EP1194599A1 - Verfahren zum herstellen von nicht kornorientiertem elektroblech - Google Patents

Verfahren zum herstellen von nicht kornorientiertem elektroblech

Info

Publication number
EP1194599A1
EP1194599A1 EP00920746A EP00920746A EP1194599A1 EP 1194599 A1 EP1194599 A1 EP 1194599A1 EP 00920746 A EP00920746 A EP 00920746A EP 00920746 A EP00920746 A EP 00920746A EP 1194599 A1 EP1194599 A1 EP 1194599A1
Authority
EP
European Patent Office
Prior art keywords
annealing
rolling
hot
forming
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00920746A
Other languages
English (en)
French (fr)
Other versions
EP1194599B1 (de
Inventor
Karl Ernst Friedrich
Brigitte Hammer
Rudolf Kawalla
Hans Pircher
Jürgen Schneider
Olaf Fischer
Carl-Dieter Wuppermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Stahl AG filed Critical ThyssenKrupp Stahl AG
Priority to SI200030173T priority Critical patent/SI1194599T1/xx
Publication of EP1194599A1 publication Critical patent/EP1194599A1/de
Application granted granted Critical
Publication of EP1194599B1 publication Critical patent/EP1194599B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing

Definitions

  • the invention relates to a method for producing non-grain-oriented electrical sheet, in which a hot strip is produced from a material produced from a steel, such as cast slabs, strips, preliminary strips or thin slabs, the electrical sheet having a low loss of manganeseization and a high polarization and good mechanical properties Possesses properties.
  • Such non-grain oriented electrical sheets are mainly used as a core material in electrical machines, such as motors and generators, with a rotating magnetic flow direction.
  • non-grain-oriented electrical sheet is understood here to mean electrical sheets falling under DIN EN 10106 ("final annealed electrical sheet") and DIN EN 10165 (“non-final annealed electrical sheet”).
  • DIN EN 10106 final annealed electrical sheet
  • DIN EN 10165 non-final annealed electrical sheet
  • more anisotropic grades are included as long as they are not considered grain-oriented electrical sheets.
  • the processing industry makes the demand to provide non-grain-oriented electrical sheets, the magnetic properties of which are increased compared to conventional sheets of this type.
  • the magnetization losses should be reduced and the polarization used in each case Induction range can be increased.
  • the respective processing steps to which the electrical sheets are subjected in connection with their uses result in special requirements for the mechanical-technological properties of the electrical sheets.
  • the ability of the sheets to be cut, for example when punching, is of particular importance.
  • One way of producing a more permeable electrical sheet based on medium or weakly silicated alloys is to subject the hot strip to a hot strip annealing during the course of production.
  • a hot strip annealing during the course of production.
  • an annealing of the coil is provided directly from the casting heat. In this way an end product with good magnetic properties is obtained.
  • increased costs have to be accepted.
  • an increased reel temperature in combination with an additional hot strip annealing is desirable in order to obtain useful magnetic properties even with low alloy contents. This too can only be accomplished by accepting additional costs.
  • the object of the invention is to provide an inexpensive way of producing electrical sheets with improved properties.
  • a process for the production of non-grain-oriented electrical sheet metal in which a starting material, such as cast slabs, strips or thin slabs, is made from a steel with (in% by weight) 0.001 - 0.05% C, ⁇ 1, 5% Si, ⁇ 0.4% AI, with Si + 2 AI ⁇ 1.7%, 0.1-1.2% Mn, optionally up to a total of 1.5% of alloy additives, such as P, Sn, Sb, Zr , V, Ti, N, Ni, Co, Nb and / or B, and as the remainder iron and usual accompanying elements is produced, a hot strip is produced by the raw material directly from the casting heat or after a previous reheating to a temperature of at least 1000 ° C and a reheating temperature of at most 1180 ° C in several forming passes and then coiled, whereby during hot rolling at least the first forming pass in the austenite area and then with one
  • alloy additives such as P, Sn, Sb, Zr , V, Ti,
  • Total shape change ⁇ h of at least 45% one or more forming stitches are carried out in the ferrite area.
  • the invention is based on the knowledge that electrical sheets with optimized properties through the selection of certain forming rates during hot rolling in the phase areas ⁇ -phase (austenite), ⁇ / ⁇ -phase
  • the magnetic properties of an electrical sheet are now influenced in a targeted manner by deformation during the individual forming passages which are carried out in the course of hot rolling, depending on the particular structural state. Rolling in the austenite and ferrite area plays a decisive role, whereas the amount of deformation in the two-phase mixing area should be as low as possible.
  • the method according to the invention is therefore particularly suitable for the processing of such Fe-Si alloys which do not have a pronounced two-phase mixing region between the austenite and ferrite regions.
  • the coordination of the alloy additives on ferrite and austenite-forming elements is taking into account the content ranges provided according to the invention individual elements based on a basic composition of (Si + 2A1) ⁇ 1.7.
  • cast slabs are used as primary material, they are reheated to a temperature> 1000 ° C. in such a way that the material is completely in the austenitic state.
  • thin slabs or tapes are used directly using the casting heat and, if necessary, heated to the initial rolling temperature of more than 1000 ° C.
