WO1994010302A1 - Amplifizierbarer vektor gegen hiv replikation - Google Patents

Amplifizierbarer vektor gegen hiv replikation Download PDF

Info

Publication number
WO1994010302A1
WO1994010302A1 PCT/EP1993/002968 EP9302968W WO9410302A1 WO 1994010302 A1 WO1994010302 A1 WO 1994010302A1 EP 9302968 W EP9302968 W EP 9302968W WO 9410302 A1 WO9410302 A1 WO 9410302A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
dna
gene
cells
hiv
Prior art date
Application number
PCT/EP1993/002968
Other languages
English (en)
French (fr)
Inventor
Hans-Joachim Lipps
Friedrich Grummt
Jobst Meyer
Original Assignee
Boehringer Mannheim Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4324671A external-priority patent/DE4324671A1/de
Application filed by Boehringer Mannheim Gmbh filed Critical Boehringer Mannheim Gmbh
Publication of WO1994010302A1 publication Critical patent/WO1994010302A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • C12N15/1132Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses against retroviridae, e.g. HIV
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells

Definitions

  • the invention relates to a method for inhibiting the replication of HIV by transfection of potential host cells with a vector which, in addition to a DNA coding for Pol, Gag, Env, Rev and / or Tat, contains a further DNA in the antisense orientation which contains a spontaneous one Amplification of the vector in the host cell causes, as well as the vector used in this method.
  • HIV Human Immunodeficiency Virus
  • Another possibility is to inhibit the viral reverse transcriptase required for the multiplication of HIV in the target cells with 3 'azido-thymidine (AZT) or similar substances.
  • AZT 3 'azido-thymidine
  • these approaches have so far not led to successful therapy of HIV infections.
  • the viral proteins are highly variable due to mutation and selection, so that the antibodies used often no longer bind to the modified viral proteins.
  • the replication inhibitors used are also toxic to the target cells.
  • vectors which can be kept stable in several copies per host cell.
  • host cells are transfected with a vector which contains a resistance gene as a selection marker and cultivated in a medium with a concentration of a suitable substance such that only those transfected host cells survive in which the vector is amplified in several copies.
  • the eukaryotic vectors used here contain sequences which have been derived from viruses for autonomous replication in the host cell Origin. Since the presence of viral nucleic acid sequences in the If production of therapeutically applicable products should be avoided, vectors have also been developed which contain origin sequences from mammalian cells (EP-A 0 306 848 and M. Wegner et al., Nucl.
  • Such vectors contain an inefficient selection system for amplification.
  • Such an inefficient selection system means a selection marker which is under the control of a weak promoter, so that the expression of a copy of the selection marker is not sufficient to enable the host cell to survive under the corresponding selection pressure.
  • the transfected cells are kept constantly in the presence of a selection agent in order to maintain the increased number of copies of the vector. Since cytostatics which generally inhibit the growth of eukaryotic cells are used as selection agents, however, such amplifiable expression vectors are unsuitable for therapeutic use.
  • the object of the invention was therefore to provide a method for inhibiting HIV replication which does not have the disadvantages mentioned above.
  • This object is achieved by a method for inhibiting the replication of HIV, in which potential host cells are transfected with a vector which, in addition to a DNA coding for Pol, Gag, Env, Rev and / or Tat, has a further DNA in antisense orientation contains, which causes a spontaneous amplification of the vector in the host cell.
  • Suitable DNA sequences which bring about such a spontaneous amplification can be obtained by screening with the inefficient selection system described in EP-A 306 848. For this, about 40-500 bp long non-coding eukaryotic DNA sequences, preferably inserted from the non-transcribed region of the rDNA of eukaryotic cells into a vector which contains a selection marker under the control of a weak promoter.
  • a copy of the selection marker is therefore not sufficient to enable a host cell transfected with this vector to survive under the corresponding selection pressure.
  • cells are selected that contain the vector used for transfection in high copy number.
  • the inserted DNA can then be obtained from these amplified vectors as a DNA which effects an amplification under selection pressure.
  • a DNA which causes spontaneous amplification is then selected.
  • the DNA sequences obtained in the first selection step are inserted into a eukaryotic vector, eukaryotic host cells are transfected with the vector obtained and the copy number of the vector in the transfected cells is determined by conventional methods, for example using a Southern blot analysis. Those clones which have a vector with a copy number increased by at least a factor of 20 (based on the copy number of the starting vector) are selected.
  • Suitable selection markers for the first selection step are, for example, the thymidine kinase gene tk (Nature 303 (1983), 442-446), the neomycin resistance gene neo (J. Mol. Appl. Genet. 1 (1982), 327-341), the dihydrofolate reductase gene dhfr (Proc. Natl. Acad. Sci. USA 77 (1980), 4216-4220 and J. Mol. Biol. 15 (1982), 601-621), the hypoxanthine guanine phosphoribosyl transferase gene hgprt (Proc. Natl. Acad. Sci.
  • adenine phosphoribosyl transferase gene aprt or the metallothionein gene The corresponding selection agents are familiar to the person skilled in the art, in particular aminopterin (for tk, hgprt, aprt and dhfr), methotrexate (for dhfr) and G418 (for neo) are used.
  • aminopterin for tk, hgprt, aprt and dhfr
  • methotrexate for dhfr
  • G418 for neo
  • a weak promoter is preferably a promoter whose effectiveness has been reduced by introducing point mutations (Cell 37 (1984), 743-751) or deletion mutagenesis (Cell 37 (1984), 253-262).
  • point mutations Cell 37 (1984), 743-751
  • deletion mutagenesis Cell 37 (1984), 253-262.
  • such a deletion of the distal SP-1 binding site can be brought about by removing an EcoRI fragment (Nucl. Acids Res. 8 (1980), 5949 -
  • the promoter strength can also be reduced by adding appropriate repressors (EMBO J. 2 (1983), 2229-2303; Cell 48 (1987), 555-566 and Cell 49 (1987), 603-612).
  • the sequences given in SEQ ID NO 1 and 2 could be obtained. Furthermore, the sequences described in EP-A 0 306 848 are also suitable for the process according to the invention.
  • the DNA coding for Pol (reverse transcriptase), Gag (core), Env (envelope protein) Rev and / or Tat can either be a complete cDNA of the corresponding viral gene or a fragment of this DNA. However, the length of this DNA should not be shorter than 60 base pairs. For example, a DNA is used which codes for the reverse transcriptase or a fragment of this DNA.
  • the invention therefore furthermore relates to a vector for inhibiting the replication of HIV in potential host cells which, in addition to a DNA coding for Pol, Gag, Env, Rev and / or Tat, contains a further DNA in the antisense orientation which has a spontaneous Amplification of the vector in the host cell causes.
  • a vector according to the invention preferably contains several DNA regions from the group of the DNA coding for Pol, Gag, Env, Rev or Tat in antisense orientation.
  • a preferred subject of the invention are vectors which, as a sequence which brings about a spontaneous amplification of the vector, have the sequences given in SEQ ID NO 1 or 2.
  • the vector pNTSI-RTanti is particularly preferred.
  • transfecting T lymphocytes with such a vector By transfecting T lymphocytes with such a vector, an inhibition of HIV replication can be achieved, which lasts for several months even in the absence of a corresponding selection pressure.
  • This vector is therefore particularly suitable for therapeutic use to prevent replication of HIV in T lymphocytes.
  • Another object of the invention is therefore the use of a vector according to the invention for the production of a pharmaceutical composition for the therapeutic treatment of HIV infections.
  • the DNA coding for Pol, Gag, Env, Rev and / or Tat can be replaced by a DNA coding for another gene product in an antisense orientation in the vector according to the invention.
  • amplifiable vectors are obtained which inhibit the expression of this gene product.
  • Such vectors can be used for the therapy of diseases which are caused by an increased expression of the corresponding gene product.
  • those vectors which are suitable for the bcr-abl fusion protein Colds et al., Proc. Atl. Acad. Se. USA 80 (1983), 4813-4817 and C.
  • the invention therefore furthermore relates to a pharmaceutical composition which contains at least one vector which, in addition to a DNA coding for a gene product whose increased expression causes a pathological change, contains a further DNA in the antisense orientation which spontaneously amplifies the Vector in the host cell.
  • Such a pharmaceutical composition can advantageously be used in all therapeutic methods in which gene expression is to be inhibited by an anti-sense RNA (see, for example, Izant et al., Cell 36 (1984), 1007-1015, Melton et al., Proc. Natl. Acad. Sci. USA 82 (1985), 144-148 and Giebelhaus et al., Cell 53 (1988), 601-605).
  • the pharmaceutical composition preferably contains a vector which, via such an antisense inhibition, effects the expression of the gene products Pol, Gag, Env, Rev and / or Tat which are essential for the replication of HIV.
  • the invention therefore furthermore relates to a pharmaceutical composition which contains at least one vector according to the invention which, in addition to a DNA coding for Pol, Gag, Env, Rev and / or Tat, contains a further DNA in the antisense orientation which contains a spontaneous amplification of the vector in the host cell.
  • CML chronic myeloid leukemia
