EP1197641B1 - Betätigungseinrichtung zum Festlegen einer Nockenwelle eines Antriebsmotors eines Fahrzeuges in einer Startposition - Google Patents

Betätigungseinrichtung zum Festlegen einer Nockenwelle eines Antriebsmotors eines Fahrzeuges in einer Startposition Download PDF

Info

Publication number
EP1197641B1
EP1197641B1 EP01123536A EP01123536A EP1197641B1 EP 1197641 B1 EP1197641 B1 EP 1197641B1 EP 01123536 A EP01123536 A EP 01123536A EP 01123536 A EP01123536 A EP 01123536A EP 1197641 B1 EP1197641 B1 EP 1197641B1
Authority
EP
European Patent Office
Prior art keywords
adjusting device
pressure
piston
valve
camshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01123536A
Other languages
English (en)
French (fr)
Other versions
EP1197641A3 (de
EP1197641A2 (de
Inventor
Edwin Palesch
Alfred Trzmiel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hilite Germany GmbH
Original Assignee
Hydraulik Ring GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydraulik Ring GmbH filed Critical Hydraulik Ring GmbH
Publication of EP1197641A2 publication Critical patent/EP1197641A2/de
Publication of EP1197641A3 publication Critical patent/EP1197641A3/de
Application granted granted Critical
Publication of EP1197641B1 publication Critical patent/EP1197641B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34446Fluid accumulators for the feeding circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/01Starting