  • the required reheating temperature grows with increasing Si content, an upper limit of 1180 ° C. not being exceeded.
  • the hot rolling according to the invention will generally be carried out in a finishing mill formed from several rolling stands.
  • the purpose of rolling in one or more passes in the austenite area is, on the one hand, to be able to carry out the transition from austenite to ferrite in a controlled manner within the finishing mill.
  • the forming passages passed through in the austenite area serve to adjust the thickness of the hot strip in the ferrite area before the rolling begins so that the overall shape change desired during ferrite rolling is reliably achieved.
  • Rolling in the ferrite area also includes at least one forming pass. Preferably, however, several forming passages are run through in the ferrite area in order to reliably achieve the required overall shape change of at least 45% and thus to obtain the desired setting of the hot strip structure.
  • the “overall change in shape ⁇ h ” is understood here to mean the ratio of the decrease in thickness during rolling in the respective phase area to the thickness of the strip when it enters the relevant phase area.
  • a hot strip produced according to the invention has a thickness h 0, for example after rolling in the austenite area. In the course of the subsequent rolling in the ferrite area, the thickness of the hot strip is reduced to hi.
  • the overall shape change ⁇ h during ferrite rolling should reach at least 45% in order to set a condition of the hot-rolled strip which favors the desired magnetic and technological properties with regard to grain size, texture and precipitations or to prepare for the subsequent processing steps.
  • the hot rolling which mainly takes place in ferrite rolling, largely bypassing the two-phase mixing area, can thus produce a hot strip, which can further be used for the production of an electrical sheet and for the production of components with excellent magnetic properties. Additional processing steps which cause costs or the maintenance of certain high temperatures during hot rolling are not necessary for this purpose.
  • the method according to the invention enables a rolling strategy that is optimized both in terms of temperature control and in terms of the staggering of the deformations Combined with a suitably selected reel temperature, the cost-effective production of a high-quality electrical sheet material.
  • the combination of the measures according to the invention can be used to produce electrical sheets whose properties correspond to the properties of those produced in a conventional manner and which have undergone additional time-consuming and costly process steps, such as supplementary hot strip annealing.
  • supplementary hot strip annealing in addition to the procedure of the invention is used, the interaction of these measures leads to electrical steel sheets, the magnetic steel sheets conventionally prepared in their magnetic and mechanical properties are superior.
  • the invention brings about a significant reduction in the costs for the production of high-quality electrical sheets.
  • sheets can be produced on the basis of the method according to the invention, the properties of which are conventionally produced by far superior electrical sheets.
  • a particularly advantageous embodiment of the invention with regard to the rolling forces that occur during the implementation of a method according to the invention and the technological properties of the hot strip produced is characterized in that the hot strip is cooled in the austenite region after the forming so much that the ferrite conversion takes place before the subsequent one Forming is essentially complete.
  • Two-phase mixing area austenite / ferrite passed between two forming passes in the shortest possible way, so that the hot strip is only rolled in the ferrite area after rolling in the austenite area.
  • Total shape change ⁇ h during rolling in the ferrite area is preferably at least 50%.
  • a particularly suitable embodiment of the invention is characterized in that the hot strip after the at least one forming pass in the austenite area has at least one forming pass in the two-phase mixing area austenite / ferrite, during which a total degree of forming ⁇ h of at most 30% is reached, a total degree of deformation ⁇ h of at least 45% being achieved during the at least one forming pass subsequently carried out in the ferrite region.
  • the extent of rolling in the two-phase mixing area is largely restricted and the focus of the forming is placed on rolling in the ferrite area.
  • a reel temperature of at least 700 ° C. is generally suitable for carrying out the method according to the invention. If this coiling temperature is maintained, an additional hot strip annealing can be saved entirely or at least in part.
  • the hot strip is already softened in the coil, whereby the characteristics determining its properties, such as grain size, Texture and excretions, can be influenced positively.
  • Such an "in-line” annealing of the hot strip coiled at high temperature and not significantly cooled in the coil can completely replace a hot strip hood annealing which might otherwise be necessary. This way, annealed hot strips with particularly good magnetic and technological properties can be produced. The time and energy required for this is considerably less than with the hot strip annealing conventionally carried out to improve the properties of electrical sheet.
  • the reel temperature is less than 600 ° C., in particular less than 550 ° C. Coiling at these temperatures leads to a solidified hot strip condition. In practice it has been found that this procedure leads to particularly good results, particularly in the case of steels, which contain at least 0.7% by weight of Si.
