EP1222677A2 - Elektronenstossionenquelle - Google Patents

Elektronenstossionenquelle

Info

Publication number
EP1222677A2
EP1222677A2 EP00982966A EP00982966A EP1222677A2 EP 1222677 A2 EP1222677 A2 EP 1222677A2 EP 00982966 A EP00982966 A EP 00982966A EP 00982966 A EP00982966 A EP 00982966A EP 1222677 A2 EP1222677 A2 EP 1222677A2
Authority
EP
European Patent Office
Prior art keywords
electron
electron beam
ion source
vacuum
electron impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00982966A
Other languages
English (en)
French (fr)
Other versions
EP1222677B1 (de
Inventor
Günter ZSCHORNACK
Vladimir Petrovich Ovsyannikov
Frank Grossmann
Oleg Konstantinovich Koulthachev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Dresden
Original Assignee
Technische Universitaet Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Dresden filed Critical Technische Universitaet Dresden
Publication of EP1222677A2 publication Critical patent/EP1222677A2/de
Application granted granted Critical
Publication of EP1222677B1 publication Critical patent/EP1222677B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/16Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation
    • H01J27/18Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation with an applied axial magnetic field

Definitions

  • the invention relates to an electron impact ion source according to the preamble of claim 1.
  • the electron impact ion source allows the generation of highly charged ions, their extraction, serves as a source of UV, NUN, infrared rays and of characteristic X-ray radiation of highly charged ions
  • the system consists of an electron gun, several cylindrical drift tubes, an electron collector, an extractor, a focusing magnet system and a system for generating ultra-high vacuum conditions in the system
  • the electron beam creates an ion trap in the central part of the system, which holds the ions in the radial direction due to their space charge forces.
  • the ions that are generated in the electron beam by electron impact ionization are generated by positive potentials at the ends of the drift tube structures according to ED Donets, USSR Inventors Certificate ⁇ o 248860, March 16, 1967, Bull OIPOTZ ⁇ o 23 (1969) 65
  • the uploaded ions obtained can be extracted from the ion trap along the trap axis by lowering the trap potential at the last drift tubes.
  • characteristic X-rays and other long-wave electromagnetic radiation emitted by the stored ions are in the meridian plane of the magnet system and perpendicular to it Radiated source axis
  • the maximum achievable ion charge is a function of the ionization factor j ⁇ , i.e. the product of the electron current density j and the ion residence time ⁇ in the electron beam.
  • the process that limits the achievement of the highest charge states is essentially the charge reversal processes of multiply charged ions on residual gas atoms.Therefore, devices based on the method described generate charged ions that Enable formation of a high-density electron beam under ultra high vacuum conditions
  • cryogenic technology in conjunction with superconducting technology is used in EBIT systems.
  • Superconducting Helmholtz coils with induction of the magnetic field from 3T to 5T are used here to focus the electron beam over the length of the ion trap, which in known systems does not exceed 25 mm
  • the current density of the electron beam over the trap length is 2,000-5,000 A / cm 2 with a total length of the electron-optical system (cathode - electron collector) of more than 30 cm K the function of a powerful cryopump in the area of the ion trap to create a vacuum of> 10 "11 to 10 " 12 Torr
  • cryogenic and ultra-high vacuum technology have an additional limiting effect
  • a decrease in the electron current density to 200 to 500 A cm 2 leads to an increase in the time required to generate a certain ion charge state in the trap and thus to a decrease in the mean beam intensity for extracted multi-charged
  • Magnetic fields of the strength 0.2 T to 0.5 T are required, which can be generated by permanent magnet systems based on modern magnetic materials
  • the original cathode of the klystron with a maximum emissivity of 2.5 A / cm 2 is used.
  • the ultra-high vacuum in the system is achieved after heating at 300 ° C using standard technology with the combination of a turbomolecular and an ion getter pump
  • This system has a low electron current density in the beam (100 times lower than for superconducting EBIT). This is associated with a limitation to comparatively low ionic charge states such as Ar 16+
  • the maximum current intensity in the electron beam focused by a longitudinal magnetic field for Brillouin focusing can be obtained if the magnetic field disappears at the location of the cathode in one
  • the so-called Brillouin density of the electron flow is limited by thermal velocity components of the electrons as they exit the cathode (see also M Szilagyi, Electron and Ion Optics, Plenum Press, New York and London, 1988) and by aberrations in the anode lens for the aberrations is possible in the case of paraxial and laminar flows, ie for an electron gun with minimal divergence (compression) of the electron beam and thus for a maximally efficient cathode, ie for a cathode with maximum emission density
  • the object of the invention is to create an effective electron impact ion source (WEBIT) without any cryogenic components and without superconductivity technology for the receipt of charged ions, X-ray and VUV spectroscopy on these ions and the extraction of the charged ions from the trap for the purposes of various scientific , technological and technical applications
  • WEBIT electron impact ion source