Definitions

  • the invention relates to an adjusting device with an actuating device and a camshaft adjuster according to the preamble of the claim 1.
  • the Camshaft assume a predetermined starting position. It happens that the engine abruptly stops in the misaligned camshaft position comes, for example, the unintentional release of the clutch increased speed at the traffic light start. Because the camshaft adjustment at increased Speed is running, the camshaft adjuster has stopped the time to get back into its starting position corresponding to the low speed. The drive motor is therefore with adjusted camshaft. This has the consequence that the drive motor does not start or only with difficulty.
  • the invention is based on the object, the generic adjustment form so that the camshaft reliably in their starting position arrives.
  • the camshaft is through a forced control adjusted to their starting position and held there. Thereby It is ensured that the camshaft when switching off the engine Reliably takes her starting position.
  • the drive motor can be around it restart easily.
  • the forced control is also achieved that the camshaft is also required in their to start the engine Start position, for example, by stalling the engine at different speeds assumes a different position. Is the starter in started in such a case, is achieved by the forced control that the camshaft reaches the start position after a short time.
  • the Pressure medium is from the additional storage as additional volume for adjustment fed to the piston of the rotary valve so that it quickly into the required Starting position is adjusted.
  • the additional storage is to the atmosphere open, so that the adjusting device according to the invention a simple Structure has and can be produced inexpensively.
  • the actuating device has a piston rod 1, on which a slider 2 sits.
  • the piston rod 1 is at its in Fig. 1st provided on the left end with a piston 3, to which the one end a compression spring 4 is supported. It lies in a pressure chamber 5, in a hydraulic line 6 opens. It connects the pressure chamber 5 with a buffer 7, which via an overflow line 8 with a tank 9 is connected.
  • In the hydraulic line 6 is located in Direction to the pressure chamber 5 opening check valve 10th
  • the slide 2 is provided on the circumference with three annular grooves 11 to 13, which are separated by ring lands 14, 15.
  • the slider 2 is under the force of at least one compression spring 16 in a Pressure chamber 17 of a valve housing 18 is housed.
  • the pressure room 17 is separated from the pressure chamber 5 by a housing wall 19.
  • the piston rod 1 is replaced by a plunger 20 against the force of Compressed spring 4 shifted.
  • the plunger 20 is part of a solenoid valve 21, which in addition to the piston rod 1 and the slide 2 has. Of the Plunger 20 is in a known manner by a (not shown) Anchor shifted when the solenoid valve 21 is energized.
  • the solenoid valve 21 has two tank connections T which are connected to a common Tank line 22 are connected, in the buffer 7 opens. In the tank line 22 sits against the buffer 7 opening check valve 23.
  • the hydraulic medium is from the tank 9 via a pump 25 in the pressure line 24th promoted, in a closing against the tank 9 check valve 26 is sitting.
  • transverse line 27 From the pressure line 24 opens in the area in front of the pressure connection P a transverse line 27 from which the pressure chamber 5 with the pressure line 24 connects. In the transverse line 27 sits in the direction of the Pressure line 24 opening check valve 28.
  • the solenoid valve 21 is also provided with two working ports A, B Mistake.
  • the working port A serves a crankshaft of a Internal combustion engine for the starting process in a start position too bring.
  • the working port B is for the adjustment of the camshaft provided with the internal combustion engine.
  • the piston 3 of the piston rod 1 is under the force of the compression spring 4 and under the located in the pressure chamber 5 hydraulic medium the housing wall 19 at.
  • the slider 2 is under the force of Compression spring 16 on a housing-side stop 29 at.
  • In this Position is the middle annular groove 12 of the slider 2 via the pressure connection P with the annular groove 11 and thus with the working port A. connected.
  • the working connection B is through the annular web 15 of Pressure port P separated and connected to the tank port T.
  • the buffer 7 forms an additional Hydraulic medium volume, whereby the piston 3 very can be quickly adjusted to the starting position shown in FIG. 1.
  • the buffer 7 is atmospherically open.
  • About the additional Hydraulic fluid is the camshaft adjuster 32 at Starting process so much hydraulic fluid supplied to the camshaft adjusted to the starting position with the first turns and in this location can be locked if necessary.
  • FIG. 2 shows an actuating device with which the camshaft of the camshaft adjuster 32 hydraulically adjusted to a starting position.
  • the phaser 32 is in Figs. 2 to 9 shown only schematically.
  • the solenoid valve 21 is not energized in the position shown in FIG. 2, so that the hydraulic medium under pressure via the pressure line 24th to the working connection A of a camshaft adjuster 32 (FIGS 12). He has pressure chambers 97 (Fig. 12), in which the hydraulic medium reaches and the camshaft 31 in later to be described Mode in the start position (Fig. 12) adjusted. That in the unimpaired Pressure chambers 85 located hydraulic medium is over the tank line 22 and the check valve 23 in the buffer 7 displaced.
  • the solenoid valve 21 switched. As a result, the pressurized hydraulic medium passes into the pressure chambers 85 ( Figures 11 and 12) and rotate the camshaft 31 in the opposite direction. That in the pressure chambers 97 located hydraulic medium is via the terminal A and the Tank line 22 displaced back to the buffer 7.
  • the solenoid valve 21 is a proportional solenoid valve so that the camshaft 31 in a variety of layers depending on the necessary adjustment can be turned.
  • FIG. 3 sits in the intermediate line 37 an electromagnetic pump 39. It has an armature 40, the is designed as a piston rod and at the free end a piston 41st wearing. It separates two pressure chambers 42, 43 in a cylinder 44 from each other.
  • the armature 40 is located in its outside of the cylinder 44 Area surrounded by a coil 45.
  • the intermediate line 37 extends over the pressure chamber 43 in the buffer 7.
  • the check valve 38 which locks in the direction of the cache 7. Otherwise it is the actuating device of the same design as the embodiment according to FIG. 2.
  • the hydraulic pressure whereby the camshaft 31st rotated so far according to the previous embodiment is that it assumes its starting position (Fig. 12). That in the pressure chambers 85 (FIG. 11) is hydraulic medium via the solenoid valve 21 and the tank line 22 to the latch 7 returned.
  • the coil 45 of the electromagnetic pump 39 is energized, so that the armature 40 is moved in Fig. 3 to the right.
  • the pump 39 presses the hydraulic medium from the buffer 7 on the intermediate line and a sitting in her Check valve 46 in the pressure line 24. Due to the temporary storage 7 is thus according to the previous embodiments ensures that through the addition of the pressure line 24 supplied hydraulic medium, the camshaft 31 quickly in the stop position described is rotated.
  • the intermediate line 37 opens according to the embodiment 2 in the area between the check valve 26 and the Solenoid valve 21 in the pressure line 24th
  • FIG. 4 branches from the pressure line 24th in the area between the pump 25 and the check valve 26 a Transverse line 47 from, in the direction of the pressure line 24th locking check valve 48 is seated.
  • the transverse line 47 leads to a Accumulator 49, stored in the hydraulic medium under pressure is.
  • the intermediate line 37 from where in the direction of the transverse line 47 closing Check valve 46 is located and the electromagnetic pump 39th leads. If the coil 45 of the pump 39 is not energized, the armature 40 takes the position shown in Fig. 4, in which the piston 41 of the armature 40, the intermediate line 37 blocks.
  • In the pressure room 43 of the Pump 39 opens an intermediate line 50, in the direction of the pressure chamber 43 locking check valve 51 is seated and in the Region between the check valve 26 and the solenoid valve 21st opens into the pressure line 24.
  • the hydraulic medium located in the pressure accumulator 49 can thus under pressure via the check valve 46 in the Pressure chamber 43 of the pump 39 reach. From here comes the hydraulic medium via the check valve 51 in the pressure line 24th Due to this additional hydraulic volume, the camshaft 31st quickly turned to its starting position.
  • a further solenoid valve 52 is provided with the inflow of the hydraulic medium from the pressure accumulator 49 in the Pressure line 24 is controlled. Should the camshaft in the start position be secured, the solenoid valve 21 is switched so that the pressure chambers 97 of the camshaft adjuster 32 with the pressure line 24 are connected. In addition, the solenoid valve 52 is off Switched the position shown in Fig. 5, so that the intermediate line 37 is connected to the intermediate line 50. Then that can located in the pressure accumulator 49, pressurized hydraulic medium additionally be conveyed in the pressure line 24, so that the Camshaft 31 is rapidly rotated to its stop position.
  • the actuator of FIG. 6 is formed similar to the Embodiment of Fig. 2. It has in addition to the tank 9 the Latch 7, which via the overflow line 8 with the tank. 9 connected is.
  • the buffer 7 is via the intermediate line 37 connected to the pressure line 24.
  • the intermediate line 37 opens in the area between the solenoid valve 21 and the camshaft 31 in the pressure line 24th
  • the hydraulic medium directed into the pressure chambers 97 of the camshaft adjuster 32 so that the camshaft 31 is rotated to its stop position.
  • the intermediate line 37 sits in the direction of the camshaft adjuster 32 opening check valve 53.
  • the camshaft 31 is characterized in fast the starting position turned. That in the pressure chambers 85 of the camshaft adjuster 32 located hydraulic medium is via the tank line 22 back to the buffer 7 out.
  • the solenoid valve 21 so that the pressure chambers 85 of the camshaft adjuster 32 with the pressure line 24 and the pressure chambers 97 with the Tank line 22 is connected.
  • the check valve 53 is closed, so that in the Pressure chambers 97 located hydraulic medium is not on the intermediate line 37, but only via the tank line 22 in the buffer 7 is displaced.
  • the embodiment of FIG. 7 largely corresponds to the embodiment as shown in FIG. 3.
  • the intermediate line 37 opens in Area between the solenoid valve 21 and the camshaft 31 in the pressure line 24.
  • To the camshaft 31 in the start position bring the hydraulic medium by means of the pump 25 from the Tank 9 via the pressure line 24 into the pressure chambers 97 of the camshaft adjuster 32 promoted, whereby the camshaft 31 in the Stop position is rotated.
  • the electromagnetic Pump 39 is turned on, so that the piston 41 in the position is pushed as shown in FIG. 7 and hydraulic medium from the pressure chamber 43 via the intermediate line 37 in the pressure line 24 as an additional Hydraulic volume promotes. Through this additional volume the rotational movement of the camshaft 31 is in the starting position accelerated.
  • the solenoid valve 21 switched from the position shown in FIG. 7, so that the pressure chambers 97 of the camshaft adjuster 32 with the tank line 22 and the pressure chambers 85 of the camshaft adjuster 32 with the pressure line 24 are connected.
  • the hydraulic medium is thus at Turning back the camshaft 31 from the pressure chambers 97 via the Tank line 22 is returned to the buffer 7.
  • the actuator of FIG. 8 largely corresponds to Embodiment according to FIG. 4. The only difference is that that the intermediate line 50 in the area between the solenoid valve 21 and the camshaft 31 opens into the pressure line 24.
  • FIG. 9 differs from the embodiment as shown in FIG. 5 only in that the intermediate line 50 in the region between the solenoid valve 21 and the camshaft 31 opens into the pressure line 24.
  • FIGS. 8 and 9 same as the embodiments of FIGS. 4 and 5.
  • FIGS. 10 to 12 show in detail the camshaft adjuster 32, with which the camshaft 31 can be rotated.
  • a rotary valve 54 On the camshaft 31 rotatably seated a rotary valve 54, which is in a cylindrical Housing 55 is limited rotation.
  • the housing 55 indicates its inner wall radially inwardly projecting webs 56 to 60, which are arranged distributed uniformly over the circumference and end faces 61 to 65, with which they flat on the cylindrical outer shell 66 of the rotary valve 54 abut.
  • the rotary valve 54 has radially projecting beyond the outer jacket 66 Arms 67 to 71, which protrude between the webs 56 to 60 and with their curved end faces 72 to 76 flat on the cylindrical inside 77 of the housing 55 abut.
  • the measured in the circumferential direction Width of the arms 67 to 71 is smaller than the distance between neighboring bridges 56 to 60.
  • the housing 55 has two mutually parallel, annular Cover 78, 79 (Fig. 10), between which the rotary valve 54 is located. At the outer edge, the two covers 78, 79 through a ring 80th connected to each other, the cylindrical inner side 77 of the housing 55 has. The two covers 78, 79 are located on the two Side surfaces of the rotary valve 54 at.
  • the rotary valve 54 is seated on a threaded bolt 81, with the Rotary valve 54 with one end 82 of the camshaft 31 attached becomes.
  • the camshaft end 82 protrudes through the housing cover 78 to about half the axial width of the rotary valve 54.
  • the rotary valve 54 has a smaller wall thickness than in the area outside the camshaft end 82 (FIGS. 11 and 12). It is provided with a central, axial bore 83 in the radially extending, the rotary valve 54 passing through holes 84 (Fig. 11) open. They connect the central bore 83 with each a pressure chamber 85, each of the web 56 to 60 and the adjacent arm 67 to 71 is limited.
  • Fig. 11 open. They connect the central bore 83 with each a pressure chamber 85, each of the web 56 to 60 and the adjacent arm 67 to 71 is limited.
  • FIG. 11 shows the rotary valve 54 in the one stop position in which his arms 67 to 71 abut the left in Fig. 11 side walls of the webs 56 to 60.
  • the webs 56 to 60 are on both side walls with in Provided circumferentially extending projections 86 and 87, where the arms 67 to 71 of the rotary valve 54 abut.
  • the axial bore 83 of the manifold 82 is via a transverse bore 88 connected to an annular groove 89 in the outer shell of the camshaft end 82 provided and by a ring 90 radially to outside is limited.
  • annular groove 89 opens a hole 91, via which the hydraulic medium from the tank 9 and from the buffer 7 is supplied.
  • the camshaft end 82 is at its outer circumferential surface with a further annular groove 92 provided (FIG. 10) through the ring 90th is closed radially outward and into which a bore 93 opens.
  • An axial bore 94 is also connected to the annular groove 92, which opens into an annular groove 95 in the camshaft end 82.
  • the annular groove 95 open the rotary valve 54 radially passing through Holes 96, in the thinner wall portion of the rotary valve 54th are provided and open into the pressure chambers 97, the between the webs 56 to 60 of the housing 55 and the arms 67 to 71 of Rotary valve 54 are.
  • the pressure chambers 85 and 97 are through the Arms 67 to 71 of the rotary valve 54 separated from each other.
  • solenoid valve 21 By switching the (not shown) solenoid valve 21 is the hydraulic medium in the described with reference to FIGS. 1 to 9 Way over the annular groove 89, the transverse bore 88, the axial bore 83 and the radial bores 84 passed into the pressure chambers 85.
  • the rotary valve 54 in the illustration of FIG. 11th and 12 in a clockwise direction relative to the housing 55 in the direction of the opposite webs or projections 87 are rotated. Since the Rotary valve 54 rotatably connected to the camshaft 31 is turned them to the appropriate extent.
  • the in the pressure chambers 97th located hydraulic medium is through the radial bores 96, the Ring groove 95, the axial bore 94, the annular groove 92 and the bore 93rd back to the tank 9 or displaced to the buffer 7.
  • Fig. 13 shows a solenoid valve 21 a, the plunger 20 a at a Pressure piston 98 is applied.
  • a dome-shaped head 99 is the Pressure piston 98 on a resilient plate 100, which in the embodiment made of rubber-elastic material or rubber can exist.
  • the plate 100 is at its periphery in the housing 18a clamped.
  • a bush 101 is inserted into the housing 18a, secured with a locking ring 102 in the housing 18a is.
  • the plate 100 is between that facing away from the retaining ring 102 End of the sleeve 101 and a radial shoulder surface 103rd clamped, which protrudes from the inner wall of the housing 18 a.
  • the Bushing 101 has a bottom 104 which is at least one bore 105, in the embodiment of two holes 105, axially interspersed is.
  • the holes 105 are at their from the locking ring 102nd opposite end closed by a valve plate 106, which with a screw 107 fixed to the bottom 104 of the sleeve 101 is.
  • the valve plate 106 is elastic at least in the edge region compliantly educated.
  • the bores 105 communicate with the hydraulic line 6 (FIG. 1), about the hydraulic medium from the buffer is supplied. Between the plate 100 and the valve plate 106 is located the pressure chamber 5a.
  • the socket 101 and the wall of the housing 18a is provided with transverse bores 108, 109, the aligned with each other.
  • the transverse bores 108 of the bushing 101 are closed by a ring 110 which is elastically expandable and in an annular groove 111 housed in the outer wall of the sleeve 101 is.
  • the solenoid valve 21a operates basically in the same way as it has been described with reference to the embodiment of FIG. 1. If the plunger 20a of the solenoid valve 21a by turning on the Solenoid valve in Fig. 13 shifted to the left, via the pressure piston 98, the plate 100 elastically toward the valve plate 106th deformed. As a result, the hydraulic medium in the pressure chamber 5a put under pressure. By this pressure, the ring 110th elastically expanded, so that the hydraulic medium over the now open Transverse holes 108 from the pressure chamber 5a through the transverse bores 109 can flow to the respective work connection. By the pressure in the pressure chamber 5a, the valve plate 106 is firmly in their in 13 shown closed position, so that the hydraulic medium can not get into the holes 105. This will be the Camshaft 31 is rotated in the manner described in the start position.
  • the solenoid valve 21b the plunger 20b, which acts on the piston 3b. He is in an axial bore 112 of the valve housing 18b out.
  • the pressure chamber 5b is by the piston 3b and a bottom 113 of the valve housing 3b axially limited.
  • the transverse bore 115 is connected to the hydraulic line 6 (FIG. 1), about which the hydraulic medium from the buffer 7 is conveyed into the pressure chamber 5b.
  • the pressure port P (FIG. 1) is connected to the cross hole 114.
  • a socket 116, 117 In the two transverse bores 114, 115 is in each case a socket 116, 117.
  • the bottom 118, 119 of the bushes 116, 117 is each with a central passage opening 120, 121 provided.
  • the passage opening 120 of the sleeve 116 faces the pressure chamber 5b while the through hole 121 of the sleeve 117 from the pressure chamber 5b turned away.
  • On the floor 118, 119 of the bushes 116, 117 On the floor 118, 119 of the bushes 116, 117 is located in each case an elastically deformable valve plate 122, 123, which in suitably secured to the floor and the passage opening 120, 121 closes in the closed position.
  • the star-shaped arms 126, 127 has, between which the hydraulic medium in the pressure chamber 5b and out can flow to the pressure chamber 5b.
  • the arms 126, 127 are radial from the upper end of a central body 128, 129 from, with Distance from the bushing 116, 117 is surrounded.
  • the arms 126, 127 the flow distributor 124, 125 sit on a radial shoulder surface 130, 131 on the inside of the bushes 116, 117 and are attached to it in an appropriate manner. It is also possible the arms 126, 127 in the sockets 116, 117 press.
  • the passage opening 121 is connected to the hydraulic line 6 (FIG. 1), over which the hydraulic medium in the described Way can get into the pressure chamber 5b. This raises the Valve plate 123 from the bottom 119 of the bush 117, so that the hydraulic medium between the arms 127 of the flow distributor 125 can get into the pressure chamber 5b.
  • the solenoid valve 21 c of FIG. 15 has the plunger 20 c, the on the Piston 3c acts. It is over part of its length on the inner wall a bushing 132, which in the axial bore 112 c of Valve housing 18c is inserted.
  • the piston 3c is at its from Plunger 20c facing away from end face with a central recess 133rd provided, in which engages the one end of a compression spring 4c. Your other End sits in a central recess 134 a cup-shaped Receiving 135, which with an end-side flange 136 between the Bottom 113c of the valve housing 18c and one at the socket 132nd adjacent ring 141 is clamped.
  • the sleeve 132 surrounds the Recording 135 at a distance, so that between the socket and the Recording an annular space 137 is formed by the hydraulic medium in a manner to be described in the pressure chamber 5c flow can.
  • Another annulus 138 is between the sleeve 132 and formed a part of the length of the piston 3c.
  • annular spaces 137 and 138 each open over the circumference of the Valve housing 18c arranged distributed through holes 139th and 140, which the valve housing 18c and the sleeve 132 radially push through.
  • the socket 132 two rings 141, 142 are inserted, with which sealing rings 143 to 145 are secured, in the inner wall the sleeve 132 are arranged and fixed in it.
  • the through holes 139, 140 are the two rings 141, 142 provided with appropriate holes.
  • the sealing ring 143 lies with Distance from the flange 136 of the receptacle 135 and seals the annulus 137 against the pressure chamber 5c from.
  • the annular space 138 is separated by the two at an axial distance lying sealing rings 144 and 145 limited, of which the Sealing ring 144 seals the annular space 138 against the pressure chamber 5c.
  • the sealing lips of the two sealing rings 144, 145 are inclined in the direction directed towards each other.
  • Fig. 16 shows a solenoid valve 21d, whose plunger 20d on the piston 3d is applied. It is axial over part of its length in sleeve 132d guided. It has one end facing the plunger 20d radially outwardly directed flange 146, with which they at a radial Shoulder surface 147 on the inside of the valve housing 18d is applied.
  • the solenoid valve 21d has a central body 148, the according to the previous embodiments axially over the housing part 149 of the magnetic part of the solenoid valve 21d axially protrudes.
  • the protruding end of the main body 148 is mushroom-shaped educated. On this protruding end is the valve body 18d placed form-fitting over a flange.
  • the flange 146 of the sleeve 132 d is between the shoulder surface 147 and the End face of the protruding end of the base 148 clamped.
  • auxiliary piston 150 On the piston 3d sits an auxiliary piston 150, the on of the socket 146 facing away from a radially outwardly directed flange 151 has. With him the auxiliary piston 150 is not energized Solenoid valve 21d at a radially inwardly extending shoulder surface 152, on the inner wall of the axial bore 112d of the Valve housing 18d is provided under the force of the compression spring 16d on. It also rests against the face of sleeve 132d from.
  • the piston 3d is under the force of the compression spring 4d, with a End to a flow body 153 and with its other end an inner radial shoulder surface 154 supported in the piston 3d is.
  • the flow body 153 is the same design as the flow distributor 124, 125 and has radially from one end of the body 155 protruding arms 156, which are spaced from each other and thereby form passages for the hydraulic medium.
  • the Arms 156 lie on a radial shoulder surface 157 on the inner wall the bore 112d of the valve housing 18d.
  • the main body 155 is spaced from the inner wall of the valve body Surrounding 18d, creating an annulus 158 between the body 155 and the inner wall of the valve housing 18d is formed.
  • annular space 158 opens centrally a hole 159 in the ground 113d of the valve housing 18d.
  • the bore 159 is through the valve plate 160 closed, which consists of elastically yielding material and is fixed on the floor 113d so as to be released the bore 159 can bend away elastically.
  • the auxiliary piston 150 defines radially inwardly an annular space 161, the radially outwardly through the wall of the valve housing 18d is limited. In this annular space 161 open the wall of the valve housing 18d radially passing through holes 162nd
  • the solenoid valve 21d If the solenoid valve 21d is not energized, the auxiliary piston 150 is under the force of the compression spring 16d on the shoulder surface 152 sealing at. As a result, the annular space 161 is separated from the pressure chamber 5d, the between the piston 3d and the flow body 153 is located. The Valve plate 160 closes the axial bore 159. Will the solenoid valve Energized 21d, the plunger 20d pushes the piston against 3d the force of the compression spring 4d, whereby the located in the pressure chamber 5d Hydraulic medium is pressurized. This pressure is bigger as exerted by the compression spring 16d on the auxiliary piston 150 Counterforce, so that the auxiliary piston 150 by the hydraulic medium is pushed back.
  • the described solenoid valves 21a to 21d shown in FIGS. 13 to 16 can be used in the adjusting devices according to FIGS. 1 to 9 become.

