EP1243795A1 - Pompe à vide à deux étages - Google Patents

Pompe à vide à deux étages Download PDF

Info

Publication number
EP1243795A1
EP1243795A1 EP02356050A EP02356050A EP1243795A1 EP 1243795 A1 EP1243795 A1 EP 1243795A1 EP 02356050 A EP02356050 A EP 02356050A EP 02356050 A EP02356050 A EP 02356050A EP 1243795 A1 EP1243795 A1 EP 1243795A1
Authority
EP
European Patent Office
Prior art keywords
pump
gases
vacuum
pumped
pumping system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02356050A
Other languages
German (de)
English (en)
Other versions
EP1243795B1 (fr
Inventor
Michel Puech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP1243795A1 publication Critical patent/EP1243795A1/fr
Application granted granted Critical
Publication of EP1243795B1 publication Critical patent/EP1243795B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/123Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially or approximately radially from the rotor body extending tooth-like elements, co-operating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type

Definitions

  • the present invention relates to pumping systems using multi-stage Roots type dry pump vacuum or type multi-lobe "claw", in which the inlet of the primary pump receives the gases to be pumped and the output of the primary pump discharges gases pumped to the atmosphere or to a recycling system pumped gases.
  • the vacuum pumping system To create and maintain the vacuum in the vacuum vessel, the vacuum pumping system must first pump a relatively large gas flow to create the vacuum; in one second, the vacuum pumping system extracted from the enclosure to empties the residual gases or the treatment gases introduced voluntarily in the vacuum enclosure during the various stages of manufacturing processes in a controlled atmosphere. Gas flows to pumping by the vacuum pumping system are then lower.
  • the treatment gases introduced voluntarily in the vacuum vessel are frequently gases expensive, and there is an advantage in recycling these gases at the outlet of the vacuum pumping system, by a gas recycling system pumped, to then reintroduce them in a controlled manner into the vacuum vessel. It is therefore necessary not to contaminate these gas as they pass through the vacuum pumping system, and that's a second reason why we have to use pumps Roots or claw dry primers, rather than pumps traditional oil seal primers.
  • the inlet of the primary pump receives the gases to be pumped, either directly from the vacuum enclosure, either indirectly by a secondary pump which can be a pump turbomolecular.
  • the primary pump delivers the pumped gases directly to the atmosphere or directly to a system of recycling of pumped gases.
  • these very pure gases are used at low pressure in the vacuum vessel, and are evacuated by a multi-stage primary dry pump pumping system Roots type or multi-lobe claw type. So the document US 4 504 201 A describes a multi-stage pump of the Roots type and two claw floors. The top floor pushes the atmosphere.
  • the gas to be evacuated is sucked by the first stage of the pump then compressed in the stages following until reaching a pressure slightly higher than the atmospheric pressure at the exit of the top floor and so be released to the atmosphere or returned to a recycling system for pumped gases.
  • Rapid blocking and destruction of the pump is due blockage of the last stage of the pump, stage which drives the gas at a pressure close to atmospheric pressure.
  • the structure of the dry primary pumps includes a stator in which rotate two mechanically coupled rotors and laterally offset from each other.
  • the rotors are held by bearings, and are separated from the stator by the gas slide contained in the mechanical clearances between the rotor and the stator or pump body.
  • the dissipation of calories in a stage of the pump is carried out, for a very small part, by conduction across the rotor axis towards the pump body, and for a preponderant part by conduction through the gas slide between the rotor and the stator.
  • the problem proposed by the present invention is to design a new vacuum pumping system structure to avoid destruction of the dry primary pump in the case of pumping gas with low thermal conductivity, in using known multi-stage dry primary pumps without modify them, also keeping the same technique possible recycling, thus avoiding the development of a new pump.
  • a system vacuum pump comprises a primary pump Roots or claw type multi-stage dryer, pump inlet primary receiving the gases to be pumped and the pump outlet primary pumping the pumped gases towards the atmosphere or towards a pumped gas recycling system.
  • the system vacuum pumping system includes an additional pump whose inlet is connected to the output of the primary pump and whose output back to the atmosphere or to the gas recycling system pumps.
  • a vacuum hose is connected in parallel on the additional pump, and includes a non-return valve allowing gas from the primary pump to pass.
  • the pump additional is a dry pump of technology other than Roots or claw and adapted to safely support the elevation of temperature due to the final compression of the pumped gases.
  • the pump additional is a diaphragm pump.
  • the additional pump is a piston pump.
  • the additional pump must be sized to be able to pump all of the gas flow through the system vacuum pumping during the vacuum pumping steps at low pressure, for example to pump the process gas flow during the low pressure manufacturing process steps in a vacuum enclosure.
  • the additional pump can be sized to be just capable of pumping said flow of gas during the steps of pumping a vacuum at low pressure.
  • the drain line must be dimensioned way to let through the important gas flow during the stages for vacuuming an empty enclosure.
  • the vacuum pumping system according to the invention can be connected to a vacuum enclosure containing or in which are injected gases with low thermal conductivity.
  • Low thermal conductivity gases may include argon or xenon.
  • the pumped gases are discharged at the outlet of the vacuum pumping system in a gas recycling system pumps.
  • the pumped gas recycling system extracts and recycles said gases with low thermal conductivity, to reinject them from controlled manner in the vacuum vessel.
  • a vacuum pumping system in the embodiment illustrated schematically on Figure 1, includes a primary pump 1 dry multi-stage Roots type or claw, whose inlet 2 receives the gases to be pumped from a vacuum chamber 3, and the outlet 4 of which discharges the gases pumped to an output stage 5 comprising an additional pump 6 and a drain line 7.
  • the additional pump 6 has an inlet 8 connected to the outlet 4 of the primary pump 1, and has an outlet 9 which back to the outside atmosphere or to a system of recycling of pumped gases 10.