  • the object is achieved in connection with the features mentioned in the preamble of claim 1 in that the device for the axially symmetrical focusing of the electron beam consists of at least two rings that are radially magnetized in opposite directions and each of the rings encloses the electron beam, two rings that are radially magnetized in opposite directions are connected to form a uniform magnet system by magnetic conductors, the closing magnetic field denying the
  • the cathode has a very high emissivity of> 25 A / cm 2 with a small cathode diameter, and a vacuum of 10 ⁇ 7 to 10 " ⁇ Torr in the area of the ions during the
  • Magnetized permanent magnet blocks are advantageously assembled into rings and enclosed by magnetic conductors made of soft magnetic material, so that radial magnetization results
  • the magnetized permanent magnet blocks cuboids made of hard magnetic materials such as Sm 5 Co or NdFeB are also advantageous, as a result of which the rings can be produced efficiently
  • the ion trap to be opened and closed advantageously consists of a three-part drift tube mounted on a high-voltage insulator.
  • a controllable acceleration potential is applied to the middle part and an adjustable trap potential is applied to the two outer parts
  • the middle part of the drift tubes is provided with a number of elongated holes or other suitable openings running along the axial electron beam, which enable efficient pumping in the area of the ion trap
  • a vacuum recipient with four flanges in which two flanges lying opposite one another form a first axis and two further flanges form a second axis, the first and second axes crossing, on the first axis electron gun, drift tubes, electron collector and Extractors are arranged in this order, and along the second axis on a flange High-voltage bushing for positioning the drift tubes in the course of the first axis and a vacuum pump can be connected to the other flange.
  • Other solutions with more or fewer flanges are possible
  • the magnetic conductors advantageously pierce the vacuum recipient on both sides of the second axis parallel to the first axis and form a seat for the rings there.
  • the part of the magnetic conductor protruding into the vacuum recipient is angled in a 1-shape and magnetically short-circuited with the drift tubes
  • an electron gun with minimal divergence (compression) of the electron beam and thus with a maximally efficient cathode, i.e. a cathode with maximally high emission density, is used
  • the advantage of the invention is that highly charged ions can be generated efficiently without cryogenic technology
  • Fig. 1 is a schematic representation of the invention
  • Fig. 2 shows an advantageous embodiment of the invention in a schematic sectional view
  • FIG. 3 shows a section A-A corresponding to the representation in Fig. 2nd
  • FIG. 4 shows a detailed representation corresponding to FIG. 3
  • Electron gun 3 with cathode 14, three drift tubes 4, 15, 4, an electron collector 5, and an extractor 6 are arranged on axis 16 in this order.
  • Two oppositely radially magnetized rings 2 enclose axis 16 input and output of the drift tube structure 4, 15 and thus the electron beam that can be generated
  • the rings 2 contain a number of permanent magnet blocks 8, with which the rings 2 receive a radial magnetization.
  • an electron impact ion source which consists of a vacuum recipient 1, a magnetically focusing system 2, an electron gun 3, a drift tube structure 4, 15 mounted on a high-voltage insulator, and under certain circumstances the high-voltage insulator can be dispensed with, an electron collector 5 and an extractor 6.
  • pole shoes 7 made of soft magnetic material for field formation in the region of the ion trap are mounted in its interior
  • the magnetic field is generated by two rings 2 made of radially magnetized permanent magnet blocks 8, which are connected to one another by a system of magnetic conductors 7, 9 made of soft magnetic material.
  • the individual magnetic elements have the shape of simple cuboids, which makes it possible without difficulty to use modern hard magnetic materials such as To use Sm 5 Co or NdFeB
  • the rings 2 are located outside the vacuum recipient 1 and can therefore be dismantled during the time the device is heated to obtain ultra-high vacuums. This special feature of the system makes it possible to forego temperature limits in the heating process due to the relatively low Curie temperatures of modern hard magnetic materials
  • the distances between the location of the characteristic X-ray radiation or the VUV radiation and possible detectors as well as the distances to the required vacuum pumps can be kept to a minimum.As a result, the system has a maximum large solid angle (and thus has maximum detection effectiveness) during the registration of the characteristic X-ray radiation or the VUV radiation and a maximum pumping speed during vacuum generation
  • the electron gun 3 differs by its geometrical dimensions, here in particular by the cathode diameter, which is chosen with the aim of reducing the angular divergence of the electron beam and of achieving a paraxial current This is achieved through the use of highly effective emitting cathode materials, such as are known as monocrystalline boron-lanthanum cathodes
  • an electron current density of 200 A / cm 2 For comparison with known EBIT and EBIS systems, at least the following parameters are achieved: an electron current density of 200 A / cm 2 , an electron current of 50 mA and an electron energy of 30 keV
  • the compression level of the electron beam in the electron gun 3 is 4 (ie the ratio of the cathode radius to the radius of the electron beam in the cross-over is equal to 2).
  • the values given were for a Brillouin field value of 250 mT and for a cathode sensitivity of 25 A / cm 2 received

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Dental Preparations (AREA)
  • Luminescent Compositions (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Particle Accelerators (AREA)

