EP1183402B1 - Procede permettant de produire par coextrusion un alliage de magnesium et utilisation de demi-produits ou de composants coextrudes - Google Patents

Procede permettant de produire par coextrusion un alliage de magnesium et utilisation de demi-produits ou de composants coextrudes Download PDF

Info

Publication number
EP1183402B1
EP1183402B1 EP00917040A EP00917040A EP1183402B1 EP 1183402 B1 EP1183402 B1 EP 1183402B1 EP 00917040 A EP00917040 A EP 00917040A EP 00917040 A EP00917040 A EP 00917040A EP 1183402 B1 EP1183402 B1 EP 1183402B1
Authority
EP
European Patent Office
Prior art keywords
magnesium alloy
extrusion
producing
alloys
semifinished product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00917040A
Other languages
German (de)
English (en)
Other versions
EP1183402A1 (fr
Inventor
Wolfgang Sebastian
Heinz Haferkamp
Peter Juchmann
Karl Ulrich Kainer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to EP02028600A priority Critical patent/EP1295957A3/fr
Publication of EP1183402A1 publication Critical patent/EP1183402A1/fr
Application granted granted Critical
Publication of EP1183402B1 publication Critical patent/EP1183402B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent

Definitions

  • the invention relates to a method for producing a magnesium alloy high Ductility etc. through extrusion and the use of extruded semi-finished products or components.
  • magnesium alloys are approximately in the range from 1.2 to 1.9 g / cm 3 , occasionally, especially in the case of particularly lithium-rich magnesium alloys, down to approximately 0.9 g / cm 3 as metallic construction materials of particular interest for vehicle and aircraft construction. In the future, they will be used more and more for the lightweight construction of motor vehicles and airplanes, in order to be able to compensate for the weight of additional elements due to increasing comfort and safety standards, especially in new low-emission automobiles. They are also of interest for transportable devices or systems that are particularly light-weight for other reasons.
  • the lightweight construction enables the construction of energy-saving vehicles and planes, such as the 3-seater motor vehicle, to a particular extent.
  • the cold formability of the commercially available magnesium alloys is due to the hexagonal crystal structure and the associated low ductility limited. Polycrystalline magnesium and most magnesium alloys behave becomes brittle at room temperature. For a number of applications or for certain Manufacturing process of semi-finished products from magnesium alloys is in addition to good ones mechanical properties such as high tensile strength require ductile behavior. On improved forming, energy absorption and deformation behavior requires a higher one Ductility and possibly also higher strength and toughness. For this are To develop magnesium alloys with these properties or their To further develop manufacturing processes because many material variants match the manufacturing condition have widely varying material properties.
  • Ductility is the ability of a material to undergo a permanent change in shape, which, in the uniaxial state according to the stress-strain diagram, is ideally without any elastic component. This property is limited by the occurrence of the break. In general, the permanent elongation achieved in the tensile test up to fracture is considered ductility. The degree of ductility can also be seen as the constriction of fracture, impact work and notched impact work, each with a slightly different statement. These properties can be determined in accordance with EN 10 002, Part 1, or in accordance with DIN 50115 and 50116.
  • a highly plastic material is called ductile.
  • the elasticity denotes the elastic part of the stress-strain diagram according to Hook's law, where with ideal linear-elastic relationships no permanent change in shape occurs.
  • the impact work is above all a measure of the energy consumption of a semi-finished product and for plastic behavior, i.e. for deformability and rate of deformation.
  • a high impact work is therefore essential for the use of deformation elements such as Crash elements, impact absorbers, impact shields and impact carriers.
  • the stroke work measured on notched samples - is, among other things due to higher absolute values for Magnesium alloys are more meaningful than the impact energy and affects one largely uniaxial load.
  • the impact work, which is always on notched samples is determined also indicates the susceptibility of a material to triaxial failure Burden. Their informative value is particularly low if the execution of the Notch significantly affects the values of the impact energy.