  • the hot strip is cooled down immediately after coiling.
  • At least one of the last forming passes in the ferrite area should be hot rolled with lubrication.
  • Hot rolling with lubrication results in lower shear deformations on the one hand, so that the rolled strip is given a more homogeneous structure across the cross-section.
  • the rolling forces are reduced by the lubrication, so that a greater reduction in thickness is possible over the respective rolling pass. Therefore, depending on the desired properties of the electrical sheet to be produced, it can be advantageous if all the rolling passes that have been carried out during hot rolling are carried out with roll lubrication.
  • a further improvement in the properties of the electrical steel strip produced can be achieved in that the hot strip is additionally annealed after coiling at an annealing temperature of at least 740 ° C. This annealing can be carried out in the hood furnace or in the continuous furnace.
  • the hot strip produced in accordance with the invention is particularly suitable for being cold-rolled to a final thickness in a conventional manner in one or more stages. If the cold rolling is carried out in several stages, an intermediate annealing should take place after at least one of the cold rolling stages in order to maintain the good mechanical properties of the strip.
  • a "fully-finished" electrical strip is to be produced, then the cold rolling is followed by a final annealing at an annealing temperature which is preferably> 740 ° C.
  • a recrystallizing annealing follows the possibly multi-stage cold rolling in a hood or continuous furnace at temperatures of at least 650 ° C. The cold-rolled and annealed electrical steel is then straightened and re-rolled.
  • Cold-rolled electrical steel produced according to the invention is excellently cut and punched and, as such, is particularly suitable for processing into components, such as lamellae or circular blanks.
  • components such as lamellae or circular blanks.
  • the components made from this electrical sheet are expediently annealed by the user.
  • the final annealing of the cold-rolled electrical sheet is preferably carried out in a decarburizing atmosphere according to a further embodiment of the invention.
  • J2500 denotes the magnetic polarization at magnetic field strengths of 2500 A / m, 5000 A / m and 10000 A / m.
  • Reverse magnetization loss understood with a polarization of 1.0 T or 1.5 T and a frequency of 50 Hz.
  • Table 1 shows the contents of the essential alloy constituents in% by weight for three steels used for the production of electrical sheet according to the invention.
  • Table 2 shows the magnetic properties J 2 5oo J5000 / Jioooc P ⁇ , o and P ⁇ , 5 / measured on individual strips along the rolling direction for three electrical sheets B1, B2, B3 produced from steels A, B, C.
  • the slabs cast from steels A, B and C are preheated to a temperature of more than 1000 ° C and fed into a rolling mill.
  • the finishing hot rolling mill at least the first forming pass was carried out exclusively in the austenite area.
  • the hot strips were cooled to such an extent that the two-phase mixing area austenite / ferrite was passed through in the shortest possible time and the ferrite conversion was completed before the next rolling stand was reached.
  • the subsequent forming stitches in the finishing mill series were therefore carried out exclusively in the ferrite area. The was in
  • Ferrite area reached total degree of deformation ⁇ h 50%.
  • the rolled hot strips were then coiled at a reel temperature of 750 ° C.
  • the coiled coils are then for an extended period of have been kept at the reel temperature for at least 15 minutes.
  • Table 3 shows the magnetic properties J 2 500 Jsooof PI, O and P ⁇ , 5 for an electrical sheet B4, which was produced based on the steel C.
  • this electrical steel B4 was coiled at a temperature of 600 ° C after hot rolling in the finishing mill. The coiled hot strip was cooled immediately afterwards before it was sent to cold strip for further processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
Die Erfindung betrifft ein Verfahren zum Herstellen von nicht kornorientiertem Elektroblech, bei dem aus einem aus einem Stahl erzeugten Vormaterial, wie gegossenen Brammen, Bändern, Vorbändern oder Dünnbrammen, ein Warmband gefertigt wird, wobei das Elektroblech einen geringen Ummangetisierungsverlust und eine hohe Polarisation sowie gute mechanische Eigenschaften besitzt. Derartige nichtkornorientierte Elektrobleche werden hauptsächlich als Kernmaterial in elektrischen Maschinen, wie Motoren und Generatoren, mit rotierender magnetischer Flußrichtung verwendet.
Unter dem Begriff "nichtkornorientiertes Elektroblech" werden hier unter die DIN EN 10106 ("schlußgeglühtes Elektroblech") und DIN EN 10165 ("nicht schlußgeglühtes Elektroblech") fallende Elektrobleche verstanden. Darüber hinaus werden auch stärker anisotrope Sorten einbezogen, solange sie nicht als kornorientierte Elektrobleche gelten.
Von der verarbeitenden Industrie wird die Forderung gestellt, nichtkornorientierte Elektrobleche zur Verfügung zu stellen, deren magnetische Eigenschaften gegenüber herkömmlichen Blechen dieser Art angehoben sind. So sollen die Ummagnetisierungsverluste herabgesetzt und die Polarisation im jeweils genutzten Induktionsbereich erhöht werden. Gleichzeitig ergeben sich aus den jeweiligen Be- und Verarbeitungsschritten, welchen die Elektrobleche im Zusammenhang mit ihren Verwendungen unterworfen werden, spezielle Anforderungen an die mechanisch-technologischen Eigenschaften der Elektrobleche. In diesem Zusammenhang kommt der Schneidbarkeit der Bleche, z.B. beim Stanzen, besondere Bedeutung zu.