Description

Elektronenstoßionenquelle
Beschreibung
Die Erfindung betrifft eine Elektronenstoßionenquelle gemäß dem Oberbegriff des Anspruchs 1 Die Elektronenstoßionenquelle erlaubt die Erzeugung hochgeladener Ionen, deren Extraktion, dient als Quelle von UV-, NUN-, Infrarotstrahlen und von charakteristischer Röntgenstrahlung hochgeladener Ionen
Bekannt sind Anlagen des Typs EBIT (Electron Beam Ion Trap) nach M A Levine, R E Marrs, J R Henderson, D A Knapp, M B Schneider, Physica Scripta, T22 (1988) 157, in denen vielfachgeladene Ionen in einem axialsymmetrischen Elektronenstrahl hoher Dichte erzeugt werden, der durch ein System aufeinanderfolgender Driftrohren unter Ultrahochvakuumbedingungen beschleunigt und durch supraleitende Heimholtzspulen fokussiert wird
Die Anlage besteht aus einer Elektronenkanone, mehreren zylindrischen Driftrohren, einem Elektronenkollektor, einem Extraktor, einem fokussierendem Magnetsystem und einem System zur Erzeugung von Ultrahochvakuumbedingungen in der Anlage
Der Elektronenstrahl erzeugt im mittleren Teil der Anlage eine Ionenfalle, welche die Ionen in radialer Richtung durch ihre Raumladungskrafte halt In axialer Richtung werden die Ionen, die im Elektronenstrahl durch Elektronenstoßionisation erzeugt werden, durch positive Potentiale an den Enden der Driftrohrenstrukturen entsprechend E D Donets, USSR Inventors Certificate Νo 248860, March 16, 1967, Bull OIPOTZ Νo 23 (1969) 65 gehalten
Die erhaltenen hochgeladenen Ionen können aus der lonenfalle längs der Fallenachse extrahiert werden, indem das Fallenpotential an der letzten Driftrohre abgesenkt wird Wahrend der Ionenspeicherung in der Falle wird von den gespeicherten Ionen emittierte charakteristische Röntgenstrahlung und andere langwellige elektromagnetische Strahlung in der Meridianebene des Magnetsystems und senkrecht zur Quellenachse abgestrahlt
Die maximal erreichbare Ionenladung ist eine Funktion des Ionisationsfaktors jτ, d h des Produktes aus der Elektronenstromdichte j und der Ionenaufenthaltszeit τ im Elektronenstrahl der Falle Als für das Erreichen höchster Ladungszustande begrenzender Prozess wirken im wesentlichen Umladungsprozesse vielfachgeladener Ionen an Restgasatomen Daher müssen Gerate, die auf der Basis der beschriebenen Methode hochgeladene Ionen erzeugen, die Formierung eines hochdichten Elektronenstrahls unter Ultrahochvakuumbedingungen ermöglichen
Zum Erreichen der genannten Ziele wird in EBIT-Anlagen kryogene Technik in Verbindung mit Supraleitungstechnik eingesetzt Supraleitende Helmholtzspulen mit Induktionen des magnetischen Feldes von 3T bis 5T werden hier zur Fokussierung des Elektronenstrahls über die Lange der Ionenfalle eingesetzt, wobei diese in bekannten Anlagen 25 mm nicht überschreitet Die Stromdichte des Elektronenstrahls betragt über die Fallenlange 2 000-5 000 A/cm2 bei einer Gesamtlange des elektronenoptischen Systems (Kathode - Elektronenkollektor) von mehr als 30 cm Das kryogene System erfüllt neben der Kryostatierung der supraleitenden Helmholtzspulen bei einer Temperatur von 4,2 K die Funktion einer leistungsfähigen Kryopumpe im Bereich der lonenfalle zur Erzeugung eines Vakuums von > 10"11 bis 10"12 Torr
Die ausgesprochen anspruchsvollen technischen Parameter derartiger Anlagen führen zu komplexen, technisch schwierigen und sehr teuren Anlagen Zusatzlich begrenzend wirken die erforderliche kryogene und Ultrahochvakuumtechnik
Eine Absenkung der Elektronenstromdichte auf 200 bis 500 A cm2 fuhrt zu einer Erhöhung der zur Erzeugung eines bestimmten Ionenladungszustandes erforderlichen Zeit in der Falle und damit zu einer Verringerung der mittleren Strahlintensitat für extrahierte vielfachgeladene
Ionen, die aber durch eine Vergrößerung des Elektronengesamtstroms kompensiert werden kann
Zur Formierung von Elektronenstrahlen mit den oben angegebenen Dichten sind fokussierende
Magnetfelder der Starke 0,2 T bis 0,5 T erforderlich, die von Permanentmagnetsystemen auf der Basis moderner magnetischer Materialien erzeugt werden können
Der Einsatz moderner Vakuumtechnik ermöglicht es, Ultrahochvakua im Druckbereich bis
17
10" Torr ohne kryogene Technik zu erreichen
Dies führte zum Bau einer sogenannten MICRO-EBIT, wie in H Khodja, J P Briand, Physica Scripta, T71 (1997) 113 beschrieben Die grundlegende Idee der Konstruktion dieser Anlage besteht darin, daß ein kompaktes, industriell gefertigtes Klystron zur Erzeugung einer Ionenfalle des EBIT-Typs genutzt wird Das fokussierende magnetische Feld, welches die radialen Abmaße des Elektronenstrahls im Bereich der lonenfalle begrenzt, wird von zwei C- formigen Permanentmagneten erzeugt, die eine magnetische Induktion der Starke 0,25 T liefern Zur Generierung des Elektronenstrahls wird die Originalkathode des Klystrons mit einer maximalen Emissivitat von 2,5 A/cm2 genutzt Das Ultrahochvakuum in der Anlage wird nach einem Ausheizen bei 300 °C nach Standardtechnologie mit der Kombination von je einer Turbomolekular- und einer Ionengetterpumpe erreicht