Description

Die Erfindung betrifft eine Verstelleinrichtung mit einer Betätigungseinrichtung und einem Nockenwellenversteller nach dem Oberbegriff des Anspruches 1.
Damit der Antriebsmotor eines Fahrzeuges gestartet werden kann, muß die Nockenwelle eine vorgegebene Startposition einnehmen. Es kommt vor, daß der Motor in der verstellten Nockenwellenposition abrupt zum Stillstand kommt, beispielsweise beim unbeabsichtigten Freigeben der Kupplung bei erhöhter Drehzahl am Ampelstart. Da die Nockenwellenverstellung bei erhöhter Drehzahl ausgeführt wird, hat der Nockenwellenversteller nicht mehr die Zeit, in seine der niederen Drehzahl entsprechende Startposition zurückzugelangen. Der Antriebsmotor steht darum mit verstellter Nockenwelle. Dies hat zur Folge, daß der Antriebsmotor nicht oder nur schwierig anspringt.
Es ist aus diesem Grunde bekannt (US-A-6 035 819), die Verstelleinrichtung mit einem zusätzlichen Druckspeicher zu versehen. Bleibt der Motor mit verstellter Nockenwelle stehen, wird der Druckspeicher durch Schalten eines Magnetventiles geöffnet, so daß das unter Druck stehende Medium zum Nockenwellenversteller geführt wird, um die Nockenwelle in die Startposition zu verstellen.
Der Erfindung liegt die Aufgabe zugrunde, die gattungsgemäße Verstelleinrichtung so auszubilden, daß die Nockenwelle zuverlässig in ihre Startposition gelangt.
Diese Aufgabe wird bei der gattungsgemäßen Verstelleinrichtung erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruches 1 gelöst.
Bei der erfindungsgemäßen Verstelleinrichtung wird die Nockenwelle durch eine Zwangsteuerung in ihre Startposition verstellt und dort gehalten. Dadurch ist gewährleistet, daß die Nockenwelle beim Abschalten des Motors zuverlässig ihre Startposition einnimmt. Der Antriebsmotor läßt sich darum problemlos wieder starten. Durch die Zwangsteuerung wird auch erreicht, daß die Nockenwelle auch dann in ihre zum Starten des Motors erforderliche Startposition gelangt, wenn sie beispielsweise durch Abwürgen des Motors bei erhöhten Drehzahlen eine andere Lage einnimmt. Wird der Anlasser in einem solchen Fall gestartet, wird durch die Zwangsteuerung erreicht, daß die Nockenwelle schon nach kurzer Zeit in die Startposition gelangt. Das Druckmedium wird aus dem Zusatzspeicher als Zusatzvolumen zur Verstellung des Kolbens des Drehschiebers zugeführt, so daß er rasch in die erforderliche Startposition verstellt wird. Der Zusatzspeicher ist zur Atmosphäre offen, so daß die erfindungsgemäße Verstelleinrichtung einen einfachen Aufbau hat und kostengünstig hergestellt werden kann.
Weitere Merkmale der Erfindung ergeben sich aus den weiteren Ansprüchen, der Beschreibung und den Zeichnungen.
Die Erfindung wird anhand einiger in den Zeichnungen dargestellter Ausführungsformen näher erläutert. Es zeigen
Fig. 1
eine erfindungsgemäße Verstelleinrichtung,
Fig. 2 bis Fig. 9
jeweils Hydraulikpläne von erfindungsgemäßen Verstelleinrichtungen,
Fig. 10
einen Axialschnitt durch einen Nockenwellenversteller der erfindungsgemäßen Nockenwellenverstelleinrichtung,
Fig. 11
einen Schnitt längs der Linie A-A in Fig. 10,
Fig. 12
einen Schnitt längs der Linie B-Bi in Fig. 10,
Fig. 13 bis Fig. 16
verschiedene Ausführungsformen von Magnetventilen der erfindungsgemäßen Verstelleinrichtung.
Die Betätigungseinrichtung gemäß Fig. 1 hat eine Kolbenstange 1, auf der ein Schieber 2 sitzt. Die Kolbenstange 1 ist an ihrem in Fig. 1 linken Ende mit einem Kolben 3 versehen, an dem sich das eine Ende einer Druckfeder 4 abstützt. Sie liegt in einem Druckraum 5, in den eine Hydraulikleitung 6 mündet. Sie verbindet den Druckraum 5 mit einem Zwischenspeicher 7, der über eine Überlaufleitung 8 mit einem Tank 9 verbunden ist. In der Hydraulikleitung 6 liegt ein in Richtung auf den Druckraum 5 öffnendes Rückschlagventil 10.
Der Schieber 2 ist am Umfang mit drei Ringnuten 11 bis 13 versehen, die durch Ringstege 14, 15 voneinander getrennt sind. Der Schieber 2 steht unter der Kraft wenigstens einer Druckfeder 16, die in einem Druckraum 17 eines Ventilgehäuses 18 untergebracht ist. Der Druckraum 17 ist durch eine Gehäusewand 19 vom Druckraum 5 getrennt.
Die Kolbenstange 1 wird durch einen Stößel 20 gegen die Kraft der Druckfeder 4 verschoben. Der Stößel 20 ist Teil eines Magnetventils 21, das außer der Kolbenstange 1 auch den Schieber 2 aufweist. Der Stößel 20 wird in bekannter Weise durch einen (nicht dargestellten) Anker verschoben, wenn das Magnetventil 21 bestromt wird.
Das Magnetventil 21 hat zwei Tankanschlüsse T, die an eine gemeinsame Tankleitung 22 angeschlossen sind, die in den Zwischenspeicher 7 mündet. In der Tankleitung 22 sitzt ein gegen den Zwischenspeicher 7 öffnendes Rückschlagventil 23.
Zwischen den beiden Tankanschlüssen T liegt der Druckanschluß P, an den eine Druckleitung 24 angeschlossen ist. Das Hydraulikmedium wird aus dem Tank 9 über eine Pumpe 25 in die Druckleitung 24 gefördert, in der ein gegen den Tank 9 schließendes Rückschlagventil 26 sitzt.
Von der Druckleitung 24 mündet im Bereich vor dem Druckanschluß P eine Querleitung 27 ab, die den Druckraum 5 mit der Druckleitung 24 verbindet. In der Querleitung 27 sitzt ein in Richtung auf die Druckleitung 24 öffnendes Rückschlagventil 28.
Das Magnetventil 21 ist außerdem mit zwei Arbeitsanschlüssen A, B versehen. Der Arbeitsanschluß A dient dazu, eine Kurbelwelle eines Verbrennungsmotors für den Startvorgang in eine Startposition zu bringen. Der Arbeitsanschluß B ist für die Verstellung der Nockenwelle bei laufendem Verbrennungsmotor vorgesehen.
In der Ausgangsstellung, in der das Magnetventil 21 nicht betätigt ist, liegt der Kolben 3 der Kolbenstange 1 unter der Kraft der Druckfeder 4 und unter dem im Druckraum 5 befindlichen Hydraulikmedium an der Gehäusewand 19 an. Der Schieber 2 liegt unter der Kraft der Druckfeder 16 an einem gehäuseseitigen Anschlag 29 an. In dieser Stellung ist die mittlere Ringnut 12 des Schiebers 2 über den Druckanschluß P mit der Ringnut 11 und damit mit dem Arbeitsanschluß A verbunden. Der Arbeitsanschluß B ist durch den Ringsteg 15 vom Druckanschluß P getrennt und mit dem Tankanschluß T verbunden. Sollte sich die Nockenwelle nicht in der Startposition befinden, weil der Antriebsmotor beispielsweise unbeabsichtigt ausgegangen ist, wird beim Betätigen des Anlassers des Fahrzeuges der Schieber 2 oszillierend bewegt, so daß zusätzliches Hydraulikmedium zum Nokkenwellenversteller 32 (Fig. 10 bis 12) gelangt. Es sorgt dafür, daß die Nockenwelle in die Startposition gedreht wird. Sobald der Anlasser wieder ausgeschaltet wird, wird zusätzliches Hydraulikmedium nicht mehr gefördert. Das Hydraulikmedium kann vom Tank 9 unter Druck über die Druckleitung 24, den Druckanschluß P und die Ringnut 11 zum Arbeitsanschluß A gelangen, so daß die Kurbelwelle und damit die Nockenwelle hydraulisch in die Startposition bewegt bzw. dort gehalten werden. Dies wird anhand der Fig. 10 bis 12 noch im einzelnen erläutert werden. Der Zwischenspeicher 7 bildet ein zusätzliches Hydraulikmediumvolumen, wodurch der Kolben 3 sehr schnell in die Ausgangsposition gemäß Fig. 1 verstellt werden kann. Der Zwischenspeicher 7 ist atmosphärisch offen. Über das zusätzliche Hydraulikmedium wird dem Nockenwellenversteller 32 beim Startvorgang so viel Hydraulikmedium zugeführt, daß die Nockenwelle mit den ersten Umdrehungen in die Startposition verstellt und in dieser Lage gegebenenfalls verriegelt werden kann.
Sobald das Fahrzeug gestartet ist und damit die Kurbelwelle und die Nockenwelle drehen, wird zum Verstellen der Nockenwelle während der Fahrt das Magnetventil 21 betätigt. Dadurch verschiebt der Stößel 20 zunächst die Kolbenstange 1 und damit den Kolben 3 gegen die Kraft der Druckfeder 5. Das im Druckraum 5 befindliche Hydraulikmedium wird über die Querleitung 27 in die Druckleitung 24 verdrängt. Auf der Kolbenstange 1 sitzt ein Anschlag 30, der im Ausführungsbeispiel ein Sprengring ist, der in eine Ringnut der Kolbenstange 1 eingesetzt ist. Sobald der Anschlag 30 am Schieber 2 zur Anlage kommt, wird dieser gegen die Kraft der Druckfeder 16 mitgenommen. Er wird so weit verschoben, daß der Arbeitsanschluß A durch den Ringsteg 14 vom Druckanschluß P getrennt und dafür der Arbeitsanschluß B mit dem Druckanschluß P verbunden ist. Das im Druckraum 17 befindliche Hydraulikmedium wird über den Tankanschluß T und die Tankleitung 22 zurück zum Zwischenspeicher 7 verdrängt. Mit dem Magnetventil 21 kann die Nockenwelle über den Nockenwellenversteller 32 (Fig. 10 bis 12) während der Fahrt in gewünschter Weise verstellt werden.
Wird der Verbrennungsmotor abgeschaltet, wird das Magnetventil 21 umgeschaltet, d.h. nicht mehr bestromt. Die Druckfedern 4 und 16 schieben dadurch den Kolben 3 und den Schieber 2 in die in Fig. 1 dargestellte Ausgangslage zurück. Das über die Hydraulikleitung 6 zugeführte Hydraulikmedium unterstützt das Zurückschieben des Kolbens 3, bis dieser wieder an der Gehäusewand 19 anliegt. Beim Zurückschieben des Schiebers 2 wird die Verbindung zwischen dem Druckanschluß P und dem Arbeitsanschluß B getrennt und die Verbindung zwischen dem Druckanschluß P und dem Arbeitsanschluß A geöffnet. Das über den Arbeitsanschluß A strömende, unter Druck stehende Hydraulikmedium sorgt dafür, daß die Nockenwelle in der Startposition gehalten wird.
Fig. 2 zeigt eine Betätigungseinrichtung, mit der die Nockenwelle des Nockenwellenverstellers 32 hydraulisch in eine Startposition verstellt wird. Der Nockenwellenversteller 32 ist in den Fig. 2 bis 9 nur schematisch dargestellt.
Das Magnetventil 21 ist in der Stellung gemäß Fig. 2 nicht bestromt, so daß das Hydraulikmedium unter Druck über die Druckleitung 24 zum Arbeitsanschluß A eines Nockenwellenverstellers 32 (Fig. 10 bis 12) gelangt. Er hat Druckräume 97 (Fig. 12), in die das Hydraulikmedium gelangt und die Nockenwelle 31 in noch zu beschreibender Weise in die Startposition (Fig. 12) verstellt. Das in den nicht beaufschlagten Druckräumen 85 befindliche Hydraulikmedium wird über die Tankleitung 22 und das Rückschlagventil 23 in den Zwischenspeicher 7 verdrängt.
Da die Nockenwelle in der beschriebenen Weise in eine definierte Startposition verstellt wird, läßt sich der Verbrennungsmotor des Kraftfahrzeuges einwandfrei starten. Von der Druckleitung 24 zweigt eine Zwischenleitung 37 ab, die in den Zwischenspeicher 7 mündet und die in Richtung auf den Zwischenspeicher 7 durch ein Rückschlagventil 38 geschlossen ist.