  • the values listed below measured on samples in a particular The state of manufacture therefore reflects the current material properties. she provide an indication of the forming behavior that previously occurred during the forming process was. In this state it is a conclusion about the characteristics and behavior of a person Semi-finished product or even a component with this semi-finished product, which may be further refined later use possible. Furthermore, there is a conclusion about the material properties formed alloys possible, e.g. by bending, pressing, pressure rolling, Stretch drawing, deep drawing, hydroforming or roll forming processed semi-finished products are to be shaped. Because the change in Material properties from cast to extruded condition similar to that Change in material properties from cast to forged, rolled or a similar reshaped state is therefore also an inference to one other forming condition possible.
  • the elastic is usually used Properties (rigidity) lifted, unless it is e.g. in the event of an accident
  • Properties rigidity
  • These properties are typically for use on the respective ambient temperature, in extreme cases in the range from -40 ° C to +90 ° C individual points in the vehicle or plane, however, to the locally lower or higher Turn off temperatures.
  • the load state is usually multi-axis. The Conclusion from uniaxial to multiaxial load conditions is all the more possible, ever more of an isotropic structure.
  • the manufacture is particularly suitable by die casting or extrusion, forging and / or rolling.
  • requirement for the use of semi-finished products made of magnesium alloys or of or from them Components manufactured in automobiles can meet certain property profiles depending after application such as for deformation elements, seat and door frames one Tensile strength of the light material of at least 100 MPa, preferably at least 130 MPa, together with an elongation at break measured at room temperature of at least 10%, preferably at least 15%.
  • higher strength values and higher ductility are also one Relief and partly also a prerequisite for the forming of cast blanks or for the further forming of already formed blanks or semi-finished products.
  • the higher these properties are in the cast state, the higher these are usually even in the deformed state.
  • a higher ductility can the forming or the renewed Forming, especially extrusion, easier. Therefore an elongation at break of at least 10% also for the subsequent manufacturing steps to form elements Magnesium alloys helpful. Therefore, a tensile strength of at least 150 MPa measured at room temperature, preferably at least 180 MPa, or an elongation at break of at least 18%, preferably of at least 20%, particularly preferred of at least 25%, recommended. Usually this is Elongation at break in the commercially available magnesium alloys measured at Room temperature less than 12%.
  • MgLi40at% Al6at% for example of 19% or about 260 MPa, and for MgLi40at% 42% or about 134 MPa are given. Due to the small laboratory extrusion press used for those experiments, however, the forming speed and the degree of forming were low.
  • Neite describes in Materials Science and Technology, Vol. 8, ED .: K. H. Matucha, 199 ?, in Chapter 4.3.2 Manufacturing processes and mechanical properties of typical Magnesium alloys.
  • Alloy M1 typically had a tensile strength in the extruded state 225 MPa and an elongation at break of 12%.
  • GB 2,296,256 A gives values of elongation at break of 17.2 and 18% for alloys MgAl0.5-1.1Mn0.10-0.12, which, however, had a rather low flexural strength.
  • Die Magnesium alloy has a Li content in the range from 0.5 to 6.8% by weight of Li. This The range of the lithium content covers both the material properties interesting 2-phase area with the hexagonal and cubic phase, as well as the Krz phase range from essentially only the cubic phase as the Li-containing phase occurs. A tensile strength of at least 200 MPa is particularly advantageous.
  • the degree of deformation characterizes the degree of Reduction of cross-section during forming and is used as the natural logarithm of the Ratio of initial cross-section to cross-section specified after forming.
  • the degree of dynamic recrystallization is advantageously at least 1.5, preferably at least 2, particularly preferably at least 2.5. If the degree of deformation is less than 1.5, the dynamic Recrystallization when forming is quite low. It would also have a grade of 3.5 or more can be selected in the tests.
