EP1205667B1 - Gas friction pump - Google Patents

Gas friction pump Download PDF

Info

Publication number
EP1205667B1
EP1205667B1 EP01124630A EP01124630A EP1205667B1 EP 1205667 B1 EP1205667 B1 EP 1205667B1 EP 01124630 A EP01124630 A EP 01124630A EP 01124630 A EP01124630 A EP 01124630A EP 1205667 B1 EP1205667 B1 EP 1205667B1
Authority
EP
European Patent Office
Prior art keywords
gas
components
friction pump
rotor
pumping unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01124630A
Other languages
German (de)
French (fr)
Other versions
EP1205667A2 (en
EP1205667A3 (en
Inventor
Armin Conrad
Heinrich Lotz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP1205667A2 publication Critical patent/EP1205667A2/en
Publication of EP1205667A3 publication Critical patent/EP1205667A3/en
Application granted granted Critical
Publication of EP1205667B1 publication Critical patent/EP1205667B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum

Definitions

  • the invention relates to a gas friction pump according to the preamble of the first claim.
  • gas friction pumps of various types are known. Their mode of operation is based on the transmission of impulses from moving walls to the gas particles. In this way, a gas flow is generated in the desired direction.
  • Gas friction pumps which operate in a pressure range in which the mean free path of the gas molecules is large compared to the geometrical dimensions of the pump, ie in the molecular flow area, are called molecular pumps.
  • the first gas friction pump of this type was presented by Gaede [1], further technical modifications while retaining the basic principle are designs of Siegbahn [2], Holweck [3] and Becker [4].
  • the latter is known as a turbomolecular pump and has proven successful in many areas of technology and science with great success.
  • the EP-A-1 041 287 relates to a turbomolecular vacuum pump. It is proposed to conically form the blades of the uppermost disc.
  • the pumping speed of a turbomolecular pump is substantially dependent on the inlet cross section of the intake flange, the average circumferential speed of the space to be pumped facing the rotor blade ring and its geometric structure, moreover, of the internal structure of the pump through which the gradation of pressure ratio and pumping speed between the individual stages, and not least of that part of the pump or the pump combination, which expels against atmospheric pressure.
  • These conditions can be optimally designed and the speed can be increased within the technical possibilities so far that the majority of the molecules that meet the above-mentioned rotor blade ring, can be pumped out. In this case, not all molecules are detected, which hit the inlet cross-section of the intake flange.
  • a large area of this area is formed by the rotor end face, which has no gas-promoting structure. Even if the rotor blade ring is further increased at the expense of the rotor face, the suction capacity is limited by the cross-section of the suction flange. It is not possible to pump out more molecules than to hit the gas-promoting structure of the input stage. But even of these bounces off a large part of the surface and is therefore not covered by the conveyor mechanism.
  • the invention has for its object to present a gas friction pump, which has a significantly higher pumping capacity over the conventional constructions with constant cross section of the intake.
  • an additional pumping unit which may consist of one or more stages, is designed such that the majority of the molecules which bounce off the gas-conveying structure are reflected to another area of this structure and are thus subjected to the conveying mechanism again , This effect is caused by the substantially concave construction of the gas-promoting structure.
  • Such a construction allows a promotion in the radial direction. As a result, reflected molecules can be recaptured and further promoted. This means a considerable increase in the pumping speed with the same intake cross section.
  • the construction according to the invention brings with it a further great advantage.
  • the concave suction chamber provides space for components that can protrude from the recipient into it and thus are subjected to a very effective pumping effect.
  • the Fig. 1 shows a gas friction pump with housing 1, which is provided with a suction port 2 and a gas outlet opening 3.
  • the rotor shaft 4 is fixed in bearings 5 and 6 and is driven by the motor 7.
  • the rotor disks 12 are attached to a turbomolecular pump. These are provided with a gas-promoting structure and effect with the stator discs 14, which are also provided with such a structure, the pumping effect.
  • an additional pump unit 20 is mounted according to the invention. This is carried out in one stage in the present example and has a pot-shaped shape.
  • the rotor components 21 and the stator components 22 each consist of a cylindrical part 25, 26 and of a disc-shaped bottom part 23, 24 and are provided with gas-promoting structures.
  • Molecules e.g. B. coming from A, are partly detected by the gas-promoting structure of the rotor components and further promoted and reflected in part at B. A large part of the reflected molecules hits again at C on a gas-promoting structure and can thus be further pumped or reflected again. As a result, a substantial proportion of the molecules that are reflected from the surface are returned to the delivery mechanism.
  • components can be dipped out of the recipient for evacuation and / or degassing. They are largely surrounded by pump-active structures and are therefore subject to a very effective pumping process.

