EP1195439A2 - Retrovirale Vektoren mit Fremdsequenzinsertion zwischen retroviraler Primerbindungsstelle und retroviralem Spleissdonor - Google Patents
Retrovirale Vektoren mit Fremdsequenzinsertion zwischen retroviraler Primerbindungsstelle und retroviralem Spleissdonor Download PDFInfo
- Publication number
- EP1195439A2 EP1195439A2 EP01120793A EP01120793A EP1195439A2 EP 1195439 A2 EP1195439 A2 EP 1195439A2 EP 01120793 A EP01120793 A EP 01120793A EP 01120793 A EP01120793 A EP 01120793A EP 1195439 A2 EP1195439 A2 EP 1195439A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- retroviral
- sequences
- vector
- vector according
- ltr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/13011—Gammaretrovirus, e.g. murine leukeamia virus
- C12N2740/13022—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/13011—Gammaretrovirus, e.g. murine leukeamia virus
- C12N2740/13041—Use of virus, viral particle or viral elements as a vector
- C12N2740/13043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/46—Vector systems having a special element relevant for transcription elements influencing chromatin structure, e.g. scaffold/matrix attachment region, methylation free island
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2830/00—Vector systems having a special element relevant for transcription
- C12N2830/50—Vector systems having a special element relevant for transcription regulating RNA stability, not being an intron, e.g. poly A signal
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2840/00—Vectors comprising a special translation-regulating system
- C12N2840/20—Vectors comprising a special translation-regulating system translation of more than one cistron
- C12N2840/203—Vectors comprising a special translation-regulating system translation of more than one cistron having an IRES
Definitions
- the invention relates to retroviral gene transfer vectors, where between the retroviral primer binding site (PBS) and the retroviral splice donor (SD) introduced foreign sequences are.
- PBS retroviral primer binding site
- SD retroviral splice donor
- Retroviral vectors have the structure shown schematically in FIG. 1, with foreign sequences being built in either downstream of the splice acceptor signal (SA) downstream of the splice donor signal (SD) or within the terminal sequence repetitions ( long terminal repeat, LTR) of the retroviral vector.
- SA splice acceptor signal
- SD splice donor signal
- LTR long terminal repeat
- Any DNA sequence is to be regarded as a foreign sequence in the sense of the invention values that are not in a natural, evolutionary way, but was inserted using targeted molecular genetic methods.
- Vector Becomes the enhancer / promoter from the U3 region of the LTR removed (Yu et al., 1986), one modified in this way Vector is characterized by increased biosafety as the Vector sequence when infected with replication-competent retroviruses cannot be mobilized. The risk of activation downstream cellular sequences are diminished. Across from conventional constructs is the inventive Vector by an at least equivalent efficiency of Gene expression.
- the vectors according to the invention contain a foreign sequence [FS1] which is upstream of the retroviral splice donor signal (SD) - which is still before the packaging signal (see FIGS. 1 and 2) - and is inserted downstream of the retroviral primer binding site (PBS).
- a second foreign sequence can be inserted downstream of the splice donor or packaging signal, as in conventional retroviral vectors (foreign sequence 2, FS2) (Hildinger et al., 1999; Deffaud and Darlix, 2000).
- [FS2] is preferably inserted between [SA] and [PP], the presence of [SA] not being a necessary prerequisite for the vectors according to the invention.
- the terminal sequence repeat ( LTR) of the retroviral vector can also contain such foreign sequences (FS3).
- the vector as foreign sequence as defined above can either contain only [FS1] or [FS1] in combination with [FS2] and / or [FS3].
- the foreign sequence [FS2] is preferably composed of the group from cDNA sequences (e.g. coding for enhanced green fluorescent protein), enhancer and / or promoter sequences, sequences for internal ribosome entry points (IRES), sequences for Matrix attachment regions (MAR, e.g. from the human interferon ⁇ gene) and / or sequences for RNA processing signals (e.g. Post-transcriptional regulatory element of Woodchuck hepatitis virus) selected.
