control, which is executable on a computing device, in particular on a microprocessor, and suitable for carrying out the method according to the invention.
  • the invention is realized by a program stored on the control program, so that this provided with the program control in the same way is the invention as the method to whose execution the program is suitable.
  • an electrical storage medium can be used, for example a read-only memory or a flash memory.
  • FIG. 1 an internal combustion engine 1 of a motor vehicle is shown, in which a piston 2 in a cylinder 3 back and forth.
  • the cylinder 3 is provided with a combustion chamber 4, which is limited inter alia by the piston 2, an inlet valve 5 and an outlet valve 6.
  • an intake valve 5 is an intake pipe 7 and with the exhaust valve 6, an exhaust pipe 8 is coupled.
  • an injection valve 9 and a spark plug 10 protrude into the combustion chamber 4.
  • fuel in the combustion chamber 4 are injected.
  • spark plug 10 the fuel in the combustion chamber 4 can be ignited.
  • a rotatable throttle valve 11 is housed, via which the intake pipe 7 air can be supplied.
  • the amount of air supplied is dependent on the angular position of the throttle valve 11.
  • a catalyst 12 is housed, which serves to purify the exhaust gases resulting from the combustion of the fuel.
  • an exhaust gas recirculation pipe 13 leads back to the intake pipe 7.
  • an exhaust gas recirculation valve 14 is housed, with which the amount of recirculated into the intake pipe 7 exhaust gas can be adjusted.
  • the exhaust gas recirculation pipe 13 and the exhaust gas recirculation valve 14 form a so-called exhaust gas recirculation.
  • a tank vent line 16 leads to the intake pipe 7.
  • a tank vent valve 17 is housed, with which the amount of fuel vapor supplied to the intake pipe 7 from the fuel tank 15 is adjustable.
  • the tank vent line 16 and the tank vent valve 17 form a so-called tank vent.
  • the piston 2 is set by the combustion of the fuel in the combustion chamber 4 in a reciprocating motion, which is transmitted to a non-illustrated crankshaft and exerts on this torque.
  • a control unit 18 is acted upon by input signals 19, which represent operating variables of the internal combustion engine 1 measured by means of sensors.
  • Control unit 18 with an air mass sensor, a lambda sensor, a speed sensor and the like connected.
  • the controller 18 is connected to an accelerator pedal sensor which generates a signal indicative of the position of a driver-operable accelerator pedal and thus the requested torque.
  • the control unit 18 generates output signals 20 with which the behavior of the internal combustion engine 1 can be influenced via actuators or actuators.
  • the controller 18 is connected to the injection valve 9, the spark plug 10 and the throttle valve 11 and the like, and generates the signals required for driving them.
  • control unit 18 is provided to control the operating variables of the internal combustion engine 1 and / or to regulate.
  • the fuel mass injected by the injection valve 9 into the combustion chamber 4 is controlled and / or regulated by the control unit 18, in particular with regard to low fuel consumption and / or low pollutant development.
  • the control unit 18 is provided with a microprocessor which has stored in a storage medium, in particular in a flash memory, a program which is adapted to perform said control and / or regulation.
  • the internal combustion engine 1 of FIG. 1 can be operated in a plurality of modes. Thus, it is possible to operate the internal combustion engine 1 in a homogeneous operation, a stratified operation, a homogeneous lean operation, a double injection operation and the like.
  • homogeneous operation the fuel is injected during the intake phase of the injection valve 9 directly into the combustion chamber 4 of the internal combustion engine 1. The fuel is thus still largely until ignition swirled, so that in the combustion chamber 4, a substantially homogeneous fuel / air mixture is formed.
  • the moment to be generated is set essentially by the position of the throttle valve 11 by the control unit 18.
  • the operating variables of the internal combustion engine 1 are controlled and / or regulated such that lambda is equal to one. Homogenous operation is used in particular at full load.
  • the homogeneous lean operation largely corresponds to the homogeneous operation, but the lambda is set to a value greater than one.
  • the fuel is injected during the compression phase of the injection valve 9 directly into the combustion chamber 4 of the internal combustion engine 1.
  • the throttle valve 11 may, except for requirements e.g. the exhaust gas recirculation and / or the tank ventilation, fully open and the internal combustion engine 1 are operated with it throttled.
  • the torque to be generated is largely set in shift operation via the fuel mass. With the shift operation, the internal combustion engine 1 can be operated in particular at idle and at partial load.
  • the internal combustion engine 1 is started at a temperature which is below an operating temperature of the internal combustion engine 1, the internal combustion engine 1 is started, for example, at low outside temperatures after a long standstill, the injected into the combustion chamber 4 Fuel quantity increased. In this way, not only an ignitable air / fuel mixture in the combustion chamber 4 is provided, but also those losses of fuel are compensated by the entry of fuel into the engine oil and / or by building a wall film of fuel in Combustion chamber 4 arise.