  • CML is caused by reciprocal translocation of chromosomes 9 and 22. This creates a fusion RNA and a fusion protein. A causal relationship between the chromosomal translocation, the production of a Fusion protein and the development of leukemia could be demonstrated.
  • Suitable antisense sequences are sequences which are directed against the fusion region of the bcr / abl fusion RNA.
  • the antisense sequences are usually 10-20 bases long. An 18 base long sequence is preferred.
  • the vectors according to the invention can contain genes coding for fragments, fragments thereof and suitable promoters / operator regions which are suitable for the expression of these genes.
  • Such vectors are suitable for gene therapy, in which exogenous genes are introduced into cells of an organism / patient and these cells with a new one (or a previous one) only available to a limited extent).
  • Gene therapy is to be understood as therapeutic processes in which exogenous genes are introduced into cells of an organism / patient and these cells are endowed with a new (or previously only a limited extent) property. In the process, transcripts and translation products of the exogenous gene are actively formed in the target cell.
  • the goal of such a method can be either “genemarking” or gene therapy.
  • a selective marker gene is introduced into target cells in order to diagnose their survival and growth.
  • at least one gene is introduced into the target cell in order to introduce a gene which is present in a healthy organism into deficient cells.
  • Gene therapy can be carried out either as ex vivo therapy or as in vivo therapy.
  • cells are removed from a patient, these are transduced with a vector which is suitable for the expression of a desired gene, the transduced cells are optionally selected and then reimplanted to the patient.
  • Suitable vectors are viral vectors which remain extrachromosomal in the target cells or are integrated into a chromosome.
  • bare DNA into the target cells, for example bound to ligands, cell-free, e.g. B. with the help of liposomes or polylysine complexes.
  • retroviruses are used as base vectors, for example, the transduction rate appears to be limiting.
  • the vectors are propagated in bacteria and transfected in cells (packaging cell lines). These packaging cell lines also contain a helper virus, which makes the packaging proteins available. This creates an infectious but non-replicable virus that is suitable for the transduction described above.
  • the patient is treated directly with virus DNA or with naked DNA cell-free or cell-bound.
  • the foreign gene is expressed in a tissue-specific manner. It is possible to give the DNA intravenously, orally or to apply it locally. If cell-bound DNA is used for in vivo therapy, then either the donor cell should not be immunogenic (switching off the MHC loci) or additional immunosuppression is required.
  • virus vectors suitable for in vivo gene therapy essentially correspond to genes which are also suitable for ex vivo therapy. However, optimally suitable vectors can differ for both methods. Strongly modified viruses which contain specific enhancers and promoters for optimized tissue-specific expression are particularly suitable as viruses which are suitable for in vivo therapy.
  • Non-replicable retroviruses are suitable for in vivo therapy if the transduced cells are preselected.
  • Retroviruses, parviruses, herpes viruses, hepadnaviruses, HBV and HIV are suitable as the basis for virus systems.
  • Herpes viruses are linear DNA viruses with a genome of approx. 80 - 230 kb length. Since the DNA sequence and order of protein formation are known, there is a sufficient basis for constructing well-expressing vectors. Gene therapy methods are described in the following publications, which are the subject of the disclosure of this invention:
  • the plasmids pCMV-RTanti (DSM 7304) and pNTS1-RTanti (DSM 7303) were deposited on October 23, 1992 with the German Collection for Microorganisms and Cell Cultures GmbH, Mascheroder Weg 1 b, D - 3300 Braunschweig.
  • SEQ ID NO 1 shows the murine nucleotide sequence uNTS1, which causes spontaneous amplification
  • SEQ ID NO 2 shows the murine nucleotide sequence muNTS2, which causes spontaneous amplification example 1
  • a first selection step DNA sequences which bring about an amplification under selection pressure are selected.
  • 40-500 bp long non-coding eukaryotic DNA sequences preferably from the non-transcribed area of eukaryotic rDNA, are integrated into the Ba HI site of the vector ptk (DSM 4203P) described in EP-A 0 306 848.
  • This vector contains the HSVl-tk gene under the control of a deleted HSVl-tk promoter.
  • LMTK "cells (ATCC CCL 1.3) according to the method described by Graham in Virology 52 (1973), 456-467 and Wigler in Proc. Natl. Acad. Sci. USA (1979)
  • 1373-1376 transfected and those cells containing an amplified vector were selected by culturing in HAT medium for about 2 weeks.
  • the integrated DNA sequences are isolated from the vectors obtained from these selected cells, provided with BamHI and SalI linkers and integrated into the vector pCMV-RTanti (DSM 7304), which contains a neomycin resistance gene and is cut with BglII and Xhol.
  • DSM 7304 vector pCMV-RTanti
  • Jurkat cells ATCC TIB 152 are then transfected with this vector and transfected cells are selected with G418. After 2 weeks, the number of copies the vectors in resistant clones are determined by Southern blot analysis and those clones which have a vector with a copy number of at least 20 (based on the copy number of the starting vector) are selected.
  • the immediate-early promoter and enhancer from the human cytomegalovirus (hCMV), fused to the 57 bp leader sequence from the herpes simlex thymidine kinase gene promoter and provided with a BamHI linker, is an EcoRI / BamHI fragment from the plasmid pSTC GR 407-556 (Severne et al., EMBO J. 7 (1988), 2503-2508) cloned into pUC 19.
  • the vector pUC-CMV thus obtained is cut with BamHI and Xbal and with the terminal BamHI / Xbal fragment from the cloned Stylonychia lemnae ⁇ , tubulin gene (Conzelmann et al., J. Mol. Biol. 198 (1987), 643-653), which contains the polyadenylation signal from the tubulin gene. In this way, the vector pUC-CMV-SLpA is obtained.
  • An expression cassette coding for G418 resistance consisting of the mouse metallothionein promoter, the aminoglycoside-3'-phosphotransferase gene (neo R ) of the E. coli transposon Tn5 and the polyadenylation signal of SV40 (from the plasmid pML2d / BPV / MMT, Schmid et al., Nucl. Acids Res. 18 (1990), 2196) is cloned as an EcoRI / Bam HI fragment in the Bluescript KS + vector (Stratagene).
  • the BamHI and BglII interfaces of the construct obtained are removed by Klenow reaction with T4 polymerase (Sambrook, Fritsch & Maniatis, Molecular Cloning (1989), Cold Spring Harbor Lab. Press).
  • the modified resistance cassette is isolated as a HindIII / Xbal fragment and cloned into pUC-CMV-SLpA, whereby pCMV-SLpA is obtained.
  • the 1236 bp Hindlll / EcoRV fragment of the gene for the reverse transcriptase from HIV-1 is cloned between the Hindlll and Smal interface of pBluescript KS +.
  • the gene fragment of the reverse transcriptase is obtained as a HindIII / Xbal fragment from this subclone and ligated into the vector pSTC GR 407-556 (see above), which contains a rat glucocorticoid cDNA.
  • a 1397 bp BamHI fragment from this vector which, in addition to the fragment of the gene for the reverse transcriptase 117 bp, contains the glucocorticoid cDNA from the rat, is either in sense or in antisense orientation in the BamHI / BglII site of pCMV-SLpA ligated, whereby the vectors pUC-RT-Hi-EVsense and pUC-RT-Hi-EVanti are obtained.
  • the 1826 bp EcoRI fragment from pSTC GR 407-556 is then replaced by the 6036 bp EcoRI fragment from either pUC-RT-Hi-EVsense or pUC-RT-Hi-EVanti, whereby pCMV-RTsense or pCMV-RTanti ( DSM 7304) can be obtained.
  • a 370 bp fragment from the non-transcribed spacer region of the murine rDNA (muNTS1, SEQ ID NO 1 and Wegner et al., Nucl. Acid ⁇ Res. 17 (1989), 9909-9932) is provided with BamHI and Sall linkers and between inserted the BglII and Xhol interfaces of pCMV-RTanti, whereby pNTSI-RTanti (DSM 7303) is obtained.
  • pNTSI-RTanti DSM 7303
  • Jurkat cells (ATCC TIB 152, T-lymphoblastoid cell) are transfected with 10 ⁇ g each of the plasmids pNTSl-RTanti or pCMV-RTanti, pCMV-RTsense or pCMV-SLpA as a control by electroporation (200V, 960 ⁇ F) and transfected cells with 800 ⁇ g / ml G418 selected in RPMI 1640 medium. After two weeks, G418-resistant clones are isolated and first characterized by Southern blot analysis.
  • the plasmids pCMV-SLpA, pCMV-RTsense and pCMV-RTanti are only present in small numbers in the transfected cells (fewer than 5 copies per cell), the cells transfected with pNTSI-RTanti show spontaneous amplification to 20 - 100 copies per cell.
  • the transfected cells containing an amplified vector show no less growth than cells containing an unamplified vector.
  • the amplification of the pNTS1-RTanti plasmid remains stable even after 3 months of cultivation in the absence of G418.
  • the amount of the antisense reverse transcriptase transcript determined by Northern blot analysis is approximately proportional to the copy number of the vector.
  • the Jurkat cells transfected with the different vectors are infected with 15 TCID 50 (tissue culture infective dose) of HIV-1 according to Popovic et al., Science 224 (1984), 497-500, and the replication of HIV-1 in the trans - infected cells determined by measuring the activity of the reverse transcriptase in the culture supernatant and by the formation of syncytia.
  • the activity of the reverse transcriptase is determined by determining the incorporation of radioactivity in a cDNA synthesis (Böhm et al., Cytometry 13 (1992), 259-266). The result is summarized in the following table.
  • Human T-lymphocytes transfected with pNTS1-RTanti according to Example 3 are cultivated for 3 months in RPMI 1640 medium without G418 and then the copy number of pNTS1-RTanti is determined by Southern blot analysis. The result shows that the copy number of pNTS1-RTanti remains unchanged even after prolonged cultivation in the absence of G418.
  • MOLECULE TYPE DNA (genomic)
  • MOLECULE TYPE DNA (genomic)
  • GACATGCGCC ATCACTCCCG
  • GACATTTTA AATTTTTAAA TTATATTTAT TTAATTTATT 360