- cDNA sequences e.g. coding for enhanced green fluorescent protein
- enhancer and / or promoter sequences sequences for internal ribosome entry points (IRES)
- MAR Matrix attachment regions
- RNA processing signals e.g. Post-transcriptional regulatory element of Woodchuck hepatitis virus
- the foreign sequence [FS3] is preferably composed of the group from cloning sites for deletion of the LTR enhancer promoter, Enhancer and / or promoter sequences, cDNA sequences, Sequences for matrix attachment regions (MAR, e.g. from human Interferon- ⁇ gene) and / or sequences for RNA processing signals (e.g. Woodchuck's post-transcriptional regulatory element hepatitis virus) selected.
- MAR e.g. from human Interferon- ⁇ gene
- RNA processing signals e.g. Woodchuck's post-transcriptional regulatory element hepatitis virus
- the retroviral transgene is constituted accordingly the structure shown in Fig. 1, wherein the LTR sequences for the U3 region of the vector from the 3'-LTR of the plasmid derive the R and U5 sequences, however, from the 5 'LTR of the plasmid.
- the proviral plasmid of the vector SMICIP2s is called pSMICIP2s (eGFP); the sequence of this plasmid is as follows reproduced in the sequence listing. A sample of this plasmid was on August 31, 2000 at the German Collection of Microorganisms and cell cultures (DSMZ), Mascheroder Weg 1b, 38124 Braunschweig filed under No. DSM 13711.
- infectious Titer and expression properties in the transduced target cells achieve, the conventional vectors without [FS1] at least are comparable.
- SMICIP2s (eGFP) Sequence combination has been shown to be a retroviral Vector one located internally between the LTR sequences Enhancer / promoter with downstream intron in the 5'-untranslated Region can contain, with the insertion of the foreign sequences in the sense orientation of the retroviral RNA.
- the invention relates also a vector in which the retroviral splice donor signal (SD) and / or the retroviral splice acceptor signal (SA) through Mutation is / are inactivated.
- SD retroviral splice donor signal
- SA retroviral splice acceptor signal
- the retrovirus used for the vector construction according to the invention is from the group consisting of mouse leukemia viruses and bird retroviruses (including spleen necrosis virus), spuma viruses (including human foamy virus), B-type retroviruses (including Mouse mammary tumor virus), D-type retroviruses (including Mason-Pfizer monkey virus) or lentiviruses (including human immunodeficiency virus I) selected.
- retro viruses all show a genetically conserved structure regarding the Sequence PBS followed by SD and packaging signal and they are therefore for the inventive insertion of the [FS1], with or downstream intron, suitable.
- the present invention also relates to an infectious Virus particle, the retroviral vector according to the invention contains.
- the vector can be introduced into a host cell the desired when cultivated under suitable conditions Protein expressed.
- the invention therefore also relates to Host cells with the vector according to the invention or with the called infectious virus particles are infected. Both Host cells are preferably lymphatic, hematopoietic or mesenchymal cells.
- the retroviral vector of the present invention can be universal be used. Possible areas of application are Gene therapy, the cloning of genes or the expression and / or Overexpression of proteins or RNA. It is also suitable the vector especially for the transfection of lymphatic, haematopoietic or mesenchymal cells.
- the present invention further relates to a method for Obtaining proteins by using a host cell cultivated in a suitable medium under conditions which are necessary for Expression of the foreign sequences [FS1], [FS2] and / or Proteins encoded [FS3] are necessary, the so produced Separates protein from the cells and the medium.
- the retroviral vector can also be used in gene therapy used or for the manufacture of a pharmaceutical preparation be used for gene therapy, the vector being more suitable Form is present to be introduced into the target cells.
- the invention further relates to a pharmaceutical preparation which contains a aforementioned vector together with pharmaceutically acceptable auxiliaries and carriers.
- This preparation is used for the transfection of corresponding target cells in vitro and in vivo.
- lymphatic, hematopoietic or mesenchymal cells transfected with the vector ( in vitro ) can also be viewed and administered as a pharmaceutical preparation.
- the molecular biological construction of the retroviral vector occurred at the level of bacterial plasmids that were proviral Sequences included.