  • Pre-hose 7 is connected in parallel on additional pump 6, i.e. its input is connected to input 8 of additional pump 6 and to output 4 of the primary pump 1, and its output is connected to the output 9 of the additional pump 6 and to the atmosphere or to the recycling of pumped gases 10.
  • the evacuation pipe 7 includes a non-return valve 11, which allows the gases of entry to exit while prohibiting their movement from the exit to the entrance. Thus, the non-return valve 11 allows passage gases from outlet 4 of the primary pump 1.
  • the additional pump 6 is a dry pump of technology different from the Roots or claw technologies used for primary pump 1, and is adapted to support without damage the temperature rise due to the final compression of the gases pumped before being discharged to the atmosphere or to the pumped gas recycling system 10.
  • a first example of an additional pump that can suitable is a diaphragm pump, as shown schematically in Figure 3. It is understood that such a pump to membranes is a dry pump, that is to say in which the joint sealing of the pump is not achieved by a liquid volume. It is also understood that the membrane pump structure does not does not have a rotor isolated from the stator by the blade of pumped gases.
  • a second example of an additional pump that may be suitable is a piston pump, which is a well-known structure in the state of the art. In such a piston pump, there is also, no rotor isolated from the stator by a blade of pumped gases.
  • the additional pump 6 must be dimensioned so as to be able to pump the entire process gas flow through the vacuum pumping system during the pumping stages from vacuum to low pressure. During these stages where the pumped gas is low pressure, the gas flow is relatively low. So it is enough that the additional pump be sized to be fair capable of pumping said gas flow, so that inlet 8 of the additional pump 6 is at a much lower pressure at atmospheric pressure, and the primary pump 1 must thus achieve a reduced compression ratio which consequently reduces the heating of the gases passing through it and the heating which results on its constituent parts.
  • the additional pump 6 is capable of pumping the entire gaseous flow of the operating regime normal, the non-return valve 11 ensuring the maintenance of the pressure difference between inlet 8 and outlet 9 of the pump additional 6.
  • Pre-hose 7 is required to allow pass the gas flow at a higher flow rate than the primary pump 1 must evacuate at the start of emptying of a vacuum chamber 3.
  • the gases being pumped generally do not include low gas thermal conductivity, and the compression that the last stage of primary pump 1 is lower than that the vacuum pumping system must perform in operating mode normal, i.e. when the pressure in the vacuum vessel 3 is very low.
  • the primary pump 1 is thus capable of ensuring that only the step of vacuuming the vacuum chamber 3, through the priming line 7, and the additional pump 6 has not significant effect on the functioning of the system.
  • the pipeline 7 should be dimensioned so that the significant gas flow during the steps of feed-through the vacuum chamber 3.
  • the pumped gas recycling system 10 generates a gas flow recycled.
  • the flow of recycled gas is sent through a pipeline of recycling 110 to a piloted gas source 12 which is itself connected to the vacuum enclosure 3 by an injection pipe 13 to inject into the vacuum vessel 3 appropriate quantities of gas during programmed operating steps.
  • the primary pump 1 is for example a multi-stage dry pump Roots type, as illustrated more clearly on Figure 2.
  • the stator 14 defines a succession of compression chambers, for example the compression chambers 15, 16 and 17, in which rotate Roots type compression lobes carried by two rotors parallel such as the rotor 20 mechanically coupled, with gas passage pipes to let gases pass successively between the adjacent compression chambers.
  • Rotors such as rotor 20 are mounted parts rotating on bearings, and a play is necessarily present between the compression lobes and the walls of the stator 14. A blade therefore exists between the compression lobes of the rotors and the stator mass 14. In the case of pumping gas at low heat conduction, the gas blade effectively insulates the lobes compression of the rotors relative to the stator, and therefore opposes at the passage of heat energy from the rotors to stator 14. It this results in the heating of rotors such as rotor 20.
  • This heating is more accentuated in the last floor 17 of the primary pump, stage where the most compression occurs important gas.
  • the vacuum pumping system as illustrated in the figure 1 according to the invention makes it possible to lower the pressure at outlet 4 of the primary pump 1, thereby reducing overheating of the top stage of the primary pump 1.
  • This effect is particularly advantageous during pumping gas with low thermal conduction, and prevents destruction primary pump 1.
  • the operation of the system according to the invention is the following: at the start of pumping of the gases present in an enclosure at vacuum 3, the primary pump 1 sucks the gases at its inlet 2 and the compresses to discharge them at its outlet 4 at pressure close to the atmospheric pressure.
  • the gas flow is significant, and the pumped gas mixtures generally contain good gases coefficient of thermal conduction.
  • Primary pump type 1 Multi-stage Roots is thus capable of ensuring the pumping of this gas flow, during a vacuuming step.
  • the gas driven back to its outlet 4 mainly pass through the hose 7 to through the non-return valve 11, to escape towards the atmosphere.
  • the additional pump 6 sees only a weak pass portion of the discharged gas flow, its pumping capacity being scaled down.
  • the process steps can be carried out under vacuum, by example for the manufacture of semiconductors.
  • process are injected into the vacuum enclosure 3 by the gas source 12 through the injection pipe 13.
  • These process gases can be insulating gases such as argon or xenon, in the stages where these gases are used for example in sources of light emitting in the deep ultraviolet.
  • the gas flows pumped being weak, the additional pump 6 is capable of ensuring the pumping of all the gas flow leaving the primary pump 1 by output 4, and no flow flows through the drain line 7.
  • the additional pump 6 produces a pressure lowering at its inlet 8, i.e. at the outlet 4 of the primary pump 1.
  • the primary pump 1 is thus capable of withstand the presence of gases with low thermal conductivity such than argon or xenon in the flow of pumped gases, without exaggerated heating of its elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating Pumps (AREA)
  • Compressor (AREA)