  • the extrusion speed is advantageously at least 1.5 m / min, preferably at least 2.5 m / min, particularly preferably at least 5 m / min, very particularly preferably at least 7.5 m / min. It is above all due to the decreasing quality of the extruded profiles limited (see also claim 8).
  • the magnesium alloy is selected from the group of Magnesium alloys due to dynamic recrystallization and fine grain get a higher ductility.
  • the dynamic recrystallization and structural change from the original or compacted molded body to the finished semi-finished product, component or Compounding is often not only achieved through extrusion and the associated processes thermal or mechanical influences, but they are preferred performed essentially or even mainly in extrusion.
  • the task is finally solved with a semi-finished product made of a magnesium alloy or with a component made of it or with it or with a composite with a such semifinished product or component that was produced according to the invention.
  • semi-finished products are understood to be shaped articles which have not yet are completed and ready for use for their respective application.
  • the molded articles are suitable for the intended purpose designated.
  • both terms flow smoothly into one another, since it is the same shaped body for one purpose around a semi-finished product, but for the other can already be a component.
  • Simplification does not strictly differentiate between semi-finished products and components throughout the text or both mentioned at the same time or only spoken of magnesium alloy, although both can be meant.
  • the semifinished products made of magnesium alloys according to the invention or those thereof or therewith manufactured components or composites can be used as frame elements, Elements of the vehicle cell or vehicle outer skin, as a vehicle cell or Vehicle outer skin, cockpit support, cockpit skin, housing, floor element, floors, cover, Tank elements, tank flaps, brackets, supports, beams, angles, hollow profiles, pipes, Deformation elements, crash elements, crash absorbers, impact absorbers, impact shields, Impact beams, small parts, as a welded profile construction, for the vehicle body, for Seat, window or / and door frames, as semi-finished products, components or composites on or in Automobile or airplane.
  • high-purity alloys are alloyed with additives.
  • the high-purity alloys can absorb small amounts of contaminants from the crucible during the melting process.
  • the alloys can be melted, for example, in a nickel and chromium-free steel crucible under a protective gas atmosphere, for example Ar or / and SF 6 .
  • a protective gas atmosphere for example Ar or / and SF 6 .
  • the powder-metallurgical production of green compacts possibly with subsequent annealing, can also be used.
  • the process steps are known in principle, but require a different modification or optimization depending on the alloy.
  • a bolt with a very large diameter can be cast are then turned into round bolts using a high-performance extrusion press can be pressed with a diameter that corresponds to the recipient diameter.
  • the segregation is reduced by the thermomechanical treatment.
  • the cast bolts can first be subjected to heat treatment depending on the Alloy composition in e.g. 350 ° C homogenized in the range from 6 h to 12 h to eliminate segregations in the structure, some of which heterogeneous structure too improve and increase the pressability. Then the homogenized bolts machined to the required dimensions.
  • the extrusion of the magnesium alloys can be carried out in the same extrusion plants take place, which are used for the extrusion of aluminum alloys, both via direct as well as indirect extrusion. Only with the Tool design (die), the deformation behavior must be specifically taken into account. There are sharp-edged inlets, such as those used in aluminum alloys Avoid magnesium alloys, otherwise there is a risk of surface cracks. In many cases e.g. for matrices of round profiles an entry angle of approx. 50 ° for Magnesium alloys used. A round profile was used in the tests.
  • the most important parameter besides the extrusion temperature is the extrusion speed, because they have the properties and surface quality of the Extruded profiles significantly influenced.
  • a high pressure also means a high one Extrusion speed, which is aimed for economic reasons.
  • a high Extrusion speed is usually with an even better surface quality connected.
  • the extrusion speed is very different from the geometry of the strand dependent.
  • the pressability of the magnesium alloys is comparable to that heavy-duty aluminum alloys.
  • a high extrusion speed is true Desired from an economic point of view, but is not the case with magnesium alloys always feasible. It may also be used at particularly high extrusion speeds there are no cracks or burning of the magnesium alloy.