- the initial construct used here is derived from the plasmid pSF ⁇ 91 (Hildinger et al., 1999; Fig. 3) which detects the 3'-LTR from the spleen focus-forming virus (SFFVp), the 5'-U3 from the MPSV and the 5'-untranslated region (leader) of the murine embryonic stem cell virus (MESV) contains.
- pSF ⁇ 91 contains a modified leader region that is in the presence distinguishes two splice signals, namely the splice donor (SD) and the splice acceptor (SA; Fig. 3).
- the constructs used additionally have a Sal I restriction site downstream of the -PBS at base position 1030 (FIG. 3, arrow).
- the cDNA of the enhanced green flourescent protein (eGFP) and an 800 bp fragment of the core matrix attachment region from the human ⁇ -interferon gene locus were introduced into these plasmids. Furthermore, the cis -active elements of the U3 region in the 3'-LTR were deleted and the eGFP cDNA was placed under the transcriptional control of the U3 region of the SFFVp, which was inserted 5'-wards from the SD in the leader region.
- eGFP enhanced green flourescent protein
- the insertion of the eGFP cDNA from the plasmid pMP110 (eGFP) (Schambach et al., 2000) into pSF ⁇ 91 was carried out via the restriction sites of Not I and Bam HI at the 5 'end of the leader region (FIG. 4).
- the plasmid pSF ⁇ 91 (eGFP) was formed.
- the primers M13reverse (reverse strand synthesis) and U3EcoRI (forward strand synthesis) were used for the amplification of the other fragment. They hybridize sequence-specifically at the 3'-end of the U3 region (U3EcoRI) and downstream from the 3'-LTR (M13reverse; FIG. 5A).
- U3EcoRI which has an Eco RI restriction site at the 5 'end, inserted an Eco RI site at the 5' end of the amplificate. Restriction of the amplificate with Xho I gave rise to a 170 bp fragment which, in addition to the 3 ′ end of the U3 region, contained the R and U5 regions (FIG. 5B).
- the two cut amplicons were successively inserted into the cloning vector pBluescript SK II via the restriction sites Bam HI and Eco RV or Eco RV and Xho I, in order to then be cut out as a fragment using the restriction enzymes Bam HI and Xho I.
- the oligonucleotides U3NheI and U3EcoRI each end at the 5 'end with the base triplet ATC, so that when the amplified products were blunt-end linked, an Eco RV interface was formed (FIG. 5; sequence: GATATC).
- the oligonucleotide primers used for the PCR were manufactured by Gibco BRL.
- the region downstream of the eGFP cDNA was cut out of the plasmid pSF ⁇ 91 (eGFP) with Bam HI and Xho I and replaced by the mutually linked PCR fragments (FIG. 5C).
- the resulting plasmids pSIN91 (eGFP) and pSIN110 (eGFP) do not contain any enhancer or promoter elements in the U3 region of the 3'-LTR.
- the promoter was inserted in the leader region in front of the SD site via the Sal I restriction site (FIG. 6).
- the promoter fragment was first amplified by PCR with the sequence-specific primers XhoEagSF65 and SalEagSF63, which are located at the 5 'end of the 3'-SFFVp-LTR (XhoEagSF65) or in the region approximately 30 bp downstream from the 5' end of the R region (SalEagSF63) hybridize (Fig. 6A).
- the amplificate therefore also included the first 27 nucleotides of the R region, which contain the cap signal and are therefore indispensable for optimal translation of the mRNA (Cupelli and Lenz, 1991).
- the oligonucleotides used for the PCR have recognition sites for the restriction endonucleases Xho I and Eag I (XhoEagSF65) or Sal I and Eag I (SalEagSF63) at their 5'-end, so that the amplificate has precisely these interfaces at the 5'- or 3 'end.
- XhoEagSF65 restriction endonucleases
- SalI and Eag I SalI and Eag I
- the MAR was inserted into the vector in the sense orientation to the promoter, which was verified by restriction cleavage with the endonuclease SstI, which cuts the MAR into two fragments of different sizes. It is therefore in the same orientation to the promoter as in the human interferon- ⁇ gene locus (Mielke et al., 1990).
- the proviral plasmid pSMICIP2s (eGFP), whose Plasmid map is shown in Fig. 8.