In der MICRO-EBIT wurden Ar16+ Ionen nach einer Ionisationszeit von 1,2 s nachgewiesen, d h es wurde ein Ionisationsfaktor von etwa MO20 cm"2 erreicht, was einer Elektronen- stromdichte von 14 A/cm2 entspricht
Diese Anlage weist eine niedrige Elektronenstromdichte im Strahl (100 mal geringer als für supraleitende EBIT) auf Damit verbunden ist eine Beschrankung auf vergleichsweise geringe Ionenladungszustande wie Ar16+
Die ungeeignete Wahl einer Kathode mit vergleichsweise geringer Emissivitat und damit verbunden die Verwendung einer Elektronenkanone mit einer relativ großen elektrostatischen Divergenz des Elektronenstrahls ist ein weiterer entscheidender Nachteil
Wie aus S I Molokovski, A D Suschkov, Intensive Elektronen- und Ionenstrahlen, Vieweg Verlag, Wiesbaden, 1999 bekannt ist, kann die maximale Stromstarke im durch ein magnetisches Langsfeld fokussierten Elektronenstrahl für Brillouinsche Fokussierung erhalten werden, wenn das Magnetfeld am Ort der Kathode verschwindet In einem solchen System ist die sogenannte Brillouindichte des Elektronenflusses durch thermische Geschwindigkeitskomponenten der Elektronen bei ihrem Austreten aus der Kathode (siehe auch M Szilagyi, Electron and Ion Optics, Plenum Press, New York and London, 1988) und durch Aberrationen in der Anodenlinse begrenzt Ein minimaler Wert für die Aberrationen ist für den Fall paraxialer und laminarer Flusse möglich, d h für eine Elektronenkanone mit minimaler Divergenz (Kompression) des Elektronenstrahls und somit für eine maximal effiziente Kathode, d h für eine Kathode mit maximal hoher Emissionsdichte
Die Aufgabe der Erfindung besteht in der Schaffung einer effektiven Elektronenstoßionenquelle (WEBIT) ohne jegliche kryogene Komponenten und ohne Supraleitungstechnik für den Erhalt hochgeladener Ionen, der Röntgen- und VUV-Spektroskopie an diesen Ionen und der Extraktion der hochgeladenen Ionen aus der Falle zum Zwecke unterschiedlichster wissenschaftlicher, technologischer und technischer Anwendungen
Erfindungsgemaß wird die Aufgabe in Verbindung mit dem im Oberbegriff des Anspruchs 1 genannten Merkmalen dadurch gelost, daß die Einrichtung zur axialsymmetrischen Fokussierung des Elektronenstrahles aus wenigstens zwei gegenläufig radial magnetisierten Ringen besteht und jeder der Ringe den Elektronenstrahl umschließt, je zwei gegenläufig radial magnetisierte Ringe zu einem einheitlichen Magnetsystem durch magnetische Leiter verbunden sind, wobei das sich schließende Magnetfeld den
Aufenthaltsbereich der Ionen in der Falle durchdringt, die Kathode eine sehr hohe Emissivitat von > 25 A/cm2 bei kleinem Kathodendurchmesser aufweist, und ein Vakuum von 10 ~7 bis 10 Torr im Aufenthaltsbereich der Ionen wahrend des
Betriebs der Quelle einstellbar ist
Vorteilhaft sind magnetisierte Permanentmagnetblocke zu Ringen zusammengefügt und durch magnetische Leiter aus weichmagnetischem Material umschlossen, so daß sich eine radiale Magnetisierung ergibt
Weiter vorteilhaft sind die magnetisierten Permanentmagnetblocke Quader aus hartmagnetischen Materialien wie Sm5Co oder NdFeB, wodurch sich die Ringe rationell herstellen lassen
Die zu öffnende und zu schließende lonenfalle besteht vorteilhaft aus einer auf einem Hochspannungsisolator montierten dreigeteilten Driftrohre An den mittleren Teil ist ein steuerbares Beschleunigungspotential und die beiden äußeren Teile ein einstellbares Fallenpotential gelegt
Zur Erzeugung eines maximalen Vakuums in der Ionisationszone ist der mittlere Teil der Driftrohre mit einer Anzahl von entlang des axialen Elektronenstrahls verlaufenden Langlochern oder anderen geeigneten Offnungen versehen, die ein effizientes Pumpen im Bereich der lonenfalle ermöglichen
Bei einer vorteilhaft ausgestalteten Elektronenstoßionenquelle ist ein Vakuumrezipient mit vier Flanschen vorgesehen, bei dem zwei sich gegenüberliegende Flansche eine erste Achse bilden und zwei weitere Flansche eine zweite Achse bilden, wobei erste und zweite Achse sich kreuzen, auf der ersten Achse Elektronenkanone, Driftrohre, Elektronenkollektor und Extraktor in dieser Reihenfolge angeordnet sind, und entlang der zweiten Achse an einem Flansch eine Hochspannungsdurchführung zur Positionierung der Driftrohre im Verlauf der ersten Achse und an dem anderen Flansch eine Vakuumpumpe anschließbar ist Andere Losungen mit mehr oder weniger Flanschen sind möglich
Vorteilhaft durchstechen bei einer derartigen Ausführung die magnetischen Leiter parallel zur ersten Achse den Vakuumrezipienten beidseits der zweiten Achse und bilden dort einen Aufsitz für die Ringe Der in den Vakuumrezipienten ragende Teil der magnetischen Leiter ist 1-formig abgewinkelt und mit der Driftrohre magnetisch kurzgeschlossen
Mit der erfindungsgemaßen Elektronenstoßionenquelle ist ein minimaler Wert der Aberrationen für paraxiale und laminare Flusse möglich Dazu wird eine Elektronenkanone mit minimaler Divergenz (Kompression) des Elektronenstrahls und somit mit maximal effizienter Kathode, d h eine Kathode mit maximal hoher Emissionsdichte, eingesetzt