  • the internal combustion engine 1 By each combustion, the internal combustion engine 1 is heated, so that the increase in the amount of fuel can be slowly withdrawn. If the operating temperature of the internal combustion engine 1 is reached, the injected fuel quantity is no longer increased, at least insofar.
  • the increase in the amount of fuel injected during the cold start of the internal combustion engine 1 and its slow withdrawal is performed by the controller 18 with the aid of a warm-up factor fWL.
  • This warm-up factor fWL can also be linked multiplicatively with a so-called post-start factor in order then to influence the quantity of fuel to be injected into the combustion chamber 4.
  • the warm-up factor fWL is determined from a basic factor fG and a load-dependent factor fLA.
  • the basic factor fG and the load-dependent factor fLA are thus independent of each other and can be applied separately.
  • the basic factor fG is determined by means of an idling map 10 to which an engine start temperature TMS and a motor temperature TM are input. By the idling map 10, the basic factor fG is so set to give a desired lambda curve for the idle or a small applied load.
  • the engine start temperature TMS is that temperature of the internal combustion engine 1 that has this at startup. This distinguishes between different starting strategies for a restart in cold outside temperatures and a restart in warm but not operationally warm internal combustion engine.
  • Engine temperature TM is the current engine temperature that increases with each combustion. When starting the internal combustion engine 1, engine start temperature TMS and engine temperature TM are the same for at least a short time.
  • the engine start temperature TMS is linked to a relative air charge rl via a map 11.
  • the load dependence of the factor fLA is achieved. It is understood that instead of the relative air charge rl and a relative amount of fuel and / or an actual or desired lambda and / or an actual or desired torque or the like may be.
  • the engine start temperature TMS is linked to an integrated air mass mli via a map 12.
  • the integrated air mass mli is a measure of the energy converted in the combustion chamber 4, which in turn has an increase in the temperature of the internal combustion engine 1 due to the associated burns. It is understood that instead of the integrated air mass mli also an integrated fuel mass and / or in the simplest case, the engine temperature TM can stand.
  • the output values of the two maps 11, 12 are multiplicatively linked, from which then the load-dependent factor fLA arises.
  • the load-dependent factor fLA is additively linked to the basic factor fG, from which then the warm-up factor fWL arises.
  • a speed weighting fn of the warm-up enrichment of the internal combustion engine 1 is determined via a characteristic curve 13.
  • a characteristic diagram can also be provided which, in addition to the speed dependence, is still dependent on a temperature or the relative air mass or the relative fuel mass.
  • This speed weighting fn can on the one hand, as in the FIG. 2 shown by a solid line, act directly on the load-dependent factor fLA via a multiplicative link. Alternatively, on the other hand, it is possible that the rotational speed weighting fn acts multiplicatively on the sum of the load-dependent factor fLA and the basic factor fG, as shown in FIG FIG. 2 is shown in dotted lines.
  • FIG. 2 it is possible in another branch of the FIG. 2 provide a characteristic or map dependent on lambda and which is multiplicatively or additively associated with one of the other branches described above.
  • the warm-up factor fWL is determined in a direct-injection internal combustion engine 1 in the manner described above as a function of the operating mode of the internal combustion engine 1. This means that the maps 10, 11, 12 and the characteristic 13 of the FIG. 2 are present for each of the operating modes of the internal combustion engine 1, ie in particular for the shift operation and the homogeneous operation.
  • the warm-up factor fWL approaches unity and its influence on the fuel quantity to be injected approaches zero.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren zum Warmlaufen einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs, bei dem Kraftstoff in ein Ansaugrohr oder in einen Brennraum eingespritzt wird, und bei dem unterhalb einer Betriebstemperatur der Brennkraftmaschine ein Warmlauffaktor zur Erhöhung der eingespritzten Kraftstoffmenge ermittelt wird. Die Erfindung betrifft ebenfalls eine entsprechende Brennkraftmaschine sowie ein entsprechendes Steuergerät für eine derartige Brennkraftmaschine.
  • Ein derartiges Verfahren, eine derartige Brennkraftmaschine und ein derartiges Steuergerät sind beispielsweise von einer sogenannten Saugrohreinspritzung wie z.B. US-A-4 711 217 bekannt. Dort wird Kraftstoff in einem Homogenbetrieb während der Ansaugphase in das Ansaugrohr der Brennkraftmaschine eingespritzt, um dann in den Brennraum derselben angesaugt zu werden. Entsprechend wird bei sogenannten direkteinspritzenden Brennkraftmaschinen der Kraftstoff direkt während der Ansaugphase oder während der Verdichtungsphase in den Brennraum eingespritzt und dort verbrannt.
  • Beim Warmlaufen muß bei nicht-betriebswarmer Brennkraftmaschine eine erhöhte Kraftstoffmenge in das Ansaugrohr bzw. in den Brennraum eingespritzt werden. Dies wird bekannterweise mit Hilfe eines Warmlauffaktors durchgeführt, der unterhalb der Betriebstemperatur der Brennkraftmaschine die einzuspritzende Kraftstoffmenge beeinflußt.