Sobald der Verbrennungsmotor gestartet ist, wird das Magnetventil 21 umgeschaltet. Dadurch gelangt das unter Druck stehende Hydraulikmedium in die Druckräume 85 (Fig. 11 und 12) und dreht die Nokkenwelle 31 in entgegengesetzter Richtung. Das in den Druckräumen 97 befindliche Hydraulikmedium wird über den Anschluß A und die Tankleitung 22 zurück zum Zwischenspeicher 7 verdrängt. Das Magnetventil 21 ist ein Proportionalmagnetventil, so daß die Nockenwelle 31 in die unterschiedlichsten Lagen je nach der notwendigen Verstellung gedreht werden kann.
Bei der Ausführungsform gemäß Fig. 3 sitzt in der Zwischenleitung 37 eine elektromagnetische Pumpe 39. Sie hat einen Anker 40, der als Kolbenstange ausgebildet ist und am freien Ende einen Kolben 41 trägt. Er trennt zwei Druckräume 42, 43 in einem Zylinder 44 voneinander. Der Anker 40 ist in seinem außerhalb des Zylinders 44 liegenden Bereich von einer Spule 45 umgeben. Die Zwischenleitung 37 erstreckt sich über den Druckraum 43 in den Zwischenspeicher 7. In der Zwischenleitung 37 sitzt im Bereich zwischen der elektromagnetischen Pumpe 39 und dem Zwischenspeicher 7 das Rückschlagventil 38, das in Richtung auf den Zwischenspeicher 7 sperrt. Im übrigen ist die Betätigungseinrichtung gleich ausgebildet wie das Ausführungsbeispiel nach Fig. 2.
Ist der Verbrennungsmotor des Kraftfahrzeuges ausgeschaltet, liegt am Anschluß A der Hydraulikdruck an, wodurch die Nockenwelle 31 entsprechend der vorhergehenden Ausführungsform so weit gedreht wird, daß sie ihre Startposition (Fig. 12) einnimmt. Das in den Druckräumen 85 (Fig. 11) befindliche Hydraulikmedium wird über das Magnetventil 21 und die Tankleitung 22 zum Zwischenspeicher 7 zurückgeführt. Die Spule 45 der elektromagnetischen Pumpe 39 wird erregt, so daß der Anker 40 in Fig. 3 nach rechts verschoben wird. Dadurch drückt die Pumpe 39 das Hydraulikmedium aus dem Zwischenspeicher 7 über die Zwischenleitung und ein in ihr sitzendes Rückschlagventil 46 in die Druckleitung 24. Aufgrund des Zwischenspeichers 7 ist somit entsprechend den vorhergehenden Ausführungsformen gewährleistet, daß durch das zusätzlich in die Druckleitung 24 zugeführte Hydraulikmedium die Nockenwelle 31 schnell in die beschriebene Anschlagstellung gedreht wird.
Die Zwischenleitung 37 mündet entsprechend der Ausführungsform nach Fig. 2 im Bereich zwischen dem Rückschlagventil 26 und dem Magnetventil 21 in die Druckleitung 24.
Ist der Verbrennungsmotor gestartet, wird das Magnetventil 21 umgeschaltet. Das unter Druck stehende Hydraulikmedium gelangt nunmehr in die Druckräume 85, so daß die Nockenwelle 31 in entgegengesetzter Richtung gedreht wird. Das in den Druckräumen 97 befindliche Hydraulikmedium wird dann über die Tankleitung 22 und das darin sitzende Rückschlagventil 23 in den Zwischenspeicher 7 verdrängt. Außerdem wird die Spule 45 abgeschaltet, so daß der Anker 40 unter Federkraft in Fig. 3 nach links zurückgeschoben wird. Dabei wird Hydraulikmedium aus dem Zwischenspeicher 7 in den Druckraum 43 angesaugt, so daß es beim Abschalten des Verbrennungsmotors und Einschalten der Pumpe 39 sofort als Zusatzvolumen zur Verfügung steht.
Bei der Ausführungsform nach Fig. 4 zweigt von der Druckleitung 24 im Bereich zwischen der Pumpe 25 und dem Rückschlagventil 26 eine Querleitung 47 ab, in der ein in Richtung auf die Druckleitung 24 sperrendes Rückschlagventil 48 sitzt. Die Querleitung 47 führt zu einem Druckspeicher 49, in dem Hydraulikmedium unter Druck gespeichert ist. Von der Querleitung 47 zweigt im Bereich zwischen dem Rückschlagventil 48 und dem Druckspeicher 49 die Zwischenleitung 37 ab, in der das in Richtung auf die Querleitung 47 schließende Rückschlagventil 46 liegt und die zur elektromagnetischen Pumpe 39 führt. Ist die Spule 45 der Pumpe 39 nicht erregt, nimmt der Anker 40 die in Fig. 4 dargestellte Lage ein, in welcher der Kolben 41 des Ankers 40 die Zwischenleitung 37 sperrt. In den Druckraum 43 der Pumpe 39 mündet eine Zwischenleitung 50, in der ein in Richtung auf den Druckraum 43 sperrendes Rückschlagventil 51 sitzt und die im Bereich zwischen dem Rückschlagventil 26 und dem Magnetventil 21 in die Druckleitung 24 mündet.
Ist der Verbrennungsmotor abgeschaltet, wird das Hydraulikmedium aus dem Tank 9 durch die Pumpe 25 über die Druckleitung 24 und das Magnetventil 21 zum Anschluß A des Nockenwellenverstellers 32 der Nockenwelle 31 (Fig. 4 und 10) gefördert. Die Nockenwelle 31 wird dadurch in die beschriebene Anschlagstellung gedreht. Das in den Druckräumen 85 des Nockenwellenverstellers 32 befindliche Hydraulikmedium wird über die Tankleitung 22 zurück zum Tank 9 verdrängt. Die Nockenwelle 31 wird auf diese Weise rasch in ihre Startposition gedreht und gehalten. Um diese Verstellung zu beschleunigen, wird gleichzeitig die Spule 45 der Pumpe 39 erregt, so daß der Anker 40 zurückgezogen wird, so daß der Kolben 41 die Zwischenleitung 37 freigibt. Das im Druckspeicher 49 befindliche Hydraulikmedium kann damit unter Druck über das Rückschlagventil 46 in den Druckraum 43 der Pumpe 39 gelangen. Von hier aus gelangt das Hydraulikmedium über das Rückschlagventil 51 in die Druckleitung 24. Durch dieses zusätzliche Hydraulikvolumen wird die Nockenwelle 31 rasch in ihre Startposition gedreht.
Entsprechend den vorhergehenden Ausführungsformen ist sichergestellt, daß der Verbrennungsmotor zuverlässig gestartet werden kann, da die Nockenwelle ihre Startposition einnimmt. Sollte die Nokkenwelle ihre Startposition nicht einnehmen, weil der Verbrennungsmotor versehentlich ausgegangen ist, sorgt wie bei den vorigen Ausführungsbeispielen das zusätzliche Hydraulikvolumen dafür, daß die Nockenwelle beim Betätigen des Anlassers rasch in die Startposition verstellt wird. Sobald der Verbrennungsmotor läuft, wird das Magnetventil 21 umgeschaltet, so daß die Druckräume 85 des Nockenwellenverstellers 32 mit der Druckleitung 24 und die Druckräume 97 des Nockenwellenverstellers mit der Tankleitung 22 verbunden werden. Außerdem wird die Spule 45 der Pumpe 39 abgeschaltet, wodurch der Anker 40 in die in Fig. 4 dargestellte Ausgangslage zurückgeschoben wird, in welcher der Kolben 41 die Zwischenleitung 37 sperrt. Dadurch kann das im Druckspeicher 49 befindliche Hydraulikmedium nicht mehr in die Druckleitung 24 gelangen. Beim Zurückfahren des Ankers 40 wird das im Druckraum 43 noch befindliche Hydraulikmedium über die Zwischenleitung 50 in die Druckleitung 24 verdrängt.
Bei der Ausführungsform nach Fig. 5 ist anstelle der elektromagnetischen Pumpe 39 ein weiteres Magnetventil 52 vorgesehen, mit dem der Zufluß des Hydraulikmediums aus dem Druckspeicher 49 in die Druckleitung 24 gesteuert wird. Soll die Nockenwelle in der Startposition gesichert werden, wird das Magnetventil 21 so geschaltet, daß die Druckräume 97 des Nockenwellenverstellers 32 mit der Druckleitung 24 verbunden werden. Außerdem wird das Magnetventil 52 aus der in Fig. 5 dargestellten Lage umgeschaltet, so daß die Zwischenleitung 37 mit der Zwischenleitung 50 verbunden wird. Dann kann das im Druckspeicher 49 befindliche, unter Druck stehende Hydraulikmedium zusätzlich in die Druckleitung 24 gefördert werden, so daß die Nockenwelle 31 rasch in ihre Anschlagstellung gedreht wird.
Sobald der Verbrennungsmotor läuft, werden die beiden Magnetventile 21 und 52 wieder umgeschaltet. Die Druckräume 85 des Nockenwellenverstellers 32 werden dadurch mit der Druckleitung 24 verbunden, während die Druckräume 97 mit der Tankleitung 22 verbunden werden. Dadurch kann das in den Druckräumen 97 befindliche Hydraulikmedium beim Zurückdrehen der Nockenwelle 31 in den Tank 9 verdrängt werden. Durch das Umschalten des Magnetventils 52 wird die Zwischenleitung 50 von der Zwischenleitung 37 und damit vom Druckspeicher 49 getrennt, so daß kein zusätzliches Hydraulikmedium mehr in die Druckleitung 24 gelangt.
Die Betätigungseinrichtung nach Fig. 6 ist ähnlich ausgebildet wie die Ausführungsform nach Fig. 2. Sie hat zusätzlich zum Tank 9 den Zwischenspeicher 7, der über die Überlaufleitung 8 mit dem Tank 9 verbunden ist. Der Zwischenspeicher 7 ist über die Zwischenleitung 37 mit der Druckleitung 24 verbunden. Im Unterschied zur Ausführungsform nach Fig. 2 mündet die Zwischenleitung 37 im Bereich zwischen dem Magnetventil 21 und der Nockenwelle 31 in die Druckleitung 24.
Soll die Nockenwelle in der Startposition gehalten werden, wird entsprechend den vorhergehenden Ausführungsformen das Hydraulikmedium in die Druckräume 97 des Nockenwellenverstellers 32 geleitet, so daß die Nockenwelle 31 in ihre Anschlagstellung gedreht wird. In der Zwischenleitung 37 sitzt ein in Richtung auf den Nockenwellenversteller 32 öffnendes Rückschlagventil 53. Wird die Nockenwelle in die Startposition (Fig. 11 und 12) gedreht, entsteht in der Zwischenleitung 37 ein Unterdruck, wodurch Hydraulikmedium aus dem Zwischenspeicher 7 angesaugt und als Zusatzvolumen in die Druckleitung 24 gefördert wird. Die Nockenwelle 31 wird dadurch schnell in die Startposition gedreht. Das in den Druckräumen 85 des Nockenwellenverstellers 32 befindliche Hydraulikmedium wird über die Tankleitung 22 zurück zum Zwischenspeicher 7 geführt.
Sobald der Verbrennungsmotor gestartet ist, wird das Magnetventil 21 umgeschaltet, so daß die Druckräume 85 des Nockenwellenverstellers 32 mit der Druckleitung 24 und die Druckräume 97 mit der Tankleitung 22 verbunden wird. Durch Zurückdrehen der Nockenwelle 31 wird das Rückschlagventil 53 geschlossen, so daß das in den Druckräumen 97 befindliche Hydraulikmedium nicht über die Zwischenleitung 37, sondern nur über die Tankleitung 22 in den Zwischenspeicher 7 verdrängt wird.
Die Ausführungsform gemäß Fig. 7 entspricht weitgehend dem Ausführungsbeispiel gemäß Fig. 3. Die Zwischenleitung 37 mündet im Bereich zwischen dem Magnetventil 21 und der Nockenwelle 31 in die Druckleitung 24. Um die Nockenwelle 31 in die Startposition zu bringen, wird das Hydraulikmedium mittels der Pumpe 25 aus dem Tank 9 über die Druckleitung 24 in die Druckräume 97 des Nockenwellenverstellers 32 gefördert, wodurch die Nockenwelle 31 in die Anschlagstellung gedreht wird. Gleichzeitig wird die elektromagnetische Pumpe 39 eingeschaltet, so daß der Kolben 41 in die Stellung gemäß Fig. 7 geschoben wird und Hydraulikmedium aus dem Druckraum 43 über die Zwischenleitung 37 in die Druckleitung 24 als zusätzliches Hydraulikvolumen fördert. Durch dieses Zusatzvolumen wird die Drehbewegung der Nockenwelle 31 in die Ausgangsstellung beschleunigt.