Somit besteht der Vorteil der Erfindung darin, daß hochstgeladene Ionen ohne kryogene Technik auf effiziente Weise erzeugt werden können
Die Erfindung wird nachfolgend an Ausführungsbeispielen naher erläutert In den zugehörigen Zeichnungen zeigen
Fig 1 eine schematische Darstellung der Erfindung
Fig 2 eine vorteilhafte Ausfuhrung der Erfindung in schematisch geschnittener Darstellung
Fig 3 einen Schnitt A-A entsprechend der Darstellung in Fig 2
Fig 4 eine Detaildarstellung entsprechend Fig 3
In der Fig 1 ist die Erfindung schematisch dargestellt Auf der Achse 16 sind Elektronenkanone 3 mit Kathode 14, drei Driftrohren 4, 15, 4, ein Elektronenkollektor 5, und ein Extraktor 6 in dieser Reihenfolge angeordnet Zwei gegenläufig radial magnetisierte Ringe 2 umschließen die Achse 16 eingangs und ausgangs der Driftrohrenstruktur 4,15 und somit den erzeugbaren Elektronenstrahl Die Ringe 2 enthalten eine Anzahl von Permanentmagnetblocken 8, mit denen die Ringe 2 eine radiale Magnetisierung erhalten Zwischen den Enden der Driftrohrenstruktur 4,15 und den Ringen 2 sind innere Polschuhe angeordnet, mit denen über die Driftrohrenstruktur 4,15 geschlossene magnetische Kreise 13 erzeugt werden In der Fig 2 ist eine erfindungsgemäße Elektronenstoßionenquelle dargestellt, die aus einem Vakuumrezipienten 1, einem magnetisch fokussierenden System 2, einer Elektronenkanone 3, aus einer auf einen Hochspannungsisolator montierten Driftrohrenstruktur 4,15, wobei unter bestimmten Umstanden auf den Hochspannungsisolator verzichtet werden kann, einem Elektronenkollektor 5 und einem Extraktor 6 besteht Im Vakuumrezipienten 1 sind in seinem Inneren Polschuhe 7 aus weichmagnetischem Material zur Feldformierung im Bereich der lonenfalle montiert
Das Magnetfeld wird von zwei Ringen 2 aus radial magnetisierten Permanentmagnetblocken 8 erzeugt, die miteinander durch ein System magnetischer Leiter 7,9 aus weichmagnetischem Material verbunden sind Die einzelnen magnetischen Elemente haben die Form einfacher Quader, was es ohne Schwierigkeiten möglich macht, moderne hartmagnetische Materialien wie Sm5Co oder NdFeB zu nutzen
Die Ringe 2 befinden sich außerhalb des Vakuumrezipienten 1 und können daher wahrend der Zeit einer Ausheizung des Gerätes zum Erhalt von Ultrahochvakua demontiert werden Diese Besonderheit der Anlage ermöglicht es, auf Temperaturbegrenzungen im Ausheizprozeß wegen der relativ niedrigen Curietemperaturen moderner hartmagnetischer Materialien zu verzichten
Flansche 10 für die Ankopplung der Anlage an das System zur Erzeugung des erforderlichen Vakuums, die isolierte Vakuumdurchführung 11 zu den Driftrohren 4,15 und spektroskopische Fenster 12 zur Spektroskopie der charakteristischen Röntgenstrahlung bzw von VUV- Strahlung, die im mit Ionen beladenen Elektronenstrahl entsteht, befinden sich in der Meridianebene des Gerätes Daher können die Abstände zwischen dem Ort des Entstehens der charakteristischen Röntgenstrahlung bzw der VUV-Strahlung und möglichen Detektoren sowie die Abstände zu den erforderlichen Vakuumpumpen minimal gehalten werden Dies hat zur Folge, daß die Anlage einen maximal großen Raumwinkel (und damit maximale Nachweiseffektivitat) bei der Registration der charakteristischen Röntgenstrahlung bzw der VUV-Strahlung und eine maximal große Pumpgeschwindigkeit bei der Vakuumerzeugung aufweist
Die Elektronenkanone 3 unterscheidet sich durch ihre geometrischen Abmaße, hier insbesondere durch den Kathodendurchmesser, der mit dem Ziel gewählt wird, die Winkeldivergenz des Elektronenstrahls zu verringern und einen paraxialen Strom zu erreichen Dies wird durch die Verwendung hocheffektiv emittierender Kathodenmaterialien erreicht, wie sie zum Beispiel als monokristalline Bor-Lanthan-Kathoden bekannt sind
Zum Vergleich mit bekannten EBIT und EBIS Anlagen werden mindestens die folgenden Parameter erreicht eine Elektronenstromdichte von 200 A/cm2, ein Elektronenstrom von 50 mA und eine Elektronenenergie von 30 keV
Die Kompressionsstufe des Elektronenstrahls in der Elektronenkanone 3 betragt 4 (d h das Verhältnis vom Kathodenradius zum Radius des Elektronenstrahls im Cross-Over ist gleich 2) Die angegebenen Werte wurden für einen Wert des Brillouinfeldes von 250 mT und für eine Kathodenemi ssivitat von 25 A/cm2 erhalten
Die folgende Tabelle zeigt die mit der erfindungsgemaßen Elektronenstoßionenquelle erhaltenen Ionen
Tabelle 1
* rontgenspektroskopisch nachgewiesen bei einer Elektronenenergie von 15 keV Bezugszeichenliste
1 - Vakuumrezipient
2 - Ring
3 - Elektronenkanone
4 - Driftröhre, zur Realisierung der lonenfalle
5 - Elektronenkollektor
6 - Extraktor
7 - innerer Polschuh
8 - Permanentmagnetblock
9 - magnetischer Leiter
10 - Flansch
11 - isolierte Vakummdurchführung
12 - spektroskopisches Fenster
13 - magnetischer Kreis
14 - Kathode
15 - zentrale Driftröhre
16 - Achse
17 - Achse