- a sample of this plasmid was on August 31, 2000 at the German Collection of Microorganisms and cell cultures (DSMZ), Mascheroder Weg 1b, 38124 Braunschweig deposited under the number DSM 13711.
- Replication-defective retroviral vectors are produced in cell culture in safety-modified packaging cells.
- a common packaging cell is PHOENIX-ampho, which releases replication-defective mouse retroviruses with amphotropic coat protein (Kinsella and Nolan, 1996).
- Virus supernatants with an infectious titer between 10 5 and 10 6 particles per ml of cell culture supernatant can be harvested up to 96 hours after transfection of the proviral vector plasmids.
- a second plasmid is co-transfected, which encodes the coat protein of the vesicular stomatitis virus (VSV-G).
- VSV-G vesicular stomatitis virus
- the titer of the vectors SMICIP2s (eGFP) (titer 223800 ⁇ 45400 / ml) and SINoMI-EGFP (titer 237500 ⁇ 55000 / ml) are of the same order of magnitude as the titer of the conventional vector SF110-EGFP (titer 134700 ⁇ 76700 / ml ).
- the vectors SINoM (43500 ⁇ 13000 / ml) and SINoMS (31800 ⁇ 64000 / ml) achieve lower titers.
- the expression of the transferred genes is an important criterion for assessing the quality of retroviral vectors.
- it is beneficial, even crucial for some, to place an intron in the 5'-untranslated region (Buchmann and Berg, 1988; Hildinger et al., 1999).
- the intron must be retained in the packaging cell when the retroviral RNA is expressed, since otherwise it is no longer contained in the transferred retroviral genome.
- the intron can be preserved, for example, by inserting splice donor and splice acceptor signals on the flanks of ⁇ (Hildinger et al., 1999). So far, this has only been practiced with vectors which carry enhancer-promoter sequences in the LTRs.
- Such vectors have the potential disadvantage that transcriptional activation of downstream cellular sequences can occur if the enhancer-promoter is activated in the 3'-LTR. It is therefore desirable to implement the principle of the intron-containing transgene in the context of a vector whose enhancer-promoter region has been deleted in the LTR (so-called self-inactivating vector, Yu et al., 1986). Such a construction was first implemented in the vectors SMICIP2s (eGFP) and SINoM-EGFP according to the invention.
- mice fibroblasts from the SC1 line and mouse lymphocytes from the EL4 line were transduced using the same amounts of infectious virus particles.
- the expression level of EGFP was determined after 48 hours in the flow cytometer. At least 10,000 independent events were measured per recording.
- the mean expression level was determined on the basis of the mean (mean fluorescence in arbitrary units) from at least two independent experiments.
- the vector SMICIP2s mediates the highest expression of all the vectors tested (average fluorescence 682 ⁇ 19).
- SINoM-EGFP the variant without MAR
- SINoMS-EGFP the variant without intron and MAR
- achieves an even lower expression 183 ⁇ 11
- SF110-EGFP 185 ⁇ 2
- the control vector SINoMI-EGFP corresponds to the classic structure of a self-inactivating vector, since the promoter is located directly in front of the cDNA without an intron; this vector is also inferior in expression to the SMICIP2s (eGFP) vector (315 + 21).
- the vectors according to the invention also mediate in EL4 cells the enhancer promoter as foreign sequence 1 [FS1] and downstream Intron the highest expression, however, shows up here no promotional influence of the MAR region; the vector SINoM-EGFP mediates the highest expression (713 ⁇ 19), followed by SMI-CIP2s (eGFP) (600 ⁇ 14).
- SINoMS-EGFP the variant without intron and MAR, achieved a significantly lower expression (391 ⁇ 2), but is even better than the conventional vector, SF110-EGFP (185 ⁇ 2).
- the control SINoMI-EGFP (391 ⁇ 2) is also evident again inferior to the vectors SMICIP2s (eGFP) and SINoM-EGFP.
- RNA secondary structure of the packaging signal for Moloney murine leukemia virus Virology 183 , 611-619.
- CD34 splice-variant an attractive marker for selection of gene-modified cells. Mol. Ther. 5 , 448-456.