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • AIDS & HIV (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Hemmung der Replikation von HIV durch Transfektion potentieller Wirtszellen mit einem Vektor, der neben einer für Pol, Gag, Env, Rev und/oder Tat codierenden DNA in antisense-Orientierung eine weitere DNA enthält, welche eine spontane Amplifikation des Vektors in der Wirtszelle bewirkt, sowie den bei diesem Verfahren verwendeten Vektor.

Description

Amplifizierbarer Vektor gegen HIV Replikation
Die Erfindung betrifft ein Verfahren zur Hemmung der Repli¬ kation von HIV durch Transfektion potentieller Wirtszellen mit einem Vektor, der neben einer für Pol, Gag, Env, Rev und/oder Tat codierenden DNA in antisense-Orientierung eine weitere DNA enthält, welche eine spontane Amplifikation des Vektors in der Wirtszelle bewirkt, sowie den bei diesem Verfahren verwendeten Vektor.
Zur Verhinderung einer Infektion mit Human Immunodeficiency Virus (HIV) sind bereits verschiedene Ansätze untersucht worden. Hierzu gehört die Hemmung der Bindung des Virus an T-Lymphozyten durch Antikörper gegen virale Proteine oder Zugabe großer Mengen an isoliertem CD4 Rezeptorprotein aus T-Lymphozyten, den Zielzellen von HIV. Eine andere Möglich¬ keit ist die Hemmung der zur Vermehrung von HIV in den Zielzellen erforderlichen viralen reversen Transkriptase mit 3 '-Azido-Thymidin (AZT) oder ähnlichen Substanzen. Diese Ansätze haben jedoch bislang noch zu keiner erfolg¬ reichen Therapie von HIV-Infektionen geführt. Einerseits weisen die viralen Proteine durch Mutation und Selektion eine hohe Variabilität auf, so daß die verwendeten Antikör¬ per oft nicht mehr an die veränderten viralen Proteine binden. Andererseits sind die verwendeten Replikations- Inhibitoren auch für die Zielzellen toxisch. Es konnte zwar gezeigt werden, daß die HIV-Replikation durch Transfektion von T-Lymphozyten mit antisense-Oligonukleotiden, die zu verschiedenen Bereichen des HIV Genoms komplementär sind und so deren Expression inhibieren, gehemmt werden kann (Zala et al., J. Virol. 62 (1988), 3914 - 3917 und Joshi et al., J. Virol. 65 (1991), 5524 - 5530). Da jedoch Oligo- nukleotide in der Zelle schnell abgebaut werden, konnte auf diese Weise nur eine kurzfristige Hemmung der HIV-Replika- tion erzielt werden. Es wurden daher Vektoren konstruiert, von denen nach stabiler Transfektion von T-Lymphozyten antisense-RNA transkribiert wird (N. Sarver et al. Science 247 (1990), 1222 - 1225). Jedoch konnte auch mit diesen Vektoren nur eine über einige wenige Tage andauernde Hem¬ mung der HIV-Replikation erreicht werden. Das Ausmaß der Hemmung der HIV-Replikation korreliert dabei mit der Menge der transkribierten antisense-RNA (Zala et al., J. Virol. 62 (1988), 3914 - 3917 und Rittner et al., Nucl. Acids Res. 19 (1991), 1421 - 1426). Diese Menge wird dadurch limi¬ tiert, daß bei den bisher bekannten Vektoren nur solche stabil transformierten T-Lymphozyten erhalten werden kön¬ nen, die nur eine einzige oder sehr wenige Kopien des antisense-RNA transkribierenden Vektors enthalten.
Zur Erhöhung der Expression heterologer Proteine wurde versucht, Vektoren zu konstruieren, die stabil in mehreren Kopien je Wirtszelle gehalten werden können. Hierzu werden Wirtszellen mit einem Vektor, der ein Resistenzgen als Selektionsmarker enthält, transfiziert und in einem Medium mit einer solchen Konzentration einer geeigneten Substanz kultiviert, daß nur solche transfizierte Wirtszellen über¬ leben, bei denen der Vektor in mehreren Kopien amplifiziert vorliegt. Die hierbei verwendeten eukaryontischen Vektoren enthalten jedoch für die autonome Replikation in der Wirts¬ zelle Origin Sequenzen, die von Viren abgeleitet wurden. Da die Gegenwart von viralen Nukleinsäure-Sequenzen bei der Herstellung von therapeutisch anzuwendenden Produkten vermieden werden sollte, sind auch Vektoren entwickelt worden, welche Origin Sequenzen aus Säugerzellen enthalten (EP-A 0 306 848 und M. Wegner et al., Nucl. Acids Res. 17 (1989), 9909 - 9932). Zur Amplifikation enthalten derartige Vektoren ein ineffizientes Selektionssystem. Unter einem solchen ineffizienten Selektionssystem versteht man einen Selektionsmarker, der unter der Kontrolle eines schwachen Promoters steht, so daß die Expression von einer Kopie des Selektionsmarkers nicht ausreicht, um der Wirtszelle ein Überleben unter dem entsprechenden Selektionsdruck zu ermöglichen.
Bei allen diesen beschriebenen Systemen werden die trans- ' fizierten Zellen ständig in Gegenwart eines Selektions¬ mittels gehalten, um die erhöhte Kopienzahl des Vektors aufrecht zu erhalten. Da als Selektionsmittel Zytostatika verwendet werden, welche das Wachstum von eukaryontischen Zellen generell hemmen, sind derartige amplifizierbare Expressionsvektoren für eine therapeutische Verwendung jedoch ungeeignet.
Aufgabe der Erfindung war es daher, ein Verfahren zur Hemmung der HIV-Replikation zur Verfügung zu stellen, welches die oben genannten Nachteile nicht aufweist.
Diese Aufgabe wird gelöst durch ein Verfahren zur Hemmung der Replikation von HIV, bei welchem potentielle Wirts¬ zellen mit einem Vektor transfiziert werden, der neben einer für Pol, Gag, Env, Rev und/oder Tat codierenden DNA in antisense-Orientierung eine weitere DNA enthält, welche eine spontane Amplifikation des Vektors in der Wirtszelle bewirkt. Geeignete DNA-Sequenzen, welche eine solche spontane Ampli¬ fikation bewirken, sind erhältlich über ein Screening mit dem in EP-A 306 848 beschriebenen ineffizienten Selektions¬ system. Hierzu werden etwa 40 -500 bp lange nicht codie¬ rende eukaryontische DNA-Sequenzen, vorzugsweise aus dem nicht transkribierten Bereich der rDNA eukaryontischer Zellen in einen Vektor insertiert, der einen Selektions¬ marker unter der Kontrolle eines schwachen Promoters ent¬ hält. Die Expression von einer Kopie des Selektionsmarkers reicht daher nicht aus, um einer mit diesem Vektor transfi- zierten Wirtszelle ein Überleben unter dem entsprechenden Selektionsdruck zu ermöglichen. Auf diese Weise werden solche Zellen selektioniert, die den zur Transfektion verwendeten Vektor in hoher Kopienzahl enthalten. Aus diesen amplifizierten Vektoren kann dann die insertierte DNA als eine DNA, die eine Amplifikation unter Selektions¬ druck bewirkt, gewonnen werden. In einem zweiten Selek¬ tionsschritt wird dann eine DNA, welche eine spontane Amplifikation bewirkt, selektioniert. Dazu werden die im ersten Selektionsschritt erhaltenen DNA-Sequenzen in einen eukaryontischen Vektor insertiert, mit dem erhaltenen Vektor eukaryontische Wirtszellen transfiziert und nach üblichen Verfahren, z.B. über eine Southern-Blot Analyse, die Kopienzahl des Vektors in den transfizierten Zellen bestimmt. Diejenigen Klone, die einen Vektor mit einer um mindestens den Faktor 20 erhöhten Kopienzahl aufweisen (bezogen auf die Kopienzahl des Ausgangsvektors), werden ausgewählt.