Description

Die Erfindung betrifft eine Gasreibungspumpe nach dem Oberbegriff des ersten Patentanspruches.The invention relates to a gas friction pump according to the preamble of the first claim.

Zur Förderung von Gasen sind Gasreibungspumpen der verschiedensten Bauart bekannt. Ihre Arbeitsweise beruht auf der Übertragung von Impulsen von bewegten Wänden auf die Gasteilchen. Auf diese Weise wird eine Gasströmung in die gewünschte Richtung erzeugt. Gasreibungspumpen, welche in einem Druckbereich arbeiten, in dem die mittlere freie Weglänge der Gasmoleküle groß ist gegenüber den geometrischen Abmessungen der Pumpe, also im molekularen Strömungsgebiet, werden Molekularpumpen genannt.To promote gases gas friction pumps of various types are known. Their mode of operation is based on the transmission of impulses from moving walls to the gas particles. In this way, a gas flow is generated in the desired direction. Gas friction pumps, which operate in a pressure range in which the mean free path of the gas molecules is large compared to the geometrical dimensions of the pump, ie in the molecular flow area, are called molecular pumps.

Die erste Gasreibungspumpe dieser Art wurde von Gaede [1] vorgestellt, weitere technische Abwandlungen unter Beibehaltung des Grundprinzips sind Konstruktionen von Siegbahn [2], Holweck [3] und Becker [4]. Letztere ist als Turbomolekularpumpe bekannt und hat sich in weiten Bereichen der Technik und Wissenschaft mit großem Erfolg bewährt.The first gas friction pump of this type was presented by Gaede [1], further technical modifications while retaining the basic principle are designs of Siegbahn [2], Holweck [3] and Becker [4]. The latter is known as a turbomolecular pump and has proven successful in many areas of technology and science with great success.

Die EP-A-1 041 287 betrifft eine Turbomolekularvakuumpumpe. Es wird vorgeschlagen, die Schaufeln der obersten Scheibe konisch zu formen.The EP-A-1 041 287 relates to a turbomolecular vacuum pump. It is proposed to conically form the blades of the uppermost disc.

Die im Folgenden beschriebenen Nachteile der bisher bekannten Pumpen und die Beseitigung der Nachteile im Rahmen der Erfindung treffen genau so gut für andere Gasreibungspumpen zu.The disadvantages described below of the previously known pumps and the elimination of the disadvantages in the context of the invention apply just as well to other gas friction pumps.