  • the Degree of deformation of great importance. It goes along with the change in the structure.
  • the extrusion can advantageously be followed by a heat treatment.
  • This heat treatment is particularly suitable for the lithium-containing alloys of Interest, while the remaining extruded modified alloys through this Heat treatment cannot be greatly improved.
  • the semi-finished products can be straightened, e.g. by bending, pressing, pressure rolling, stretch drawing, deep drawing, hydroforming or roll forming further deformed, e.g. by cutting, drilling, milling, grinding, lapping, Polishing processed, joined and / or e.g. by etching, pickling, painting or otherwise Coating to be surface treated.
  • the alloys according to the invention can complete and extruded profiles in simple or complicated cross sections without problems be extruded.
  • semi-finished products can be improved, components are also manufactured.
  • the semi-finished product or the component made therefrom or with it can pass through at least one low-heat joining process such as Gluing, riveting, plugging, pressing, Pressing in, clinching, folding, shrinking or screwing and / or at least one heat-generating joining process such as Composite casting, composite forging, Composite extrusion, composite rolling, soldering or welding, in particular Beam welding or fusion welding, with an identical or different type Semi-finished product or component can be connected.
  • the different semi-finished product or component can likewise essentially of a magnesium alloy or of another alloy or also consist of a non-metallic material. It can be the same or one have a different geometry than the semi-finished product or component according to the invention.
  • the Joining methods can serve in particular to create a housing from several elements, to manufacture an apparatus, a system, a profile construction and / or a cladding.
  • a Al, E indicates at least one of the alloy designations used Rare earth element SE, whereby Y is also counted among the rare earth elements, M or MN Mn, S Si and Z Zn - usually with content in% by weight, unless otherwise is noted.
  • alloy information such as AZ31 are made by the numbers as usual for the respective alloy only in the order of magnitude specified, which can vary to a relatively wide extent as is customary in the industry.
  • modified alloys based on AZ have a low manganese content. All Examples showed traces of less than 0.1 wt% Cd, less than 0.05 wt% Cu, less than 0.04 wt% Fe and less than 0.003 wt% Ni.
  • the alloys were made as high-purity commercially available alloys or usually from high-purity starting alloys such as, for example, AM, AS or AZ alloys or by adding high-purity magnesium HP-Mg, a rare alloy containing rare earth elements with a ratio of Nd to other rare earths including yttrium of 0.92, a zirconium-containing master alloy and / or of calcium or strontium.
  • the standard alloys contained an Mn content of up to about 0.2% by weight.
  • the alloys were melted in a steel crucible under the protective gas atmosphere of an Ar-SF 6 mixture.
  • the blanks required for the subsequent extrusion were cast in a cylindrical steel mold with machining allowance. The element contents achieved were checked spectroscopically.
  • the bolts were then turned to a diameter of 70 mm and to a length of 120 mm brought.
  • the bolts were then subjected to homogenization treatment in e.g. 350 ° C exposed for 4 h or 12 h to eliminate segregations in the structure and the Increase pressability. Segregations can lead to uneven deformation and critical extrusion conditions lead to cracks or local melting, which can cause poor surface qualities. With less well homogenized bolts an unnecessarily high pressing pressure is required during extrusion.
  • the homogenized bolts were then well prepared for extrusion.
  • the homogenized bolts were then brought up to the respective extrusion temperature heated, warmed up and directly in a 400 t horizontal press Extrusion process extruded.
  • the temperature of the bolt is that temperature. which the bolt has when it enters the extrusion press.
  • All alloys both the starting alloys and those modified by additives Alloys could easily be used in a wide temperature, Form extrusion speed and extrusion ratio range.
  • Bolts showed good compressibility with a large scope in terms of pressing force and Compression speed.
  • the extrusion speed was not yet in the tests maxed out to the highest possible speeds and therefore can still generally be significantly increased.