Geeignete Selektionsmarker für den ersten Selektionsschritt sind z.B. das Thymidinkinase-Gen tk (Nature 303 (1983), 442 - 446), das Neomycinresistenz-Gen neo (J. Mol. Appl. Genet. 1 (1982), 327 - 341), das Dihydrofolatreduktase-Gen dhfr (Proc. Natl. Acad. Sei. USA 77 (1980), 4216 -4220 und J. Mol. Biol. 15 (1982), 601 - 621), das Hypoxanthin-Guanin- Phosphoribosyltransferase-Gen hgprt (Proc. Natl. Acad. Sei. USA 78 (1981), 2072 - 2076), das Adenin-Phosphoribosyl- transferase-Gen aprt oder das Metallothionein Gen. Die entsprechenden Selektionsmittel sind dem Fachmann geläufig, insbesondere werden Aminopterin (bei tk, hgprt, aprt und dhfr), Methotrexat (bei dhfr) und G418 (bei neo) verwendet. Bei Verwendung der genannten nicht dominanten Selek¬ tionsmarker (tk, dhfr, hgprt und aprt) müssen die zu trans- fizierenden Wirtszellen in dem entsprechenden Gen eine Defizienz aufweisen. Dazu sind z.B. bei Verwendung des t'k- Gens als Selektionsmarker murine LMTK" -Zellen (ATCC CCL 1.3) geeignet.
Als schwacher Promoter wird vorzugsweise ein Promoter verwendet, dessen Wirksamkeit durch Einführung von Punkt¬ mutationen (Cell 37 (1984), 743 - 751) oder Deletionsmuta- genese (Cell 37 (1984), 253 - 262) reduziert wurde. Beispielsweise kann im tk-Promoter eine solche Deletion der distalen SP-1 Bindungsstelle durch Entfernen eines EcoRI Fragments bewirkt werden (Nucl. Acids Res. 8 (1980), 5949 -
5964 ) . Die Promoterstärke kann aber auch durch Zugabe von entsprechenden Repressoren reduziert werden (EMBO J. 2 (1983), 2229 - 2303; Cell 48 (1987), 555 - 566 und Cell 49 (1987) , 603 - 612) .
Gemäß dem oben beschriebenen Verfahren konnten die in SEQ ID NO 1 und 2 angegebenen Sequenzen gewonnen werden. Weiterhin sind auch die in EP-A 0 306 848 beschriebenen Sequenzen für das erfindungsgemäße Verfahren geeignet. Die für Pol (Reverse Transkriptase) , Gag (Core), Env (Hüll¬ protein) Rev und/oder Tat codierende DNA kann entweder eine vollständige cDNA des entsprechenden viralen Gens sein oder ein Fragment dieser DNA darstellen. Die Länge dieser DNA sollte jedoch nicht kürzer sein als 60 Basenpaare. Bei¬ spielsweise wird eine DNA verwendet, welche für die Reverse Transkriptase codiert oder ein Fragment dieser DNA.
Es hat sich überraschenderweise gezeigt, daß bei Verwendung eines derartigen Vektors bei 20-30 % der Transfektanten eine 30- bis über 100-fache Amplifikation des Vektors auch in Abwesenheit eines entsprechenden Selektionsdrucks erreicht werden kann. Dies ist für eine therapeutische Verwendung von großer Bedeutung, da üblicherweise zur Selektion Substanzen verwendet werden, die auch das Wachs¬ tum gesunder Wirtszellen hemmen. Es hat sich weiterhin überraschenderweise gezeigt, daß diese spontane Amplifika¬ tion des Vektors stabil ist, d.h. auch nach mehreren Mona¬ ten Kultivierung der transfizierten Zellen ohne Selektionsdruck bleibt die hohe Kopienzahl erhalten.
Ein weiterer Gegenstand der Erfindung ist daher ein Vektor zur Hemmung der Replikation von HIV in potentiellen Wirts¬ zellen, welcher neben einer für Pol, Gag, Env, Rev und/oder Tat codierenden DNA in antisense-Orientierung eine weitere DNA enthält, welche eine spontane Amplifikation des Vektors in der Wirtszelle bewirkt.
Vorzugsweise enthält ein erfindungsgemäßer Vektor mehrere DNA Bereiche aus der Gruppe der für Pol, Gag, Env, Rev oder Tat codierenden DNA in antisense-Orientierung. Ein bevorzugter Gegenstand der Erfindung sind Vektoren, welche als Sequenz, die eine spontane Amplifikation des Vektors bewirkt, die in SEQ ID NO 1 oder 2 angegebenen Sequenzen aufweisen. Besonders bevorzugt ist der Vektor pNTSl-RTanti.
Durch die Transfektion von T-Lymphozyten mit einem solchen Vektor kann eine Hemmung der HIV-Replikation erreicht werden, die auch in Abwesenheit eines entsprechenden Selek¬ tionsdrucks für mehrere Monate anhält. Daher eignet sich dieser Vektor besonders für eine therapeutische Verwendung zur Verhinderung der Replikation von HIV in T-Lymphozyten.
Ein weiterer Gegenstand der Erfindung ist daher die Verwen¬ dung eines erfindungsgemäßen Vektors zur Herstellung einer pharmazeutischen Zusammensetzung zur therapeutischen Behandlung von HIV-Infektionen.
Die für Pol, Gag, Env, Rev und/oder Tat codierende DNA kann durch eine für ein anderes Genprodukt codierende DNA in antisense-Orientierung im erfindungsgemäßen Vektor ausge¬ tauscht werden. Dadurch werden amplifizierbare Vektoren erhalten, welche die Expression dieses Genprodukts hemmen. Solche Vektoren können zur Therapie von Krankheiten verwen¬ det werden, die durch eine erhöhte Expression des entspre¬ chenden Genproduktes verursacht werden. Vorzugsweise können z.B. solche Vektoren, die eine für das bcr-abl-Fusions- protein (Collins et al., Proc. atl.Acad.Sei. USA 80 (1983), 4813 - 4817 und C. Bartram, J.Exp.Med. 162 (1965), 2175 - 2179) oder Teile davon codierende DNA in antisense-Orien¬ tierung enthalten, zur Therapie von akuter myeloischer Leukämie verwendet werden. Ein weiterer Gegenstand der Erfindung ist daher eine phar¬ mazeutische Zusammensetzung, welche mindestens einen Vektor enthält, der neben einer für ein Genprodukt, dessen erhöhte Expression eine krankhafte Veränderung bewirkt, codierenden DNA in antisense-Orientierung eine weitere DNA enthält, welche eine spontane Amplifikation des Vektors in der Wirtszelle bewirkt.
Eine solche pharmazeutische Zusammensetzung kann vorteil¬ haft bei allen therapeutischen Verfahren verwendet werden, bei denen eine Hemmung der Genexpression durch eine anti¬ sense-RNA bewirkt werden soll (siehe z.B. Izant et al., Cell 36 (1984), 1007 - 1015, Melton et al., Proc.Natl.Acad. Sei. USA 82 (1985), 144 - 148 und Giebelhaus et al., Cell 53 (1988), 601 - 605). Vorzugsweise enthält die pharmazeu¬ tische Zusammensetzung einen Vektor, der über eine solche antisense-Hemmung die Expression der zur Replikation von HIV essentiellen Genprodukte Pol, Gag, Env, Rev und/oder Tat bewirkt.
Ein weiterer Gegenstand der Erfindung ist daher eine phar¬ mazeutische Zusammensetzung, welche mindestens einen erfin¬ dungsgemäßen Vektor enthält, welcher neben einer für Pol, Gag, Env, Rev und/oder Tat codierenden DNA in antisense- Orientierung eine weitere DNA enthält, welche eine spontane Amplifikation des Vektors in der Wirtszelle bewirkt.
Vorzugsweise werden Vektoren mit Antisensesequenzen gegen chronische myeloische Leukämie (CML) verwendet. CML wird verursacht durch reziproke Translokation der Chromosomen 9 und 22. Dadurch entsteht eine Fusions-RNA und ein Fusionsprotein. Ein kausaler Zusammenhang zwischen der chromosomalen Translokation, der Produktion eines Fusionsproteins und des Entstehens der Leukämie konnte nachgewiesen werden.
Als Antisensesequenzen geeignet sind Sequenzen, die gerich¬ tet sind gegen die Fusionsregion der bcr/abl-Fusions-RNA. Die Antisensesequenzen sind üblicherweise 10 - 20 Basen lang. Bevorzugt wird eine 18 Basen lange Sequenz.
Es konnte gezeigt werden, daß solche Sequenzen, insbesonde¬ re eine 18er Sequenz eine Hemmung der CML bewirkt. Die Verwendung dieser Antisense DNS in einem Vektor, in dem die HIV-Sequenzen gegen diese Leukämie-Antisensesequenzen ausgetauscht sind, führen zu einer erheblichen Verbesserung der Antisensewirkung bei der Behandlung.
Literatur zu CML:
R.E. Champlin, Blood 65 (1988) 1039 - 1047 und G.Q. Doley, Science 247 (1990), 824 - 830.