- HILDINGER M., ABEL, KL, OSTERTAG, W., and BAUM, C. (1999). Design of 5 'untranslated sequences in retroviral vectors developed for medical use. J. Virol. 73 , 4083-4089.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Gastroenterology & Hepatology (AREA)
- Microbiology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
- [LTR]
- die endständige Sequenzwiederholung (long terminal repeat, LTR) des retroviralen Vektors ist,
- [PBS]
- die retrovirale Primerbindungsstelle ist,
- [SD]
- das retrovirale Spleißdonorsignal ist,
- [Ψ]
- das retrovirale Verpackungssignal ist,
- [SA]
- das retrovirale Spleißakzeptorsignal ist,
- [PP]
- ein Polypurintrakt (PP-Trakt) ist,
- [FS1]: Fragment aus dem LTR des Maus-spleen-focus-forming-Retrovirus (SFFVp), das den retroviralen Enhancer-Promotor und die ersten 27 Basenpaare der 5'-untranslatierten Region des Retrovirus enthält (Baum et al., 1995).
- [FS2]: Kodierende Sequenzen (cDNA) des enhanced green fluorescent proteins (EGFP; Yang et al., 1996) mit 3' anschließendem, nicht-kodierenden Genfragment des humanen Interferon-β-Gens, das eine Matrix-Anheftungsregion (MAR) enthält (Schübeler et al., 1996).
- [FS3]: Künstliche Klonierungsstelle zur Deletion des LTR-Enhancer-Promotors (vgl. Yu et al., 1986).
- Variante 1: wie SMICIP2s(eGFP), jedoch fehlen die MAR-Sequenzen (Vektor SINoM-EGFP);
- Variante 2: wie Variante 1, jedoch fehlen zusätzlich die Spleißdonor- bzw. Spleißakzeptorsequenzen (Vektor SINoMS-EGFP);
- Kontrollvektor 1: der Enhancer-Promotor in der Fremdsequenz 1 wurde deletiert und stattdessen vor die EGFP-CDNA in die Fremdsequenz 2 eingefügt (Vektor SINoMI-EGFP) - repräsentiert herkömmliche Vektoren mit selbstinaktivierendem LTR (Yu et al., 1986);
- Kontrollvektor 2: repräsentiert den herkömmlichen Vektortypus mit intaktem LTR (Fig. 1B) ohne Fremdsequenz 1 (Vektor SF110-EGFP; Hildinger et al., 1999).
- Bei Erhalt des Enhancer/Promotors im LTR kann als FS1 eine cDNA eingefügt werden. Die FS2 kann dann eine zweite Expressionskassette enthalten. Dabei kann die Verknüpfung der Expression mit FS2 entweder durch einen internen Promotor oder eine interne Ribosomeneintrittstelle vor der cDNA in FS2 geschehen kann. Damit wird die Möglichkeit der gleichzeitigen Expression mehrerer cDNAs von einem Vektor verbessert.
- Es ist auch möglich, in der FS1 eine reine Enhancersequenz einzusetzen, die entweder auf einen Promotor im LTR (FS3) oder auf einen internen Promotor in FS2 expressionsfördernd wirkt.
- Die Einfügung einer Matrix-Anheftungsregion in der FS1 kann sich förderlich auf die Expression eines Vektors auswirken, der einen internen Promotor mit nachfolgender cDNA in der FS2 oder eine Kombination von Promotor und cDNA als FS3 im LTR trägt.
- Liegt ein Vektor vor, der einen Promotor mitsamt nachfolgender cDNA als FS3 im LTR trägt, kann der Einbau eines RNA-Prozessierungssignals (z.B. posttranskriptionelles Regulatorelement des Woodchuck hepatitis virus) in der FS2 expressionsfördernd wirken, ähnlich wie für konventionelle Vektoren gezeigt (Zufferey et al., 1999).
- Ansatz:
- 10 ng DNA
1 µl Pfu Turbo™-Polymerase (1 U/µl) (Hersteller: Stratagene, La Jolla, US)
100 pmol Primer 1
100 pmol Primer 2
5 µl dNTP-Mix (je 10 mM) (Hersteller: Qiagen, Hilden, DE)
5 µl 10 x Cloned-Pfu-Puffer (100 mM KCl; 100 mM (NH4)2SO4; 200 mM Tris-HCl, pH 8.5; 20 mM MgSO4; 1% w/v Triton X-100; 1 mg/ml BSA) (Stratagene) ad. 50 µl Aqua dest.
- eine Fremdgeninsertion zwischen der retroviralen PBS und dem Verpackungssignal möglich ist
- Vektoren mit diesem Aufbau in ausreichenden Titern produziert werden können
- in einer bevorzugten Ausführung die erfindungsgemäße Fremdsequenzinsertion genutzt werden kann, um Vektoren mit verbesserten Expressionseigenschaften und vorteilhaften, die biologische Sicherheit des Gentransfers potentiell fördernden Eigenschaften zu erzeugen.
Claims (18)
- Retroviraler Vektor mit dem allgemeinen Aufbau bei dem
- [LTR]
- die endständige Sequenzwiederholung (long terminal repeat, LTR) des retroviralen Vektors ist,
- [PBS]
- die retrovirale Primerbindungsstelle ist,
- [SD]
- das retrovirale Spleißdonorsignal ist,
- [Ψ]
- das retrovirale Verpackungssignal ist,
- [SA]
- das retrovirale Spleißakzeptorsignal ist,
- [PP]
- ein Polypurintrakt (PP-Trakt) ist,
der Vektor zwischen der retroviralen Primerbindungsstelle (PBS) und dem retroviralen Spleißdonor (SD) eine weitere Fremdsequenz [FS1] enthält, die aus der Gruppe bestehend aus Enhancer-Promotor-Sequenzen, Enhancer-Sequenzen, cDNA-Sequenzen, Sequenzen für Chromatin-Modifikation, und/oder Sequenzen für RNA-Prozessierungssignale ausgewählt ist. - Vektor nach Anspruch 1, dadurch gekennzeichnet, daß er ferner eine zwischen [SA] und [PP] insertierte Fremdsequenz 2 [FS2] enthält, die aus der Gruppe bestehend aus cDNA-Sequenzen, Enhancer- und/oder Promotor-Sequenzen, Sequenzen für Interne Ribosomeneintrittstellen (IRES), Sequenzen für Chromatin-Modifikation und/oder Sequenzen für RNA-Prozessierungssignale ausgewählt ist.
- Vektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die endständige Sequenzwiederholung (LTR) eine Fremdsequenz beinhaltet, die aus der Gruppe bestehend aus Klonierungsstellen zur Deletion des LTR-Enhancer-Promotors, Enhancer- und/oder Promotor-Sequenzen, cDNA-Sequenzen, Sequenzen für Chromatin-Modifikation und/oder Sequenzen für RNA-Prozessierungssignale ausgewählt ist.
- Vektor nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß das retrovirale Spleißdonorsignal (SD) und/oder das retrovirale Spleißakzeptorsignal (SA) durch Mutation inaktiviert ist/sind.
- Vektor nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß das Retrovirus aus der Gruppe bestehend aus Mausleukämieviren, Vogelretroviren, Spumaviren, B-Typ-Retroviren, D-Typ-Retroviren oder Lentiviren ausgewählt ist.
- Vektor ensprechend DSM 13711.
- Infektiöses Viruspartikel, dadurch gekennzeichnet, daß das Partikel den retroviralen Vektor nach den Ansprüchen 1 bis 6 enthält.
- Wirtszelle, dadurch gekennzeichnet, daß sie mit dem retroviralen Vektor nach den Ansprüchen 1 bis 6 transfiziert ist.
- Wirtszelle nach Anspruch 8, dadurch gekennzeichnet, daß sie mit einem infektiösen Viruspartikel nach Anspruch 7 infiziert ist.
- Wirtszelle nach Anspruch 8, dadurch gekennzeichnet, daß sie mit einem Vektor entsprechend DSM 13711 transfiziert ist.
- Wirtszelle nach den Ansprüchen 7 bis 10, dadurch gekennzeichnet, daß sie eine hämatopoetische, mesenchymale oder lymphatische Zelle ist.
- Verwendung des retroviralen Vektors nach den Ansprüchen 1 bis 6 in der Gentherapie.
- Verwendung des retroviralen Vektors nach den Ansprüchen 1 bis 6 zur Klonierung von Genen.
- Verwendung des retroviralen Vektors nach den Ansprüchen 1 bis 6 zur Expression und/ oder Überexpression von Proteinen oder RNA.
- Verwendung des retroviralen Vektors nach den Ansprüchen 1 bis 6 zur Transfektion hämatopoetischer, mesenchymaler oder lymphatischer Zellen.
- Verfahren zur Gewinnung von Proteinen, dadurch gekennzeichnet, daß man eine Wirtszelle nach den Ansprüchen 8 bis 11 in einem geeigneten Medium unter Bedingungen kultiviert, die zur Expression der von den Fremdsequenzen [FS1], [FS2] und/oder [FS3] kodierten Proteine notwendig sind, wobei man das so erzeugte Protein von den Zellen und dem Medium abtrennt.
- Verwendung des retroviralen Vektors nach den Ansprüchen 1 bis 6 zur Herstellung eines pharmazeutischen Präparates zur Gentherapie, dadurch gekennzeichnet, daß der Vektor in geeigneter Form vorliegt, um in die Zielzellen eingeführt zu werden.
- Pharmazeutisches Präparat, dadurch gekennzeichnet, daß es einen Vektor nach den Ansprüchen 1 bis 6 zusammen mit pharmazeutisch verträglichen Hilfs- und Trägerstoffen enthält.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10045016A DE10045016B4 (de) | 2000-09-12 | 2000-09-12 | Retrovirale Vektoren mit Fremdsequenzinsertion zwischen retroviraler Primerbindungsstelle und retroviralem Spleißdonor |
DE10045016 | 2000-09-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1195439A2 true EP1195439A2 (de) | 2002-04-10 |
EP1195439A3 EP1195439A3 (de) | 2003-09-03 |
Family
ID=7655895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01120793A Withdrawn EP1195439A3 (de) | 2000-09-12 | 2001-09-10 | Retrovirale Vektoren mit Fremdsequenzinsertion zwischen retroviraler Primerbindungsstelle und retroviralem Spleissdonor |
Country Status (5)
Country | Link |
---|---|
US (1) | US7070992B2 (de) |
EP (1) | EP1195439A3 (de) |
JP (1) | JP2002272483A (de) |
CA (1) | CA2357081A1 (de) |
DE (1) | DE10045016B4 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SK287315B6 (sk) * | 2006-06-02 | 2010-06-07 | Biotika, A. S. | Spôsob izolácie polymyxínu B z vyfermentovanej pôdy |
SK287293B6 (sk) * | 2006-06-15 | 2010-05-07 | Biotika, A. S. | Spôsob fermentácie polymyxínu B pomocou produkčného mikroorganizmu Bacillus polymyxa |
DE102009021592A1 (de) * | 2009-05-15 | 2010-11-18 | Medizinische Hochschule Hannover | ASLV-Vektorsystem |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19822115B4 (de) * | 1998-05-08 | 2004-04-08 | Heinrich-Pette-Institut | Retrovirale Gentransfervektoren |
-
2000
- 2000-09-12 DE DE10045016A patent/DE10045016B4/de not_active Expired - Fee Related
-
2001
- 2001-09-10 EP EP01120793A patent/EP1195439A3/de not_active Withdrawn
- 2001-09-10 US US09/953,572 patent/US7070992B2/en not_active Expired - Fee Related
- 2001-09-11 CA CA002357081A patent/CA2357081A1/en not_active Abandoned
- 2001-09-12 JP JP2001276483A patent/JP2002272483A/ja active Pending
Non-Patent Citations (3)
Title |
---|
BAUM C ET AL: "NOVEL RETROVIRAL VECTORS FOR EFFICIENT EXPRESSION OF THE MULTIDRUG RESISTANCE (MDR-1) GENE IN EARLY HEMATOPOIETIC CELLS" JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, Bd. 69, Nr. 12, 1. Dezember 1995 (1995-12-01), Seiten 7541-7547, XP002036889 ISSN: 0022-538X * |