Das Saugvermögen einer Turbomolekularpumpe ist im wesentlichen abhängig vom Eingangsquerschnitt des Ansaugflansches, von der mittleren Umfangsgeschwindigkeit des dem auszupumpenden Raum zugewandten Rotorschaufelkranzes und dessen geometrischer Struktur, darüber hinaus von der inneren Struktur der Pumpe, durch die die Abstufung von Druckverhältnis und Saugvermögen zwischen den ein zelnen Stufen bestimmt wird, und nicht zuletzt auch von demjenigen Teil der Pumpe oder der Pumpenkombination, welcher gegen Atmosphärendruck ausstößt. Diese Verhältnisse können so optimal gestaltet werden und die Drehzahl kann im Rahmen der technischen Möglichkeiten so weit erhöht werden, dass der größte Teil der Moleküle, welche auf den o. g. Rotorschaufelkranz treffen, abgepumpt werden können. Hierbei werden nicht alle Moleküle erfasst, welche auf den Eingangsquerschnitt des Ansaugflansches treffen. Ein großer Bereich dieser Fläche wird durch die Rotorstirnfläche, welche keine gasfördernde Struktur aufweist, gebildet. Selbst wenn der Rotorschaufelkranz auf Kosten der Rotorstirnfläche weiter vergrößert wird, bleibt das Saugvermögen durch den Querschnitt des Ansaugflansches begrenzt. Es können nicht mehr Moleküle abgepumpt werden als auf die gasfördernde Struktur der Eingangsstufe treffen. Aber auch von diesen prallt ein großer Teil an der Oberfläche ab und wird somit von dem Fördermechanismus nicht erfasst.The pumping speed of a turbomolecular pump is substantially dependent on the inlet cross section of the intake flange, the average circumferential speed of the space to be pumped facing the rotor blade ring and its geometric structure, moreover, of the internal structure of the pump through which the gradation of pressure ratio and pumping speed between the individual stages, and not least of that part of the pump or the pump combination, which expels against atmospheric pressure. These conditions can be optimally designed and the speed can be increased within the technical possibilities so far that the majority of the molecules that meet the above-mentioned rotor blade ring, can be pumped out. In this case, not all molecules are detected, which hit the inlet cross-section of the intake flange. A large area of this area is formed by the rotor end face, which has no gas-promoting structure. Even if the rotor blade ring is further increased at the expense of the rotor face, the suction capacity is limited by the cross-section of the suction flange. It is not possible to pump out more molecules than to hit the gas-promoting structure of the input stage. But even of these bounces off a large part of the surface and is therefore not covered by the conveyor mechanism.

Der Erfindung liegt die Aufgabe zugrunde, eine Gasreibungspumpe vorzustellen, welche gegenüber den herkömmlichen Konstruktionen bei gleichbleibendem Querschnitt des Ansaugflansches ein deutlich höheres Saugvermögen aufweist.The invention has for its object to present a gas friction pump, which has a significantly higher pumping capacity over the conventional constructions with constant cross section of the intake.

Die Aufgabe wird durch die kennzeichnenden Merkmale des ersten Patentanspruches gelöst. Die Ansprüche 2 - 5 stellen weitere Ausgestaltungsformen der Erfindung dar.The object is solved by the characterizing features of the first claim. The claims 2-5 represent further embodiments of the invention.

Bei der erfindungsgemäßen Anordnung ist eine zusätzliche Pumpeinheit, die aus einer oder mehreren Stufen bestehen kann, so gestaltet, dass der größte Teil der Moleküle, welche an der gasfördernden Struktur abprallen, auf einen anderen Bereich dieser Struktur reflektiert wird und so dem Fördermechanismus wieder unterworfen ist. Dieser Effekt wird durch die im wesentlichen konkave Bauweise der gasfördernden Struktur bewirkt. Eine solche Bauweise ermöglicht eine Förderung in radialer Richtung. Dadurch können reflektierte Moleküle wieder eingefangen und weiter gefördert werden. Dies bedeutet eine beträchtliche Erhöhung des Saugvermögens bei gleichem Ansaugquerschnitt.In the arrangement according to the invention, an additional pumping unit, which may consist of one or more stages, is designed such that the majority of the molecules which bounce off the gas-conveying structure are reflected to another area of this structure and are thus subjected to the conveying mechanism again , This effect is caused by the substantially concave construction of the gas-promoting structure. Such a construction allows a promotion in the radial direction. As a result, reflected molecules can be recaptured and further promoted. This means a considerable increase in the pumping speed with the same intake cross section.

Die erfindungsgemäße Bauweise bringt einen weiteren großen Vorteil mit sich. Der konkav ausgebildete Ansaugraum bietet Platz für Bauteile, welche aus dem Rezipienten dort hinein ragen können und somit einem äußerst effektiven Pumpeffekt unterworfen sind.The construction according to the invention brings with it a further great advantage. The concave suction chamber provides space for components that can protrude from the recipient into it and thus are subjected to a very effective pumping effect.

Anhand der Figuren 1 - 3 soll die Erfindung am Beispiel einer Turbomolekularpumpe näher erläutert werden. Sie zeigen die erfindungsgemäße Anordnung jeweils in topfförmiger, kegelförmiger und kalottenförmiger Gestalt.Based on Figures 1 - 3 The invention will be explained in more detail using the example of a turbomolecular pump. They show the arrangement according to the invention in each case in cup-shaped, conical and dome-shaped shape.