Literatur zu CML-Antisense:
I.V. Rosti, Leucemia 6 (1992), 1 - 7 und R. Martiat, Blood 81 (1993), 502 - 509.
Die erfindungsgemäßen Vektoren können anstelle der Sequen¬ zen zur Hemmung der HIV-Replikation codierende Gene, Frag¬ mente davon und geeignete Promotoren/Operatorregionen, die zur Expression dieser Gene geeignet sind, enthalten. Solche Vektoren sind für die Gentherapie geeignet, bei der exogene Gene in Zellen eines Organismus/Patienten eingebracht werden und diese Zellen mit einer neuen (bzw. einer bisher nur in reduziertem Umfang vorhandenen) Eigenschaft ausge¬ stattet werden.
Unter Gentherapie sind therapeutische Verfahren zu verste¬ hen, bei denen exogene Gene in Zellen eines Organismus/- Patienten eingebracht werden und diese Zellen mit einer neuen (bzw. einer bisher nur in reduziertem Umfang vorhan¬ denen) Eigenschaft ausgestattet werden. Dabei werden Trans¬ kripte und Translationsprodukte des exogenen Gens aktiv in der Zielzelle gebildet.
Das Ziel eines solchen Verfahrens kann entweder ein "Gene- marking" oder eine Gentherapie sein. Zum "Genemarking" wird ein selektives Markergen in Zielzellen eingeführt, um deren Überleben bzw. Wachstum diagnostisch zu verfolgen. Bei der eigentlichen Gentherapie wird mindestens ein Gen in die Zielzelle eingebracht, um ein Gen, welches in einem gesun¬ den Organismus vorhanden ist, in defiziente Zellen einzu¬ bringen.
Die Gentherapie kann entweder als ex vivo-Therapie oder als in vivo-Therapie durchgeführt werden.
Ex vivo-Therapie
Bei der Ex vivo-Therapie werden einem Patienten Zellen entnommen, diese mit einem Vektor, der für die Expression eines gewünschten Gens geeignet ist, transduziert, die transduzierten Zellen ggf. selektioniert und anschließend dem Patienten reimplantiert. Als Vektoren geeignet sind virale Vektoren, die in den Zielzellen extrachromosomal bleiben oder in ein Chromosom integriert werden. Ebenso denkbar ist es jedoch, in die Zielzellen nackte DNA, bei¬ spielsweise an Liganden gebunden, zellfrei, z. B. mit Hilfe von Liposomen oder Polylysinkomplexen in die Zellen einzu¬ bringen.
Werden als Basisvektoren beispielsweise Retroviren verwen¬ det, scheint die Transduktionsrate limitierend zu sein.
Die Vektoren werden in Bakterien vermehrt und in Zellen (packaging-Zellinien) transfiziert. Diese packaging- Zellinien enthalten zusätzlich ein Helfervirus, welches die Verpackungsproteine zur Verfügung stellt. Dabei entsteht ein infektiöser, aber nicht replizierbarer Virus, der zur oben beschriebenen Transduktion geeignet ist.
Zur Sicherheit des Patienten ist es wesentlich, daß dieses Virusmaterial vollständig frei von Verunreinigungen mit Helferviren und packaging-Zellinien ist.
Als Therapeutikum könnten dementsprechend vertrieben wer¬ den: Eine galenische Formulierung des Vektorvirus und ggf. die vektorproduzierende Line, wenn zur Erhöhung der Trans¬ duktion eine Co-Kultivierung von Patientenzellen mit dieser Zelle erforderlich ist.
In vivo-Therapie
Bei einer in vivo-Gentherapie wird der Patient direkt mit Virus-DNA oder mit nackter DNA zellfrei oder zellgebunden behandelt. Dabei erfolgt eine gewebsspezifische Expression des Fremdgens. Es ist möglich, die DNA intravenös, oral zu geben oder lokal zu applizieren. Wird zellgebundene DNA zur in vivo-Therapie verwendet, so sollte entweder die Donorzelle nicht immunogen sein (Aus¬ schaltung der MHC-Loci) oder es ist eine zusätzliche Immun- suppression erforderlich.
Die für die in vivo-Gentherapie geeigneten Virusvektoren entsprechen im wesentlichen Genen, die auch für die ex vivo-Therapie geeignet sind. Allerdings können sich optimal geeignete Vektoren für beide Verfahren unterscheiden. Als Viren, die für die in vivo-Therapie geeignet sind, sind stark modifizierte Viren, die spezifische Enhancer und Promotoren für eine optimierte gewebsspezifische Expression enthalten, besonders geeignet.
Für die in vivo-Therapie sind nicht replizierbare Retrovi- ren geeignet, wenn eine Vorselektion der transduzierten Zellen erfolgt.
Bevorzugte Basisviren
Als Basis für Virussysteme geeignet sind Retroviren, Parvo- viren, Herpesviren, Hepadnaviren, HBV- und HIV.
Herpesviren (HSV, VZV, CMV) sind lineare DNA-Viren mit einem Genom von ca. 80 - 230 kb Länge. Da DNA-Sequenz und Reihenfolge der Proteinbildung bekannt sind, ist eine ausreichende Basis vorhanden, um gut exprimierende Vektoren zu konstruieren. Gentherapeutische Verfahren sind in den nachfolgenden Publikationen, die Gegenstand der Offenbarung dieser Erfin¬ dung sind, beschrieben:
EP-B 0 476 953, WO 92/05262, WO 85/05629, US 4980289,
WO 89/11539, EP-A 0 371 119, WO 91/10728, WO 85/05629,
US 4980289, WO 89/11539, WO 91/10728, WO 91/12329,
WO 92/07943, US 4797368, US 5139941, EP 0488528,
US Ser. No. 7769623, EP 0176170, WO 90/09441, WO 91/02788,
EP 0453242, WO 92/07945, WO 90/02176, US 4650764,
US 4861719, WO 89/07150, WO 90/02806, US 5124263,
WO 92/05266, WO 92/10564, WO 92/14829, WO 92/16638,
EP 0045809, WO 83/03259, US 4897355, WO 91/06309,
WO 91/17424, WO 92/07080, EP-A 0202005, WO 92/08796,
US 5112767, WO. 90/06997, US Ser. No. 7365567, WO 92/07573,
WO 92/12242, WO 92/15676, EP 0293193, WO 90/05180,
WO 90/07936, WO 91/15580, WO 92/05262, EP 0476953,
WO 92/05273.
Die Plasmide pCMV-RTanti (DSM 7304) und pNTSl-RTanti (DSM 7303) wurden am 23.10.1992 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1 b, D - 3300 Braunschweig, hinterlegt.
Die Erfindung wird durch die folgenden Beispiele im Zusam¬ menhang mit den Sequenzprotokollen näher erläutert.
SEQ ID NO 1 zeigt die murine Nukleotidsequenz uNTSl, welche eine spontane Amplifikation bewirkt
SEQ ID NO 2 zeigt die murine Nukleotidsequenz muNTS2, welche eine spontane Amplifikation bewirkt Beispiel 1
Selektion von DNA-Sequenzen, welche eine spontane Amplifikation bewirken
In einem ersten Selektionsschritt werden DNA-Sequenzen, welche unter Selektionsdruck eine Amplifikation bewirken, ausgewählt. Dazu werden 40 - 500 bp lange nicht codierende eukaryontische DNA-Sequenzen vorzugsweise aus dem nicht transkribierten Bereich eukaryontischer rDNA in die Ba HI-, site des in EP-A 0 306 848 beschriebenen Vektors ptk (DSM 4203P) integriert. Dieser Vektor enthält das HSVl-tk-Gen unter der Kontrolle eines deletierten HSVl-tk-Promoters. Mit dem rekombinanten Vektor werden murine LMTK" -Zellen (ATCC CCL 1.3) gemäß dem von Graham in Virology 52 (1973), 456 - 467 und Wigler in Proc. Natl. Acad. Sei. USA (1979), 1373 - 1376 beschriebenen Verfahren transfiziert und solche Zellen, welche einen amplifizierten Vektor enthalten, durch Kultivierung für etwa 2 Wochen in HAT-Medium selektioniert.
Zellen, die keinen oder einen nicht amplifizierten Vektor enthalten, sterben hierbei ab und nur die gewünschten Zellen überleben.
Aus den aus diesen selektionierten Zellen gewonnenen Vekto¬ ren werden die integrierten DNA-Sequenzen isoliert, mit BamHI und Sall Linkern versehen und in den mit Bglll und Xhol geschnittenen Vektor pCMV-RTanti (DSM 7304), der ein Neomycin Resistenzgen enthält, integriert. Mit diesem Vektor werden dann im zweiten Selektionschritt Jurkat Zellen (ATCC TIB 152) transfiziert und transfizierte Zellen mit G418 selektioniert. Nach 2 Wochen wird die Kopienzahl der Vektoren in resistenten Klonen über Southern-Blot Analyse bestimmt und solche Klone, welche einen Vektor mit einer Kopienzahl von mindestens 20 (bezogen auf die Kopien¬ zahl des Ausgangsvektors) aufweisen, ausgewählt.