Claims

Patentansprüche
1 Elektronenstoßionenquelle zur Erzeugung vielfach- oder hochstgeladener Ionen, bestehend aus einer Elektronenkanone mit Kathode und Anode zur Erzeugung und Beschleunigung von Elektronen, einer Einrichtung zur axial symmetrischen Fokussierung des Elektronenstrahles, Mitteln zur Einbringung von ionisierbaren Substanzen in eine zu öffnende und zu schließende lonenfalle im Bereich des axialsymmetrisch fokussierten Elektronentrahles, einer Einrichtung zur Vernichtung der Elektronen nach dem Durchgang durch die lonenfalle, sowie einer Einrichtung zur Erzeugung eines Vakuums um den axialsymmetrisch fokussierten Elektronenstrahl und die darin befindliche lonenfalle, dadurch gekennzeichnet, daß die Einrichtung zur axialsymmetrischen Fokussierung des Elektronenstrahles aus wenigstens zwei gegenläufig radial magnetisierten Ringstrukturen (2) besteht und jede der Ringstrukturen (2) den Elektronenstrahl umfaßt, je zwei gegenläufig radial magnetisierte Ringstrukturen (2) zu einem einheitlichen
Magnetsystem durch magnetische Leiter (7,9) verbunden sind, wobei das sich schließende Magnetfeld den Aufenthaltsbereich der Ionen in der lonenfalle durchdringt, die Kathode eine sehr hohe Emissivitat von > 25 A/cm2 bei kleinem
Kathodendurchmesser aufweist, und ein Vakuum von 10 bis 10 " Torr im Aufenthaltsbereich der Ionen wahrend des
Betriebs der Elektronenstoßionenquelle einstellbar ist
2 Elektronenstoßionenquelle nach Anspruch 1, dadurch gekennzeichnet, daß magnetisierte Permanentmagnetblocke (8) radial magnetisierte Ringe (2) bilden und durch magnetische Leiter (7,9) aus weichmagnetischem Material zu einem magnetischen Kreis (13) verbunden sind
3 Elektronenstoßionenquelle nach Anspruch 2, dadurch gekennzeichnet, daß die magnetisierten Permanentmagnetblocke (8) Quader aus hartmagnetischen Materialien wie Sm5Co oder NdFeB bestehen 4 Elektronenstoßionenquelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die radial magnetisierten Ringe (2) außerhalb der Einrichtung zur Erzeugung eines Vakuums abnehmbar angeordnet sind
5 Elektronenstoßionenquelle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die zu öffnende und zu schließende lonenfalle aus einer auf einem Hochspannungsisolator montierten dreigeteilten Driftrohre (4,15,4) besteht, wobei an den mittleren Teil (15) ein steuerbares Beschleunigungspotential und die beiden äußeren Potentiale ein einstellbares Fallenpotential legbar ist.
6 Elektronenstoßionenquelle nach Anspruch 5, dadurch gekennzeichnet, daß die zentrale Driftrohre (15) mit einer Anzahl von entlang des axialen Elektronenstrahls verlaufenden Langlochern versehen ist
7 Elektronenstoßionenquelle nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein Vakuumrezipient (1) mit vier Flanschen (10) vorgesehen ist, bei dem zwei sich gegenüberliegende Flansche eine erste Achse (16) bilden und zwei weitere Flansche eine zweite Achse (17) bilden, wobei erste und zweite Achse (16, 17) sich kreuzen, auf der ersten Achse (16) Elektronenkanone (3), Driftrohren (4, 15,4), Elektronenkollektor (5) und Extraktor (6) in dieser Reihenfolge angeordnet sind, und entlang der zweiten Achse (17) an einem Flansch eine Hochspannungsdurchführung (1 1) zur Positionierung der Driftrohren (4, 15,4) im Verlauf der ersten Achse (16) und an dem anderen Flansch (10) eine Vakuumpumpe anschließbar ist
8 Elektronenstoßionenquelle nach Anspruch 7, dadurch gekennzeichnet, daß die magnetischen Leiter (7) parallel zur ersten Achse (16) den Vakuumrezipienten (1) beidseits der zweiten Achse (17) durchstechen und einen Aufsitz für die Ringstrukturen (2) zwei bilden, und der in den Vakuumrezipienten (1) ragende Teil der magnetischen Leiter (7) 1- formig abgewinkelt ist und mit den Driftrohren (4) magnetisch kurzgeschlossen ist
Hierzu 4 Blatt Zeichnungen
EP00982966A 1999-10-08 2000-10-06 Elektronenstossionenquelle Expired - Lifetime EP1222677B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19949978A DE19949978A1 (de) 1999-10-08 1999-10-08 Elektronenstoßionenquelle
DE19949978 1999-10-08
PCT/DE2000/003525 WO2001027964A2 (de) 1999-10-08 2000-10-06 Elektronenstossionenquelle