Sobald die Verbrennungsmaschine gestartet ist, wird das Magnetventil 21 aus der Lage gemäß Fig. 7 umgeschaltet, so daß die Druckräume 97 des Nockenwellenverstellers 32 mit der Tankleitung 22 und die Druckräume 85 des Nockenwellenverstellers 32 mit der Druckleitung 24 verbunden werden. Das Hydraulikmedium wird somit beim Zurückdrehen der Nockenwelle 31 aus den Druckräumen 97 über die Tankleitung 22 in den Zwischenspeicher 7 zurückgeführt.
Die Betätigungseinrichtung nach Fig. 8 entspricht weitgehend der Ausführungsform nach Fig. 4. Der Unterschied besteht lediglich darin, daß die Zwischenleitung 50 im Bereich zwischen dem Magnetventil 21 und der Nockenwelle 31 in die Druckleitung 24 mündet.
Auch die Ausführungsform gemäß Fig. 9 unterscheidet sich vom Ausführungsbeispiel gemäß Fig. 5 lediglich dadurch, daß die Zwischenleitung 50 im Bereich zwischen dem Magnetventil 21 und der Nokkenwelle 31 in die Druckleitung 24 mündet.
Im übrigen arbeiten die Ausführungsformen nach den Fig. 8 und 9 gleich wie die Ausführungsformen nach den Fig. 4 und 5.
Die Fig. 10 bis 12 zeigen im einzelnen den Nockenwellenversteller 32, mit dem die Nockenwelle 31 gedreht werden kann. Auf der Nokkenwelle 31 sitzt drehfest ein Drehschieber 54, der in einem zylindrischen Gehäuse 55 begrenzt drehbar ist. Das Gehäuse 55 weist an seiner Innenwandung radial nach innen ragende Stege 56 bis 60 auf, die gleichmäßig über den Umfang verteilt angeordnet sind und Stirnseiten 61 bis 65 haben, mit denen sie flächig am zylindrischen Außenmantel 66 des Drehschiebers 54 anliegen.
Der Drehschieber 54 hat radial über den Außenmantel 66 abstehende Arme 67 bis 71, die zwischen die Stege 56 bis 60 ragen und mit ihren gekrümmten Stirnseiten 72 bis 76 flächig an der zylindrischen Innenseite 77 des Gehäuses 55 anliegen. Die in Umfangsrichtung gemessene Breite der Arme 67 bis 71 ist kleiner als der Abstand zwischen benachbarten Stegen 56 bis 60.
Das Gehäuse 55 hat zwei parallel zueinander liegende, ringförmige Deckel 78, 79 (Fig. 10), zwischen denen der Drehschieber 54 liegt. Am äußeren Rand sind die beiden Deckel 78, 79 durch einen Ring 80 miteinander verbunden, der die zylindrische Innenseite 77 des Gehäuses 55 aufweist. Die beiden Deckel 78, 79 liegen an den beiden Seitenflächen des Drehschiebers 54 an.
Der Drehschieber 54 sitzt auf einem Gewindebolzen 81, mit dem der Drehschieber 54 mit einem Ende 82 der Nockenwelle 31 befestigt wird. Das Nockenwellenende 82 ragt durch den Gehäusedeckel 78 bis etwa in halbe axiale Breite des Drehschiebers 54. Im Bereich des Nockenwellenendes 82 hat der Drehschieber 54 kleinere Wandstärke als im Bereich außerhalb des Nockenwellenendes 82 (Fig. 11 und 12). Es ist mit einer zentralen, axialen Bohrung 83 versehen, in die radial verlaufende, den Drehschieber 54 durchsetzende Bohrungen 84 (Fig. 11) münden. Sie verbinden die zentrale Bohrung 83 mit jeweils einem Druckraum 85, der jeweils vom Steg 56 bis 60 und dem benachbarten Arm 67 bis 71 begrenzt wird. Fig. 11 zeigt den Drehschieber 54 in der einen Anschlagstellung, in der seine Arme 67 bis 71 an den in Fig. 11 linken Seitenwänden der Stege 56 bis 60 anliegen. Die Stege 56 bis 60 sind an ihren beiden Seitenwänden mit in Umfangsrichtung sich erstreckenden Vorsprüngen 86 und 87 versehen, an denen die Arme 67 bis 71 des Drehschiebers 54 anliegen. Durch diese Vorsprünge 86, 87 ist sichergestellt, daß in der in Fig. 11 dargestellten Anschlagstellung die Bohrungen 84 durch die Stege 56 bis 60 nicht vollständig geschlossen sind.
Die axiale Bohrung 83 des Verteilers 82 ist über eine Querbohrung 88 mit einer Ringnut 89 verbunden, die im Außenmantel des Nokkenwellenendes 82 vorgesehen und durch einen Ring 90 radial nach außen begrenzt ist. In die Ringnut 89 mündet eine Bohrung 91, über welche das Hydraulikmedium vom Tank 9 bzw. vom Zwischenspeicher 7 zugeführt wird.
Das Nockenwellenende 82 ist an seiner äußeren Mantelfläche mit einer weiteren Ringnut 92 versehen (Fig. 10), die durch den Ring 90 radial nach außen geschlossen ist und in die eine Bohrung 93 mündet. An die Ringnut 92 ist außerdem eine axiale Bohrung 94 angeschlossen, die in eine Ringnut 95 im Nockenwellenende 82 mündet. In die Ringnut 95 münden den Drehschieber 54 radial durchsetzende Bohrungen 96, die im dünneren Wandbereich des Drehschiebers 54 vorgesehen sind und in die Druckräume 97 münden, die zwischen den Stegen 56 bis 60 des Gehäuses 55 und den Armen 67 bis 71 des Drehschiebers 54 liegen. Die Druckräume 85 und 97 sind durch die Arme 67 bis 71 des Drehschiebers 54 voneinander getrennt.
In der in den Fig. 10 bis 12 dargestellten Lage wird das Hydraulikmedium über die Bohrungen 96 unter Druck in die Druckräume 97 geleitet, so daß die Arme 67 bis 71 an den entsprechenden Vorsprüngen 86 der Stege 56 bis 60 anliegen. Durch diese Stellung wird die Startposition der Nockenwelle 31 bestimmt.
Durch Umschalten des (nicht dargestellten) Magnetventils 21 wird das Hydraulikmedium in der anhand der Fig. 1 bis 9 beschriebenen Weise über die Ringnut 89, die Querbohrung 88, die axiale Bohrung 83 und die Radialbohrungen 84 in die Druckräume 85 geleitet. Dadurch wird der Drehschieber 54 in der Darstellung gemäß den Fig. 11 und 12 im Uhrzeigersinn gegenüber dem Gehäuse 55 in Richtung auf die gegenüberliegenden Stege bzw. Vorsprünge 87 gedreht. Da der Drehschieber 54 drehfest mit der Nockenwelle 31 verbunden ist, wird sie in entsprechendem Maße gedreht. Das in den Druckräumen 97 befindliche Hydraulikmedium wird über die Radialbohrungen 96, die Ringnut 95, die Axialbohrung 94, die Ringnut 92 und die Bohrung 93 zurück zum Tank 9 oder zum Zwischenspeicher 7 verdrängt.
Bei den beschriebenen Ausführungsbeispielen wirkt der Ventilteil des Magnetventils 31 als Pumpe, mit der das Hydraulikmedium gefördert wird. Fig. 13 zeigt ein Magnetventil 21a, dessen Stößel 20a an einem Druckkolben 98 anliegt. Mit einem kalottenförmigen Kopf 99 liegt der Druckkolben 98 an einer federelastischen Platte 100 an, die im Ausführungsbeispiel aus gummielastischem Material oder aus Gummi bestehen kann. Die Platte 100 ist an ihrem Umfang im Gehäuse 18a eingespannt. Hierfür ist in das Gehäuse 18a eine Buchse 101 eingesetzt, die mit einem Sicherungsring 102 im Gehäuse 18a gesichert ist. Die Platte 100 ist zwischen dem vom Sicherungsring 102 abgewandten Ende der Buchse 101 und einer radialen Schulterfläche 103 eingespannt, die von der Innenwand des Gehäuses 18a absteht. Die Buchse 101 hat einen Boden 104, der von wenigstens einer Bohrung 105, im Ausführungsbeispiel von zwei Bohrungen 105, axial durchsetzt ist. Die Bohrungen 105 sind an ihrem vom Sicherungsring 102 abgewandten Ende durch eine Ventilplatte 106 geschlossen, die mit einer Schraube 107 auf dem Boden 104 der Buchse 101 befestigt ist. Die Ventilplatte 106 ist zumindest im Randbereich elastisch nachgiebig ausgebildet.
Die Bohrungen 105 stehen mit der Hydraulikleitung 6 (Fig. 1) in Verbindung, über die das Hydraulikmedium aus dem Zwischenspeicher zugeführt wird. Zwischen der Platte 100 und der Ventilplatte 106 befindet sich der Druckraum 5a. Die Buchse 101 sowie die Wandung des Gehäuses 18a ist mit Querbohrungen 108, 109 versehen, die miteinander fluchten. Die Querbohrungen 108 der Buchse 101 sind durch einen Ring 110 geschlossen, der elastisch aufweitbar ist und in einer Ringnut 111 in der Außenwand der Buchse 101 untergebracht ist.
Das Magnetventil 21a arbeitet grundsätzlich in gleicher Weise, wie es anhand der Ausführungsform gemäß Fig. 1 beschrieben worden ist. Wird der Stößel 20a des Magnetventils 21a durch Einschalten des Magnetventils in Fig. 13 nach links verschoben, wird über den Druckkolben 98 die Platte 100 elastisch in Richtung auf die Ventilplatte 106 verformt. Dadurch wird das im Druckraum 5a befindliche Hydraulikmedium unter Druck gesetzt. Durch diesen Druck wird der Ring 110 elastisch aufgeweitet, so daß das Hydraulikmedium über die nun offenen Querbohrungen 108 aus dem Druckraum 5a durch die Querbohrungen 109 zum jeweiligen Arbeitsanschluß strömen kann. Durch den Druck im Druckraum 5a wird die Ventilplatte 106 fest in ihre in Fig. 13 dargestellte Schließstellung gedrückt, so daß das Hydraulikmedium nicht in die Bohrungen 105 gelangen kann. Dadurch wird die Nockenwelle 31 in der beschriebenen Weise in die Startposition gedreht.
Wird das Magnetventil 21a abgeschaltet, werden der Druckkolben 98 und der Stößel 20a durch die in ihre Ausgangslage zurückfedernde Platte 100 zurückgeschoben. Durch den im Druckraum 5a entstehenden Unterdruck hebt die Ventilplatte 106 vom Boden 104 der Buchse 101 ab, so daß das Hydraulikmedium über diese Bohrungen in den Druckraum 5a aus dem Zwischenspeicher 7 (Fig. 1) über die Leitung 6 nachströmen kann. Der Ring 110 kehrt nach dem Abschalten des Magnetventils 21a in seine in Fig. 13 dargestellte Schließstellung zurück, wozu auch der Unterdruck im Druckraum 5a beiträgt. Auf diese Weise ist sichergestellt, daß das über die Bohrungen 105 nachströmende Hydraulikmedium im Druckraum 5a verbleibt und beim nächsten Einschalten des Magnetventils 21a zur Verfügung steht.
Bei der Ausführungsform gemäß Fig. 14 hat das Magnetventil 21b den Stößel 20b, der auf den Kolben 3b wirkt. Er ist in einer Axialbohrung 112 des Ventilgehäuses 18b geführt. Der Druckraum 5b ist durch den Kolben 3b und einen Boden 113 des Ventilgehäuses 3b axial begrenzt. In den Druckraum 5b münden wenigstens zwei Querbohrungen 114 und 115, die im Ventilgehäuse 18b vorgesehen sind. Die Querbohrung 115 ist an die Hydraulikleitung 6 (Fig. 1) angeschlossen, über welche das Hydraulikmedium aus dem Zwischenspeicher 7 in den Druckraum 5b gefördert wird. An die Querbohrung 114 ist der Druckanschluß P (Fig. 1) angeschlossen.
In den beiden Querbohrungen 114, 115 sitzt jeweils eine Buchse 116, 117. Der Boden 118, 119 der Buchsen 116, 117 ist jeweils mit einer zentralen Durchgangsöffnung 120, 121 versehen. Die Durchgangsöffnung 120 der Buchse 116 ist dem Druckraum 5b zugewandt, während die Durchgangsöffnung 121 der Buchse 117 vom Druckraum 5b abgewandt ist. Auf dem Boden 118, 119 der Buchsen 116, 117 liegt jeweils eine elastisch verformbare Ventilplatte 122, 123 auf, die in geeigneter Weise auf dem Boden befestigt ist und die Durchgangsöffnung 120, 121 in der Schließstellung verschließt.