Beispiel 2
Konstruktion von amplifizierbaren antisense-Vektoren
Der immediate-early Promoter und Enhancer aus dem humanen Cytomegalie Virus (hCMV), fusioniert an die 57 bp lange Leader Sequenz aus dem Herpes simlex Thymidin Kinase-Gen Promoter und mit einem BamHI Linker versehen, wird als EcoRI/BamHI Fragment aus dem Plasmid pSTC GR 407-556 (Severne et al. , EMBO J. 7 (1988), 2503 - 2508) in pUC 19- kloniert. Der so erhaltene Vektor pUC-CMV wird mit BamHI und Xbal geschnittenen und mit dem terminalen BamHI/Xbal Fragment aus dem klonierten Stylonychia lemnae ß-, -Tubulin- Gen (Conzelmann et al., J.Mol. Biol. 198 (1987), 643 - 653), welches das Polyadenylierungssignal aus dem Tubulin- Gen enthält, ligiert. Hierdurch wird der Vektor pUC-CMV- SLpA erhalten.
Eine für G418 Resistenz kodierende Expressionskassette, bestehend aus dem Maus Metallothionein Promoter, dem Aminoglycosid-3'-phosphotransferase-Gen (neoR ) des E.coli Transposons Tn5 und dem Polyadenylierungssignal von SV40 (aus dem Plasmid pML2d/BPV/MMT, Schmid et al., Nucl. Acids Res. 18 (1990), 2196) wird als EcoRI/Bam HI Fragment im Bluescript KS+ Vektor (Stratagene) kloniert. Die BamHI und Bglll Schnittstellen des erhaltenen Konstrukts werden durch Klenow-Reaktion mit T4-Polymerase entfernt (Sambrook, Fritsch & Maniatis, Molecular Cloning (1989), Cold Spring Harbour Lab. Press). Die so veränderte Resistenz-Kassette wird als Hindlll/Xbal Fragment isoliert und in pUC-CMV-SLpA kloniert, wodurch pCMV-SLpA erhalten wird.
Das 1236 bp große Hindlll/EcoRV Fragment des Gens für die Reverse Transkriptase aus HIV-1 (Position 3024 - 4260) wird zwischen der Hindlll und Smal Schnittstelle von pBluescript KS+ kloniert. Aus diesem Subklon wird das Genfragment der Reversen Transkriptase als Hindlll/Xbal Fragment erhalten und in den Vektor pSTC GR 407-556 (s. oben), der eine Glucocorticoid cDNA aus der Ratte enthält, ligiert. Ein 1397 bp großes BamHI Fragment aus diesem Vektor, das neben dem Fragment des Gens für die Reverse Transkriptase 117 bp der Glucocorticoid cDNA aus der Ratte enthält, wird ent¬ weder in sense oder in antisense Orientierung in die BamHI/Bglll Schnittstelle von pCMV-SLpA ligiert, wodurch die Vektoren pUC-RT-Hi-EVsense und pUC-RT-Hi-EVanti erhal¬ ten werden.
Das 1826 bp große EcoRI Fragment von pSTC GR 407-556 wird dann gegen das 6036 bp große EcoRI Fragment aus entweder pUC-RT-Hi-EVsense oder pUC-RT-Hi-EVanti ersetzt, wodurch pCMV-RTsense bzw. pCMV-RTanti (DSM 7304) erhalten werden.
Ein 370 bp großes Fragment aus der nicht transkribierten Spacer Region der murinen rDNA (muNTSl, SEQ ID NO 1 und Wegner et al. , Nucl. Acidε Res. 17 (1989), 9909 - 9932) wird mit BamHI und Sall Linkern versehen und zwischen die Bglll und Xhol Schnittstellen von pCMV-RTanti insertiert, wodurch pNTSl-RTanti (DSM 7303) erhalten wird. Beispiel 3
Transfektion von menschlichen T-Lympozyten mit amplifizier- baren antisense Vektoren und Hemmung der Aktivität der Reversen Transkriptase
Jurkat Zellen (ATCC TIB 152, T-lymphoblastoide Zelle) werden mit jeweils 10 μg der Plasmide pNTSl-RTanti bzw. pCMV-RTanti, pCMV-RTsense oder pCMV-SLpA als Kontrolle durch Elektroporation transfiziert (200V, 960 μF) und transfizierte Zellen mit 800 μg/ml G418 in RPMI 1640 Medium selektioniert. Nach zwei Wochen werden G418 resistente Klone isoliert und zunächst über Southern Blot Analyse charakterisiert.
Während die Plasmide pCMV-SLpA, pCMV-RTsense und pCMV- RTanti in den transfizierten Zellen nur in geringer Kopien¬ zahl (weniger als 5 Kopien je Zelle) vorliegen, zeigen die mit pNTSl-RTanti transfizierten Zellen eine spontane Ampli¬ fikation auf 20 - 100 Kopien je Zelle. Die transfizierten Zellen, die einen amplizierten Vektor enthalten, zeigen kein geringeres Wachstum als solche Zellen, die einen nicht amplifizierten Vektor enthalten. Die Amplifikation des pNTSl-RTanti Plasmids bleibt auch bei 3-monatiger Kultivie¬ rung in Abwesenheit von G418 stabil. Die über Northern Blot Analyse bestimmte Menge des antisense-Reverse-Transkrip- tase-Transkripts ist dabei etwa proportional zur Kopienzahl des Vektors. Die mit den verschiedenen Vektoren transfizierten Jurkat Zellen werden mit 15 TCID50 (tissue culture infective dose) von HIV-1 gemäß Popovic et al., Science 224 (1984), 497 - 500, infiziert und die Replikation des HIV-1 in den trans- fizierten Zellen über die Messung der Aktivität der Rever¬ sen Transkriptase im Kulturüberstand sowie über die Bildung von Syncytien bestimmt. Die Bestimmung der Aktivität der Reversen Transkriptase erfolgt über die Bestimmung des Einbaus von Radioaktivität bei einer cDNA-Synthese (Böhm et al., Cytometry 13 (1992), 259 - 266). Das Ergebnis ist in der folgenden Tabelle zusammengefaßt.
Tabelle: Hemmung der HIV-1 Replikation in Jurkat Zellen durch den amplizierbaren antisense Vektor pNTSl-RTanti
Figure imgf000020_0001
Beispiel 4 :
Stabilität der amplifizierten Vektoren in Abwesenheit von G418
Gemäß Beispiel 3 mit pNTSl-RTanti transfizierte menschliche T-Lymphozyten werden 3 Monate in RPMI 1640 Medium ohne G418 kultiviert und anschließend die Kopienzahl von pNTSl-RTanti über Southern Blot Analyse bestimmt. Das Ergebnis zeigt, daß die Kopienzahl von pNTSl-RTanti auch bei längerer Kultivierung in Abwesenheit von G418 unverändert hoch bleibt.
SEQUENZPROTOKOLL
(iii) ANZAHL DER SEQUENZEN: 2
(2) INFORMATION ZU SEQ ID NO: 1:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 383 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
( ii ) ART DES MOLEKÜLS : DNS ( genomisch )
( xi ) SEQUENZBESCHREIBUNG : SEQ ID NO : 1 :
TTCTTAGTCT TCAAGTCTGA GTTACTGGAA AGGAGTTCCA AGAAGACTGG TTATATTTTT 60
CATTTATTAT TGCATTTTAA TTAAAATTTA ATTTCACCAA AAGAATTTAG ACTGACAAAT 120
TCAGAGTCTG CCGTTTAAAA GCATAAGGAA AAAGTAGGAG AAAAACGTGA GGCTGTCTGT 180
GGATGGTCGA GGTCGCTTTA GGGAGCCTCG TCACCATTCT GCACTTGCAA ACCGGGCCAC 240
TAGAACCCGG TGAAGGGAGA AACCAAAGCG ACCTGGAAAC AATAGGTCAC ATGAAGGCCA 300
GCCACCTCCA TCTTGTTGTG CGGGAGTTCA GTTAGCAGAC AAGATGGCTG CCATGCACAT 360
GTTGTCTTTC AGGGGTACCA CAC 383 (2) INFORMATION ZU SEQ ID NO: 2:
(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 434 Basenpaare
(B) ART: Nukleinsäure
(C) STRANGFORM: Einzel
(D) TOPOLOGIE: linear
(ii) ART DES MOLEKÜLS: DNS (genomisch)
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:
TTATCATGAA GGCACATTGG ATTTTATGAC AGAGTCTGTG TGTGTGTGTG TGTATAATAT 60
TTCTGCTATG ATTGCAGTTA CTTGCCATCT CGTGGGCTTA TGTTTGATTT CTGTAGTTTT 12
TTAAAATTCT TTAAAATTTT TATTTTATAT TTTTTTAGTT TAGTTTAGTT TAATTTAGTT 18
TAGTTTTCAA GACAGGGTTT CTCTGTATAG CCCTGACTGT CCTGGAACTC ACTTTGCAGA 240
CCAGGCTGGC CTCAAACTCA GAAATCCTCC CATCTCTGCC TGAAGAGAGC TGGGATTAAA 300
GACATGCGCC ATCACTCCCG GCTATTTTTA AATTTTTAAA TTATATTTAT TTAATTTATT 360
TTTTTGTTTT TTTCAAGATG TGGTTTCTCT GTGTAAACTC TGGCTGACCT GGAACTCACT 420
GTGTAGTACC ACAC 434