HILDINGER MARKUS ET AL: "Design of 5' untranslated sequences in retroviral vectors developed for medical use." JOURNAL OF VIROLOGY, Bd. 73, Nr. 5, Mai 1999 (1999-05), Seiten 4083-4089, XP002240461 ISSN: 0022-538X * |
LUTZKO CAROLYN ET AL: "Consistent, regulated transgene expression from retroviral and lentiviral vectors carrying S/MARS." BLOOD CELLS MOLECULES AND DISEASES, Bd. 28, Nr. 3, Mai 2002 (2002-05), Seite 336 XP002246129 Third Conference on Stem Cell Gene Therapy: Biology and Technology;Rockville, MD, USA; March 21-23, 2002, May-June, 2002 ISSN: 1079-9796 * |
Also Published As
Publication number | Publication date |
---|---|
DE10045016A1 (de) | 2002-03-28 |
CA2357081A1 (en) | 2002-03-12 |
JP2002272483A (ja) | 2002-09-24 |
DE10045016B4 (de) | 2004-07-29 |
US20020160971A1 (en) | 2002-10-31 |
EP1195439A3 (de) | 2003-09-03 |
US7070992B2 (en) | 2006-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69838758T2 (de) | Verfahren und mittel zur herstellung von sicheren, rekombinanten lentivirusvektoren mit hohem titer | |
DE69420033T2 (de) | Gibbon leukemia virus retrovirale vektoren | |
DE69636581T2 (de) | Retrovirale Vektoren | |
DE69535669T2 (de) | Retrovirale vektoren mit verminderter rekombinationsrate | |
DE69936577T2 (de) | Lentivirale Verpackungszellen | |
DE69129897T2 (de) | Methode des gentransfers mittels retrotransposons | |
DE602004010799T2 (de) | Synthetische bidirektionale promotoren und deren verwendungen | |
DE69128037T2 (de) | Bifunktionelle wählbare fusionsgene | |
DE69636248T2 (de) | Expressionssysteme | |
DE60023600T2 (de) | Replizierende retrovirale Konstrukte, ihre Herstellung und Verwendungen für den Gentransfer | |
EP1035210A2 (de) | Von SIVagm abgeleitete lentivirale Vektoren, Verfahren zu ihrer Herstellung und ihre Verwendung zur Genübertragung in Säugerzellen | |
DE68927089T2 (de) | Retroviraler vektor | |
DE60038555T2 (de) | Verpackungszelle | |
DE69520681T2 (de) | Nicht selbstinaktivierende retrovirale vektoren mit gezielter expression | |
DE69332519T2 (de) | Defekte verpackende nicht-oncoviren vektoren aus mpmv | |
EP0781343B1 (de) | Retrovirale vektorhybride und deren verwendung zum gentransfer | |
EP2430167B1 (de) | Aslv-vektorsystem | |
DE69434022T2 (de) | Retrovirale vektoren für die transduktion des beta-globingens, sowie derivaten der beta-ort kontrollierten region des beta-orts | |
DE10045016B4 (de) | Retrovirale Vektoren mit Fremdsequenzinsertion zwischen retroviraler Primerbindungsstelle und retroviralem Spleißdonor | |
EP0955374B1 (de) | Retrovirale Gentransfervektoren | |
DE69612660T2 (de) | Pseudotypisierte retrovirale vektoren | |
DE69920659T2 (de) | Rekonstituierender retroviraler vektor (recon vektor) für gezielte genexpression | |
WO1994010302A1 (de) | Amplifizierbarer vektor gegen hiv replikation | |
CA2244663A1 (en) | 10a1 retroviral packaging cells and uses thereof | |
EP1428886B1 (de) | Verbesserte retrovirale Vektoren für die Gentherapie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7C 07K 1/00 B Ipc: 7A 61K 48/00 B Ipc: 7C 12N 5/10 B Ipc: 7C 12N 7/01 B Ipc: 7C 12N 15/867 A |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20040211 |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20071127 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080401 |