Durch die Erhöhung der magnetischen Polarisation wird der Magnetisierungsbedarf reduziert. Damit einhergehend gehen auch die Kupferverluste zurück, welche einen wesentlichen Anteil an den beim Betrieb elektrischer Maschinen entstehenden Verluste haben. Der wirtschaftliche Wert nichtkornorientierter Elektrobleche mit erhöhter Permeabilität ist daher erheblich.
Die Forderung nach höherpermeablen nichtkornorientierten
Elektroblechsorten betrifft nicht nur nichtkornorientierte Elektrobleche mit hohen Verlusten (Pl,5 > 5 - 6 W/kg), sondern auch Bleche mit mittleren (3,5 W/kg < Pl,5 < 5,5 W/kg) und niedrigen Verlusten
(Pl,5 < 3.5) . Daher ist man bemüht, das gesamte Spektrum der schwach-, mittel- und hochsilizierten elektrotechnischen Stähle hinsichtlich seiner magnetischen Polarisationswerte zu verbessern.
Ein Weg, basierend auf mittel- oder schwachsilizierten Legierungen ein höherpermeables Elektroblech herzustellen, besteht darin, im Zuge der Herstellung das Warmband einer Warmbandglühung zu unterziehen. So wird beispielsweise in der WO 96/00306 vorgeschlagen, ein für die Erzeugung eines Elektroblechs bestimmtes Warmband im Austenitgebiet fertig zu walzen und das Haspeln bei Temperaturen oberhalb der vollständigen Umwandlung in Ferrit vorzunehmen. Zusatzlich ist ein Glühen des Coils unmittelbar aus der Gießhitze vorgesehen. Auf diese Weise wird ein Endprodukt mit guten magnetischen Eigenschaften erhalten. Allerdings müssen dazu wegen des hohen Energieaufwands für das Warmen vor und wahrend des Warmwalzens sowie wegen der erforderlichen Legierungszusätze erhöhte Kosten in Kauf genommen werden.
Gemäß der EP 0 469 980 ist eine erhöhte Haspeltemperatur in Kombination mit einer zusatzlichen Warmbandgluhung anzustreben, um auch bei niedrigen Legierungsgehalten brauchbare magnetische Eigenschaften zu erhalten. Auch dies kann nur unter Inkaufnahme zusatzlicher Kosten bewerkstelligt werden.
Die Aufgabe der Erfindung besteht darin, einen kostengünstigen Weg zur Herstellung von Elektroblechen mit verbesserten Eigenschaften anzugeben.
Diese Aufgabe wird durch ein Verfahren zum Herstellen von nicht kornorientiertem Elektroblech gelost, bei dem aus einem Vormaterial, wie gegossenen Brammen, Bandern oder Dunnbrammen, das aus einem Stahl mit (in Gewichts-%) 0,001 - 0,05 % C, < 1,5 % Si, < 0,4 % AI, mit Si + 2 AI < 1,7 %, 0,1 - 1,2 % Mn, gegebenenfalls bis insgesamt 1,5 % an Legierungszusatzen, wie P, Sn, Sb, Zr, V, Ti, N, Ni, Co, Nb und/oder B, und als Rest Eisen sowie üblichen Begleitelementen hergestellt ist, ein Warmband erzeugt wird, indem das Vormaterial direkt aus der Gießhitze oder nach einem vorhergehenden Wiedererwarmen auf eine mindestens 1000 °C und höchstens 1180 °C betragende Wiedererwarmungstemperatur in mehreren Umformstichen warmgewalzt und anschließend gehaspelt wird, wobei während des Warmwalzens mindestens der erste Umformstich im Austenitgebiet und anschließend mit einer
Gesamtformänderung εh von mindestens 45 % ein oder mehrere Umformstiche im Ferritgebiet durchgeführt werden.
Die Erfindung geht von der Erkenntnis aus, daß Elektrobleche mit optimierten Eigenschaften durch die Auswahl bestimmter Umformraten während des Warmwalzens in den Phasengebieten γ-Phase (Austenit) , γ/α-Phase
(Zweiphasenmischgebiet ) und α-Phase (Ferrit) bei umwandelnden Legierung der hier in Rede stehenden Art hergestellt werden können. Es hat sich gezeigt, daß sich durch eine geeignete Kombination der Phasenabfolge beim Warmwalzen in Verbindung mit bestimmten Endwalz- und Haspeltemperaturen eine entscheidende Anhebung der magnetischen Polarisation erreichen läßt.
Gemäß der Erfindung werden nun die magnetischen Eigenschaften eines Elektroblechs durch eine Verformung während der einzelnen im Zuge des Warmwalzens durchlaufenen Umformstiche in Abhängigkeit vom jeweiligen Gefügezustand gezielt beeinflußt. Entscheidenden Anteil hat dabei das Walzen im Austenit- und Ferritgebiet, wogegen der Anteil der Umformung im Zweiphasenmischgebiet möglichst gering sein soll. Das erfindungsgemäße Verfahren ist daher insbesondere für die Verarbeitung von solchen Fe-Si-Legierungen geeignet, welche kein ausgeprägtes Zweiphasenmischgebiet zwischen dem Austenit- und dem Ferritgebiet aufweisen.
Die Abstimmung der Legierungszusätze an ferrit- und austenitbildenden Elementen ist unter Berücksichtigung der erfindungsgemäß vorgesehenen Gehaltsbereiche der einzelnen Elemente ausgehend von einer Basiszusammensetzung von (Si + 2A1) < 1,7 vorzunehmen.
Im Fall der Verwendung von gegossenen Brammen als Vormaterial werden diese auf eine Temperatur > 1000 °C derart wiedererwarmt, daß sich das Material vollständig im austenitschen Zustand befindet. Aus dem gleichen Grunde werden auch Dunnbrammen oder Bander unter Ausnutzung der Gießhitze direkt eingesetzt und erforderlichenfalls auf Walzanfangstemperatur von mehr als 1000 °C erwärmt. Dabei wachst die erforderliche Wiedererwarmungstemperatur mit zunehmendem Si-Gehalt, wobei eine Obergrenze von 1180 °C nicht überschritten wird.