Claims

Patentansprüche
1) Verfahren zur Hemmung der Replikation von HIV durch Transfektion potentieller Wirtszellen mit einem Vek¬ tor, der neben einer für Pol, Gag, Env, Rev und/oder Tat codierenden DNA in antisense-Orientierung eine weitere DNA enthält, welche eine spontane Ampli¬ fikation des Vektors in der Wirtszelle bewirkt.
2) Vektor zur Hemmung der Replikation von HIV in poten¬ tiellen Wirtszellen, der neben einer für Pol, Gag, Env, Rev und/oder Tat codierenden DNA in antisense- Orientierung eine weitere DNA enthält, welche eine spontane Amplifikation des Vektors in der Wirtszelle bewirkt.
3) Vektor nach Anspruch 2, welcher mehrere DNA Bereiche aus der Gruppe der für Pol, Gag, Env, Rev oder Tat codierenden DNA in antisense Orientierung enthält.
4) Vektor nach Anspruch 2 oder 3, welcher eine der in SEQ ID NO 1 oder 2 gezeigten DNA-Sequenzen zur spontanen Amplifikation des Vektors enthält.
5) Vektor pNTSl-RTanti (DSM 7303).
6 ) Verwendung eines Vektors nach einem der Ansprüche 2 - 5 zur Herstellung einer pharmazeutischen Zusammenset¬ zung zur therapeutischen Behandlung von HIV-Infek¬ tionen. 7) Pharmazeutische Zusammensetzung, enthaltend mindestens einen Vektor, der neben einer für ein Genprodukt, dessen erhöhte Expression eine krankhafte Veränderung bewirkt, codierenden DNA in antisense Orientierung eine weitere DNA enthält, welche eine spontane Ampli¬ fikation des Vektors in der Wirtszelle bewirkt.
8) Pharmazeutische Zusammensetzung, enthaltend mindestens einen Vektor nach einem der Ansprüche 2 - 5.
9) Vektor zur in vivo- und ex vivo-Gentherapie, der eine Promotor-Operator-Region zur Expression eines codie¬ renden Gens, dieses codierende Gen und eine weitere DNA enthält, welche eine spontane Amplifikation des Vektors in der Wirtszelle bewirkt.
10) Vektor nach Anspruch 9, dadurch gekennzeichnet, daß er eine der in SEQ ID NO. 1 oder 2 gezeigten DNA-Sequen¬ zen zur spontanen Amplifikation des Vektors enthält.
11) Verwendung eines Vektors nach den Ansprüchen 9 und 10 zur Herstellung einer pharmazeutischen Zusammensetzung zur ex vivo- und/oder in vivo-Gentherapie.
12) Vektor zur Hemmung der Proliferation von chronischen Leukämie-Zellen (z. B. CLL CML), der eine Antisensese- quenz, welche homolog zu Leukämievirensequenzen ist und weitere DNA enthält, welche eine spontane Amplifi¬ kation des Vektors in der Wirtszelle bewirkt. 13) Vektor nach Anspruch 12, welcher eine der in SEQ ID NO. 1 oder 2 gezeigten DNA-Sequenzen zur Spontanampli- fikation des Vektors enthält.
14 ) Verwendung eines Vektors nach den Ansprüchen 12 und 13 zur Herstellung einer pharmazeutischen Zusammensetzung zur therapeutischen Behandlung von chronischen Leukä¬ mien.
PCT/EP1993/002968 1992-10-29 1993-10-27 Amplifizierbarer vektor gegen hiv replikation WO1994010302A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DEP4236582.1 1992-10-29
DE4236582 1992-10-29
DE4324671A DE4324671A1 (de) 1992-10-29 1993-07-22 Amplifizierbarer Vektor gegen HIV Replikation
DEP4324671.0 1993-07-22