In die beiden Buchsen 116, 117 ist jeweils ein Strömungsverteiler 124, 125 eingesetzt, der sternförmig verlaufende Arme 126, 127 hat, zwischen denen das Hydraulikmedium in den Druckraum 5b bzw. aus dem Druckraum 5b strömen kann. Die Arme 126, 127 stehen radial vom oberen Ende eines zentralen Grundkörpers 128, 129 ab, der mit Abstand von der Buchse 116, 117 umgeben ist. Die Arme 126, 127 der Strömungsverteiler 124, 125 sitzen auf einer radialen Schulterfläche 130, 131 an der Innenseite der Buchsen 116, 117 auf und sind auf ihr in geeigneter Weise befestigt. Es ist auch möglich, die Arme 126, 127 in die Buchsen 116, 117 einzupressen.
Die Durchgangsöffnung 121 ist an die Hydraulikleitung 6 (Fig. 1) angeschlossen, über welche das Hydraulikmedium in der beschriebenen Weise in den Druckraum 5b gelangen kann. Hierbei hebt die Ventilplatte 123 vom Boden 119 der Buchse 117 ab, so daß das Hydraulikmedium zwischen den Armen 127 des Strömungsverteilers 125 in den Druckraum 5b gelangen kann.
Wird das Magnetventil 21b bestromt, wird der Stößel 20b in Fig. 14 nach links verschoben und nimmt den Kolben 3b mit. Das im Druckraum 5b befindliche Hydraulikmedium wird dadurch unter Druck gesetzt. Durch diesen Hydraulikdruck wird die Ventilplatte 123 fest gegen den Rand der Durchgangsöffnung 121 gedrückt, so daß sie zuverlässig geschlossen ist. Gleichzeitig wird die Ventilplatte 122 elastisch gebogen, so daß sie die Durchgangsöffnung 120 freigibt. Das Hydraulikmedium kann dadurch aus dem Druckraum 5b zwischen den Armen 126 des Strömungsverteilers 125 zum Druckanschluß P und von dort zu den jeweiligen Verbraucheranschlüssen A bzw. B strömen. Die Nockenwelle 31 wird dann in der beschriebenen Weise in die Startposition gedreht. Wird das Magnetventil 21b abgeschaltet, wird der Kolben 3b durch die Druckfeder 4b in seine Ausgangslage zurückgeschoben, wobei auch der Stößel 20b in die Ausgangslage zurückgeschoben wird. Beim Zurückfahren des Kolbens 3b entsteht im Druckraum 5b ein Unterdruck, wodurch in der beschriebenen Weise das Hydraulikmedium aus dem Zwischenspeicher 7 angesaugt wird. Durch den Unterdruck im Druckraum 5b kehrt die Ventilplatte 122 in ihre dargestellte Schließstellung zurück und verschließt die Durchgangsöffnung 120.
Das Magnetventil 21c gemäß Fig. 15 hat den Stößel 20c, der auf den Kolben 3c wirkt. Er ist über einen Teil seiner Länge an der Innenwand einer Buchse 132 geführt, die in die Axialbohrung 112c des Ventilgehäuses 18c eingesetzt ist. Der Kolben 3c ist an seiner vom Stößel 20c abgewandten Stirnseite mit einer zentralen Vertiefung 133 versehen, in die das eine Ende einer Druckfeder 4c eingreift. Ihr anderes Ende sitzt in einer zentralen Vertiefung 134 einer napfförmigen Aufnahme 135, die mit einem endseitigen Flansch 136 zwischen dem Boden 113c des Ventilgehäuses 18c und einem an der Buchse 132 anliegenden Ring 141 eingespannt ist. Die Buchse 132 umgibt die Aufnahme 135 mit Abstand, so daß zwischen der Buchse und der Aufnahme ein Ringraum 137 gebildet wird, durch den Hydraulikmedium in noch zu beschreibender Weise in den Druckraum 5c strömen kann. Ein weiterer Ringraum 138 ist zwischen der Buchse 132 und einem Teil der Länge des Kolbens 3c gebildet.
In die Ringräume 137 und 138 münden jeweils über den Umfang des Ventilgehäuses 18c verteilt angeordnete Durchgangsbohrungen 139 und 140, welche das Ventilgehäuse 18c und die Buchse 132 radial durchsetzen. In die Buchse 132 sind zwei Ringe 141, 142 eingesetzt, mit denen Dichtringe 143 bis 145 gesichert sind, die in der Innenwand der Buchse 132 angeordnet und in ihr befestigt sind. In Höhe der Durchgangsbohrungen 139, 140 sind die beiden Ringe 141, 142 mit entsprechenden Bohrungen versehen. Der Dichtring 143 liegt mit Abstand vom Flansch 136 der Aufnahme 135 und dichtet den Ringraum 137 gegen den Druckraum 5c ab.
Der Ringraum 138 wird durch die beiden mit axialem Abstand voneinander liegenden Dichtringe 144 und 145 begrenzt, von denen der Dichtring 144 den Ringraum 138 gegen den Druckraum 5c abdichtet. Die Dichtlippen der beiden Dichtringe 144, 145 sind schräg in Richtung zueinander gerichtet.
Wird das Magnetventil 21c bestromt, wird der Stößel 20c in Fig. 15 nach links verschoben und nimmt den Kolben 3c gegen die Kraft der Druckfeder 4c mit. Das im Druckraum befindliche Hydraulikmedium wird unter Druck gesetzt. Die Dichtlippe des Dichtringes 144 wird unter dem Hydraulikmediumsdruck elastisch so verformt, daß das Hydraulikmedium über den Dichtring 144 zu den Durchgangsbohrungen 140 strömen kann (vgl. Strömungspfeile). Von hier aus strömt das Hydraulikmedium in der beschriebenen Weise zum Nockenwellenversteller 32, um die Nockenwelle 31 rasch in die Startposition zu drehen. Da die Dichtlippe des Dichtringes 143 schräg in Richtung auf den Dichtring 144 gerichtet ist, wird die Dichtlippe durch das unter Druck stehende Hydraulikmedium fest gegen die Außenwandung der Aufnahme 135 gedrückt, so daß ein Zutritt des unter Druck stehenden Hydraulikmediums aus dem Druckraum 5c in den Ringraum 137 zuverlässig verhindert wird.
Wird das Magnetventil 21c abgeschaltet, wird der Kolben 3c unter der Kraft der Druckfeder 4c zurückgeschoben, wodurch auch der Stößel 20c in die Ausgangslage zurückbewegt wird. Aufgrund des Zurückfahrens des Kolbens 3c entsteht im Druckraum 5c ein Unterdruck, durch den über die Durchgangsbohrungen 139 das Hydraulikmedium über die Hydraulikleitung 6 aus dem Zwischenspeicher angesaugt wird (s. Strömungspfeile). Dieses Hydraulikmedium strömt über den Ringraum 137 und den Dichtring 143 in den Druckraum 5c. Aufgrund des Unterdruckes im Druckraum 5c wird die Dichtlippe des Dichtringes 144 fest gegen die Außenwandung des Kolbens 3c gedrückt, so daß der Ringraum 138 zuverlässig gegen den Druckraum 5c abgedichtet wird.
Fig. 16 zeigt ein Magnetventil 21d, dessen Stößel 20d am Kolben 3d anliegt. Er ist über einen Teil seiner Länge in der Buchse 132d axial geführt. Sie hat an ihrem dem Stößel 20d zugewandten Ende einen radial nach außen gerichteten Flansch 146, mit dem sie an einer radialen Schulterfläche 147 an der Innenseite des Ventilgehäuses 18d anliegt. Das Magnetventil 21d hat einen zentralen Grundkörper 148, der entsprechend den vorhergehenden Ausführungsformen axial über den Gehäuseteil 149 des Magnetteils des Magentventils 21d axial vorsteht. Das überstehende Ende des Grundkörpers 148 ist pilzförmig ausgebildet. Auf dieses überstehende Ende ist das Ventilgehäuse 18d über eine Bördelung formschlüssig aufgesetzt. Der Flansch 146 der Buchse 132d ist zwischen der Schulterfläche 147 und der Stirnseite des überstehenden Endes des Grundkörpers 148 festgeklemmt.
Auf dem Kolben 3d sitzt ein Hilfskolben 150, der am von der Buchse 146 abgewandten Ende einen radial nach außen gerichteten Flansch 151 aufweist. Mit ihm liegt der Hilfskolben 150 bei nicht bestromtem Magnetventil 21d an einer radial nach innen verlaufenden Schulterfläche 152, die an der Innenwandung der Axialbohrung 112d des Ventilgehäuses 18d vorgesehen ist, unter der Kraft der Druckfeder 16d an. Sie stützt sich außerdem an der Stirnseite der Buchse 132d ab.
Der Kolben 3d steht unter der Kraft der Druckfeder 4d, die mit einem Ende an einem Strömungskörper 153 und mit ihrem anderen Ende an einer inneren radialen Schulterfläche 154 im Kolben 3d abgestützt ist. Der Strömungskörper 153 ist gleich ausgebildet wie die Strömungsverteiler 124, 125 und hat radial von einem Ende des Grundkörpers 155 abstehende Arme 156, die mit Abstand voneinander liegen und dadurch Durchlässe für das Hydraulikmedium bilden. Die Arme 156 liegen auf einer radialen Schulterfläche 157 an der Innenwandung der Bohrung 112d des Ventilgehäuses 18d auf. Der Grundkörper 155 wird mit Abstand von der Innenwandung des Ventilgehäuses 18d umgeben, wodurch ein Ringraum 158 zwischen dem Grundkörper 155 und der Innenwand des Ventilgehäuses 18d gebildet wird. In den Ringraum 158 mündet zentrisch eine Bohrung 159 im Boden 113d des Ventilgehäuses 18d. Die Bohrung 159 ist durch die Ventilplatte 160 geschlossen, die aus elastisch nachgiebigem Material besteht und so auf dem Boden 113d befestigt ist, daß sie zur Freigabe der Bohrung 159 elastisch wegbiegen kann.
Der Hilfskolben 150 begrenzt radial nach innen einen Ringraum 161, der radial nach außen durch die Wandung des Ventilgehäuses 18d begrenzt ist. In diesen Ringraum 161 münden die Wandung des Ventilgehäuses 18d radial durchsetzende Durchgangsbohrungen 162.
Ist das Magnetventil 21d nicht bestromt, liegt der Hilfskolben 150 unter der Kraft der Druckfeder 16d an der Schulterfläche 152 dichtend an. Dadurch ist der Ringraum 161 vom Druckraum 5d getrennt, der zwischen dem Kolben 3d und dem Strömungskörper 153 liegt. Die Ventilplatte 160 verschließt die axiale Bohrung 159. Wird das Magnetventil 21d bestromt, schiebt der Stößel 20d den Kolben 3d gegen die Kraft der Druckfeder 4d, wodurch das im Druckraum 5d befindliche Hydraulikmedium unter Druck gesetzt wird. Dieser Druck ist größer als die durch die Druckfeder 16d auf den Hilfskolben 150 ausgeübte Gegenkraft, so daß der Hilfskolben 150 durch das Hydraulikmedium zurückgeschoben wird. Es kann dadurch aus dem Druckraum 5d durch die Bohrungen 162 zum Nockenwellenversteller 32 gelangen, um die Nockenwelle 31 rasch in die Startposition zu drehen. Durch das unter Druck befindliche Hydraulikmedium im Druckraum 5d wird die Ventilplatte 160 fest in ihre Schließstellung gedrückt.
Sobald das Magnetventil 21d abgeschaltet wird, wird der Kolben 3d durch die Druckfeder 4d und damit auch der Stößel 20d in die Ausgangslage gemäß Fig. 16 zurückgeschoben. Dadurch entsteht im Druckraum 5d ein Unterdruck. Der Hilfskolben 150 wird, unterstützt durch die Druckfeder 16d, wieder in seine Schließstellung gemäß Fig. 16 auf dem Kolben 3d zurückgeschoben, so daß der Druckraum 5d von den Durchgangsbohrungen 162 getrennt wird. Aufgrund des Unterdruckes wird die Ventilplatte 160 so elastisch verformt, daß Hydraulikmedium aus dem Zwischenspeicher 7 über die Hydraulikleitung 6 (Fig. 1) in die Bohrung 159, den Ringraum 158 und die Durchlässe zwischen den Armen 156 des Strömungskörpers 153 in den Druckraum 5d strömen kann.
Die beschriebenen Magnetventile 21a bis 21d gemäß den Fig. 13 bis 16 können bei den Einstellvorrichtungen gemäß den Fig. 1 bis 9 eingesetzt werden. Darüber hinaus können die Magnetventile 21a bis 21d selbstverständlich auch überall dort eingesetzt werden, wo Medium angesaugt und unter Druck einem Verbraucher zugeführt werden soll.