Abstract

Dans un système de pompage à vide selon l'invention, la pompe primaire sèche multi-étagée de type Roots ou claw refoule dans un étage de sortie comprenant une pompe additionnelle (6) à pistons ou à membranes raccordée en parallèle avec une canalisation de prévidage (7) munie d'un clapet anti-retour (11). L'étage de sortie réduit très sensiblement l'échauffement de la pompe primaire (1), et permet ainsi au système de pompage à vide de pomper efficacement et sans dommages des gaz à faible conductivité thermique tels que l'argon ou le xénon. <IMAGE>

Description

La présente invention concerne les systèmes de pompage à vide à pompe primaire sèche de type Roots multi-étagée ou de type multi-lobe "claw", dans lesquels l'entrée de la pompe primaire reçoit les gaz à pomper et la sortie de la pompe primaire refoule les gaz pompés vers l'atmosphère ou vers un système de recyclage des gaz pompés.
Dans diverses industries telles que l'industrie du semi-conducteur, on utilise des procédés de fabrication en atmosphère contrôlée à basse pression, dans une enceinte à vide raccordée à un système de pompage à vide.
Pour réaliser et maintenir le vide dans l'enceinte à vide, le système de pompage à vide doit, dans un premier temps, pomper un flux de gaz relativement important afin de créer le vide ; dans un second temps, le système de pompage à vide extrait de l'enceinte à vide les gaz résiduels ou les gaz de traitement introduits volontairement dans l'enceinte à vide lors des diverses étapes des procédés de fabrication en atmosphère contrôlée. Les flux de gaz à pomper par le système de pompage à vide sont alors plus faibles.
Un souci permanent, notamment dans l'industrie du semi-conducteur, est de maintenir une grande pureté des gaz contenus dans l'enceinte à vide. A cet effet, il convient d'éviter la pollution rétrograde provenant du système de pompage à vide. Cela interdit, notamment, l'utilisation de systèmes de pompage à vide comprenant des pompes à anneau liquide. Dans les techniques modernes, les systèmes de pompage à vide sont à base de pompes sèches de type Roots ou claw.
D'autre part, les gaz de traitement introduits volontairement dans l'enceinte à vide sont fréquemment des gaz onéreux, et on trouve avantage à recycler ces gaz en sortie du système de pompage à vide, par un système de recyclage des gaz pompés, pour les réintroduire ensuite de façon contrôlée dans l'enceinte à vide. Il est alors nécessaire de ne pas contaminer ces gaz lors de leur traversée du système de pompage à vide, et c'est une seconde raison pour laquelle on est amené à utiliser des pompes primaires sèches de type Roots ou claw, plutôt que des pompes primaires traditionnelles à joint d'huile.
Ainsi, dans les systèmes connus de pompage à vide à pompe primaire sèche de type Roots ou claw, l'entrée de la pompe primaire reçoit les gaz à pomper, soit directement de l'enceinte à vide, soit indirectement par une pompe secondaire qui peut être une pompe turbomoléculaire. La pompe primaire refoule les gaz pompés directement vers l'atmosphère ou directement vers un système de recyclage des gaz pompés.
Diverses industries sont amenées à pomper et à recycler des gaz purs à faible conductivité thermique tels que l'argon ou le xénon. C'est notamment le cas dans l'industrie du semi-conducteur où ces gaz sont utilisés dans des sources de lumière émettant dans l'ultraviolet profond pour réaliser des équipements de photolitographie destinés à la fabrication des circuits électroniques de nouvelle génération.
Dans ce type d'application, ces gaz très purs sont utilisés à basse pression dans l'enceinte à vide, et sont évacués par un système de pompage à pompe primaire sèche multi-étagée de type Roots ou de type multi-lobe claw. Ainsi, le document US 4 504 201 A décrit une pompe multi-étagée de type Roots et deux étages de type claw. Le dernier étage refoule à l'atmosphère.
Dans une pompe multi-étagée, le gaz à évacuer est aspiré par le premier étage de la pompe puis comprimé dans les étages suivants jusqu'à atteindre une pression légèrement supérieure à la pression atmosphérique à la sortie du dernier étage et être ainsi rejeté à l'atmosphère ou refoulé vers un système de recyclage des gaz pompés.
On a précédemment constaté que les systèmes de pompage à vide connus à pompe sèche multi-étagée de type Roots ou multi-lobe claw présentent un grave inconvénient dans le cas où des gaz purs à faible conductivité thermique tels que l'argon ou le xénon sont introduits dans l'enceinte à vide au cours des étapes de procédé. En effet, la présence dans les gaz pompés d'une forte teneur de gaz pur à faible conductivité thermique tel que l'argon ou le xénon entraíne un blocage et une destruction très rapides de la pompe primaire sèche.
Le blocage et la destruction rapides de la pompe sont dus à un blocage du dernier étage de la pompe, étage qui refoule les gaz à une pression voisine de la pression atmosphérique.
L'explication réside dans l'analyse suivante : dans une pompe sèche multi-étagée, quelle que soit sa technologie, le gaz subit plusieurs compressions successives dans les divers étages de la pompe depuis la pression d'aspiration à l'entrée du premier étage jusqu'à la pression atmosphérique en sortie du dernier étage. A chaque étape de compression le gaz s'échauffe et échauffe les parties de pompe voisines. Cependant, cette compression n'est pas régulière, et c'est dans le dernier étage que se produit la plus forte compression. Généralement, on atteint dans le dernier étage une compression supérieure à 5.104 Pa. C'est donc dans le dernier étage que le gaz s'échauffe le plus et que doit donc être dissipée la plus grande part de l'énergie sous forme de calories.
Or, la structure des pompes primaires sèches comprend un stator dans lequel tournent deux rotors couplés mécaniquement et décalés latéralement l'un par rapport à l'autre. Les rotors sont tenus par des paliers, et sont séparés du stator par la lame de gaz contenue dans les jeux mécaniques entre le rotor et le stator ou corps de pompe. La dissipation des calories dans un étage de la pompe s'effectue, pour une très faible part, par conduction au travers de l'axe du rotor en direction du corps de pompe, et pour une part prépondérante par conduction au travers de la lame de gaz présente entre le rotor et le stator.
Dans le cas du pompage de gaz à faible conductivité thermique, le gaz s'oppose au transfert thermique entre le rotor et le stator. Il en résulte, dans le dernier étage de la pompe primaire multi-étagée, une élévation de la température du rotor très importante et rapide, qui a pour conséquence une dilatation du rotor telle que ce dernier entre en contact avec le stator, entraínant le blocage et la destruction de la pompe primaire.