Die Fig. 1 zeigt eine Gasreibungspumpe mit Gehäuse 1, welches mit einer Ansaugöffnung 2 und einer Gasaustrittsöffnung 3 versehen ist. Die Rotorwelle 4 ist in Lagerungen 5 und 6 fixiert und wird durch den Motor 7 angetrieben. Auf der Rotorwelle 4 sind die Rotorscheiben 12 einer Turbomolekularpumpe befestigt. Diese sind mit einer gasfördernden Struktur versehen und bewirken mit den Statorscheiben 14, die ebenfalls mit einer solchen Struktur versehen sind, den Pumpeffekt.The Fig. 1 shows a gas friction pump with housing 1, which is provided with a suction port 2 and a gas outlet opening 3. The rotor shaft 4 is fixed in bearings 5 and 6 and is driven by the motor 7. On the rotor shaft 4, the rotor disks 12 are attached to a turbomolecular pump. These are provided with a gas-promoting structure and effect with the stator discs 14, which are also provided with such a structure, the pumping effect.

Auf der Seite der Ansaugöffnung 2 ist erfindungsgemäß eine zusätzliche Pumpeinheit 20 angebracht. Diese ist im vorliegenden Beispiel einstufig ausgeführt und weist eine topfförmige Gestalt auf. Die Rotorbauteile 21 und die Statorbauteile 22 bestehen jeweils aus einem zylindrischen Teil 25, 26 und aus einem scheibenförmigen Bodenteil 23, 24 und sind mit gasfördernden Strukturen versehen.On the side of the suction opening 2, an additional pump unit 20 is mounted according to the invention. This is carried out in one stage in the present example and has a pot-shaped shape. The rotor components 21 and the stator components 22 each consist of a cylindrical part 25, 26 and of a disc-shaped bottom part 23, 24 and are provided with gas-promoting structures.

Entsprechend sind in Fig. 2 eine kegelförmige Bauart der zusätzlichen Pumpeinheit 30 mit Rotorteil 31 und Statorteil 32 und in Fig. 3 eine kalottenförmige Bauart der zusätzlichen Pumpeinheit 40 mit Rotorteil 41 und Statorteil 42 dargestellt.Accordingly, in Fig. 2 a conical design of the additional pump unit 30 with rotor part 31 and stator 32 and in Fig. 3 a dome-shaped design of the additional pumping unit 40 with rotor part 41 and stator 42 is shown.

Moleküle, z. B. von A kommend, werden zum Teil von der gasfördernden Struktur der Rotorbauteile erfasst und weiter gefördert und zum Teil bei B reflektiert. Ein großer Teil der reflektierten Moleküle trifft wiederum bei C auf eine gasfördernde Struktur und kann somit weiter gepumpt oder auch wieder reflektiert werden. Als Resultat wird ein wesentlicher Anteil der Moleküle, welche von der Oberfläche reflektiert werden, dem Fördermechanismus wieder zugeführt.Molecules, e.g. B. coming from A, are partly detected by the gas-promoting structure of the rotor components and further promoted and reflected in part at B. A large part of the reflected molecules hits again at C on a gas-promoting structure and can thus be further pumped or reflected again. As a result, a substantial proportion of the molecules that are reflected from the surface are returned to the delivery mechanism.

In den durch die konkave Bauweise entstehenden Ansaugraum 16 können zum Evakuieren und/oder Entgasen Bauteile aus dem Rezipienten getaucht werden. Sie sind hier weitgehend von pumpaktiven Strukturen umgeben und unterliegen somit einem äußerst effektiven Pumpprozess.In the suction space 16 created by the concave construction, components can be dipped out of the recipient for evacuation and / or degassing. They are largely surrounded by pump-active structures and are therefore subject to a very effective pumping process.