Claims (37)

  1. Verstelleinrichtung mit einer Betätigungseinrichtung und einem Nokkenwellenversteller (32), der einen in einem Gehäuse (55) befindlichen Drehschieber (54) aufweist, der drehfest mit einer Nockenwelle (31) eines Antriebsmotors eines Fahrzeuges, verbunden ist und wenigstens einen Kolben (67 bis 71) aufweist, der beidseitig mit einem Druckmedium beaufschlagbar ist, das aus einem Tank (9) mit der Betätigungseinrichtung zuführbar ist, mit der die Nockenwelle (31) durch eine Zwangsteuerung in eine Startposition verstellbar ist, dadurch gekennzeichnet, daß das Druckmedium in einem Zusatzspeicher (7, 49) als Zusatzvolumen zur Verstellung des Kolbens (67 bis 71) zuführbar ist.
  2. Verstelleinrichtung nach Anspruch 1,
    dadurch gekennzeichnet, daß die Betätigungseinrichtung zur Verstellung der Nockenwelle (31) ein Magnetventil (21, 21a bis 21d) aufweist, mit dem der Zufluß des Druckmediums steuerbar ist.
  3. Verstelleinrichtung nach Anspruch 2,
    dadurch gekennzeichnet, daß der Tank (9) über eine Druckleitung (24) mit einem Druckanschluß (P) des Magnetventiles (21, 21a bis 21d) verbunden ist.
  4. Verstelleinrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, daß der Zusatzspeicher (7) über wenigstens eine Überlaufleitung (8) mit dem Tank (9) des Druckmediums verbunden ist.
  5. Verstelleinrichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß dem Zusatzspeicher (7, 49) wenigstens eine Pumpe (39) nachgeschaltet ist, die einen Kolben (41) aufweist, mit dem das Zusatzvolumen dem Druckmedium zuführbar ist.
  6. Verstelleinrichtung nach Anspruch 5,
    dadurch gekennzeichnet, daß der Kolben (41) der Pumpe (39) eine Zuleitung (37) für das Zusatzvolumen in einer Ausgangslage schließt.
  7. Verstelleinrichtung nach einem der Ansprüche 2 bis 6,
    dadurch gekennzeichnet, daß das Druckmedium aus dem Nockenwellenversteller (32) nach dem Starten des Antriebsmotors und Umschalten des Magnetventiles (21) in den Zusatzspeicher (7) zurückführbar ist.
  8. Verstelleinrichtung, insbesondere nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß die Verstelleinrichtung einen Schieber (2) aufweist, der auf einer Kolbenstange (1) angeordnet ist.
  9. Verstelleinrichtung nach Anspruch 8,
    dadurch gekennzeichnet, daß die Kolbenstange (1) relativ zum Schieber (2) verschiebbar ist, der durch einen Anschlag (30) auf der Kolbenstange (1) gegen eine Gegenkraft verschiebbar ist.
  10. Verstelleinrichtung nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, daß der Schieber (2) und die Kolbenstange (1) Teil des Magnetventiles (21) sind.
  11. Verstelleinrichtung nach einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet, daß die Kolbenstange (1) einen Kolben (3) trägt, der in einer Ausgangsstellung unter Kraft an einem gehäuseseitigen Anschlag (19) des Magnetventiles (21) anliegt.
  12. Verstelleinrichtung nach einem der Ansprüche 8 bis 11,
    dadurch gekennzeichnet, daß die Kolbenstange (1) einen vorgeschalteten Druckraum (5) begrenzt, der an den Zusatzspeicher (7) angeschlossen ist.
  13. Verstelleinrichtung nach Anspruch 12,
    dadurch gekennzeichnet, daß der Druckraum (5) über eine Leitung (27) mit der Druckleitung (24) verbunden ist.
  14. Verstelleinrichtung nach Anspruch 13,
    dadurch gekennzeichnet, daß in der Leitung (27) ein in Richtung auf die Druckleitung (24) öffnendes Rückschlagventil (28) sitzt.
  15. Verstelleinrichtung nach einem der Ansprüche 1 bis 14,
    dadurch gekennzeichnet, daß der Drehschieber (54) im Gehäuse (55) begrenzt drehbar ist und als Kolben mehrere radial abstehende Arme (67 bis 71) aufweist.
  16. Verstelleinrichtung nach Anspruch 15,
    dadurch gekennzeichnet, daß das Gehäuse (55) mehrere radial nach innen ragende Stege (56 bis 60) aufweist, zwischen welche die Arme (67 bis 71) des Drehschiebers (54) eingreifen.
  17. Verstelleinrichtung nach einem der Ansprüche 1 bis 16,
    dadurch gekennzeichnet, daß der Kolben (67 bis 71) des Drehschiebers (54) zwei Druckräume (85, 97) voneinander trennt, die zwischen dem Kolben (67 bis 71) des Drehschiebers (54) und dem Steg (56 bis 60) des Gehäuses (55) liegen.
  18. Verstelleinrichtung nach einem der Ansprüche 1 bis 17,
    dadurch gekennzeichnet, daß das Druckmedium axial über wenigstens eine Bohrung in der Nockenwelle (31) dem Nockenwellenversteller (32) zuführbar ist.
  19. Verstelleinrichtung nach einem der Ansprüche 16 bis 18,
    dadurch gekennzeichnet, daß der Steg (56 bis 60) wenigstens einen Vorsprung (86, 87) aufweist, an dem der Arm (67 bis 71) des Drehschiebers (54) zur Anlage kommt.
  20. Verstelleinrichtung nach einem der Ansprüche 1 bis 19,
    dadurch gekennzeichnet, daß der Drehschieber (54) axial gesichert zwischen zwei miteinander verbundenen Deckeln (78, 79) des Gehäuses (55) liegt.
  21. Verstelleinrichtung, insbesondere nach einem der Ansprüche 1 bis 20,
    dadurch gekennzeichnet, daß sie ein Magnetventil (21, 21a bis 21d) aufweist, dessen Ventilteil als Pumpe ausgebildet ist.
  22. Verstelleinrichtung nach Anspruch 21,
    dadurch gekennzeichnet, daß das Druckmedium in wenigstens einem Druckraum (5, 5a bis 5d) unter Druck gesetzt und wenigstens einem Arbeitsanschluß (A, B; 109; 120; 140; 162) zugeführt wird.
  23. Verstelleinrichtung nach Anspruch 22,
    dadurch gekennzeichnet, daß das Druckmedium in den Druckraum (5, 5a bis 5d) mittels Unterdruck förderbar ist.
  24. Verstelleinrichtung nach einem der Ansprüche 21 bis 23,
    dadurch gekennzeichnet, daß das Magnetventil (21a) einen Kolben (98) aufweist, mit dem bei Bestromen des Magnetventils wenigstens ein den Druckraum (5a) begrenzendes, durch den Kolben (98) elastisch verformbares Druckelement (100) zur Erzeugung des Druckes im Druckraum (5a) verstellbar ist.
  25. Verstelleinrichtung nach Anspruch 24,
    dadurch gekennzeichnet, daß in den Druckraum (5a) wenigstens eine Bohrung (105) mündet, über die das Druckmedium zuführbar ist und die durch ein unter dem Unterdruck von der Bohrung (105) abhebendes Ventilelement (106) verschließbar ist.
  26. Verstelleinrichtung nach Anspruch 25,
    dadurch gekennzeichnet, daß das Ventilelement (106) zur Freigabe der Bohrung (105) elastisch verformbar ist.
  27. Verstelleinrichtung nach einem der Ansprüche 24 bis 26,
    dadurch gekennzeichnet, daß in den Druckraum (5b) wenigstens eine Zuführöffnung (121) und wenigstens ein Arbeitsanschluß (120) münden, die jeweils durch ein Ventilelement (122, 123) verschließbar sind.
  28. Verstelleinrichtung nach Anspruch 27,
    dadurch gekennzeichnet, daß die Ventilelemente (122, 123) so angeordnet sind, daß bei Druckbeaufschlagung des Druckmediums das dem Arbeitsanschluß (120) zugeordnete Ventilelement (122) und bei Unterdruck im Druckraum (5b) das der Zuführöffnung (121) zugeordnete Ventilelement (123) in eine Offenstellung bewegbar sind.
  29. Verstelleinrichtung nach Anspruch 27 oder 28,
    dadurch gekennzeichnet, daß die Ventilelemente (122, 123) elastisch verformbar sind.
  30. Verstelleinrichtung nach einem der Ansprüche 21 bis 23,
    dadurch gekennzeichnet, daß der Druckraum (5c) durch jeweils wenigstens eine Dichtung (143, 144) gegen wenigstens eine Zuführöffnung (139) und wenigstens einen Arbeitsanschluß (140) abgedichtet ist.
  31. Verstelleinrichtung nach Anspruch 30,
    dadurch gekennzeichnet, daß die dem Arbeitsanschluß (140) zugeordnete Dichtung (144) am Kolben (3c) dichtend anliegt.
  32. Verstelleinrichtung nach Anspruch 30 oder 31,
    dadurch gekennzeichnet, daß die Dichtungen (143, 144) so angeordnet sind, daß bei Druckbeaufschlagung des Druckmediums im Druckraum (5c) die dem Arbeitsanschluß (140) zugeordnete Dichtung (144) und bei Unterdruck im Druckraum (5c) die der Zuführöffnung (139) zugeordnete Dichtung (143) in eine den Durchtritt des Druckmediums ermöglichende Lage bewegbar ist.
  33. Verstelleinrichtung nach einem der Ansprüche 21 bis 23,
    dadurch gekennzeichnet, daß der Arbeitsanschluß (162) durch einen auf dem Kolben (3d) verschiebbar gelagerten Hilfskolben (150) gegenüber dem Druckraum (5d) absperrbar ist.
  34. Verstelleinrichtung nach Anspruch 33,
    dadurch gekennzeichnet, daß eine Zuführöffnung (159) durch ein Ventilelement (160) absperrbar ist.
  35. Verstelleinrichtung nach Anspruch 33 oder 34,
    dadurch gekennzeichnet, daß der Hilfskolben (150) unter dem Druck des Druckmediums im Druckraum (5d) gegen eine Gegenkraft verschiebbar ist.
  36. Verstelleinrichtung nach einem der Ansprüche 33 bis 35,
    dadurch gekennzeichnet, daß zur Erzeugung des Drucks im Druckraum (5d) der Kolben (3d) gegen eine Gegenkraft gegenüber dem Hilfskolben (150) verschiebbar ist.
  37. Verstelleinrichtung nach einem der Ansprüche 34 bis 36,
    dadurch gekennzeichnet, daß das Ventilelement (160) unter dem Unterdruck im Druckraum (5d) in eine die Zuführöffnung (159) freigebende Lage elastisch verformbar ist.
EP01123536A 2000-10-11 2001-09-29 Betätigungseinrichtung zum Festlegen einer Nockenwelle eines Antriebsmotors eines Fahrzeuges in einer Startposition Expired - Lifetime EP1197641B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10050225A DE10050225A1 (de) 2000-10-11 2000-10-11 Betätigungseinrichtung zum Festlegen einer Nockenwelle eines Antriebsmotors eines Fahrzeuges, vorzugsweise eines Kraftfahrzeuges, in einer Startposition
DE10050225 2000-10-11

Publications (3)