Pour éviter un tel phénomène, on a déjà proposé une solution consistant à injecter dans les étages intermédiaires de la pompe un gaz à forte conductivité thermique comme l'azote ou l'hélium. Cependant, ces gaz additifs se retrouvent alors mélangés au gaz pur, et empêchent un recyclage simple.
Une autre solution connue consiste à augmenter volontairement les jeux fonctionnels du dernier étage pour abaisser son taux de compression et ainsi diminuer les calories à évacuer. Mais la pompe n'est alors plus capable d'atteindre les performances requises, et il faut alors répartir la perte de taux de compression sur un grand nombre d'étages supplémentaires, ce qui conduit à concevoir une pompe complexe et encombrante.
On connaít par ailleurs du document DE 37 10 782 A une pompe à vide à deux étages pour pomper un mélange de gaz et de vapeur. Le premier étage est de type pompe à glissement. Le second étage est une pompe à membrane. On pilote les deux étages de pompe de manière à garder la pression intermédiaire entre les étages au-dessous de la pression du point de rosée de la vapeur. Le but est de réduire la pression de vide réalisée.
Le problème proposé par la présente invention est de concevoir une nouvelle structure de système de pompage à vide permettant d'éviter la destruction de la pompe primaire sèche dans le cas de pompage de gaz à faible conductivité thermique, en utilisant des pompes primaires sèches multi-étagées connues sans les modifier, en conservant également la même technique de recyclage éventuel, évitant ainsi de développer une nouvelle pompe.
Pour atteindre ces objets ainsi que d'autres, un système de pompage à vide selon l'invention comprend une pompe primaire sèche multi-étagée de type Roots ou claw, l'entrée de la pompe primaire recevant les gaz à pomper et la sortie de la pompe primaire refoulant les gaz pompés vers l'atmosphère ou vers un système de recyclage des gaz pompés. Selon l'invention, le système de pompage à vide comprend une pompe additionnelle dont l'entrée est raccordée à la sortie de la pompe primaire et dont la sortie refoule vers l'atmosphère ou vers le système de recyclage des gaz pompés. Une canalisation de prévidage est raccordée en parallèle sur la pompe additionnelle, et comporte un clapet anti-retour laissant passer les gaz provenant de la pompe primaire. La pompe additionnelle est une pompe sèche de technologie autre que Roots ou claw et adaptée pour supporter sans dommage l'élévation de température due à la compression finale des gaz pompés.
Selon un premier mode de réalisation, la pompe additionnelle est une pompe à membranes.
Selon un autre mode de réalisation, la pompe additionnelle est une pompe à pistons.
La pompe additionnelle doit être dimensionnée de façon à être capable de pomper tout le flux de gaz traversant le système de pompage à vide pendant les étapes de pompage d'un vide à basse pression, par exemple pour pomper le flux de gaz de procédé pendant les étapes de procédé de fabrication à basse pression dans une enceinte à vide.
De préférence, la pompe additionnelle peut être dimensionnée de façon à être juste capable de pomper ledit flux de gaz pendant les étapes de pompage d'un vide à basse pression. On peut ainsi utiliser une pompe additionnelle petite, peu onéreuse et néanmoins suffisante pour supprimer le problème de destruction de la pompe primaire sèche.
La canalisation de prévidage doit être dimensionnée de façon à laisser passer le flux gazeux important au cours des étapes de prévidage d'une enceinte à vide.
Le système de pompage à vide selon l'invention peut être raccordé à une enceinte à vide contenant ou dans laquelle sont injectés des gaz à faible conductivité thermique.
Les gaz à faible conductivité thermique peuvent comprendre l'argon ou le xénon.
Avantageusement, les gaz pompés sont refoulés en sortie du système de pompage à vide dans un système de recyclage des gaz pompés. Le système de recyclage des gaz pompés extrait et recycle lesdits gaz à faible conductivité thermique, pour les réinjecter de façon contrôlée dans l'enceinte à vide.
D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles:
  • la figure 1 est une vue générale schématique d'un système de pompage à vide selon un mode de réalisation de l'invention, connecté à une enceinte à vide ;
  • la figure 2 est une vue de côté en coupe longitudinale illustrant une structure possible de pompe Roots multi-étagée ; et
  • la figure 3 est une vue de côté en coupe longitudinale d'une structure possible de pompe à membranes.
Dans le mode de réalisation illustré schématiquement sur la figure 1, un système de pompage à vide selon l'invention comprend une pompe primaire 1 sèche multi-étagée de type Roots ou claw, dont l'entrée 2 reçoit les gaz à pomper provenant d'une enceinte à vide 3, et dont la sortie 4 refoule les gaz pompés vers un étage de sortie 5 comprenant une pompe additionnelle 6 et une canalisation de prévidage 7.
La pompe additionnelle 6 comporte une entrée 8 raccordée à la sortie 4 de la pompe primaire 1, et comporte une sortie 9 qui refoule vers l'atmosphère extérieure ou vers un système de recyclage des gaz pompés 10.
La canalisation de prévidage 7 est raccordée en parallèle sur la pompe additionnelle 6, c'est-à-dire que son entrée est raccordée à l'entrée 8 de la pompe additionnelle 6 et à la sortie 4 de la pompe primaire 1, et sa sortie est raccordée à la sortie 9 de la pompe additionnelle 6 et à l'atmosphère ou au système de recyclage des gaz pompés 10. La canalisation de prévidage 7 comporte un clapet anti-retour 11, qui laisse passer les gaz de l'entrée vers la sortie tout en interdisant leur circulation de la sortie vers l'entrée. Ainsi, le clapet anti-retour 11 laisse passer les gaz provenant de la sortie 4 de la pompe primaire 1.
La pompe additionnelle 6 est une pompe sèche de technologie différente des technologies Roots ou claw utilisées pour la pompe primaire 1, et est adaptée pour supporter sans dommage l'élévation de température due à la compression finale des gaz pompés avant leur refoulement vers l'atmosphère ou vers le système de recyclage des gaz pompés 10.
Un premier exemple d'une pompe additionnelle pouvant convenir est une pompe à membranes, telle qu'illustrée schématiquement sur la figure 3. On comprend qu'une telle pompe à membranes est une pompe sèche, c'est-à-dire dans laquelle le joint d'étanchéité de la pompe n'est pas réalisé par un volume liquide. On comprend également que la structure de pompe à membranes ne comporte pas un rotor isolé du stator par la lame de gaz pompés.
Un second exemple de pompe additionnelle pouvant convenir est une pompe à pistons, qui est une structure bien connue dans l'état de la technique. Dans une telle pompe à pistons, il n'y a pas, non plus, de rotor isolé du stator par une lame de gaz pompés.
Il en résulte que, dans l'une et l'autre des technologies de pompe à pistons ou pompe à membranes, toutes les pièces de la pompe peuvent être refroidies par conduction depuis le corps extérieur de la pompe qui est refroidi lui-même par un circuit de refroidissement forcé, de sorte qu'une telle pompe additionnelle est capable d'évacuer la grande quantité de chaleur résultant de la compression finale des gaz pompés.
La pompe additionnelle 6 doit être dimensionnée de façon à être capable de pomper tout le flux de gaz de procédé traversant le système de pompage à vide pendant les étapes de pompage d'un vide à basse pression. Pendant ces étapes où le gaz pompé est à basse pression, le flux gazeux est relativement faible. Il suffit donc que la pompe additionnelle soit dimensionnée de façon à être juste capable de pomper ledit flux de gaz, de façon que l'entrée 8 de la pompe additionnelle 6 se trouve à une pression nettement inférieure à la pression atmosphérique, et la pompe primaire 1 doit ainsi réaliser un taux de compression réduit qui réduit en conséquence l'échauffement des gaz qui la traversent et l'échauffement qui en résulte sur ses parties constitutives. Pour assurer une réduction satisfaisante de la pression gazeuse à l'entrée 8 de la pompe additionnelle 6, il suffit que la pompe additionnelle 6 soit capable de pomper tout le flux gazeux du régime de fonctionnement normal, le clapet anti-retour 11 assurant le maintien de la différence de pression entre l'entrée 8 et la sortie 9 de la pompe additionnelle 6.
La canalisation de prévidage 7 est nécessaire pour laisser passer le flux gazeux à débit supérieur que la pompe primaire 1 doit évacuer en début de vidage d'une enceinte à vide 3. Dans ce cas, les gaz pompés ne comportent généralement pas de gaz à faible conductivité thermique, et la compression que doit réaliser le dernier étage de la pompe primaire 1 est inférieure à celle que le système de pompage à vide doit réaliser en régime de fonctionnement normal, c'est-à-dire lorsque la pression dans l'enceinte à vide 3 est très basse. La pompe primaire 1 est ainsi capable d'assurer à elle seule l'étape de prévidage de l'enceinte à vide 3, à travers la canalisation de prévidage 7, et la pompe additionnelle 6 n'a pas d'effet sensible sur le fonctionnement du système. La canalisation de prévidage 7 doit être dimensionnée de façon à laisser passer le flux gazeux important au cours des étapes de prévidage de l'enceinte à vide 3.
Dans le mode de réalisation illustré sur la figure 1, le système de recyclage des gaz pompés 10 génère un flux de gaz recyclé. Le flux de gaz recyclé est envoyé par une canalisation de recyclage 110 vers une source de gaz 12 pilotée qui est elle-même raccordée à l'enceinte à vide 3 par une canalisation d'injection 13 pour injecter dans l'enceinte à vide 3 des quantités appropriées de gaz au cours d'étapes de fonctionnement programmées.
La pompe primaire 1 est par exemple une pompe sèche multi-étagée de type Roots, telle qu'illustrée de façon plus claire sur la figure 2. Dans une telle pompe Roots multi-étagée, le stator 14 définit une succession de chambres de compression, par exemple les chambres de compression 15, 16 et 17, dans lesquelles tournent des lobes de compression de type Roots portés par deux rotors parallèles tels que le rotor 20 mécaniquement couplés, avec des canalisations de passage de gaz pour laisser passer les gaz successivement entre les chambres de compression adjacentes.
Les rotors tels que le rotor 20 sont des pièces montées rotatives sur des paliers, et un jeu est nécessairement présent entre les lobes de compression et les parois du stator 14. Une lame gazeuse existe donc entre les lobes de compression des rotors et la masse du stator 14. Dans le cas du pompage de gaz à faible conduction thermique, la lame gazeuse isole efficacement les lobes de compression des rotors par rapport au stator, et s'oppose donc au passage d'énergie calorifique des rotors vers le stator 14. Il en résulte un échauffement des rotors tels que le rotor 20.
Cet échauffement est plus accentué dans le dernier étage 17 de la pompe primaire, étage où se produit la compression la plus importante des gaz.
Le système de pompage à vide tel qu'illustré sur la figure 1 selon l'invention permet d'abaisser la pression en sortie 4 de la pompe primaire 1, réduisant ainsi l'échauffement du dernier étage de la pompe primaire 1.
Cet effet est particulièrement avantageux lors du pompage de gaz à faible conduction thermique, et empêche la destruction rapide de la pompe primaire 1.
Le fonctionnement du système selon l'invention est le suivant : en début de pompage des gaz présents dans une enceinte à vide 3, la pompe primaire 1 aspire les gaz à son entrée 2 et les comprime pour les refouler à sa sortie 4 à pression voisine de la pression atmosphérique. Le flux gazeux est important, et les mélanges gazeux pompés contiennent généralement des gaz à bon coefficient de conduction thermique. La pompe primaire 1 de type Roots multi-étagée est ainsi capable d'assurer le pompage de ce flux gazeux, lors d'une étape de prévidage. Les gaz refoulés à sa sortie 4 traversent principalement la canalisation de prévidage 7 à travers le clapet anti-retour 11, pour s'échapper vers l'atmosphère. La pompe additionnelle 6 ne voit passer qu'une faible portion du flux gazeux refoulé, sa capacité de pompage étant réduite.
Lorsque la pression basse est établie dans l'enceinte à vide 3, on peut réaliser les étapes de procédé sous vide, par exemple pour la fabrication de semi-conducteurs. Au cours de ces étapes, c'est-à-dire au cours du fonctionnement normal, des gaz de procédé sont injectés dans l'enceinte à vide 3 par la source de gaz 12 à travers la canalisation d'injection 13. Ces gaz de procédé peuvent être des gaz isolants tels que l'argon ou le xénon, dans les étapes où ces gaz servent par exemple dans des sources de lumière émettant dans l'ultraviolet profond. Les flux gazeux pompés étant faibles, la pompe additionnelle 6 est capable d'assurer le pompage de tout le flux gazeux sortant de la pompe primaire 1 par la sortie 4, et aucun flux ne parcourt la canalisation de prévidage 7. Il en résulte que la pompe additionnelle 6 produit un abaissement de la pression à son entrée 8, c'est-à-dire à la sortie 4 de la pompe primaire 1. La pompe primaire 1 est ainsi capable de supporter la présence de gaz à faible conductivité thermique tels que l'argon ou le xénon dans le flux de gaz pompés, sans échauffement exagéré de ses éléments.
Généralement, les gaz pompés à faible conductivité thermique sont des gaz onéreux, qu'il est intéressant de recycler. C'est la raison pour laquelle, en sortie du système, les gaz sont refoulés dans le système de recyclage des gaz pompés 10, qui lui-même renvoie les gaz recyclés par la canalisation de recyclage 110 vers la source de gaz 12, pour une réinjection ultérieure dans l'enceinte à vide 3.
La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations qui sont à la portée de l'homme du métier.

Claims (9)

  1. Système de pompage à vide à pompe primaire sèche multi-étagée (1) de type Roots ou claw, dans lequel l'entrée (2) de la pompe primaire (1) reçoit les gaz à pomper et la sortie (4) de la pompe primaire (1) refoule les gaz pompés vers l'atmosphère ou vers un système de recyclage des gaz pompés (10), caractérisé en ce qu'il comprend :
    une pompe additionnelle (6) dont l'entrée (8) est raccordée à la sortie (4) de la pompe primaire (1) et dont la sortie (9) refoule vers l'atmosphère ou vers le système de recyclage des gaz pompés (10),
    une canalisation de prévidage (7) raccordée en parallèle sur la pompe additionnelle (6) et comportant un clapet anti-retour (11) laissant passer les gaz provenant de la pompe primaire (1),
    la pompe additionnelle (6) étant une pompe sèche de technologie autre que Roots ou claw et adaptée pour supporter sans dommage l'élévation de température due à la compression finale des gaz pompés.
  2. Système de pompage à vide selon la revendication 1, caractérisé en ce que la pompe additionnelle (6) est une pompe à membranes.
  3. Système de pompage à vide selon la revendication 1, caractérisé en ce que la pompe additionnelle (6) est une pompe à pistons.
  4. Système de pompage à vide selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la pompe additionnelle est dimensionnée de façon à être capable de pomper tout le flux de gaz traversant le système de pompage à vide pendant les étapes de pompage d'un vide à basse pression.
  5. Système de pompage à vide selon la revendication 4, caractérisé en ce que la pompe additionnelle (6) est dimensionnée de façon à être juste capable de pomper ledit flux de gaz pendant les étapes de pompage d'un vide à basse pression.
  6. Système de pompage à vide selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la canalisation de prévidage (7) est dimensionnée de façon à laisser passer le flux gazeux important au cours des étapes de prévidage d'une enceinte à vide (3).
  7. Système de pompage à vide selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il est raccordé à une enceinte à vide (3) contenant ou dans laquelle sont injectés des gaz à faible conductivité thermique.
  8. Système de pompage à vide selon la revendication 7, dans lequel les gaz à faible conductivité thermique comprennent l'argon ou le xénon.
  9. Système de pompage à vide selon l'une des revendications 7 ou 8, caractérisé en ce que les gaz pompés sont refoulés dans un système de recyclage des gaz pompés (10) qui extrait et recycle lesdits gaz à faible conductivité thermique.
EP02356050A 2001-03-19 2002-03-13 Pompe à vide à deux étages Expired - Lifetime EP1243795B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0103678 2001-03-19
FR0103678A FR2822200B1 (fr) 2001-03-19 2001-03-19 Systeme de pompage pour gaz a faible conductivite thermique

Publications (2)

Publication Number Publication Date
EP1243795A1 true EP1243795A1 (fr) 2002-09-25
EP1243795B1 EP1243795B1 (fr) 2004-05-19

Family

ID=8861270

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02356050A Expired - Lifetime EP1243795B1 (fr) 2001-03-19 2002-03-13 Pompe à vide à deux étages

Country Status (6)

Country Link
US (1) US6644931B2 (fr)
EP (1) EP1243795B1 (fr)
JP (1) JP4166491B2 (fr)
AT (1) ATE267345T1 (fr)
DE (1) DE60200493T2 (fr)
FR (1) FR2822200B1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009003980U1 (de) 2009-03-24 2010-08-19 Vacuubrand Gmbh + Co Kg Vakuumpumpe
WO2014111471A1 (fr) * 2013-01-21 2014-07-24 Sterling Industry Consult Gmbh Agencement de pompe et procédé permettant de mettre sous vide une chambre remplie de vapeur
WO2015197138A1 (fr) * 2014-06-27 2015-12-30 Ateliers Busch Sa Méthode de pompage dans un système de pompes à vide et système de pompes à vide
WO2016045753A1 (fr) * 2014-09-26 2016-03-31 Ateliers Busch Sa Système de pompage pour générer un vide et procédé de pompage au moyen de ce système de pompage
WO2016050313A1 (fr) * 2014-10-02 2016-04-07 Ateliers Busch Sa Systeme de pompage pour generer un vide et procede de pompage au moyen de ce systeme de pompage
CN105889072A (zh) * 2016-06-25 2016-08-24 余林岚 一种应用于厌氧胶加工的抽真空机组
EP3842642A1 (fr) * 2010-04-19 2021-06-30 Ebara Corporation Appareil de pompe à vide sèche

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008302A (ja) * 2001-09-06 2008-01-17 Ulvac Japan Ltd 多段式容積移送型ドライ真空ポンプの省エネ方法
KR100876318B1 (ko) * 2001-09-06 2008-12-31 가부시키가이샤 아루박 진공배기장치 및 진공배기장치의 운전방법
JP2003343469A (ja) * 2002-03-20 2003-12-03 Toyota Industries Corp 真空ポンプ
GB0229353D0 (en) * 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping system and method of operating a vacuum pumping arrangement
JP2004263686A (ja) * 2003-01-06 2004-09-24 Toyota Industries Corp 往復動型ポンプ及び真空ポンプ
TW200506217A (en) * 2003-03-19 2005-02-16 Ebara Corp Positive-displacement vacuum pump
FR2854933B1 (fr) * 2003-05-13 2005-08-05 Cit Alcatel Pompe moleculaire, turbomoleculaire ou hybride a vanne integree
US7094036B2 (en) * 2003-09-24 2006-08-22 The Boc Group Plc Vacuum pumping system
GB2407132A (en) * 2003-10-14 2005-04-20 Boc Group Plc Multiple vacuum pump system with additional pump for exhaust flow
US7021888B2 (en) * 2003-12-16 2006-04-04 Universities Research Association, Inc. Ultra-high speed vacuum pump system with first stage turbofan and second stage turbomolecular pump
JP4633370B2 (ja) * 2004-02-17 2011-02-16 財団法人国際科学振興財団 真空装置
TWI234801B (en) * 2004-05-13 2005-06-21 Powerchip Semiconductor Corp Equipment and method for improving remain gas to pollute wafer
US7189066B2 (en) * 2004-05-14 2007-03-13 Varian, Inc. Light gas vacuum pumping system
GB0418771D0 (en) * 2004-08-20 2004-09-22 Boc Group Plc Evacuation of a load lock enclosure
US20070020115A1 (en) * 2005-07-01 2007-01-25 The Boc Group, Inc. Integrated pump apparatus for semiconductor processing
JP4709016B2 (ja) * 2006-01-12 2011-06-22 アネスト岩田株式会社 複合圧縮機
TWI467092B (zh) * 2008-09-10 2015-01-01 Ulvac Inc 真空排氣裝置
FR2952683B1 (fr) * 2009-11-18 2011-11-04 Alcatel Lucent Procede et dispositif de pompage a consommation d'energie reduite
CA2795795A1 (fr) * 2010-04-20 2011-10-27 Sandvik Intellectual Property Ab Systeme de compresseur d'air et procede de fonctionnement
CN102654117B (zh) * 2011-03-04 2014-10-22 中国科学院沈阳科学仪器研制中心有限公司 一种真空泵用排气装置
US10428807B2 (en) * 2011-12-09 2019-10-01 Applied Materials, Inc. Pump power consumption enhancement
JP6138144B2 (ja) 2011-12-14 2017-05-31 ステアリング・インダストリー・コンサルト・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングSterling Industry Consult GmbH チャンバを空にして該チャンバから取り出されたガスを浄化するための装置及び方法
FR2993614B1 (fr) * 2012-07-19 2018-06-15 Pfeiffer Vacuum Procede et dispositif de pompage d'une chambre de procedes
DE102012220442A1 (de) * 2012-11-09 2014-05-15 Oerlikon Leybold Vacuum Gmbh Vakuumpumpensystem zur Evakuierung einer Kammer sowie Verfahren zur Steuerung eines Vakuumpumpensystems
DE102013108090A1 (de) * 2013-07-29 2015-01-29 Hella Kgaa Hueck & Co. Pumpenanordnung
DE202013104111U1 (de) 2013-09-10 2013-12-03 Ilmvac Gmbh Trockenlaufender Vakuumpumpstand
US20150139817A1 (en) * 2013-11-19 2015-05-21 Gardner Denver Thomas, Inc. Ramp-up optimizing vacuum system
CA2943315C (fr) * 2014-03-24 2021-09-21 Ateliers Busch Sa Methode de pompage dans un systeme de pompes a vide et systeme de pompes a vide
CN104019017B (zh) * 2014-06-18 2016-08-17 宝钢工程技术集团有限公司 一种抽真空工艺设备
DE202014005279U1 (de) * 2014-06-26 2015-10-05 Oerlikon Leybold Vacuum Gmbh Vakuumpumpen-System
JP6418838B2 (ja) * 2014-07-31 2018-11-07 エドワーズ株式会社 ドライポンプ及び排ガス処理方法
CN105464932A (zh) * 2014-08-15 2016-04-06 北京和华腾真空泵压缩机有限公司 一种抽真空排气装置
CN104806487A (zh) * 2015-05-16 2015-07-29 肥西县三星玻璃有限公司 除尘器用一开一备真空泵组
US9982666B2 (en) * 2015-05-29 2018-05-29 Agilient Technologies, Inc. Vacuum pump system including scroll pump and secondary pumping mechanism
US10094381B2 (en) * 2015-06-05 2018-10-09 Agilent Technologies, Inc. Vacuum pump system with light gas pumping and leak detection apparatus comprising the same
CN107942918B (zh) * 2017-12-22 2023-04-18 大连华锐重工集团股份有限公司 自适应式干式真空机械泵电控系统及控制方法
FR3098869B1 (fr) * 2019-07-17 2021-07-16 Pfeiffer Vacuum Groupe de pompage
JP2023511645A (ja) * 2019-12-04 2023-03-22 アテリエ ビスク ソシエテ アノニム 冗長ポンプシステム及びこのポンプシステムによる圧送方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504201A (en) * 1982-11-22 1985-03-12 The Boc Group Plc Mechanical pumps
DE3710782A1 (de) * 1987-03-31 1988-10-20 Vacuubrand Gmbh & Co Verfahren und vorrichtung zum abpumpen von daempfen und/oder dampfhaltigen gemischen und/oder gas-dampf-gemischen oder dgl. medien
DE4443387C1 (de) * 1994-12-06 1996-01-18 Saskia Hochvakuum Und Labortec Zweistufige mechanische Vakuumpumpanordnung
US5584669A (en) * 1993-04-15 1996-12-17 Knf Neuberger Gmbh Two-stage positive displacement pump
US5709537A (en) * 1992-09-03 1998-01-20 Matsushita Electric Industrial Co., Ltd. Evacuating apparatus
EP0931939A2 (fr) * 1997-12-24 1999-07-28 VARIAN S.p.A. Pompe à vide
US5947694A (en) * 1997-02-25 1999-09-07 Varian, Inc. Scroll-type vacuum pumping apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536418A (en) * 1969-02-13 1970-10-27 Onezime P Breaux Cryogenic turbo-molecular vacuum pump
US3922110A (en) * 1974-01-28 1975-11-25 Henry Huse Multi-stage vacuum pump
JPS6238883A (ja) * 1985-08-09 1987-02-19 Toyota Motor Corp ピストン摺動式バキユ−ムポンプ
US5356673A (en) * 1991-03-18 1994-10-18 Jet Process Corporation Evaporation system and method for gas jet deposition of thin film materials
JPH04326943A (ja) * 1991-04-25 1992-11-16 Hitachi Ltd 真空排気システム及び排気方法
US6589023B2 (en) * 2001-10-09 2003-07-08 Applied Materials, Inc. Device and method for reducing vacuum pump energy consumption

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504201A (en) * 1982-11-22 1985-03-12 The Boc Group Plc Mechanical pumps
DE3710782A1 (de) * 1987-03-31 1988-10-20 Vacuubrand Gmbh & Co Verfahren und vorrichtung zum abpumpen von daempfen und/oder dampfhaltigen gemischen und/oder gas-dampf-gemischen oder dgl. medien
US5709537A (en) * 1992-09-03 1998-01-20 Matsushita Electric Industrial Co., Ltd. Evacuating apparatus
US5584669A (en) * 1993-04-15 1996-12-17 Knf Neuberger Gmbh Two-stage positive displacement pump
DE4443387C1 (de) * 1994-12-06 1996-01-18 Saskia Hochvakuum Und Labortec Zweistufige mechanische Vakuumpumpanordnung
US5947694A (en) * 1997-02-25 1999-09-07 Varian, Inc. Scroll-type vacuum pumping apparatus
EP0931939A2 (fr) * 1997-12-24 1999-07-28 VARIAN S.p.A. Pompe à vide

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010009083A1 (de) 2009-03-24 2011-05-12 Vacuubrand Gmbh + Co Kg Vakuumpumpe
DE102010009083B4 (de) * 2009-03-24 2013-09-26 Vacuubrand Gmbh + Co Kg Vakuumpumpe
DE202009003980U1 (de) 2009-03-24 2010-08-19 Vacuubrand Gmbh + Co Kg Vakuumpumpe
EP3842642A1 (fr) * 2010-04-19 2021-06-30 Ebara Corporation Appareil de pompe à vide sèche
WO2014111471A1 (fr) * 2013-01-21 2014-07-24 Sterling Industry Consult Gmbh Agencement de pompe et procédé permettant de mettre sous vide une chambre remplie de vapeur
CN105026758A (zh) * 2013-01-21 2015-11-04 施特林工业咨询公司 泵组件和用于将充满蒸汽的腔室抽空的方法
RU2666720C2 (ru) * 2014-06-27 2018-09-11 Ателье Буш Са Способ откачивания в системе вакуумных насосов и система вакуумных насосов
WO2015197138A1 (fr) * 2014-06-27 2015-12-30 Ateliers Busch Sa Méthode de pompage dans un système de pompes à vide et système de pompes à vide
US11725662B2 (en) 2014-06-27 2023-08-15 Ateliers Busch Sa Method of pumping in a system of vacuum pumps and system of vacuum pumps
US10760573B2 (en) 2014-06-27 2020-09-01 Ateliers Busch Sa Method of pumping in a system of vacuum pumps and system of vacuum pumps
CN106662108A (zh) * 2014-06-27 2017-05-10 阿特利耶博世股份有限公司 真空泵系统中的泵送方法以及真空泵系统
AU2014406724B2 (en) * 2014-09-26 2019-09-19 Ateliers Busch Sa Vacuum-generating pumping system and pumping method using this pumping system
RU2670640C1 (ru) * 2014-09-26 2018-10-24 Ателье Буш Са Насосная система для создания вакуума и способ откачивания с использованием данной насосной системы
RU2670640C9 (ru) * 2014-09-26 2018-12-04 Ателье Буш Са Насосная система для создания вакуума и способ откачивания с использованием данной насосной системы
WO2016045753A1 (fr) * 2014-09-26 2016-03-31 Ateliers Busch Sa Système de pompage pour générer un vide et procédé de pompage au moyen de ce système de pompage
RU2674297C2 (ru) * 2014-10-02 2018-12-06 Ателье Буш Са Система откачки для создания вакуума и способ откачки при помощи этой системы откачки
CN107002681A (zh) * 2014-10-02 2017-08-01 阿特利耶博世股份有限公司 用于产生真空的泵送系统及利用此泵送系统的泵送方法
AU2014407987B2 (en) * 2014-10-02 2019-10-31 Ateliers Busch Sa Pumping system for generating a vacuum and method for pumping by means of this pumping system
US10808730B2 (en) 2014-10-02 2020-10-20 Ateliers Busch Sa Pumping system for generating a vacuum and method for pumping by means of this pumping system
WO2016050313A1 (fr) * 2014-10-02 2016-04-07 Ateliers Busch Sa Systeme de pompage pour generer un vide et procede de pompage au moyen de ce systeme de pompage
CN105889072A (zh) * 2016-06-25 2016-08-24 余林岚 一种应用于厌氧胶加工的抽真空机组

Also Published As

Publication number Publication date
FR2822200A1 (fr) 2002-09-20
DE60200493D1 (de) 2004-06-24
US6644931B2 (en) 2003-11-11
DE60200493T2 (de) 2005-08-04
JP2002339864A (ja) 2002-11-27
US20020131870A1 (en) 2002-09-19
ATE267345T1 (de) 2004-06-15
EP1243795B1 (fr) 2004-05-19
JP4166491B2 (ja) 2008-10-15
FR2822200B1 (fr) 2003-09-26

Similar Documents

Publication Publication Date Title
EP1243795B1 (fr) Pompe à vide à deux étages
EP2875240B1 (fr) Procede et dispositif de pompage d&#39;une chambre de procedes
BE1018846A3 (fr) Compresseur a vis.
KR100221782B1 (ko) 진공실을 급속히 진공시키기 위한 장치
FR2525698A1 (fr) Pompe turbomoleculaire
EP3485168B1 (fr) Procédé de descente en pression dans un sas de chargement et de déchargement et groupe de pompage associé
FR2638788A1 (fr) Pompe a vide du type roots multietage
EP1510697B1 (fr) Pompe à vide
EP0985828B1 (fr) Procédé et dispositif pour éviter les dépôts dans une pompe turbomoléculaire à palier magnétique ou gazeux
FR2619867A1 (fr) Pompe moleculaire polyetages
EP1589227A1 (fr) Pompe à vide multi-étagée et installation de pompage comprenant une telle pompe
EP2769096B1 (fr) Dispositif de pompage et de traitement des gaz
FR2646881A1 (fr) Pompe a vide a plusieurs etages
FR3094762A1 (fr) Pompe à vide de type sèche et installation de pompage
EP0999292B1 (fr) Transport de gaz pompés dans une pompe à vide ou des canalisations
EP1538656B1 (fr) Système de traitement des gaz par plasma intégré dans une pompe à vide
EP3105455B1 (fr) Système de pompage et procédé de descente en pression dans un sas de chargement et de déchargement
FR3128747A1 (fr) Pompe à vide multi-étagée
FR3079886A1 (fr) Pompe a vide de type seche
FR3118649A3 (fr) Pompe à vide rotative à palettes avec ensemble à lest de gaz
FR2517416A1 (fr) Procede de sechage par le vide de canalisations
WO2021164843A1 (fr) Dispositif pour la recirculation d&#39;une composition au moins partiellement gazeuse contenant de l&#39;hydrogène et système de pile à combustible
JPS62174592A (ja) スクリユ式真空ポンプ
FR3101921A1 (fr) Pompe à vide sèche et procédé de fabrication
JPS6385268A (ja) 真空排気装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021218

17Q First examination report despatched

Effective date: 20030403

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040519

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040519

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040519

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040519

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040519

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60200493

Country of ref document: DE

Date of ref document: 20040624

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040819

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040819

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040830

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050313

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050313

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

26N No opposition filed

Effective date: 20050222

BERE Be: lapsed

Owner name: *ALCATEL

Effective date: 20050331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

BERE Be: lapsed

Owner name: *ALCATEL

Effective date: 20050331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120327

Year of fee payment: 11

Ref country code: IT

Payment date: 20120321

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ADIXEN VACUUM PRODUCTS, FR

Effective date: 20131009

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130313

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: PFEIFFER VACCUUM, FR

Effective date: 20160118

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref legal event code: R082

Country of ref document: DE

Ref country code: DE

Ref document number: 60200493

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60200493

Country of ref document: DE

Owner name: ADIXEN VACUUM PRODUCTS, FR

Free format text: FORMER OWNER: ALCATEL LUCENT, PARIS, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 60200493

Country of ref document: DE

Owner name: PFEIFFER VACUUM, FR

Free format text: FORMER OWNER: ALCATEL LUCENT, PARIS, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60200493

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 60200493

Country of ref document: DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60200493

Country of ref document: DE

Owner name: PFEIFFER VACUUM, FR

Free format text: FORMER OWNER: ADIXEN VACUUM PRODUCTS, ANNECY, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60200493

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210323

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210325

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60200493

Country of ref document: DE