Literaturliterature

  1. [1] W. Gaede, Ann. Phys. 41 (1913) 337 ff.[1] W. Gaede, Ann. Phys. 41 (1913) 337 ff.
  2. [2] M. Siegbahn, Arch. Math. Astr. Fys. 30 B (1943)[2] M. Siegbahn, Arch. Math. Astr. Fys. 30B (1943)
  3. [3] F. Holweck, Comptes redus Acad. Science 177 (1923) 43 ff.[3] F. Holweck, Comptes redus Acad. Science 177 (1923) 43 ff.
  4. [4] W. Becker, Vakuum Technik 9/10 (1966)[4] W. Becker, Vacuum Technology 9/10 (1966)

Claims (5)

  1. Gas friction pump, consisting of a casing (1) with an intake opening (2) and a gas outlet opening (3), wherein rotor components (12) and stator components (14) for transporting gases and for producing a pressure ratio are located in the casing, characterised in that a single- or multi-stage pumping unit (20, 30, 40), which, viewed from the side of the intake opening, is of concave formation, is fitted inside the casing (1) on the side of the intake opening (2), which unit has a gas-transporting structure which is formed such that a gas transport takes place in the radial direction, and that the rotor components (21, 31, 41) of this pumping unit and the rotor components (12) of the rest of the gas friction pump are located on the same rotor shaft (4).
  2. Gas friction pump according to Claim 1, characterised in that a gas transport takes place in the axial and in the radial direction by means of the pumping unit (20, 30, 40).
  3. Gas friction pump according to Claim 1 or 2, characterised in that the rotor components (21) and the stator components (22) of the pumping unit (20) in each case have a cup-shaped form.
  4. Gas friction pump according to Claim 1 or 2, characterised in that the rotor components (31) and the stator components (32) of the pumping unit (30) in each case have a conical form.
  5. Gas friction pump according to Claim 1 or 2, characterised in that the rotor components (41) and the stator components (42) of the pumping unit (40) have a spherical cap-shaped form.
EP01124630A 2000-11-13 2001-10-16 Gas friction pump Expired - Lifetime EP1205667B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10056144A DE10056144A1 (en) 2000-11-13 2000-11-13 Gas friction pump
DE10056144 2000-11-13

Publications (3)

Publication Number Publication Date
EP1205667A2 EP1205667A2 (en) 2002-05-15
EP1205667A3 EP1205667A3 (en) 2002-11-20
EP1205667B1 true EP1205667B1 (en) 2009-01-14

Family

ID=7663092

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01124630A Expired - Lifetime EP1205667B1 (en) 2000-11-13 2001-10-16 Gas friction pump

Country Status (4)

Country Link
US (1) US6638010B2 (en)
EP (1) EP1205667B1 (en)
JP (1) JP4183409B2 (en)
DE (2) DE10056144A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10142567A1 (en) * 2001-08-30 2003-03-20 Pfeiffer Vacuum Gmbh Turbo molecular pump
GB0229355D0 (en) 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping arrangement
GB0322883D0 (en) * 2003-09-30 2003-10-29 Boc Group Plc Vacuum pump
GB0329839D0 (en) * 2003-12-23 2004-01-28 Boc Group Plc Vacuum pump
KR100610012B1 (en) * 2004-08-16 2006-08-09 삼성전자주식회사 turbo pump
US7927066B2 (en) * 2005-03-02 2011-04-19 Tokyo Electron Limited Reflecting device, communicating pipe, exhausting pump, exhaust system, method for cleaning the system, storage medium storing program for implementing the method, substrate processing apparatus, and particle capturing component
DE102006020710A1 (en) * 2006-05-04 2007-11-08 Pfeiffer Vacuum Gmbh Vacuum pump with housing
US20100266426A1 (en) * 2009-04-16 2010-10-21 Marsbed Hablanian Increased volumetric capacity of axial flow compressors used in turbomolecular vacuum pumps
JP7108377B2 (en) * 2017-02-08 2022-07-28 エドワーズ株式会社 Vacuum pumps, rotating parts of vacuum pumps, and unbalance correction methods
DE102018119747B3 (en) 2018-08-14 2020-02-13 Bruker Daltonik Gmbh TURBOMOLECULAR PUMP FOR MASS SPECTROMETERS