  • Die bekannte Ermittlung des Warmlauffaktors basiert auf Saugrohreinspritzungen und ist damit nicht flexibel einsetzbar. Insbesondere kann die bekannte Ermittlung des Warmlauffaktors nur bedingt für direkteinspritzende Brennkraftmaschinen verwendet werden.
  • Aufgabe und Vorteile der Erfindung
  • Aufgabe der Erfindung ist es, ein Verfahren zum Warmlaufen einer Brennkraftmaschine zu schaffen, mit dem eine größere Flexibilität und insbesondere eine vereinfachte Applikation bei gleichzeitig verbessertem Warmlaufverhalten der Brennkraftmaschine erreichbar ist.
  • Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß der Warmlauffaktor aus einem Grundfaktor und einem lastabhängigen Faktor ermittelt wird. Bei einer Brennkraftmaschine und einem Steuergerät der eingangs genannten Art wird die Aufgabe erfindungsgemäß entsprechend gelöst.
  • Durch die erfindungsgemäße Trennung des Grundfaktors und des lastabhängigen Faktors kann der zuletzt genannte Faktor für verschiedene Betriebsarten unabhängig von dem Grundfaktor ermittelt werden. Damit ist ein einfacher Einsatz der erfindungsgemäßen Ermittlung des Warmlauffaktors bei direkteinspritzenden Brennkraftmaschinen möglich.
  • Ebenfalls ist es durch die erfindungsgemäße Trennung möglich, den Grundfaktor und den lastabhängigen Faktor unabhängig voneinander zu applizieren. Entsprechendes gilt auch für die Ermittlung des lastabhängigen Faktors in den unterschiedlichen Betriebsarten einer direkteinspritzenden Brennkraftmaschine.
  • Insbesondere ist es bei der Erfindung nicht erforderlich, die Ermittlung des Grundfaktors nachträglich in Abhängigkeit von einer an der Brennkraftmaschine anliegenden Last zu verändern.
  • Durch die erfindungsgemäße erreichbare Flexibilität ist die Erfindung auch ohne weiteres bei Saugrohreinspritzungen anwendbar. Hier macht sich vor allem die voneinander unabhängige Applikation des Grundfaktors und des lastabhängigen Faktors vorteilhaft bemerkbar.
  • Bei vorteilhaften Weiterbildungen der Erfindungen wird der lastabhängige Faktor in Abhängigkeit von einer integrierten Luftmasse und/oder einer integrierten Kraftstoffmasse und/oder einer Motortemperatur der Brennkraftmaschine ermittelt und/oder es wird der lastabhängige Faktor in Abhängigkeit von einer relativen Luftfüllung und/oder einer relativen Kraftstoffmenge und/oder eines Ist- oder Soll-Lambdas und/oder eines Ist- oder Sollmoments der Brennkraftmaschine ermittelt.
  • Wesentlich dabei ist, daß der lastabhängige Faktor möglichst schnell und flexibel auf Laständerungen der Brennkraftmaschine und/oder auf sonstige Änderungen von Betriebsgrößen der Brennkraftmaschine reagiert. Daraus resultiert dann der Vorteil einer subjektiv guten "Fahrbarkeit" der Brennkraftmaschine auch bei niedriger Betriebstemperatur.
  • Bei einer weiteren vorteilhaften Weiterbildung der Erfindung wird der Grundfaktor in Abhängigkeit von der Motortemperatur ermittelt. Dies stellt eine besonders einfache, aber trotzdem ausreichende Möglichkeit zur Ermittlung des Grundfaktors dar.
  • Bei einer vorteilhaften Ausgestaltung der Erfindung werden der lastabhängige Faktor und der Grundfaktor additiv miteinander verknüpft. Damit werden die erfindungsgemäß unabhängig voneinander ermittelten Faktoren wieder zu dem Warmlauffaktor zusammengefaßt.
  • Bei einer vorteilhaften Ausgestaltung der Erfindung wird der lastabhängige Faktor oder die Summe aus dem lastabhängigen Faktor und dem Grundfaktor in Abhängigkeit von der Drehzahl der Brennkraftmaschine gewichtet. Die Wichtung wirkt also entweder auf den lastabhängigen Faktor alleine ein oder auf die Summe aus dem lastabhängigen Faktor und dem Grundfaktor. Damit ist es möglich, in Abhängigkeit von dem Typ der Brennkraftmaschine entsprechende Anpassungen im Hinblick auf die Drehzahlwichtung durchzuführen.
  • Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Verfahrens in der Form eines Steuerelements, das für ein Steuergerät einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, vorgesehen ist. Dabei ist auf dem Steuerelement ein Programm abgespeichert, das auf einem Rechengerät, insbesondere auf einem Mikroprozessor, ablauffähig und zur Ausführung des erfindungsgemäßen Verfahrens geeignet ist. In diesem Fall wird also die Erfindung durch ein auf dem Steuerelement abgespeichertes Programm realisiert, so daß dieses mit dem Programm versehene Steuerelement in gleicher Weise die Erfindung darstellt wie das Verfahren, zu dessen Ausführung das Programm geeignet ist. Als Steuerelement kann insbesondere ein elektrisches Speichermedium zur Anwendung kommen, beispielsweise ein Read-Only-Memory oder ein Flash-Memory.
  • Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in den Figuren der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in der Zeichnung.
  • Ausführungsbeispiele der Erfindung
  • Figur 1
    zeigt ein schematisches Blockschaltbild eines Ausführungsbeispiels einer erfindungsgemäßen Brennkraftmaschine, und
    Figur 2
    zeigt ein schematisches Ablaufdiagramm eines erfindungsgemäßen Verfahrens zum Warmlaufen der Brennkraftmaschine der Figur 1.
  • In der Figur 1 ist eine Brennkraftmaschine 1 eines Kraftfahrzeugs dargestellt, bei der ein Kolben 2 in einem Zylinder 3 hin- und herbewegbar ist. Der Zylinder 3 ist mit einem Brennraum 4 versehen, der unter anderem durch den Kolben 2, ein Einlaßventil 5 und ein Auslaßventil 6 begrenzt ist. Mit dem Einlaßventil 5 ist ein Ansaugrohr 7 und mit dem Auslaßventil 6 ist ein Abgasrohr 8 gekoppelt.