Das Warmwalzen gemäß der Erfindung wird in der Regel in einer aus mehreren Walzgerusten gebildeten Fertigwalzstaffel durchgeführt werden. Dabei besteht der Zweck des in einem oder mehreren Stichen erfolgenden Walzens im Austenitgebiet zum einen darin, den Übergang vom Austenit ins Ferrit kontrolliert innerhalb der Fertigwalzstaffel durchfuhren zu können. Zum anderen dienen die im Austenitgebiet durchlaufenen Umformstiche dazu, die Dicke des Warmbands vor dem Beginn des Walzens im Ferritgebiet so einzustellen, daß die wahrend des Ferritwalzens erwünschte Gesamtformanderung sicher erreicht wird. Das Walzen im Ferritgebiet umfaßt ebenfalls mindestens einen Umformstich. Vorzugsweise werden jedoch mehrere Umformstiche im Ferritgebiet durchlaufen, um die geforderte Gesamtformanderung von mindestens 45 % sicher zu erreichen und so die gewünschte Einstellung des Warmbandgefuges zu erhalten. Unter der "Gesamtformänderung εh" wird hier das Verhältnis der Dickenabnahme während des Walzens im jeweiligen Phasengebiet zur Dicke des Bandes beim Eintritt in das betreffende Phasengebiet verstanden. Dieser Definition entsprechend weist ein gemäß der Erfindung hergestelltes Warmband beispielsweise nach dem Walzen im Austenitgebiet eine Dicke h0 auf. Im Zuge des darauffolgenden Walzens im Ferritgebiet wird die Dicke des Warmbands auf hi reduziert. Definitionsgemäß ergibt sich damit die beispielsweise während des Ferritwalzens erreichte Gesamtformänderung εh zu (h0 - hi) / h0 mit h0 = Dicke beim Eintritt in das erste im Ferritzustand durchlaufene Walzgerüst und hi = Dicke beim Verlassen der Walzstaffel, dem Ende des Walzens im Ferritgebiet.
Gemäß der Erfindung soll die Gesamtformänderung εh während des Ferritwalzens mindestens 45 % erreichen, um einen die gewünschten magnetischen und technologischen Eigenschaften begünstigenden Zustand des warmgewalzten Bandes hinsichtlich Korngröße, Textur und Ausscheidungen einzustellen bzw. für die nachfolgenden Verarbeitungsschritte vorzubereiten. Durch das schwerpunktmäßig im Ferritwalzen unter weitestgehender Umgehung des Zweiphasenmischgebiets erfolgende Warmwalzen läßt sich so ein Warmband erzeugen, welches im weiteren zur Herstellung eines Elektroblechs und zur Fertigung von Bauteilen mit hervorragenden magnetischen Eigenschaften genutzt werden kann. Kosten verursachende zusätzliche Verarbeitungsschritte oder das Einhalten bestimmter hoher Temperaturen während des Warmwalzens sind zu diesem Zweck nicht erforderlich. Statt dessen ermöglicht das erfindungsgemäße Verfahren durch eine sowohl hinsichtlich der Temperaturführung als auch hinsichtlich der Staffelung der Umformungen optimierte Walzstrategie in Verbindung mit einer geeignet gewählten Haspeltemperatur die kostengünstige Erzeugung eines hochwertigen Elektroblechmaterials .
Es ist festgestellt worden, daß sich schon durch die Kombination der erfindungsgemäßen Maßnahmen Elektrobleche herstellen lassen, deren Eigenschaften den Eigenschaften von solchen in herkömmlicher Weise hergestellten Elektroblechen gleichkommen, die zusätzliche zeit- und kostenaufwendige Verfahrensschritte, wie ein ergänzendes Warmbandglühen, durchlaufen haben. Weiter ist' festgestellt worden, daß für den Fall, daß ein Warmbandglühen in Ergänzung der erfindungsgemäßen Vorgehensweise angewendet wird, das Zusammenwirken dieser Maßnahmen zu Elektroblechen führt, die in ihren magnetischen und mechanischen Eigenschaften herkömmlich hergestellten Elektroblechen überlegen sind. Somit bewirkt die Erfindung einerseits eine deutliche Verminderung der Kosten bei der Herstellung von qualitativ hochwertigen Elektroblechen. Andererseits lassen sich auf Grundlage des erfindungsgemäßen Verfahrens Bleche erzeugen, deren Eigenschaften herkömmlich erzeugten Elektroblechen weit überlegen sind.
Eine insbesondere im Hinblick auf die während der Durchführung eines erfindungsgemäßen Verfahrens entstehenden Walzkräfte und die technologischen Eigenschaften des erzeugten Warmbands besonders vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß das Warmband nach der Umformung im Austenitgebiet so stark abgekühlt wird, daß die Ferritumwandlung vor der darauffolgend durchgeführten Umformung im wesentlichen abgeschlossen ist. Bei dieser Variante des erfindungsgemäßen Verfahrens wird das Zweiphasenmischgebiet Austenit/Ferrit zwischen zwei Umformstichen auf kürzestem Wege durchschritten, so daß das Warmband nach dem Walzen im Austenitgebiet nur noch im Ferritgebiet gewalzt wird. Dabei sollte die
Gesamtformänderung εh während des Walzens im Ferritgebiet vorzugsweise mindestens 50 % betragen. Besonders geeignet für dieses Walzen im Austenit- und Ferritgebiet unter weitestgehendem Ausschluß des Walzens im Mischgebiet Austenit/Ferrit sind Bänder, welche basierend auf einem Stahl mit einem Si-Gehalt von weniger als 0,7 Gewichts-% hergestellt wurden.
Beträgt der Si-Gehalt des Stahls mindestens 0,7 Gewichts-%, so ist eine besonders geeignete Ausgestaltung der Erfindung dadurch gekennzeichnet, daß das Warmband nach dem mindestens einen Umformstich im Austenitgebiet mindestens einen Umformstich im Zweiphasenmischgebiet Austenit / Ferrit, während dessen ein Gesamtumformgrad εh von höchstens 30 % erreicht wird, durchläuft, wobei während des mindestens einen anschließend im Ferritgebiet durchgeführten Umformstichs ein Gesamtumformgrad εh von mindestens 45 % erreicht wird. Auch bei dieser Variante der Erfindung wird der Umfang des Walzens im Zweiphasenmischgebiet weitgehend eingeschränkt und der Schwerpunkt der Umformung auf das Walzen im Ferritgebiet gelegt.
Grundsätzlich eignet sich für die Durchführung des erfindungsgemäßen Verfahrens eine Haspeltemperatur von mindestens 700 °C. Bei Einhaltung dieser Haspeltemperatur kann eine zusätzliche Warmbandglühung ganz oder zumindest zum wesentlichen Teil eingespart werden. Das Warmband wird schon im Coil entfestigt, wobei die seine Eigenschaften bestimmenden Merkmale, wie Korngröße, Textur und Ausscheidungen, positiv beeinflußt werden. Besonders vorteilhaft ist es in diesem Zusammenhang, wenn das gehaspelte Warmband aus der Coilhitze einer direkten Glühung unterzogen wird und wenn die Glühzeit bei einer Glühtemperatur oberhalb 700 °C mindestens 15 Minuten beträgt. Eine solche "in-line" ausgeführte Glühung des bei hoher Temperatur aufgehaspelten, im Coil nicht wesentlich abgekühlten Warmbandes kann eine andernfalls unter Umständen erforderliche Warmbandhaubenglühung vollständig ersetzen. So lassen sich geglühte Warmbänder mit besonders guten magnetischen und technologischen Eigenschaften herstellen. Der dazu erforderliche Zeit- und Energieaufwand ist erheblich geringer als bei der herkömmlicherweise zur Verbesserung der Eigenschaften von Elektroblech durchgeführten Warmbandglühung.