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969039A (en) * 1974-08-01 1976-07-13 American Optical Corporation Vacuum pump
GB8507010D0 (en) * 1985-03-19 1985-04-24 Framo Dev Ltd Compressor unit
US5020969A (en) * 1988-09-28 1991-06-04 Hitachi, Ltd. Turbo vacuum pump
FR2641582B1 (en) * 1989-01-09 1991-03-22 Cit Alcatel GAEDE CHANNEL TYPE VACUUM PUMP
JPH05195957A (en) * 1992-01-23 1993-08-06 Matsushita Electric Ind Co Ltd Vacuum pump
DE4216237A1 (en) * 1992-05-16 1993-11-18 Leybold Ag Gas friction vacuum pump
GB9318801D0 (en) * 1993-09-10 1993-10-27 Boc Group Plc Improved vacuum pumps
JPH0886298A (en) * 1994-09-19 1996-04-02 Hitachi Ltd Dry turbo vacuum pump
JP3486000B2 (en) * 1995-03-31 2004-01-13 日本原子力研究所 Screw groove vacuum pump
JPH0988872A (en) * 1995-09-18 1997-03-31 Hitachi Ltd Turbo vacuum pump
JPH0988875A (en) * 1995-09-26 1997-03-31 Daikin Ind Ltd Turbo molecular pump
JPH10246197A (en) * 1997-03-05 1998-09-14 Ebara Corp Turbo-molecular pump
JP3716068B2 (en) * 1997-04-22 2005-11-16 三菱重工業株式会社 Turbo molecular pump and vacuum vessel having the same
GB9725146D0 (en) * 1997-11-27 1998-01-28 Boc Group Plc Improvements in vacuum pumps
US6193461B1 (en) * 1999-02-02 2001-02-27 Varian Inc. Dual inlet vacuum pumps
JP4104098B2 (en) * 1999-03-31 2008-06-18 エドワーズ株式会社 Vacuum pump
DE10008691B4 (en) * 2000-02-24 2017-10-26 Pfeiffer Vacuum Gmbh Gas friction pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DUDEN REDAKTION: "Der Große Duden - Band 1 - 16., erweiterte Auflage", 1967, DUDENVERLAG, MANNHEIM *

Also Published As

Publication number Publication date
DE10056144A1 (en) 2002-05-23
JP4183409B2 (en) 2008-11-19
EP1205667A2 (en) 2002-05-15
US6638010B2 (en) 2003-10-28
DE50114655D1 (en) 2009-03-05
US20020064451A1 (en) 2002-05-30
JP2002180989A (en) 2002-06-26
EP1205667A3 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
EP1205667B1 (en) Gas friction pump
DE3919529C2 (en) Vacuum pump
EP1252445B1 (en) Turbomolecular pump
EP0155419B1 (en) Noise control for conically ported liquid ring pumps
EP0626516B1 (en) Lubricant-free vacuum pump arrangement
EP0828080A2 (en) Drag vacuum pump
EP1078166B2 (en) Friction vacuum pump with a stator and a rotor
DE3932228A1 (en) TURBOVACUUM PUMP
DE102012003680A1 (en) vacuum pump
EP1067290B1 (en) Vacuum pump
EP1128069B1 (en) Gas friction pump
EP2251547B1 (en) Vacuum pump
EP1017944B1 (en) Compound pump
DE10353034A1 (en) Multi-stage friction vacuum pump
EP0363503B1 (en) Pump stage for a high vacuum pump
EP2039941B1 (en) Vacuum pump
EP1243796B1 (en) Vacuum pump
EP3088743B1 (en) Side-channel vacuum pump stage with a stripper that is slanted on the suction side
EP0825346B1 (en) Inlet-stage for a double-flow gas friction pump
DE3032967C2 (en)
EP1081387B1 (en) Vacuum pump
EP1164294B1 (en) Gas friction pump
EP3267040B1 (en) Turbomolecular pump
EP1509701A1 (en) Evacuating device
DE10111546A1 (en) Gas friction pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030425

AKX Designation fees paid

Designated state(s): CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 20080422

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50114655

Country of ref document: DE

Date of ref document: 20090305

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090114

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091015

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120920

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181220

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50114655

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201016

Year of fee payment: 20

Ref country code: IT

Payment date: 20200828

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20211015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20211015