  • Im Bereich des Einlaßventils 5 und des Auslaßventils 6 ragen ein Einspritzventil 9 und eine Zündkerze 10 in den Brennraum 4. Über das Einspritzventil 9 kann Kraftstoff in den Brennraum 4 eingespritzt werden. Mit der Zündkerze 10 kann der Kraftstoff in dem Brennraum 4 entzündet werden.
  • In dem Ansaugrohr 7 ist eine drehbare Drosselklappe 11 untergebracht, über die dem Ansaugrohr 7 Luft zuführbar ist. Die Menge der zugeführten Luft ist abhängig von der Winkelstellung der Drosselklappe 11. In dem Abgasrohr 8 ist ein Katalysator 12 untergebracht, der der Reinigung der durch die Verbrennung des Kraftstoffs entstehenden Abgase dient.
  • Von dem Abgasrohr 8 führt eine Abgasrückführrohr 13 zurück zu dem Ansaugrohr 7. In dem Abgasrückführrohr 13 ist ein Abgasrückführventil 14 untergebracht, mit dem die Menge des in das Ansaugrohr 7 rückgeführten Abgases eingestellt werden kann. Das Abgasrückführrohr 13 und das Abgasrückführventil 14 bilden eine sogenannte Abgasrückführung.
  • Von einem Kraftstofftank 15 führt eine Tankentlüftungsleitung 16 zu dem Ansaugrohr 7. In der Tankentlüftungsleitung 16 ist ein Tankentlüftungsventil 17 untergebracht, mit dem die Menge des dem Ansaugrohr 7 zugeführten Kraftstoffdampfes aus dem Kraftstofftank 15 einstellbar ist. Die Tankentlüftungsleitung 16 und das Tankentlüftungsventil 17 bilden eine sogenannte Tankentlüftung.
  • Der Kolben 2 wird durch die Verbrennung des Kraftstoffs in dem Brennraum 4 in eine Hin- und Herbewegung versetzt, die auf eine nicht-dargestellte Kurbelwelle übertragen wird und auf diese ein Drehmoment ausübt.
  • Ein Steuergerät 18 ist von Eingangssignalen 19 beaufschlagt, die mittels Sensoren gemessene Betriebsgrößen der Brennkraftmaschine 1 darstellen. Beispielsweise ist das Steuergerät 18 mit einem Luftmassensensor, einem Lambda-Sensor, einem Drehzahlsensor und dergleichen verbunden. Des weiteren ist das Steuergerät 18 mit einem Fahrpedalsensor verbunden, der ein Signal erzeugt, das die Stellung eines von einem Fahrer betätigbaren Fahrpedals und damit das angeforderte Drehmoment angibt. Das Steuergerät 18 erzeugt Ausgangssignale 20, mit denen über Aktoren bzw. Stellern das Verhalten der Brennkraftmaschine 1 beeinflußt werden kann. Beispielsweise ist das Steuergerät 18 mit dem Einspritzventil 9, der Zündkerze 10 und der Drosselklappe 11 und dergleichen verbunden und erzeugt die zu deren Ansteuerung erforderlichen Signale.
  • Unter anderem ist das Steuergerät 18 dazu vorgesehen, die Betriebsgrößen der Brennkraftmaschine 1 zu steuern und/oder zu regeln. Beispielsweise wird die von dem Einspritzventil 9 in den Brennraum 4 eingespritzte Kraftstoffmasse von dem Steuergerät 18 insbesondere im Hinblick auf einen geringen Kraftstoffverbrauch und/oder eine geringe Schadstoffentwicklung gesteuert und/oder geregelt. Zu diesem Zweck ist das Steuergerät 18 mit einem Mikroprozessor versehen, der in einem Speichermedium, insbesondere in einem Flash-Memory ein Programm abgespeichert hat, das dazu geeignet ist, die genannte Steuerung und/oder Regelung durchzuführen.
  • Die Brennkraftmaschine 1 der Figur 1 kann in einer Mehrzahl von Betriebsarten betrieben werden. So ist es möglich, die Brennkraftmaschine 1 in einem Homogenbetrieb, einem Schichtbetrieb, einem homogenen Magerbetrieb, einem betrieb mit Doppeleinspritzung und dergleichen zu betreiben.
  • Im Homogenbetrieb wird der Kraftstoff während der Ansaugphase von dem Einspritzventil 9 direkt in den Brennraum 4 der Brennkraftmaschine 1 eingespritzt. Der Kraftstoff wird dadurch bis zur Zündung noch weitgehend verwirbelt, so daß im Brennraum 4 ein im wesentlichen homogenes Kraftstoff/Luft-Gemisch entsteht. Das zu erzeugende Moment wird dabei im wesentlichen über die Stellung der Drosselklappe 11 von dem Steuergerät 18 eingestellt. Im Homogenbetrieb werden die Betriebsgrößen der Brennkraftmaschine 1 derart gesteuert und/oder geregelt, daß Lambda gleich Eins ist. Der Homogenbetrieb wird insbesondere bei Vollast angewendet.
  • Der homogene Magerbetrieb entspricht weitgehend dem Homogenbetrieb, es wird jedoch das Lambda auf einen Wert größer Eins eingestellt.
  • Im Schichtbetrieb wird der Kraftstoff während der Verdichtungsphase von dem Einspritzventil 9 direkt in den Brennraum 4 der Brennkraftmaschine 1 eingespritzt. Damit ist bei der Zündung durch die Zündkerze 10 kein homogenes Gemisch im Brennraum 4 vorhanden, sondern eine Kraftstoffschichtung. Die Drosselklappe 11 kann, abgesehen von Anforderungen z.B. der Abgasrückführung und/oder der Tankentlüftung, vollständig geöffnet und die Brennkraftmaschine 1 damit entdrosselt betrieben werden. Das zu erzeugende Moment wird im Schichtbetrieb weitgehend über die Kraftstoffmasse eingestellt. Mit dem Schichtbetrieb kann die Brennkraftmaschine 1 insbesondere im Leerlauf und bei Teillast betrieben werden.
  • Zwischen den genannten Betriebsarten der Brennkraftmaschine 1 kann hin- und her- bzw. umgeschaltet werden. Derartige Umschaltungen werden von dem Steuergerät 18 durchgeführt.
  • Wird die Brennkraftmaschine 1 bei einer Temperatur gestartet, die unterhalb einer Betriebstemperatur der Brennkraftmaschine 1 liegt, wird die Brennkraftmaschine 1 z.B. bei tiefen Außentemperaturen nach längerem Stillstand gestartet, so wird die in den Brennraum 4 eingespritzte Kraftstoffmenge erhöht. Auf diese Weise wird nicht nur ein zündfähiges Luft/Kraftstoff-Gemisch im Brennraum 4 zur Verfügung gestellt, sondern es werden auch diejenigen Verluste an Kraftstoff ausgeglichen, die durch die Eintragung von Kraftstoff in das Motoröl und/oder durch den Aufbau eines Wandfilms aus Kraftstoff im Brennraum 4 entstehen.
  • Durch jede Verbrennung wird die Brennkraftmaschine 1 erwärmt, so daß die Erhöhung der Kraftstoffmenge langsam zurückgenommen werden kann. Wird die Betriebstemperatur der Brennkraftmaschine 1 erreicht, so wird die eingespritzte Kraftstoffmenge zumindest insoweit nicht mehr erhöht.
  • Die Erhöhung der eingespritzten Kraftstoffmenge beim Kaltstart der Brennkraftmaschine 1 und deren langsame Rücknahme wird mit Hilfe eines Warmlauffaktors fWL von dem Steuergerät 18 durchgeführt. Dieser Warmlauffaktor fWL kann noch mit einem sogenannten Nachstartfaktor multiplikativ verknüpft werden, um danach die in den Brennraum 4 einzuspritzende Kraftstoffmenge zu beeinflussen.
  • In der Figur 2 ist die Ermittlung des Warmlauffaktors fWL dargestellt. Der Warmlauffaktor fWL wird aus einem Grundfaktor fG und einem lastabhängigen Faktor fLA ermittelt. Es wird also zwischen einem im wesentlichen nur den Leerlauf betreffenden Faktor, dem Grundfaktor fG, und einem nur unter Last auftretenden Faktor, dem lastabhängigen Faktor fLA, unterschieden. Der Grundfaktor fG und der lastabhängige Faktor fLA sind damit unabhängig voneinander und können separat appliziert werden.
  • Der Grundfaktor fG wird mittels eines Leerlaufkennfelds 10 ermittelt, dem eine Motorstarttemperatur TMS und eine Motortemperatur TM eingegeben wird. Durch das Leerlaufkennfeld 10 wird der Grundfaktor fG derart eingestellt, daß sich ein erwünschter Lambdaverlauf für den Leerlauf bzw. bei einer kleinen anliegenden Last ergibt.
  • Bei der Motorstarttemperatur TMS handelt es sich um diejenige Temperatur der Brennkraftmaschine 1, die diese beim Starten aufweist. Damit werden unterschiedliche Startstrategien für einen Neustart bei kalten Außentemperaturen und einem Wiederstart bei warmer, jedoch nicht betriebswarmer Brennkraftmaschine unterschieden. Bei der Motortemperatur TM handelt es sich um die aktuelle Motortemperatur, die durch jede Verbrennung ansteigt. Beim Starten der Brennkraftmaschine 1 sind Motorstarttemperatur TMS und Motortemperatur TM zumindest kurzzeitig gleich.
  • Zur Ermittlung des lastabhängigen Faktors fLA wird die Motorstarttemperatur TMS mit einer relativen Luftfüllung rl über ein Kennfeld 11 verknüpft. Durch die relative Luftfüllung rl im Brennraum 4 wird die Lastabhängigkeit des Faktors fLA erreicht. Es versteht sich, daß anstelle der relativen Luftfüllung rl auch eine relative Kraftstoffmenge und/oder ein Ist- oder Soll-Lambda und/oder ein Ist- oder Sollmoment oder dergleichen stehen können.
  • Ebenfalls wird die Motorstarttemperatur TMS mit einer integrierten Luftmasse mli über ein Kennfeld 12 verknüpft. Hierdurch wird der aus dem Kennfeld 11 gewonnene Wert mit sich erwärmender Brennkraftmaschine 1 erniedrigt. Die integrierte Luftmasse mli ist ein Maß für die im Brennraum 4 umgesetzte Energie, die ihrerseits über die damit verbundenen Verbrennungen eine Erhöhung der Temperatur der Brennkraftmaschine 1 zur Folge hat. Es versteht sich, daß anstelle der integrierten Luftmasse mli auch eine integrierte Kraftstoffmasse und/oder im einfachsten Fall die Motortemperatur TM stehen können.
  • Die Ausgangswerte der beiden Kennfelder 11, 12 werden multiplikativ miteinander verknüpft, woraus dann der lastabhängige Faktor fLA entsteht. Der lastabhängige Faktor fLA wird additiv mit dem Grundfaktor fG verknüpft, woraus dann der Warmlauffaktor fWL entsteht.
  • Des weiteren wird eine Drehzahlwichtung fn der Warmlaufanreicherung der Brennkraftmaschine 1 über eine Kennlinie 13 ermittelt. Anstelle der Kennlinie 13 kann auch ein Kennfeld vorgesehen sein, das zusätzlich zur Drehzahlabhängigkeit noch von einer Temperatur oder der relativen Luftmasse oder der relativen Kraftstoffmasse abhängig ist.
  • Diese Drehzahlwichtung fn kann einerseits, wie in der Figur 2 mit durchgezogener Linie dargestellt, über eine multiplikative Verknüpfung direkt auf den lastabhängigen Faktor fLA einwirken. Als Alternative ist es andererseits möglich, daß die Drehzahlwichtung fn multiplikativ erst auf die Summe aus dem lastabhängigen Faktor fLA und dem Grundfaktor fG einwirkt, wie dies in der Figur 2 gestrichtelt dargestellt ist.
  • Zusätzlich ist es möglich, in einem weiteren Zweig der Figur 2 eine Kennlinie oder ein Kennfeld vorzusehen, das von Lambda abhängig ist, und das multiplikativ oder additiv mit einem der anderen, vorstehend beschriebenen Zweige verknüpft ist.
  • Der Warmlauffaktor fWL wird bei einer direkteinspritzenden Brennkraftmaschine 1 auf die vorstehend beschriebene Art und Weise in Abhängigkeit von der Betriebsart der Brennkraftmaschine 1 ermittelt. Dies bedeutet, daß die Kennfelder 10, 11, 12 bzw. die Kennlinie 13 der Figur 2 für jede der Betriebsarten der Brennkraftmaschine 1 vorhanden sind, also insbesondere für den Schichtbetrieb und den Homogenbetrieb.
  • Wird die Brennkraftmaschine 1 während des Warmlaufens zwischen den verschiedenen Betriebsarten umgeschaltet, so erfolgt auch eine Umschaltung im Hinblick auf die Ermittlung des Warmlauffaktors fWL. Nähert sich die Motortemperatur TM der Betriebstemperatur der Brennkraftmaschine 1, so geht der Warmlauffaktor fWL gegen Eins und sein Einfluß auf die einzuspritzende Kraftstoffmenge geht gegen Null.
  • Wird der anhand der Figur 2 beschriebene Warmlauffaktor fWL - abweichend von der Figur 1 - bei Brennkraftmaschinen mit Saugrohreinspritzung verwendet, so sind die Kennfelder 10, 11, 12 bzw. die Kennlinie 13 der Figur 2 nur einmalig vorhanden, und zwar für den Homogenbetrieb. Ein Umschalten zwischen Betriebsarten erfolgt nicht.