Publications (2)

Publication Number Publication Date
EP1222677A2 true EP1222677A2 (de) 2002-07-17
EP1222677B1 EP1222677B1 (de) 2010-02-17

Family

ID=7925926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00982966A Expired - Lifetime EP1222677B1 (de) 1999-10-08 2000-10-06 Elektronenstossionenquelle

Country Status (7)

Country Link
US (1) US6717155B1 (de)
EP (1) EP1222677B1 (de)
JP (1) JP4886138B2 (de)
AT (1) ATE458260T1 (de)
AU (1) AU1992701A (de)
DE (3) DE19949978A1 (de)
WO (1) WO2001027964A2 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113064B4 (de) * 2001-03-15 2004-05-19 Lzh Laserzentrum Hannover E.V. Verfahren und Einrichtung zur Erzeugung von UV-Strahlung, insbesondere von EUV-Strahlung
US7081711B2 (en) * 2003-10-28 2006-07-25 Applied Pulsed Power, Inc. Inductively generated streaming plasma ion source
FR2874125B1 (fr) * 2004-08-05 2006-11-24 Centre Nat Rech Scient Cnrse Piege a ions a aimant longitudinal et spectrometre de masse utilisant un tel aimant
US8334506B2 (en) 2007-12-10 2012-12-18 1St Detect Corporation End cap voltage control of ion traps
US7973277B2 (en) 2008-05-27 2011-07-05 1St Detect Corporation Driving a mass spectrometer ion trap or mass filter
DE202010009379U1 (de) 2010-06-22 2010-09-02 Dreebit Gmbh Vorrichtung zur Strukturierung von Festkörperflächen mit Ionenstrahlen aus einem Ionenstrahlspektrum
DE102010030372B4 (de) 2010-06-22 2012-02-16 Dreebit Gmbh Vorrichtung zur Strukturierung von Festkörperflächen mit Ionenstrahlen aus einem Ionenstrahlspektrum
JP6218403B2 (ja) * 2013-03-15 2017-10-25 株式会社マーストーケンソリューション 電界放射型電子銃を備えたx線管及びそれを用いたx線検査装置
US9984847B2 (en) 2013-03-15 2018-05-29 Mars Tohken Solution Co., Ltd. Open-type X-ray tube comprising field emission type electron gun and X-ray inspection apparatus using the same
US10297413B2 (en) 2015-03-10 2019-05-21 North-Western International Cleaner Production Centre Method and device for the production of highly charged ions
DE102015104213A1 (de) 2015-03-20 2016-09-22 Dreebit Gmbh Vorrichtung und Verfahren zur Erzeugung und Aussendung eines ladungs- und massenseparierten Ionenstrahls variabler Energie
DE102016110495B4 (de) 2016-06-07 2018-03-29 Vacom Vakuum Komponenten & Messtechnik Gmbh Vorrichtung und Verfahren zum Erzeugen, Speichern und Freisetzen von Ionen aus einer umgebenden Restgasatmosphäre