Gemäß einer alternativen Ausgestaltung der Erfindung ergeben sich Verbesserungen der Materialeigenschaften, wenn die Haspeltemperatur weniger als 600 °C, insbesondere weniger als 550 °C, beträgt. Das Haspeln bei diesen Temperaturen führt zu einem verfestigten Warmbandzustand. In der Praxis ist festgestellt worden, daß diese Vorgehensweise insbesondere bei Stählen zu besonders guten Ergebnissen führt, die mindestens 0,7 Gewichts-% Si enthalten.
Je nach Art des zu fertigenden Bandes kann es in diesem Zusammenhang günstig sein, wenn das Warmband unmittelbar nach dem Haspeln beschleunigt abgekühlt wird.
Zumindest bei einem der letzten im Ferritgebiet durchgeführten Umformstiche sollte mit Schmierung warmgewalzt werden. Durch das Warmwalzen mit Schmierung treten einerseits geringere Scherverformungen auf, so daß das gewalzte Band im Ergebnis eine homogenere Struktur über den Querschnitt erhält. Andererseits werden durch die Schmierung die Walzkräfte vermindert, so daß über dem jeweiligen Walzstich eine höhere Dickenabnahme möglich ist. Daher kann es, je nach den gewünschten Eigenschaften des zu erzeugenden Elektroblechs, vorteilhaft sein, wenn alle während des Warmwalzens durchlaufenen Walzstiche mit einer Walzschmierung durchgeführt werden.
Unabhängig von der jeweils gewählten Abfolge der Walzschritte kann eine weitere Verbesserung der Eigenschaften des erzeugten Elektrobandes dadurch erreicht werden, daß das Warmband nach dem Haspeln zusätzlich bei einer Glühtemperatur von mindestens 740 °C geglüht wird. Dieses Glühen kann im Haubenofen oder im Durchlaufofen durchgeführt werden.
Das auf erfindungsgemäße Weise hergestellte Warmband ist aufgrund seiner mechanischen Eigenschaften besonders dazu geeignet, in herkömmlicher Weise ein- oder mehrstufig auf eine Enddicke kaltgewalzt zu werden. Sofern das Kaltwalzen mehrstufig durchgeführt wird, sollte im Anschluß an mindestens eine der Kaltwalzstufen ein Zwischenglühen erfolgen, um die guten mechanischen Eigenschaften des Bandes beizubehalten.
Soll ein "fully-finished"-Elektroband hergestellt werden, so schließt sich an das Kaltwalzen ein Schlußglühen bei einer Glühtemperatur an, welche vorzugsweise > 740 °C ist .
Soll dagegen ein "semi-finished"-Elektroband erzeugt werden, so schließt sich an das gegebenenfalls mehrstufig durchgeführte Kaltwalzen ein rekristallisierendes Glühen im Hauben- oder Durchlaufofen bei Temperaturen von mindestens 650 °C an. Im Anschluß daran wird das kaltgewalzte und geglühte Elektroband gerichtet und nachgewalzt .
Erfindungsgemäß hergestelltes, kaltgewalztes Elektroband ist hervorragend schneid- und stanzbar und eignet sich als solches besonders dazu, zu Bauelementen, wie Lamellen oder Ronden, verarbeitet zu werden. Im Falle der Verarbeitung eines "semi-finished"-Elektroblechs werden zweckmäßigerweise die aus diesem Elektroblech hergestellten Bauelemente beim Anwender schlußgeglüht.
Unabhängig davon, ob ein "semi-" oder ein "fully- finished" Elektroblech erzeugt wird, erfolgt gemäß einer weiteren Ausgestaltung der Erfindung die Schlußglühung des kaltgewalzten Elektroblechs vorzugsweise in einer entkohlenden Atmosphäre.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
"J2500", "J5000" bzw. "J10000" bezeichnen im folgenden die magnetische Polarisation bei magnetischen Feldstärken von 2500 A/m, 5000 A/m bzw. 10000 A/m.
Unter "P 1,0" bzw. "P 1,5" wird der
Ummagnetisierungsverlust bei einer Polarisation von 1,0 T bzw. 1,5 T und einer Frequenz von 50 Hz verstanden.
Die in den nachfolgenden Tabellen angegebenen magnetischen Eigenschaften sind jeweils an Einzelstreifen längs der Walzrichtung gemessen worden. In Tabelle 1 sind für drei zur erfindungsgemäßen Herstellung von Elektroblech verwendete Stähle die Gehalte der wesentlichen Legierungsbestandteile in Gewichts-% angegeben.
Tabelle 1
In Tabelle 2 sind die magnetischen Eigenschaften J25oo J5000/ Jioooc Pι,o und Pι,5/ gemessen an Einzelstreifen längs der Walzrichtung, für drei aus den Stählen A, B, C erzeugte Elektrobleche Bl, B2, B3 angegeben. Die aus den Stählen A, B bzw. C gegossenen Brammen sind als Vormaterial jeweils auf eine Temperatur von mehr als 1000 °C wiedererwärmt und in eine Walzstaffel geleitet worden. In der Fertigwarmwalzstaffel ist mindestens der erste Umformstich ausschließlich im Austenitgebiet durchgeführt worden. Im Anschluß an das Walzen im Austenitgebiet sind die Warmbänder so stark abgekühlt worden, daß das Zweiphasenmischgebiet Austenit/Ferrit in kürzester Zeit durchschritten und die Ferritumwandlung abgeschlossen war, bevor das nächste Walzgerüst erreicht worden ist. Die anschließenden Umformstiche in der Fertigwalzstaffel sind dementsprechend ausschließlich im Ferritgebiet durchgeführt worden. Dabei betrug der im
Ferritgebiet erreichte Gesamtumformgrad εh 50 %. Die gewalzten Warmbänder sind daraufhin bei einer Haspeltemperatur von 750 °C gehaspelt worden. Die gehaspelten Coils sind dann für eine verlängerte Zeit von mindestens 15 Minuten auf der Haspeltemperatur gehalten worden.
Tabelle 2
In Tabelle 3 sind die magnetischen Eigenschaften J2500 Jsooof PI,O und Pι,5 für ein Elektroblech B4 angegeben, welches basierend auf dem Stahl C erzeugt worden ist. Im Unterschied zu den Elektroblechen Bl, B2, B3 ist dieses Elektroband B4 nach dem Warmwalzen in der Fertigwalzstaffel bei einer Temperatur von 600 °C gehaspelt worden. Das gehaspelte Warmband ist unmittelbar anschließend abgekühlt worden, bevor es der Weiterverarbeitung zu Kaltband zugeführt worden ist.
Blech J2500 J5000 Jioooo Pι,o Pl,5 [T] [T] [T] [W/kg] [W/kg]
B4 1,671 1,748 1,845 2,660 5,413
Tabelle 3

Claims

P A T E N T A N S P R Ü C H E
Verfahren zum Herstellen von nicht kornorientiertem Elektroblech, bei dem aus einem Vormaterial, wie gegossenen Brammen, Bändern, Vorbändern oder Dünnbrammen, das aus einem Stahl mit (in Gewichts-%)
C: 0,001 - 0,05 %
Si: < 1,5 %
AI: < 0,4 % mit Si + 2A1 ≤ 1,7 %
Mn : 0,1 - 1,2 % gegebenenfalls bis insgesamt 1,5 % an
Legierungszusätzen, wie P, Sn, Sb, Zr, V, Ti, N,
Ni, Co, Nb und/oder B, und als Rest Eisen sowie üblichen Begleitelementen
hergestellt ist, ein Warmband erzeugt wird, indem das Vormaterial direkt aus der Gießhitze oder nach einem vorhergehenden Wiedererwärmen auf eine mindestens 1000 °C und höchstens 1180 °C betragende Wiedererwärmungstemperatur in mehreren Umformstichen warmgewalzt und anschließend gehaspelt wird, wobei während des Warmwalzens mindestens der erste Umformstich im Austenitgebiet und anschließend mit einer Gesamtformänderung εh von mindestens 45 % ein oder mehrere Umformstiche im Ferritgebiet durchgeführt werden.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband nach der Umformung im Austenitgebiet so stark abgekühlt wird, daß die Ferritumwandlung vor der darauffolgend durchgeführten Umformung im wesentlichen abgeschlossen ist.
3. Verfahren nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, d a ß die während des Walzens im Ferritgebiet erreichte Gesamtformänderung εh mindestens 50 % beträgt.
4. Verfahren nach einem der Ansprüche 2 oder 3, d a d u r c h g e k e n n z e i c h n e t, d a ß der Stahl einen Si-Gehalt von mindestens
0,7 Gewichts-% aufweist.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband nach dem mindestens einen Umformstich im Austenitgebiet mindestens einen Umformstich im Zweiphasenmischgebiet Austenit / Ferrit, während dessen ein Gesamtumformgrad εh von höchstens 30 % erreicht wird, durchläuft und d a ß während des mindestens einen, anschließend im Ferritgebiet durchgeführten Umformstichs ein Gesamtumformgrad εh von mindestens 45 % erreicht wird.
6. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß die Haspeltemperatur mindestens 700 °C beträgt.
7. Verfahren nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, d a ß das gehaspelte Warmband aus der Coilhitze einer direkten Glühung unterzogen wird und d a ß die Glühzeit bei einer Glühtemperatur oberhalb 700 °C mindestens 15 Minuten beträgt .
8. Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, d a ß die Haspeltemperatur weniger als 600 °C, insbesondere weniger als 550 °C, beträgt.
9. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband in unmittelbarem Anschluß an das Haspeln im Coil beschleunigt abgekühlt wird.
10. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß während des Warmwalzens im Ferritgebiet mindestens ein Umformstich mit Schmierung durchgeführt wird.
11. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband nach dem Haspeln bei einer Glühtemperatur von mindestens 740 °C geglüht wird.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, d a ß das Glühen des zu einem Coil gehaspelten Warmbands im Haubenofen durchgeführt wird.
13. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, d a ß das Glühen im Durchlaufofen durchgeführt wird.
14. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a ß das Warmband ein- oder mehrstufig auf eine Enddicke kaltgewalzt wird.
15. Verfahren nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t, d a ß das Kaltwalzen mehrstufig durchgeführt wird und d a ß im Anschluß an mindestens eine der Kaltwalzstufen ein Zwischenglühen erfolgt.
16. Verfahren nach einem der Ansprüche 14 oder 15, d a d u r c h g e k e n n z e i c h n e t, d a ß das Kaltband im Anschluß an das Kaltwalzen bei einer Glühtemperatur > 740 °C schlußgeglüht wird.
17. Verfahren nach den Ansprüchen 15 und 16, d a d u r c h g e k e n n z e i c h n e t, d a ß das Kaltband nach dem Kaltwalzen in einem Haubenoder Durchlaufglühofen bei Glühtemperaturen > 650 °C rekristallisierend zu einem nicht schlußgeglühten Elektroband geglüht und im Anschluß daran gerichtet und nachgewalzt wird.
8. Verfahren nach einem der Ansprüche 16 oder 17, d a d u r c h g e k e n n z e i c h n e t, d a ß die Glühung in einer entkohlenden Atmosphäre durchgeführt wird.
EP00920746A 1999-07-05 2000-04-29 Verfahren zum herstellen von nicht kornorientiertem elektroblech Expired - Lifetime EP1194599B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200030173T SI1194599T1 (en) 1999-07-05 2000-04-29 Method for producing non-grain oriented electric sheet steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19930518A DE19930518C1 (de) 1999-07-05 1999-07-05 Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
DE19930518 1999-07-05
PCT/EP2000/003901 WO2001002611A1 (de) 1999-07-05 2000-04-29 Verfahren zum herstellen von nicht kornorientiertem elektroblech

Publications (2)

Publication Number Publication Date
EP1194599A1 true EP1194599A1 (de) 2002-04-10
EP1194599B1 EP1194599B1 (de) 2003-07-16

Family

ID=7913402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00920746A Expired - Lifetime EP1194599B1 (de) 1999-07-05 2000-04-29 Verfahren zum herstellen von nicht kornorientiertem elektroblech

Country Status (6)

Country Link
EP (1) EP1194599B1 (de)
AT (1) ATE245203T1 (de)
AU (1) AU4120600A (de)
DE (2) DE19930518C1 (de)
ES (1) ES2202104T3 (de)
WO (1) WO2001002611A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003014404A1 (de) * 2001-08-11 2003-02-20 Thyssenkrupp Electrical Steel Ebg Gmbh Nichtkornorientiertes elektroblech oder -band und verfahren zu seiner herstellung
DE10150642A1 (de) * 2001-10-12 2003-04-30 Thyssenkrupp Stahl Ag Verfahren zum Herstellen von nicht kornorientierten Elektroblechen
KR100862616B1 (ko) * 2007-04-17 2008-10-09 한국전자통신연구원 인덱스 정보를 이용한 오디오 핑거프린트 검색 시스템 및방법
DE102013019787A1 (de) * 2013-11-27 2015-05-28 Valeo Schalter Und Sensoren Gmbh Verfahren zum Herstellen eines ferromagnetischen Bauteils für einen Drehmomentsensor einer Fahrzeuglenkwelle und Drehmomentsensor
DE102019216240A1 (de) * 2019-10-22 2021-04-22 Muhr Und Bender Kg Verfahren und Vorrichtung zur Herstellung eines nicht-kornorientierten Elektrobands

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723509B2 (ja) * 1988-10-13 1995-03-15 新日本製鐵株式会社 優れた鉄損特性を有する無方向性電磁鋼板の製造方法
JPH036326A (ja) * 1989-06-01 1991-01-11 Kobe Steel Ltd 磁気特性の優れた無方向性電磁鋼板の製造方法
BE1006599A6 (fr) * 1993-01-29 1994-10-25 Centre Rech Metallurgique Procede de fabrication d'une tole d'acier laminee a chaud presentant des proprietes magnetiques elevees.
BE1007927A3 (fr) * 1994-02-07 1995-11-21 Cockerill Rech & Dev Procede de production d'acier doux.
US5803989A (en) * 1994-06-24 1998-09-08 Nippon Steel Corporation Process for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss
JP3319898B2 (ja) * 1994-12-20 2002-09-03 川崎製鉄株式会社 コイル内で磁気特性の均一な無方向性電磁鋼帯の製造方法
DE19807122C2 (de) * 1998-02-20 2000-03-23 Thyssenkrupp Stahl Ag Verfahren zur Herstellung von nichtkornorientiertem Elektroblech

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0102611A1 *

Also Published As

Publication number Publication date
ATE245203T1 (de) 2003-08-15
WO2001002611A1 (de) 2001-01-11
DE50002924D1 (de) 2003-08-21
EP1194599B1 (de) 2003-07-16
AU4120600A (en) 2001-01-22
DE19930518C1 (de) 2000-10-12
ES2202104T3 (es) 2004-04-01

Similar Documents

Publication Publication Date Title
EP1194600B1 (de) Verfahren zum herstellen von nichtkornorientiertem elektroblech
EP1263993B1 (de) Verfahren zum herstellen von nichtkornorientiertem elektroblech
EP1056890B1 (de) Verfahren zur herstellung von nichtkornorientiertem elektroblech
EP2840157B1 (de) Nicht kornorientiertes Elektroband oder -blech und Verfahren zur Erzeugung eines nicht kornorientierten Elektrobands oder -blechs
DE3882502T2 (de) Verfahren zur Herstellung von kornorientierten Elektrostahlblechen mit hoher Flussdichte.
WO2013102556A1 (de) Nicht kornorientiertes elektroband oder -blech, daraus hergestelltes bauteil und verfahren zur erzeugung eines nicht kornorientierten elektrobands oder -blechs
DE19930519C1 (de) Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
DE68916980T2 (de) Verfahren zum Herstellen kornorientierter Elektrostahlbleche mit hoher Flussdichte.
DE69030781T2 (de) Verfahren zur Herstellung kornorientierter Elektrostahlbleche mittels rascher Abschreckung und Erstarrung
DE10221793C1 (de) Nichtkornorientiertes Elektroband oder -blech und Verfahren zu seiner Herstellung
DE2307464A1 (de) Eisenlegierungen und verfahren zu deren herstellung
EP1440173B1 (de) Für die herstellung von nichtkornorientiertem elektroblech bestimmtes, warmgewalztes stahlband und verfahren zu seiner herstellung
DE68921479T2 (de) Verfahren zur herstellung nichtorientierter elektrobleche mit ausgezeichneten magnetischen eigenschaften.
DE3229256A1 (de) Kornorientiertes elektrostahlblech und verfahren zu seiner herstellung
DE3220307C2 (de) Verfahren zum Herstellen von kornorientiertem Siciliumstahlblech oder -band
DE19930518C1 (de) Verfahren zum Herstellen von nicht kornorientiertem Elektroblech
WO2002048410A1 (de) Verfahren zum herstellen von warmband oder -blech aus einem mikrolegierten stahl
WO2003042416A1 (de) Verfahren zur herstellung von nichtkornorientiertem elektroblech
DE10220282C1 (de) Verfahren zum Herstellen von kaltgewalztem Stahlband mit Si-Gehalten von mindestens 3,2 Gew.-% für elektromagnetische Anwendungen
DE68921478T2 (de) Verfahren zur herstellung nicht-orientierter elektrobleche mit ausgezeichneten magnetischen eigenschaften.
DE69023291T2 (de) Verfahren zum Herstellen kornorientierter Elektrobleche aus Stangguss durch Warmwalzen.
DE10139699C2 (de) Nichtkornorientiertes Elektroblech oder -band und Verfahren zu seiner Herstellung
DE2024525B1 (de) Verfahren zur Herstellung von für eine Kaltbearbeitung ausreichend duktilen Zwischenprodukten aus Eisen-Silizium-Legierungen mit 4,5 bis 7,5 Gew.-% Silizium
WO2003014404A1 (de) Nichtkornorientiertes elektroblech oder -band und verfahren zu seiner herstellung
DE10159501A1 (de) Nichtkornorientiertes Elektroblech oder -band und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020108

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI PAYMENT 20020108

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP STAHL AG

17Q First examination report despatched

Effective date: 20020405

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50002924

Country of ref document: DE

Date of ref document: 20030821

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031016

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031016

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031216

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030716

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2202104

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190423

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190418

Year of fee payment: 20

Ref country code: IT

Payment date: 20190419

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190418

Year of fee payment: 20

Ref country code: FR

Payment date: 20190418

Year of fee payment: 20

Ref country code: BE

Payment date: 20190424

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190822

Year of fee payment: 20

Ref country code: GB

Payment date: 20190418

Year of fee payment: 20

Ref country code: AT

Payment date: 20190424

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200428

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200428

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20200429

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 245203

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200428

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200430