Claims (11)

  1. Verfahren zum Warmlaufen einer Brennkraftmaschine (1), bei dem Kraftstoff in einen Brennraum (4) eingespritzt wird, und bei dem unterhalb einer Betriebstemperatur der Brennkrafrmaschine (1) ein Warmlauffaktor (fWL) zur Erhöhung der eingespritzten Kraftstoffmenge ermittelt wird, dadurch gekennzeichnet, dass der Warmlauffaktor (fWL) aus einem Grundfaktor (fG) und einem lastabhängigen Faktor (fLA) ermittelt wird, wobei der lastabhängige Faktor (fLA) für verschiedene Betriebsarten unabhängig von dem Grundfaktor (fG) ermittelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der lastabhängige Faktor (fLA) in Abhängigkeit von einer integrierten Luftmasse (mli) und/oder einer integrierten Kraftstoffmasse und/oder einer Motortemperatur (TM) der Brennkraftmaschine (1) ermittelt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der lastabhängige Faktor (fLA) in Abhängigkeit von einer relativen Luftfüllung (rl) und/oder einer relativen Kraftstoffmenge und/oder eines Ist- oder Soll-Lambdas und/oder eines Ist- oder Sollmoments der Brennkraftmaschine (1) ermittelt wird.
  4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß der lastabhängige Faktor (fLA) durch eine multiplikative Verknüpfung ermittelt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Grundfaktor (fG) in Abhängigkeit von der Motortemperatur (TM) ermittelt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der lastabhängige Faktor (fLA) und der Grundfaktor (fG) additiv miteinander verknüpft werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der lastabhängige Faktor (fLA) oder die Summe aus dem lastabhängigen Faktor (fLA) und dem Grundfaktor (fG) in Abhängigkeit von der Drehzahl (n) der Brennkraftmaschine (1) gewichtet wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der lastabhängige Faktor (fLA) und/oder der Grundfaktor (fG) und/oder der Warmlauffaktor (fWL) in Abhängigkeit von einer Motorstarttemperatur (TMS) ermittelt werden.
  9. Steuerelelement, insbesondere Read-Only-Memory oder Flash-Memory, für ein Steuergerät (18) einer Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs, auf dem ein Programm abgespeichert ist, das auf einem Rechengerät, insbesondere auf einem Mikroprozessor, ablauffähig und zur Ausführung eines Verfahrens nach einem der Ansprüche 1 bis 8 geeignet ist.
  10. Brennkraftmaschine (1), bei der beim Warmlaufen Kraftstoff in einen Brennraum (4) einspritzbar ist, und mit einem Steuergerät (18) zur Ermittlung eines Warmlauffaktors (fWL) zur Erhöhung der eingespritzten Kraftstoffmenge unterhalb einer Betriebstemperatur der Brennkraftmaschine (1), dadurch gekennzeichnet, dass durch das Steuergerät (18) der Warmlauffaktor (fWL) aus einem Grundfaktor (fG) und einem lastabhängigen Faktor (fLA) ermittelbar ist, wobei der lastabhängige Faktor (fLA) für verschiedene Betriebsarten unabhängig von dem Grundfaktor (fG) ermittelbar ist.
  11. Steuergerät (18) für eine Brennkraftmaschine (1), wobei bei der Brennkraftmaschine (1) beim Warmlaufen Kraftstoff in einen Brennraum (4) einspritzbar ist, und wobei das Steuergerät (18) zur Ermittlung eines Warmlauffaktors (fWL) zur Erhöhung der eingespritzten Kraftstoffmenge unterhalb einer Betriebstemperatur der Brennkraftmaschine (1) vorgesehen ist, dadurch gekennzeichnet, dass durch das Steuergerät (18) der Warmlauffaktor (fWL) aus einem Grundfaktor (fG) und einem lastabhängigen Faktor (fLA) ermittelbar ist, wobei der lastabhängige Faktor (fLA) für verschiedene Betriebsarten unabhängig von dem Grundfaktor (fG) ermittelbar ist.
EP00988674A 1999-12-31 2000-12-01 Verfahren zum warmlaufen einer brennkraftmaschine Expired - Lifetime EP1247015B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19963931A DE19963931A1 (de) 1999-12-31 1999-12-31 Verfahren zum Warmlaufen einer Brennkraftmaschine
DE19963931 1999-12-31
PCT/DE2000/004276 WO2001050001A2 (de) 1999-12-31 2000-12-01 Verfahren zum warmlaufen einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1247015A2 EP1247015A2 (de) 2002-10-09
EP1247015B1 true EP1247015B1 (de) 2010-03-03

Family

ID=7935097

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00988674A Expired - Lifetime EP1247015B1 (de) 1999-12-31 2000-12-01 Verfahren zum warmlaufen einer brennkraftmaschine

Country Status (7)

Country Link
US (1) US6766790B2 (de)
EP (1) EP1247015B1 (de)
JP (1) JP4700248B2 (de)
DE (2) DE19963931A1 (de)
ES (1) ES2340758T3 (de)
RU (1) RU2256087C2 (de)
WO (1) WO2001050001A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10307004B3 (de) * 2003-02-19 2004-08-05 Siemens Ag Verfahren zur Steuerung einer Brennkraftmaschine mit einer Lambda-Regelung
JP4123161B2 (ja) * 2004-02-12 2008-07-23 トヨタ自動車株式会社 エンジンの燃料噴射制御装置
US20050256797A1 (en) * 2004-05-13 2005-11-17 Scottrade, Inc. Method and apparatus for user-interactive financial instrument trading
DE102006033933A1 (de) * 2006-07-21 2008-01-24 Robert Bosch Gmbh Verfahren zur automatischen Ermittlung der Güte einer Übergangskompensation
DE102007058227B4 (de) * 2007-12-04 2019-01-31 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Steuer- oder Regeleinrichtung für eine Brennkraftmaschine

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3042246C2 (de) * 1980-11-08 1998-10-01 Bosch Gmbh Robert Elektronisch gesteuerte Kraftstoff-Zumeßvorrichtung für eine Brennkraftmaschine
JPS59168230A (ja) * 1983-03-15 1984-09-21 Toyota Motor Corp 内燃機関の燃料噴射量制御方法および燃料噴射制御装置
US4543937A (en) * 1983-03-15 1985-10-01 Toyota Jidosha Kabushiki Kaisha Method and apparatus for controlling fuel injection rate in internal combustion engine
JPS61212639A (ja) * 1985-03-18 1986-09-20 Honda Motor Co Ltd 内燃エンジンの冷間時の燃料供給制御方法
JPH0742882B2 (ja) * 1985-12-27 1995-05-15 日本電装株式会社 内燃機関の燃料供給量制御装置
JP2707674B2 (ja) * 1989-01-20 1998-02-04 株式会社デンソー 空燃比制御方法
JP2586738B2 (ja) * 1991-10-14 1997-03-05 トヨタ自動車株式会社 内燃機関の排気浄化装置
JPH0771304A (ja) * 1993-06-29 1995-03-14 Toyota Motor Corp 内燃機関の制御装置
US5441030A (en) * 1994-02-01 1995-08-15 Satsukawa; Ryuji Fuel injection system for two-stroke cycle engine
JP3206357B2 (ja) * 1994-04-19 2001-09-10 トヨタ自動車株式会社 内燃機関の燃料噴射量制御装置
DE19501458B4 (de) * 1995-01-19 2009-08-27 Robert Bosch Gmbh Verfahren zur Adaption der Warmlaufanreicherung
DE19625928A1 (de) * 1996-06-28 1998-01-08 Bosch Gmbh Robert Verfahren zur Einstellung einer Kraftstoffmehrmenge in der Warmlaufphase einer Brennkraftmaschine
AUPO095296A0 (en) * 1996-07-10 1996-08-01 Orbital Engine Company (Australia) Proprietary Limited Engine warm-up offsets
JPH1061477A (ja) * 1996-08-26 1998-03-03 Mitsubishi Motors Corp 筒内噴射型火花点火式内燃エンジンの制御装置
JP3072716B2 (ja) * 1996-08-27 2000-08-07 三菱自動車工業株式会社 内燃エンジンの燃料制御装置
DE19646941A1 (de) * 1996-11-13 1998-05-14 Bayerische Motoren Werke Ag Verfahren zum Regeln des Luft-Kraftstoff-Verhältnisses eines Verbrennungsmotors nach dem Start
JP3424557B2 (ja) * 1997-08-06 2003-07-07 マツダ株式会社 エンジンの排気浄化装置
JPH11218048A (ja) 1997-11-26 1999-08-10 Mazda Motor Corp エンジンの制御装置
DE19753873B4 (de) * 1997-12-05 2008-05-29 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP4416847B2 (ja) * 1998-03-23 2010-02-17 株式会社デンソー 内燃機関の燃料噴射制御装置
JP3521790B2 (ja) * 1998-03-25 2004-04-19 株式会社デンソー 内燃機関の制御装置
JP2000154744A (ja) * 1998-11-16 2000-06-06 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JP3731403B2 (ja) * 1999-09-09 2006-01-05 日産自動車株式会社 直噴火花点火式内燃機関の制御装置
JP3826642B2 (ja) * 1999-11-08 2006-09-27 トヨタ自動車株式会社 内燃機関の排気昇温装置

Also Published As

Publication number Publication date
JP4700248B2 (ja) 2011-06-15
DE50015881D1 (de) 2010-04-15
JP2003519330A (ja) 2003-06-17
RU2002120474A (ru) 2004-01-20
US20030056774A1 (en) 2003-03-27
EP1247015A2 (de) 2002-10-09
US6766790B2 (en) 2004-07-27
WO2001050001A2 (de) 2001-07-12
WO2001050001A3 (de) 2001-12-27
RU2256087C2 (ru) 2005-07-10
ES2340758T3 (es) 2010-06-09
DE19963931A1 (de) 2001-07-12

Similar Documents

Publication Publication Date Title
DE10046597B4 (de) Steuersystem für Motoren mit Direkteinspritzung
EP1090221B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE69916464T2 (de) Verfahren zum reduzieren der kaltstartemissionen bei brennkraftmaschinen
EP1322850A1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1247015B1 (de) Verfahren zum warmlaufen einer brennkraftmaschine
EP1269010A1 (de) Verfahren zum starten einer brennkraftmaschine und starteinrichtung für eine brennkraftmaschine
DE19958465C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1257735B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
EP1144828B1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1206635B1 (de) Verfahren zum betreiben einer brennkraftmaschine
WO1999067523A1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1081363B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1199459B1 (de) Verfahren zum Starten einer Brennkraftmaschine
EP1201896B1 (de) Verfahren zum Starten einer Brennkraftmaschine
DE19954463A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1192347B1 (de) Verfahren zum betreiben einer brennkraftmaschine
WO2001050002A2 (de) Verfahren zum betrieben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
EP1436494B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE19925788A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19954207C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19908726A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102006007718A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1046803A2 (de) Verfahren zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020731

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 50015881

Country of ref document: DE

Date of ref document: 20100415

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2340758

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131219

Year of fee payment: 14

Ref country code: ES

Payment date: 20131216

Year of fee payment: 14

Ref country code: FR

Payment date: 20131213

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160224

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50015881

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701