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2507652A (en) * 1940-10-04 1950-05-16 Cornell Res Foundation Inc Ion source
GB1237028A (en) * 1969-04-28 1971-06-30 Mullard Ltd Ion source
US4105916A (en) * 1977-02-28 1978-08-08 Extranuclear Laboratories, Inc. Methods and apparatus for simultaneously producing and electronically separating the chemical ionization mass spectrum and the electron impact ionization mass spectrum of the same sample material
US4247804A (en) * 1979-06-04 1981-01-27 Hughes Aircraft Company Cold cathode discharge device with grid control
US4579144A (en) * 1983-03-04 1986-04-01 Uti Instrument Company Electron impact ion source for trace analysis
US4707637A (en) * 1986-03-24 1987-11-17 Hughes Aircraft Company Plasma-anode electron gun
DE4324233C1 (de) * 1993-07-20 1995-01-19 Bruker Franzen Analytik Gmbh Verfahren zur Auswahl der Reaktionspfade in Ionenfallen
GB9409953D0 (en) * 1994-05-17 1994-07-06 Fisons Plc Mass spectrometer and electron impact ion source therefor
JP2642881B2 (ja) * 1994-09-28 1997-08-20 東京大学長 低速多価イオンによる超高感度水素検出法
JP3779373B2 (ja) * 1996-04-22 2006-05-24 株式会社ムサシノエンジニアリング 真空蒸着装置
US6115452A (en) * 1998-01-08 2000-09-05 The Regents Of The University Of California X-ray radiography with highly charged ions
US6291820B1 (en) * 1999-01-08 2001-09-18 The Regents Of The University Of California Highly charged ion secondary ion mass spectroscopy
US6288394B1 (en) * 1999-03-02 2001-09-11 The Regents Of The University Of California Highly charged ion based time of flight emission microscope
CA2305938C (en) * 2000-04-10 2007-07-03 Vladimir I. Gorokhovsky Filtered cathodic arc deposition method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0127964A3 *

Also Published As

Publication number Publication date
US6717155B1 (en) 2004-04-06
DE50015866D1 (de) 2010-04-01
JP2003511843A (ja) 2003-03-25
WO2001027964A2 (de) 2001-04-19
DE10083121D2 (de) 2002-04-25
DE19949978A1 (de) 2001-05-10
JP4886138B2 (ja) 2012-02-29
WO2001027964A3 (de) 2002-03-14
ATE458260T1 (de) 2010-03-15
EP1222677B1 (de) 2010-02-17
AU1992701A (en) 2001-04-23

Similar Documents

Publication Publication Date Title
DE19639920C2 (de) Röntgenröhre mit variablem Fokus
DE2039832A1 (de) Verfahren und Vorrichtung zum Beschleunigen von Teilchen
DE10014034C2 (de) Plasma-Beschleuniger-Anordnung
DE60307609T2 (de) Vorrichtung zur begrenzung eines plasmas in einem volumen
EP0396019A2 (de) Ionen-Zyklotron-Resonanz-Spektrometer
DE3104461A1 (de) Verfahren zur erzeugung von stark geladenen schweren ionen, vorrichtung zur durchfuehrung des verfahrens und eine verwendung dieses verfahrens
EP1269020A2 (de) Plasma-beschleuniger-anordnung
EP1222677B1 (de) Elektronenstossionenquelle
DE4123274A1 (de) Verfahren zum beschichten von bauteilen bzw. formteilen durch kathodenzerstaeubung
DE3424449A1 (de) Quelle fuer negative ionen
WO2008012094A2 (de) Ionenquelle zur erzeugung negativ geladener ionen
DE1218078B (de) Vorrichtung zum Erzeugen und Einschliessen eines Plasmas
DE69737461T2 (de) Magnetische vorrichtung, insbesondere fuer elektronzyklotronresonanzionenquellen, die die erzeugung geschlossener oberflaechen mit konstanter magnetfeldstaerke b und beliebiger groesse ermoeglichen
WO1994003919A1 (de) Verfahren zur erzeugung von strahlen beliebiger, hochgeladener ionen niedriger kinetischer energie sowie vorrichtung zur durchführung des verfahrens
EP2586052B1 (de) Vorrichtung zur strukturierung von festkörperflächen mit ionenstrahlen aus einem ionenstrahlspektrum
DE2712829C3 (de) Ionenquelle
DE2020998C3 (de) Verfahren und Vorrichtung zum Trennen von Isotopen durch Zentrifugieren
DE19933762C2 (de) Gepulste magnetische Öffnung von Elektronen-Zyklotron-Resonanz-Jonenquellen zur Erzeugung kurzer, stromstarker Pulse hoch geladener Ionen oder von Elektronen
DE4419970A1 (de) Vorrichtung zur Erzeugung von Strahlen hochgeladener Ionen
DE4302630C1 (de) Koaxial-Beschleuniger zum axialen Beschleunigen eines Plasmarings
CH650104A5 (de) Mit bombardierung durch elektronen arbeitende ionenquelle.
DE102014211694B4 (de) Röntgenröhre
DE1102302B (de) Vorrichtung mit magnetischen Spiegeln zur Erzeugung hoher Plasmatemperaturen
AT268463B (de) Elektrisches Entladungsgefäß
DE10357499A1 (de) Ionendetektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020503

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20090127

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50015866

Country of ref document: DE

Date of ref document: 20100401

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100518

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

BERE Be: lapsed

Owner name: TECHNISCHE UNIVERSITAT DRESDEN

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 458260

Country of ref document: AT

Kind code of ref document: T

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101006

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170814

Year of fee payment: 18

Ref country code: FR

Payment date: 20170825

Year of fee payment: 18

Ref country code: CH

Payment date: 20170912

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170811

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: POSTFACH, 8032 ZUERICH (CH)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50015866

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181006