Publications (1)

Publication Number Publication Date
WO1994010302A1 true WO1994010302A1 (de) 1994-05-11

Family

ID=25919953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1993/002968 WO1994010302A1 (de) 1992-10-29 1993-10-27 Amplifizierbarer vektor gegen hiv replikation

Country Status (1)

Country Link
WO (1) WO1994010302A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071743A (en) * 1997-06-02 2000-06-06 Subsidiary No. 3, Inc. Compositions and methods for inhibiting human immunodeficiency virus infection by down-regulating human cellular genes
WO2000047237A1 (en) * 1999-02-08 2000-08-17 Friedrich Grummt Encapsulated cells containing an amplified expression vector as a drug delivery device
US6316210B1 (en) 1995-12-20 2001-11-13 Subsidiary No. 3, Inc. Genetic suppressor elements against human immunodeficiency virus
US6426412B1 (en) 1995-12-20 2002-07-30 Subsidiary No. 3, Inc. Nucleic acids encoding human immunodeficiency virus type 1 genetic suppressor elements
US6537972B1 (en) 1997-06-02 2003-03-25 Subsidiary No. 3., Inc. Compositions and methods for inhibiting human immunodeficiency virus infection by down-regulating human cellular genes
US6613506B1 (en) 2000-11-28 2003-09-02 Subsidiary No. 3, Inc. Compositions and methods for inhibiting human immunodeficiency virus infection by down-regulating human cellular genes
US6776986B1 (en) 1996-06-06 2004-08-17 Novartis Ag Inhibition of HIV-1 replication by antisense RNA expression
US9492534B2 (en) 2003-06-18 2016-11-15 Genelux Corporation Microorganisms for therapy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003260A1 (en) * 1989-09-01 1991-03-21 Temple University Of The Commonwealth System Of Higher Education Antisense oligonucleotides to c-abl proto-oncogene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003260A1 (en) * 1989-09-01 1991-03-21 Temple University Of The Commonwealth System Of Higher Education Antisense oligonucleotides to c-abl proto-oncogene

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MEYER J ET AL: "INHIBITION OF HIV-1 REPLICATION BY A HIGH-COPY-NUMBER VECTOR EXPRESSING ANTISENSE RNA FOR REVERSE TRANSCRIPTASE.", GENE (AMST) 129 (2). 1993. 263-268. *
RITTNER, K. & SCZAKIEL, G.: "Identification and analysis of antisense RNA target regions of the human immunodeficiency virus type 1", NUCLEIC ACIDS RESEARCH, vol. 19, no. 7, 1991, ARLINGTON, VIRGINIA US, pages 1421 - 1426 *
WEGNER, M. ET AL.: "Cis-acting sequences from mouse rDNA promote plasmid DNA amplification and persistence in mouse cells: implication of HMG-I in their function", NUCLEIC ACIDS RESEARCH, vol. 17, no. 23, 1989, ARLINGTON, VIRGINIA US, pages 9909 - 9932 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6316210B1 (en) 1995-12-20 2001-11-13 Subsidiary No. 3, Inc. Genetic suppressor elements against human immunodeficiency virus
US6426412B1 (en) 1995-12-20 2002-07-30 Subsidiary No. 3, Inc. Nucleic acids encoding human immunodeficiency virus type 1 genetic suppressor elements
US6776986B1 (en) 1996-06-06 2004-08-17 Novartis Ag Inhibition of HIV-1 replication by antisense RNA expression
US6071743A (en) * 1997-06-02 2000-06-06 Subsidiary No. 3, Inc. Compositions and methods for inhibiting human immunodeficiency virus infection by down-regulating human cellular genes
US6326152B1 (en) 1997-06-02 2001-12-04 Subsidiary No. 3, Inc. Compositions and methods for inhibiting human immunodeficiency virus infection by down-regulating human cellular genes
US6537972B1 (en) 1997-06-02 2003-03-25 Subsidiary No. 3., Inc. Compositions and methods for inhibiting human immunodeficiency virus infection by down-regulating human cellular genes
WO2000047237A1 (en) * 1999-02-08 2000-08-17 Friedrich Grummt Encapsulated cells containing an amplified expression vector as a drug delivery device
US6713293B1 (en) * 1999-02-08 2004-03-30 Friedrich Grummt Encapsulated cells containing an amplified expression vector as a drug delivery device
US6613506B1 (en) 2000-11-28 2003-09-02 Subsidiary No. 3, Inc. Compositions and methods for inhibiting human immunodeficiency virus infection by down-regulating human cellular genes
US9492534B2 (en) 2003-06-18 2016-11-15 Genelux Corporation Microorganisms for therapy
US10463730B2 (en) 2003-06-18 2019-11-05 Genelux Corporation Microorganisms for therapy

Similar Documents

Publication Publication Date Title
DE19541450C2 (de) Genkonstrukt und dessen Verwendung
DE69033710T2 (de) Sekretion vom mit Gamma-Interferon Signalpeptid gebundenen humänen Protein
DE69024440T2 (de) Verfahren zum spezifischen ersetzen einer genkopie, die sich in einem rezeptorengenom befindet, durch genintegration
DE3588199T2 (de) Lymphokin-Herstellung und -Reinigung
DE3587899T2 (de) Transkriptionsfaktoren mit transaktivität.
DE69230882T2 (de) Cytosindeaminase negatives selektionssystem zur genübertragung und therapien
DE69332859T2 (de) Konsensus-kozak-sequenzen zur säugetier-exprimierung
AT403167B (de) Selektion und expression von fremdproteinen mittels eines selektions-amplifikations-systems
DE69738586T2 (de) Hohe expressionsrate von proteinen
DE3856238T2 (de) DNA, die für Proteine kodiert, die menschliches IL-1 binden
DE69022046T2 (de) Verbesserungen im stimulierungsmittelbereich.
DE3751682T2 (de) Infektiöses System zur Arzneimittelabgabe
DE69027526T2 (de) Herstellung von proteinen mittels homologer rekombination
DE69420033T2 (de) Gibbon leukemia virus retrovirale vektoren
DE69030740T2 (de) Rekombinantes DNS-Verfahren und Wirtszellen
DE69434413T2 (de) Fusionsproteine zwischen antigene aminosäuresequenzen und beta - 2- mikroglobulin
DE60038555T2 (de) Verpackungszelle
AT389892B (de) Dna-sequenz mit einem gen, das fuer human-interleukin-2 codiert
WO1994010302A1 (de) Amplifizierbarer vektor gegen hiv replikation
DE69618574T2 (de) Vom desmingen abstammende amplifizierungssequenzen, vektoren, die diese enthalten und anwendungen derselben zur herstellung von proteinen
DE69233387T2 (de) Genmanipulation und Expression mittels genomischer Elemente
DE69217614T2 (de) Hybride, lösliche und nicht gespaltene gp160-variante
DE3686909T2 (de) Lymphotoxin-dns, lymphotoxin-expressionsvektor, lymphotoxin-expressionsvektor enthaltender transformant und verfahren zur herstellung von lymphotoxin.
EP0306848B1 (de) Expressionsvektor und Verfahren zur Expression von heterologen Proteinen in Säugerzellen
EP0594881A1 (de) Expressionsvektoren und deren Verwendung zur Darstellung HIV-resistenter menschlicher Zellen für therapeutische Anwendungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase