EP1187983A1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen

Info

Publication number
EP1187983A1
EP1187983A1 EP00936813A EP00936813A EP1187983A1 EP 1187983 A1 EP1187983 A1 EP 1187983A1 EP 00936813 A EP00936813 A EP 00936813A EP 00936813 A EP00936813 A EP 00936813A EP 1187983 A1 EP1187983 A1 EP 1187983A1
Authority
EP
European Patent Office
Prior art keywords
valve
injection
fuel
fuel injection
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00936813A
Other languages
English (en)
French (fr)
Other versions
EP1187983B1 (de
Inventor
Steffen Hunkert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1187983A1 publication Critical patent/EP1187983A1/de
Application granted granted Critical
Publication of EP1187983B1 publication Critical patent/EP1187983B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines according to the preamble of claim 1.
  • a piston-shaped valve member is arranged axially displaceably in a valve body and has a conical valve sealing surface at its end on the combustion chamber side. With this conical valve sealing surface, the valve member interacts with a conical valve seat surface arranged at a closed end of a bore in the valve body, a sealing cross section being formed on the line of contact between the valve sealing surface and the valve seat surface.
  • injection openings Downstream of this sealing cross-section, in the fuel flow direction, are injection openings which are arranged in the wall of the valve body and which, starting from the bore in the valve body, open on the outer surface of the valve body and protrude into the combustion chamber of the internal combustion engine to be supplied.
  • These injection openings are conical on the known fuel injection valve, the cross section of the injection openings decreasing conically from a relatively large diameter at the fuel inlet to a relatively small diameter at the fuel outlet.
  • the known fuel injection valve has the disadvantage that all injection openings have the same taper, so that it is not possible to individually adapt the fuel injection jet at each injection opening to the respective requirements of the individual injection jet within the combustion chamber.
  • This individual optimization of the individual jet geometries at each injection opening is of particular importance, especially when the fuel injection valve is installed off-center or at an angle in the combustion chamber of the internal combustion engine, since this is the only way to optimally match the fuel injection with regard to the jet geometry and jet preparation adapt in the combustion chamber of the internal combustion engine and thus an optimal Generate fuel processing and combustion.
  • Such a jet geometry optimization at each jet inlet is not possible with the known fuel injection valve.
  • the fuel injection valve according to the invention for internal combustion engines with the characterizing features of claim 1 has the advantage over the fact that an optimization of the injection jet geometry depending on the local requirements is possible at each injection opening.
  • the injection openings have different cone angles from one another, via which the respective fuel flow and thus the injected fuel jet can be shaped individually. It is possible to reduce the cross-section of the injection opening uniformly from a large diameter to a small diameter in the direction of flow of the fuel (positive conicity). However, it is alternatively also possible, with corresponding requirements, to increase the cross section of the injection opening (spray hole) evenly starting from the inlet opening in the direction of the combustion chamber-side outlet opening (negative taper).
  • At least two injection openings advantageously have different cone angles depending on the installation position of the fuel injection valve in the combustion chamber of the internal combustion engine to be supplied, the cone angles preferably being in a range between 10 to 90 °. It is also particularly advantageous if, with increasing deflection angle (which is preferably between 15 ° and in special installation cases up to 120 °), the inflowing fuel at the inlet into the injection opening also increases the cone angle, particularly in the case of positive conicity.
  • a plurality of injection openings can be provided on the fuel injection valve, wherein the differently designed injection openings can be arranged in a row over the circumference of the injection valve.
  • each individual injection opening with an individually optimized conicity, depending on the requirements for the flow of the fuel and the jet geometry at the outlet, whereby the cone angle of the corresponding injection opening can be positive or negative .
  • an optimized individual design of the cone angle at the individual injection openings an identical average fuel speed can be generated at each spray hole outlet despite different deflection angles of the inflowing fuel and an oblique installation position of the fuel injection valve in the combustion chamber.
  • the drawing shows three exemplary embodiments of the fuel injection valve according to the invention for internal combustion engines, which are explained in more detail in the following description.
  • FIG. 1 shows a first exemplary embodiment in a simplified partial section through the top of the fuel injection valve on the combustion chamber side, in which the injection openings have a negative cone angle
  • FIG. 2 shows a second exemplary embodiment in a section through the part of the valve body on the combustion chamber side, in which the adjacent injection openings face one another are offset and have different positive cone angles
  • FIG. 3 shows a third exemplary embodiment in which two rows of injection openings arranged axially one above the other are shown with different cone angles. Description of the embodiments
  • the first exemplary embodiment of the fuel injection valve according to the invention for internal combustion engines which is shown only in its essential area in FIG. 1, has a valve body 1, which projects with its lower end, shown, into a combustion chamber, not shown, of an internal combustion engine.
  • a valve member 3 is axially displaceably guided in a known manner, which has a conical valve sealing surface 5 at its lower, combustion chamber-side end, with which it cooperates with a valve seat surface 7 on the valve body 1.
  • This valve seat surface 7 is formed at a closed end of a bore 9 in the valve body 1 and also has a conical cross section, the cone angle of the valve seat surface 7 deviating slightly from the cone angle of the valve sealing surface 5 on the valve member 3.
  • a circumferential line contact is provided, which forms a sealing cross-section, which, when the valve member 3 is in contact with the valve seat surface 7, has an upstream space in the fuel flow of the bore 9 from a downstream blind hole 11 at the closed end of the Hole 9 separates.
  • a plurality of injection openings 13 are also provided in the valve body 1, which open out from the wall of the bore 9 to the outer circumferential surface of the valve body 1 and protrude into the combustion chamber of the internal combustion engine to be supplied in a manner not shown. These injection openings are to be conical in dependence on the requirements of the fuel flow and the injection jet to be sprayed, a negative conicity being shown in the first exemplary embodiment shown in FIG.
  • the cone angle is chosen such that the cross section of the injection opening continuously increases in the flow direction of the fuel from a relatively small inlet diameter on the wall of the bore 9 to a larger outlet diameter on the outer peripheral wall of the valve body 1.
  • At least two of the injection openings 13 should have different cone angles, which are dependent on the position of the respective injection opening in the valve body 1 and the arrangement of the entire fuel injection valve in the combustion chamber of the internal combustion engine to be supplied.
  • the second exemplary embodiment of the fuel injection valve according to the invention shown in FIG. 2 differs from the first exemplary embodiment shown in FIG. 1 in the arrangement and configuration of the injection openings 13 in the wall of the valve body 1.
  • the injection openings 13 now have a positive conicity, in which the Diameter d1 at the inlet into the injection opening 13 is larger than the diameter d2 at the outlet opening of the injection opening 13 into the combustion chamber of the internal combustion engine to be supplied.
  • two injection openings 13 are provided, which are arranged differently in the valve body 1 and which also have different cone angles.
  • the cone angle ⁇ is dependent on a deflection angle ⁇ of the inflowing fuel at the inlet into the injection opening 13.
  • the cone angle ⁇ at the injection openings 13 should preferably also increase with increasing deflection angle ⁇ .
  • the inlet edges 15 are rounded at the transition between the inner wall surface of the valve body 1 for entry into the injection opening 13. In this way, a uniform entry of the fuel inflow into the injection openings 13 can be achieved, which can then be shaped within the injection openings 13 in accordance with the desired spray pattern by forming the cone angle to form the desired injection spray pattern.
  • FIG. 3 shows a third exemplary embodiment of the fuel injection valve according to the invention for internal combustion engines, in which two rows of injection openings 13 arranged axially one above the other are now provided in valve body 1.
  • the injection openings 13 arranged in a rotating row each have the same deflection angle ⁇ and thus the same cone angle ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem in einem Ventilkörper (1) axial verschiebbaren Ventilglied (3), das an seinem brennraumseitigen Ende eine Ventildichtfläche (5) aufweist, mit der es mit einer am Ventilkörper (1) angeordneten Ventilsitzfläche (7) unter Bildung eines Dichtquerschnittes zusammenwirkt und mit Einspritzöffnungen (13) in der Wand des Ventilkörpers (1), die in Richtung der Kraftstoffströmung stromabwärts nach dem Dichtquerschnitt zwischen Ventilsitzfläche (7) und Ventildichtfläche (5) angeordnet sind und die eine konische Form aufweisen. Dabei weisen wenigstens zwei Einspritzöffnungen (13) des Kraftstoffeinspritzventils zueinander unterschiedliche Konuswinkel auf.

Description

Kraftstoffeinspritzventil für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Bei einem derartigen aus der Schrift EP 0 352 926 bekannten Kraftstoffeinspritzventil ist ein kolbenförmiges Ventilglied axial verschiebbar in einem Ventilkörper angeordnet und weist an seinem brennraumseitigen Ende eine konische Ventildichtfläche auf. Mit dieser konischen Ventildichtfläche wirkt das Ventilglied mit einer an einem geschlossenen Ende einer Bohrung im Ventilkörper angeordneten konischen Ventilsitzfläche zusammen, wobei an der Berührungslinie zwischen Ventildichtfläche und Ventilsitzfläche ein Dichtquerschnitt gebildet wird. Diesem Dichtquerschnitt sind in Kraftstoffströmungsrichtung stromabwärts Einspritzöffnungen nachgeordnet, die in der Wand des Ventilkörpers angeordnet sind und die ausgehend von der Bohrung im Ventilkörper an dessen Außenmantelfläche münden und dabei in den Brennraum der zu versorgenden Brennkraftmaschine ragen. Dabei sind diese Einspritzöffnungen am bekannten Kraftstoffeinspritzventil konisch ausgebildet, wobei sich der Querschnitt der Einspritzöffnungen von einem relativ großen Durchmesser am Kraftstoffeintritt zu einem relativ kleinen Durchmesser am Kraftstoffaustritt gleichmäßig konisch verringert.
Dabei weist das bekannte Kraftstoffeinspritzventil jedoch den Nachteil auf, daß sämtliche Einspritzöffnungen die gleiche Konizität aufweisen, so daß es nicht möglich ist, den Kraftstoffeinspritzstrahl an jeder Einspritzöffnung separat auf die jeweiligen Erfordernisse an den einzelnen Einspritzstrahl innerhalb des Brennraumes individuell anzupassen. Dieser individuellen Optimierung der einzelnen Strahlgeometrien an jeder Einspritzöffnung kommt dabei insbesondere bei einer außermittigen oder schrägen Einbaulage des Kraftstoffeinspritzventils im Brennraum der Brennkraftmaschine jedoch eine wesentliche Bedeutung zu, da es erst damit möglich wird, die Kraftstoffeinspritzung hinsichtlich der Strahlgeometrie und der Strahlaufbereitung optimal an die jeweiligen Verhältnisse im Brennraum der Brennkraftmaschine anzupassen und so eine optimale Kraftstoffaufbereitung und Verbrennung zu erzeugen. Eine derartige Strahlgeometrie- Optimierung an jedem Strahleintritt ist jedoch mit dem bekannten Kraftstoffeinspritzventil nicht möglich.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, daß an jeder Einspritzöffnung eine Optimierung der Einspritzstrahlgeometrie in Abhängigkeit von den lokalen Erfordernissen möglich ist. Dazu weisen die Einspritzöffnungen zueinander unterschiedliche Konuswinkel auf, über die sich die jeweilige Kraftstoffströmung und somit der eingespritzte Kraftstoff strahl individuell formen läßt. Dabei ist es möglich, den Querschnitt der Einspritzöffnung ausgehend von einem großen Durchmesser auf einen kleinen Durchmesser in Strömungsrichtung des Kraftstoffes gleichmäßig zu verringern (positive Konizität). Es ist jedoch alternativ auch möglich bei entsprechenden Anforderungen, den Querschnitt der Einspritzöffnung (Spritzloch) ausgehend von der Eintrittsöffnung in Richtung brennraumseitiger Austrittsöffnung gleichmäßig zu vergrößern (negative Konizität). Dabei weisen in vorteilhafter Weise wenigstens zwei Einspritzöffnungen in Abhängigkeit von der Einbaulage des Kraftstoffeinspritzventils im Brennraum der zu versorgenden Brennkraftmaschine, zueinander unterschiedliche Konuswinkel auf, wobei die Konuswinkel vorzugsweise in einem Bereich zwischen 10 bis 90 ° liegen. Besonders vorteilhaft ist es zudem, wenn mit zunehmendem Umlenkwinkel (der vorzugsweise zwischen 15° bis in Einbausonderfällen bis 120 ° liegt), des zuströmenden Kraftstoffes am Eintritt in die Einspritzöffnung auch der Konuswinkel insbesondere bei positiver Konizität, zunimmt. Dabei können am Kraftstoffeinspritzventil eine Vielzahl von Einspritzöffnungen vorgesehen sein, wobei die verschieden ausgebildeten Einspritzöffnungen in einer Reihe über den Umfang des Einspritzventils angeordnet sein können. Es ist alternativ jedoch auch möglich eine Vielzahl von axial übereinander angeordneten Reihen von Einspritzöffnungen am Kraftstoffeinspritzventil vorzusehen, die zudem über eine entsprechende Ansteuerung des axial beweglichen Ventilgliedes nacheinander aufsteuerbar sein können. Des weiteren ist es für die Kraftstoffeinströmung in die Einspritzöffnung besonders vorteilhaft, wenn die Einlaufkanten an der Einspritzöffnung mit einem Radius abgerundet sind. Auf diese Weise lassen sich bereits hier Verwirbelungen und somit das Entstehen von Unterdruckgebieten vermeiden, so daß die Kraftstoffeinströmung in die Einspritzöffnung gleichmäßig erfolgen kann. Dies unterstützt auch eine Formung der Kraftstoffströmung innerhalb der Einspritzöffnung in die am Austritt der Einspritzöffnung gewünschte Strahlgeometrie des eingespritzten Kraftstoffstrahles.
Es ist somit mit dem erfindungsgemäßen Kraftstoffeinspritzventil für Brennkraftmaschinen in vorteilhafter Weise möglich, jede einzelne Einspritzöffnung je nach Erfordernis an die Strömung des Kraftstoffes und die Strahlgeometrie am Austritt mit einer individuellen optimierten Konizität zu versehen, wobei der Konuswinkel der entsprechenden Einspritzöffnung dabei positiv oder negativ sein kann. Durch eine optimierte individuelle Ausbildung des Konuswinkels an den einzelnen Einspritzöffnungen kann damit trotz unterschiedlicher Umlenkwinkel des einströmenden Kraftstoffes und einer schrägen Einbaulage des Kraftstoffeinspritzventils im Brennraum eine gleiche mittlere Kraftstoffgeschwindigkeit an jedem Spritzlochaustritt erzeugt werden.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.
Zeichnung
In der Zeichnung sind drei Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils für Brennkraftmaschinen dargestellt, die in der nachfolgenden Beschreibung näher erläutert sind.
Es zeigen die Figur 1 ein erstes Ausführungsbeispiel in einem vereinfachten Teilschnitt durch die brennraumseitige Kuppe des Kraftstoffeinspritzventils, bei dem die Einspritzöffnungen einen negativen Konuswinkel aufweisen, die Figur 2 ein zweites Ausführungsbeispiel in einem Schnitt durch den brennraumseitigen Teil des Ventilkörpers, bei dem die nebeneinanderliegenden Einspritzöffnungen zueinander versetzt sind und unterschiedliche positive Konuswinkel aufweisen und die Figur 3 ein drittes Ausführungsbeispiel, bei dem zwei axial übereinander angeordnete Reihen von Einspritzöffnungen mit unterschiedlichen Konuswinkeln dargestellt sind. Beschreibung der Ausführungsbeispiele
Das in der Figur 1 nur in seinem erfindungswesentlichen Bereich dargestellte erste Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils für Brennkraftmaschinen weist einen Ventilkörper 1 auf, der mit seinem unteren, dargestellten Ende in einen nicht näher gezeigten Brennraum einer Brennkraftmaschine ragt. In diesem Ventilkörper 1 ist in bekannter Weise ein Ventilglied 3 axial verschiebbar geführt, das an seinem dargestellten unteren, brennraumseitigen Ende eine konische Ventildichtfläche 5 aufweist, mit der es mit einer Ventilsitzfläche 7 am Ventilkörper 1 zusammenwirkt. Diese Ventilsitzfläche 7 ist dabei an einem geschlossenen Ende einer Bohrung 9 im Ventilkörper 1 gebildet und weist ebenfalls einen konischen Querschnitt auf, wobei der Konuswinkel der Ventilsitzfläche 7 geringfügig von dem Konuswinkel der Ventildichtfläche 5 am Ventilglied 3 abweicht. Dabei ist aufgrund der unterschiedlichen Konuswinkel zwischen Ventilsitzfläche 7 und Ventildichtfläche 5 eine umlaufende Linienberührung vorgesehen, die einen Dichtquerschnitt bildet, der bei an der Ventilsitzfläche 7 anliegendem Ventilglied 3 einen in Kraftstoffströmung stromaufwärts liegenden Raum der Bohrung 9 von einem stromabwärts liegenden Sackloch 11 am geschlossenen Ende der Bohrung 9 trennt. Im Ventilkörper 1 sind des weiteren eine Vielzahl von Einspritzöffnungen 13 vorgesehen, die ausgehend von der Wand der Bohrung 9 an die Außenumfangsfläche des Ventilkörpers 1 münden und dabei in nicht näher dargestellter Weise in den Brennraum der zu versorgenden Brennkraftmaschine ragen. Diese Einspritzöffnungen sollen dabei in Abhängigkeit von den Erfordernissen an die Kraftstoffströmung und den abzuspritzenden Einspritzstrahl konisch ausgebildet sein, wobei bei dem in der Figur 1 dargestellten ersten Ausführungsbeispiel eine negative Konizität dargestellt ist, bei der der Konuswinkel derart gewählt ist, daß sich der Querschnitt der Einspritzöffnung in Strömungsrichtung des Kraftstoffes von einem relativ kleinen Eintrittsdurchmesser an der Wand der Bohrung 9 stetig in einen größeren Austrittsdurchmesser an der Außenumfangswand des Ventilkörpers 1 vergrößert. Dabei sollen wenigstens zwei der Einspritzöffnungen 13 zueinander unterschiedliche Konuswinkel aufweisen, die von der Lage der jeweiligen Einspritzöffnung im Ventilkörper 1 und der Anordnung des gesamten Kraftstoffeinspritzventils im Brennraum der zu versorgenden Brennkraftmaschine abhängig sind. Das in der Figur 2 dargestellte zweite Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils unterscheidet sich zum in der Figur 1 dargestellten ersten Ausführungsbeispiel in der Anordnung und Ausgestaltung der Einspritzöffnungen 13 in der Wand des Ventilkörpers 1. Dabei weisen die Einspritzöffnungen 13 nunmehr eine positive Konizität auf, bei der der Durchmesser d1 am Eintritt in die Einspritzöffnung 13 größer ausgebildet ist als der Durchmesser d2 an der Austrittsöffnung der Einspritzöffnung 13 in den Brennraum der zu versorgenden Brennkraftmaschine. Beim zweiten Ausführungsbeispiel sind zwei Einspritzöffnungen 13 vorgesehen, die unterschiedlich im Ventilkörper 1 angeordnet sind und die zudem unterschiedliche Konuswinkel aufweisen. Dabei ist der Konuswinkel α von einem Umlenkwinkel ß des einströmenden Kraftstoffes am Eintritt in die Einspritzöffnung 13 abhängig. Der Konuswinkel α an den Einspritzöffnungen 13 soll dabei vorzugsweise mit steigendem Umlenkwinkel ß ebenfalls zunehmen. Des weiteren sind die Einiaufkanten 15 am Übergang zwischen der Innenwandfläche des Ventilkörpers 1 zum Eintritt in die Einspritzöffnung 13 gerundet ausgebildet. Auf diese Weise kann ein gleichmäßiges Eintreten der Kraftstoffzuströmung in die Einspritzöffnungen 13 erreicht werden, die dann innerhalb der Einspritzöffnungen 13 entsprechend des gewünschten Strahlbildes über die Ausbildung des Konuswinkels zu dem gewünschten Einspritzstrahlbild geformt werden kann.
Die Figur 3 zeigt ein drittes Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils für Brennkraftmaschinen, bei dem im Ventilkörper 1 nunmehr zwei Reihen von axial übereiander angeordneten Einspritzöffnungen 13 vorgesehen sind. Dabei weisen die in einer umlaufenden Reihe angeordneten Einspritzöffnungen 13 jeweils den gleichen Umlenkwinkel ß und somit den gleichen Konuswinkel α auf.
Über die gezeigten drei Ausführungsbeispiele hinaus sind alternativ auch sämtliche Kombinationen von konischen Spritzlöchern untereinander möglich, wobei die einzelne Spritzlochgeometrie je nach Anforderungen an die Kraftstoffströmung und die Strahlgeometrie am Einspritzaustritt individuell optimierbar ist.

Claims

PAT E N TA N S P R Ü C H E
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem in einem Ventükörper (1 ) axial verschiebbaren Ventilglied (3), das an seinem brennraumseitigen Ende eine Ventildichtfläche (5) aufweist, mit der es mit einer am Ventilkörper (1) angeordneten Ventilsitzfläche (7) unter Bildung eines Dichtquerschnittes zusammenwirkt und mit Einspritzöffnungen (13) in der Wand des Ventilkörpers (1), die in Richtung der Kraftstoffströmung stromabwärts nach dem Dichtquerschnitt zwischen Ventilsitzfläche (7) und Ventildichtfläche (5) angeordnet sind und die eine konische Form aufweisen, dadurch gekennzeichnet, daß wenigstens zwei Einspritzöffnungen (13) des Kraftstoffeinspritzventils zueinander unterschiedliche Konuswinkel aufweisen.
2. Kraftstoffeinspritzventil nach Anspruch 1 , dadurch gekennzeichnet, daß ein Eintrittsdurchmesser (d1) der Einspritzöffnungen (13) an der Innenwandfläche des Ventilkörpers (1) einen kleineren Durchmesser aufweist, als ein Austrittsdurchmesser (d2) an der in den Brennraum der Brennkraftmaschine ragenden Außenwandfläche des Ventilkörpers (1).
3. Kraftstoffeinspritzventil nach Anspruch 1 , dadurch gekennzeichnet, daß ein Eintrittsdurchmesser (d1) der Einspritzöffnungen (13) an der Innenwandfläche des Ventilkörpers (1) einen größeren Durchmesser aufweist, als ein Austrittsdurchmesser (d2) an der in den Brennraum der Brennkraftmaschine ragenden Außenwandfläche des Ventilkörpers (1 ).
4. Kraftstoffeinspritzventil nach Anspruch 1 , dadurch gekennzeichnet, daß eine Vielzahl von axial übereinander angeordneten Einspritzöffnungen (13) vorgesehen sind.
5. Kraftstoffeinspritzventil nach Anspruch 1 , dadurch gekennzeichnet, daß der Konuswinkel (α) der Einspritzöffnungen (13) jeweils von deren Umlenkwinkel (ß) der einströmenden Kraftstoffmenge am Eintritt in die Einspritzöffnungen (13) abhängig ist, wobei die Einspritzöffnungen (13) mit gleichem Umlenkwinkel (ß) jeweils einen gleichen Konuswinkel (α) aufweisen.
6. Kraftstoffeinspritzventil nach Anspruch 5, dadurch gekennzeichnet, daß der Konuswinkel (α) an den Einspritzöffnungen (13) mit steigendem Umlenkwinkel (ß) des einströmenden Kraftstoffstromes zunimmt.
7. Kraftstoffeinspritzventil nach Anspruch 1 , dadurch gekennzeichnet, daß eine Einlaufkante (15) am Übergang zwischen der Innenwandfläche des Ventilkörpers (1) zur Einspritzöffnung (13) abgerundet ausgebildet ist.
EP00936813A 1999-06-02 2000-05-26 Kraftstoffeinspritzventil für brennkraftmaschinen Expired - Lifetime EP1187983B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19925380 1999-06-02
DE19925380A DE19925380A1 (de) 1999-06-02 1999-06-02 Kraftstoffeinspritzventil für Brennkraftmaschinen
PCT/EP2000/004813 WO2000075504A1 (de) 1999-06-02 2000-05-26 Kraftstoffeinspritzventil für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP1187983A1 true EP1187983A1 (de) 2002-03-20
EP1187983B1 EP1187983B1 (de) 2005-08-10

Family

ID=7910091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00936813A Expired - Lifetime EP1187983B1 (de) 1999-06-02 2000-05-26 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (4)

Country Link
US (1) US6520145B2 (de)
EP (1) EP1187983B1 (de)
DE (2) DE19925380A1 (de)
WO (1) WO2000075504A1 (de)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4103291B2 (ja) * 2000-03-08 2008-06-18 株式会社デンソー 燃料噴射ノズル
DE10118164B4 (de) * 2001-04-11 2007-02-08 Robert Bosch Gmbh Brennstoffeinspritzventil
DE10132449A1 (de) * 2001-07-04 2003-01-23 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10329731A1 (de) * 2003-07-02 2005-02-03 Robert Bosch Gmbh Kraftstoffeinspritzventil und ein Verfahren zur Herstellung desselben
FR2876750B1 (fr) * 2004-10-19 2010-09-17 Renault Sas Buse d'injection possedant des trous de conicites differentes et moteur comportant une telle buse
US7104475B2 (en) * 2004-11-05 2006-09-12 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7137577B2 (en) * 2004-11-05 2006-11-21 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7185831B2 (en) * 2004-11-05 2007-03-06 Ford Motor Company Low pressure fuel injector nozzle
US7168637B2 (en) * 2004-11-05 2007-01-30 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7198207B2 (en) * 2004-11-05 2007-04-03 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7438241B2 (en) * 2004-11-05 2008-10-21 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7124963B2 (en) * 2004-11-05 2006-10-24 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
US7051957B1 (en) * 2004-11-05 2006-05-30 Visteon Global Technologies, Inc. Low pressure fuel injector nozzle
EP1693562B1 (de) * 2005-01-19 2007-05-30 Delphi Technologies, Inc. Brennstoffeinspritzventil
JP4549222B2 (ja) * 2005-04-19 2010-09-22 ヤンマー株式会社 直接噴霧式ディーゼル機関
FR2892452A1 (fr) * 2005-10-26 2007-04-27 Peugeot Citroen Automobiles Sa Chambre de combustion pour moteur a injection directe et moteur comportant ladite chambre
DE102006013962A1 (de) 2006-03-27 2007-10-04 Robert Bosch Gmbh Einspritzdüse mit Spritzkanälen sowie Verfahren zur Einbringung von Kanälen
US7572997B2 (en) * 2007-02-28 2009-08-11 Caterpillar Inc. EDM process for manufacturing reverse tapered holes
KR100872841B1 (ko) * 2007-09-28 2008-12-09 한국전력공사 디엠이 연료용 가스터빈 연소기의 연료노즐과 이의 설계방법
US8496191B2 (en) * 2008-05-19 2013-07-30 Caterpillar Inc. Seal arrangement for a fuel injector needle valve
DE102008041676A1 (de) * 2008-08-29 2010-03-04 Robert Bosch Gmbh Brennstoffeinspritzventil
EP2187043A1 (de) * 2008-11-14 2010-05-19 Delphi Technologies Holding S.à.r.l. Einspritzdüse
US8479519B2 (en) * 2009-01-07 2013-07-09 General Electric Company Method and apparatus to facilitate cooling of a diffusion tip within a gas turbine engine
US20110030635A1 (en) * 2009-08-04 2011-02-10 International Engine Intellectual Property Company, Llc Fuel injector nozzle for reduced coking
CN101825045A (zh) * 2010-04-13 2010-09-08 大连理工大学 柴油机燃烧系统
KR20120058151A (ko) * 2010-11-29 2012-06-07 현대자동차주식회사 차량용 인젝터
JP5195890B2 (ja) * 2010-12-21 2013-05-15 トヨタ自動車株式会社 燃料噴射弁および内燃機関
AT511880B1 (de) * 2011-09-06 2013-12-15 Bosch Gmbh Robert Verschleissoptimierte herstellung von konischen spritzlöchern
JP5959892B2 (ja) * 2012-03-26 2016-08-02 日立オートモティブシステムズ株式会社 火花点火式燃料噴射弁
US9546633B2 (en) * 2012-03-30 2017-01-17 Electro-Motive Diesel, Inc. Nozzle for skewed fuel injection
US20130298563A1 (en) * 2012-05-14 2013-11-14 General Electric Company Secondary Combustion System
EP2757247A1 (de) * 2013-01-18 2014-07-23 EFI Hightech AG Einspritzdüse für eine Verbrennungskraftmaschine
AT512893B1 (de) 2013-02-05 2013-12-15 Bosch Gmbh Robert Bauelement mit ineinandermündenden Hochdruckbohrungen
JP5786875B2 (ja) * 2013-02-05 2015-09-30 株式会社デンソー 燃料噴射ノズル
EP2884090B1 (de) 2013-12-11 2018-02-21 Continental Automotive GmbH Düsenkörper und Kraftstoffeinspritzventil
US9695723B2 (en) 2014-01-15 2017-07-04 General Electric Company Combustion system including a piston crown and fuel injector
DE102014220928A1 (de) * 2014-10-15 2016-04-21 Continental Automotive Gmbh Registerdüse zum Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine
US10570865B2 (en) * 2016-11-08 2020-02-25 Ford Global Technologies, Llc Fuel injector with variable flow direction
DE102016224084B4 (de) * 2016-12-05 2019-04-18 Robert Bosch Gmbh Kraftstoffinjektor
JP7529580B2 (ja) * 2021-01-19 2024-08-06 本田技研工業株式会社 内燃機関

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2557772A1 (de) * 1975-12-20 1977-06-23 Kloeckner Humboldt Deutz Ag Brennstoffeinspritzventil
GB8817774D0 (en) 1988-07-26 1988-09-01 Lucas Ind Plc Fuel injectors for i c engines
JP2946760B2 (ja) 1990-12-27 1999-09-06 いすゞ自動車株式会社 異形噴孔ノズルの製造方法
DE4222137B4 (de) * 1992-07-06 2006-05-04 Robert Bosch Gmbh Kraftstoff-Einspritzdüse für Diesel-Brennkraftmaschinen
US5540200A (en) * 1993-12-28 1996-07-30 Nissan Motor Co., Ltd. Fuel injection valve
DE69600705D1 (de) * 1995-05-12 1998-11-05 Yamaha Motor Co Ltd Brennkraftmaschine
JPH09280134A (ja) * 1996-04-15 1997-10-28 Zexel Corp 可変噴孔型燃料噴射ノズル
DE19642513A1 (de) * 1996-10-15 1998-04-16 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0075504A1 *

Also Published As

Publication number Publication date
DE50010930D1 (de) 2005-09-15
US20020043574A1 (en) 2002-04-18
EP1187983B1 (de) 2005-08-10
WO2000075504A1 (de) 2000-12-14
US6520145B2 (en) 2003-02-18
DE19925380A1 (de) 2000-12-07

Similar Documents

Publication Publication Date Title
EP1187983A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1198672B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE3229716C2 (de) Kraftstoffeinspritzvorrichtung
EP1076772A1 (de) Kraftstoffeinspritzdüse für eine brennkraftmaschine
DE10303859A1 (de) Düsenbaugruppe zur Einspritzung und Verwirbelung von Kraftstoff
DE3121572C2 (de)
DE3808396A1 (de) Kraftstoffeinspritzventil
WO1998016736A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP0538247A1 (de) Kraftstoffeinspritzventil.
EP2521853B1 (de) Brennstoffeinspritzventil
DE19507171C1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE4200709A1 (de) Kraftstoffeinspritzduese fuer brennkraftmaschinen
EP0890735B2 (de) Kraftstoffeinspritzventil
WO2003031807A1 (de) Kraftstoffeinspritzventil
EP0308855A2 (de) Kraftstoffeinspritzdüse
WO2000005500A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE4222628A1 (de) Brennstoffeinspritzvorrichtung
DE19507188C1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102009041028A1 (de) Düsenbaugruppe für ein Einspritzventil und Einspritzventil
EP1045981A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2005042968A1 (de) Brennstoffeinspritzventil
DE60314226T2 (de) Sprühmusterelement und Kraftstoffeinspritzventil mit demselben
EP0383085A1 (de) Lochplatte für ein Kraftstoffeinspritzventil
DE3740283A1 (de) Einspritzventil
DE3114386C2 (de) Brennstoffeinspritzventil für Dieselbremskraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050810

REF Corresponds to:

Ref document number: 50010930

Country of ref document: DE

Date of ref document: 20050915

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051121

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060511

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160531

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160531

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50010930

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531