Publication Number Publication Date
EP1197641A2 EP1197641A2 (de) 2002-04-17
EP1197641A3 EP1197641A3 (de) 2003-01-29
EP1197641B1 true EP1197641B1 (de) 2005-02-09

Family

ID=7659325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01123536A Expired - Lifetime EP1197641B1 (de) 2000-10-11 2001-09-29 Betätigungseinrichtung zum Festlegen einer Nockenwelle eines Antriebsmotors eines Fahrzeuges in einer Startposition

Country Status (4)

Country Link
US (3) US6739297B2 (de)
EP (1) EP1197641B1 (de)
DE (2) DE10050225A1 (de)
ES (1) ES2233543T3 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8453616B2 (en) 2009-10-27 2013-06-04 Hilite Germany Gmbh Vane-type motor cam phaser with a friction disc and mounting method
US8505582B2 (en) 2010-05-03 2013-08-13 Hilite Germany Gmbh Hydraulic valve
US8662040B2 (en) 2010-04-10 2014-03-04 Hilite Germany Gmbh Oscillating-motor camshaft adjuster having a hydraulic valve
US8752514B2 (en) 2010-12-20 2014-06-17 Hilite Germany Gmbh Hydraulic valve for an oscillating motor adjuster

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050056249A1 (en) * 2003-07-24 2005-03-17 Matthias Heinze Camshaft adjustment control device
DE102004035035B4 (de) * 2003-07-24 2022-04-14 Daimler Ag Nockenwellenversteller für Brennkraftmaschinen
DE102004024132A1 (de) * 2004-05-14 2005-12-08 Hofer Mechatronik Gmbh Ventil, insbesondere zur Steuerung einer Nockenwellenverstelleinrichtung für Kraftfahrzeuge
DE102005060111A1 (de) 2005-12-16 2007-07-05 Schaeffler Kg Nockenwellenverstellerzuleitung
US20070221149A1 (en) * 2006-03-22 2007-09-27 Victoriano Ruiz Auxiliary cam phaser hydraulic circuit and method of operation
JP4640616B2 (ja) * 2006-08-23 2011-03-02 アイシン精機株式会社 弁開閉時期制御装置
US20090272366A1 (en) * 2008-04-30 2009-11-05 Caterpillar Inc. Internal combustion engine set up method and fuel pump having installation assist mechanism
US9022067B2 (en) * 2008-10-09 2015-05-05 Eaton Corporation Dual variable valve solenoid module
DE102009022869A1 (de) * 2009-05-27 2010-12-09 Hydraulik-Ring Gmbh Flügelzellennockenwellenverstellersystem
DE102009034512A1 (de) * 2009-07-25 2011-01-27 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zur variablen Einstellung der Steuerzeiten von Gaswechselventilen einer Brennkraftmaschine
DE102009052841A1 (de) 2009-11-13 2011-05-19 Hydraulik-Ring Gmbh Nockenwelleneinsatz
DE102009054053A1 (de) 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Druckspeicher und hydraulisches System
DE102009054055A1 (de) 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Schaltbare Vorrichtung zur Druckversorgung
DE102009054051A1 (de) 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Schaltbare Vorrichtung zur Druckversorgung mit passivem Zusatzdruckspeicher
DE102009054054A1 (de) 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Montageanordnung und Verfahren zur Montage eines Druckspeichers für Brennkraftmaschinen
DE102009054050A1 (de) 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Schaltbare Vorrichtung zur Druckversorgung
DE102009054052B4 (de) 2009-11-20 2018-08-23 Schaeffler Technologies AG & Co. KG Schaltbare Vorrichtung zur Druckversorgung
DE102010023863A1 (de) 2010-06-15 2011-12-15 Hydraulik-Ring Gmbh Gebaute Nockenwelle mit einem Schwenkmotorversteller
KR101235056B1 (ko) * 2010-12-06 2013-02-19 현대자동차주식회사 전동식 cvvt 제어를 이용한 gdi 엔진의 시동성 개선 방법
DE102012201551B4 (de) 2012-02-02 2022-05-12 Schaeffler Technologies AG & Co. KG Nockenwellenversteller und Verfahren zum Füllen eines Volumenspeichers in einem Nockenwellenversteller
DE102016210177B4 (de) 2015-07-08 2022-03-31 Ford Global Technologies, Llc Variable Nockenwellensteuervorrichtung

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779669A (en) * 1972-05-22 1973-12-18 Wooster Brush Co Pump spray unit
JPS5578150A (en) * 1978-12-06 1980-06-12 Nissan Motor Co Ltd Exhaust gas return control device for internal conbustion engine
DE3800761A1 (de) * 1987-01-14 1988-07-28 Nippon Abs Ltd Blockierschutzvorrichtung fuer fahrzeugbremsanlagen
DE4023853A1 (de) * 1990-07-27 1992-01-30 Audi Ag Ventilgesteuerte brennkraftmaschine
JP2516837B2 (ja) * 1990-09-25 1996-07-24 日信工業株式会社 後輪ブレ―キ用制動液圧制御装置
US5271360A (en) * 1990-11-08 1993-12-21 Aisin Seiki Kabushiki Kaisha Valve opening and closing timing control apparatus
US5509383A (en) * 1991-02-20 1996-04-23 Itt Automotive Europe Gmbh Hydraulic unit
US5355849A (en) * 1992-07-20 1994-10-18 Miljenko Schiattino Automatic variator valve overlap or timing and valve section
US5291860A (en) * 1993-03-04 1994-03-08 Borg-Warner Automotive, Inc. VCT system with control valve bias at low pressures and unbiased control at normal operating pressures
US5367992A (en) * 1993-07-26 1994-11-29 Borg-Warner Automotive, Inc. Variable camshaft timing system for improved operation during low hydraulic fluid pressure
JP3733600B2 (ja) * 1994-08-31 2006-01-11 株式会社デンソー エンジンの弁動作タイミング調整装置
JP3039331B2 (ja) * 1995-03-27 2000-05-08 トヨタ自動車株式会社 内燃機関のバルブタイミング制御装置
US5823152A (en) * 1995-06-14 1998-10-20 Nippondenso Co., Ltd. Control apparatus for varying a rotational or angular phase between two rotational shafts, preferably applicable to a valve timing control apparatus for an internal combustion engine
DE69702561T2 (de) * 1996-04-03 2001-04-19 Toyota Motor Co Ltd Variable Ventilzeitsteuervorrichtung für Brennkraftmaschine
DE69703670T2 (de) * 1996-04-04 2001-05-10 Toyota Motor Co Ltd Variable Ventilzeitsteuervorrichtung für Brennkraftmaschine
EP0821138B1 (de) * 1996-07-23 2002-06-05 Aisin Seiki Kabushiki Kaisha Ventilzeitsteuervorrichtungen
US5799694A (en) * 1996-10-10 1998-09-01 Eaton Corporation Steering control unit
JP3620684B2 (ja) * 1997-01-31 2005-02-16 株式会社デンソー 内燃機関用バルブタイミング調整装置
JP3164007B2 (ja) 1997-02-14 2001-05-08 トヨタ自動車株式会社 内燃機関のバルブタイミング調整装置
DE19723945A1 (de) * 1997-06-06 1998-12-10 Schaeffler Waelzlager Ohg Vorrichtung zum Verändern der Öffnungs- und Schließzeiten von Gaswechselventilen einer Brennkraftmaschine
JPH1150820A (ja) * 1997-08-05 1999-02-23 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
CA2217623C (en) 1997-10-02 2001-08-07 Robert Siy Cold dense slurrying process for extracting bitumen from oil sand
JP4147435B2 (ja) * 1998-01-30 2008-09-10 アイシン精機株式会社 弁開閉時期制御装置
JPH11280427A (ja) * 1998-03-31 1999-10-12 Aisin Seiki Co Ltd 弁開閉時期制御装置
JP3918971B2 (ja) * 1998-04-27 2007-05-23 アイシン精機株式会社 弁開閉時期制御装置
JP2000230511A (ja) 1998-12-07 2000-08-22 Mitsubishi Electric Corp ベーン式油圧アクチュエータ
JP3536692B2 (ja) * 1998-12-07 2004-06-14 トヨタ自動車株式会社 内燃機関のバルブタイミング制御装置
GB2350660A (en) * 1999-06-01 2000-12-06 Mechadyne Internat Plc Phase change coupling
US6322439B1 (en) * 2000-09-14 2001-11-27 Robert C. David Multi-directional vent hatch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8453616B2 (en) 2009-10-27 2013-06-04 Hilite Germany Gmbh Vane-type motor cam phaser with a friction disc and mounting method
US8794201B2 (en) 2009-10-27 2014-08-05 Hilite Germany Gmbh Vane-type motor cam phaser with a friction disc and method for mounting a friction disc on a rotor
US8662040B2 (en) 2010-04-10 2014-03-04 Hilite Germany Gmbh Oscillating-motor camshaft adjuster having a hydraulic valve
US8505582B2 (en) 2010-05-03 2013-08-13 Hilite Germany Gmbh Hydraulic valve
US8752514B2 (en) 2010-12-20 2014-06-17 Hilite Germany Gmbh Hydraulic valve for an oscillating motor adjuster

Also Published As

Publication number Publication date
ES2233543T3 (es) 2005-06-16
DE50105289D1 (de) 2005-03-17
DE10050225A1 (de) 2002-04-25
US6739297B2 (en) 2004-05-25
US6968815B2 (en) 2005-11-29
US20040187817A1 (en) 2004-09-30
EP1197641A3 (de) 2003-01-29
US7107952B2 (en) 2006-09-19
US20020088417A1 (en) 2002-07-11
US20040187816A1 (en) 2004-09-30
EP1197641A2 (de) 2002-04-17

Similar Documents

Publication Publication Date Title
EP1197641B1 (de) Betätigungseinrichtung zum Festlegen einer Nockenwelle eines Antriebsmotors eines Fahrzeuges in einer Startposition
EP1703184B1 (de) Ventil mit Rückschlagsventil
EP1621240B1 (de) Ringfilter
EP3219941B1 (de) Hydraulikventil für einen schwenkmotorversteller einer nockenwelle
DE102010019004B4 (de) Schwenkmotorversteller mit einem Hydraulikventil
EP1477636B1 (de) Nockenwellenversteller für Verbrennungskraftmaschinen von Kraftfahrzeugen
AT518848B1 (de) Pleuel mit verstellbarer Pleuellänge mit mechanischer Betätigung
DE102015110838A1 (de) Ventilzeitsteuer-Steuervorrichtung mit Lenkzufuhr für eine Mittenpositionsverriegelung und Nockentorsionsrückführung
EP2796674A1 (de) Zentralventil für einen Schwenkmotorversteller
EP2501905B1 (de) Schaltbare vorrichtung zur druckversorgung
DE102012210178B4 (de) Steuerventil eines Nockenwellenverstellers
EP2905434A1 (de) Schwenkmotornockenwellenversteller mit einem hydraulikventil
DE102009054052B4 (de) Schaltbare Vorrichtung zur Druckversorgung
WO2016000692A1 (de) Mittenverriegelung für einen nockenwellenversteller
DE102014214610B4 (de) Nockenwellenverstellvorrichtung für eine Brennkraftmaschine
EP1549828A1 (de) Verriegelungseinrichtung für einen nockenwellenversteller
DE202010006605U1 (de) Zentralventil
EP1336031A1 (de) Vorrichtung zur relativen drehwinkelverstellung einer nockenwelle einer brennkraftmaschine zu einem antriebsrad
WO2010063556A1 (de) Hydraulisches wegeventil
EP0976948B1 (de) Dämpfungseinrichtung für bewegte Massen, vorzugsweise für elektromagnetische Antriebssysteme
EP2920436B1 (de) Schwenkmotorversteller mit einem elektromagnetisch betätigten hydraulikventil
DE102010013777A1 (de) Zentralventil
DE19756017A1 (de) Einrichtung zur relativen Drehlagenänderung einer Welle zum Antriebsrad
DE1751703B2 (de) Regeleinrichtung im arbeitskolben einer brennkraftmaschine zur veraenderung der kompression
DE1809160C3 (de) Ventilanordnung in einem Arbeitskolben einer Hubkolben-Brennkraftmaschine mit selbsttätig veränderbarem Kompressionsverhältnis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 02D 13/02 B

Ipc: 7F 01L 1/34 B

Ipc: 7F 01L 13/00 B

Ipc: 7F 01L 1/344 A

17P Request for examination filed

Effective date: 20030530

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20031126

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050209

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50105289

Country of ref document: DE

Date of ref document: 20050317

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050509

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2233543

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060807

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060908

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060927

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060907

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070929

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070929

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080919

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401