  • the lower extrusion temperature is due to the insufficient plastic deformability below a temperature in the range of about 200 to 220 ° C. conditionally, the upper extrusion temperature is limited by the proximity to eutectic temperature and possibly through the initial formation of portions of a molten phase.
  • the occurred Extrusion pressures varied depending on the alloy used and the set one Strangpreßparametern.
  • a dynamic occurred during extrusion Recrystallization depending on the extrusion parameters and the Alloy composition led to different mean grain sizes.
  • the composition of the magnesium alloys varied only slightly or almost not at all from the composition of the melt to the composition before or after Extrusion to the composition of the semi-finished product made from it.
  • the semifinished product or component according to the invention preferably consists essentially of a Magnesium alloy, which is selected from the group of alloys based on AM, AZ, or ZE with added lithium.
  • the strength values determined on the cast and extruded samples were much higher than expected.
  • the deformability was also surprising of these alloys very high. It was also surprising that the material properties of the modified alloys surprisingly little depending on the Extrusion conditions varied, which is advantageous for production. Furthermore, it was Surprisingly, the impact energy of the ZE10 alloy was so high.
  • the measurement results of the Brinell hardness determinations did not allow any special ones Statement.
  • the Brinell hardness of the extruded samples was found to be 7 to 22% greater than the cast samples. The hardness increased with the aluminum content.
  • Li-containing magnesium alloys A) Li-containing magnesium alloys:
  • Extrusion Depending on the sample, an extrusion temperature in the range of 150 to 300 ° C and a time in the range of 50 to 110 min was set for heating and warming the bolt. Preliminary tests were carried out with the reference alloy AZ31 (Tables 1 and 2). The preliminary tests allowed the preselection of the test parameters. The specific extrusion tests were carried out in a 400 t extrusion press with direct extrusion.
  • the extruded alloy AM20Li3.6 showed in comparison to the extruded alloy AM20 sometimes has higher mechanical properties (Tables 3a / c). Like the other extruded alloys, the addition of lithium led to a very strong one Increase in field work.
  • the extruded AM20 alloy had a very high one elastic and a comparatively very low plastic part of the tension in the extruded state (Table 3b). The addition of lithium doubled the corresponding plastic proportion.
  • the AZ31Li3.6 alloy was not subjected to tensile tests when cast characterized because the porosity of the samples was still a bit too high to be characteristic To provide statements. In the extruded state, this alloy had the highest Compressive strength values. With the AZ31 alloyed with lithium significantly higher toughness on notched impact samples as well as significantly higher Elongation at break determined as on the associated samples not alloyed with lithium, the highest values for the essentially two-phase alloy AZ31Li12.3 occurred. In contrast, the tensile strength decreased with the lithium content. The compressive strength was for the samples in the as-cast state proportional to the lithium content, for extruded ones However, samples are highest at medium lithium levels.
  • the AZ31Li6.8 alloy showed a surprisingly high mean value at 122 MPa the yield strength.
  • the deformability of the base grid of the AZ31 was made possible by the addition of lithium and increases the possibly modified elimination phase.
  • the alloy AZ31Li6.8 showed a reduced tensile and compared to the alloy AZ31Li3.6 Compressive strength, but a high compression limit and high elongation at break. The The addition of lithium improved the formability.
  • the cast alloy ZE10 had a very low elastic content, but almost on average high plastic portion of the tension. With a lithium additive the elastic portion increases significantly. On the other hand, the ZE10 alloy won at Extruding an extraordinarily high elastic portion of the tension during the the plastic part remained approximately constant. For the alloys ZE10 and ZE10Li3.7 all mechanical properties of cast samples increased with the lithium content drastically. For the corresponding extruded samples, the mechanical properties with the exception of tensile strength and yield strength the lithium content.
  • the alloy ZE10Li3.7 showed among the examined lithium-containing ones Magnesium alloys have the highest values of impact work, being due to Crash tests on deformation elements from inventive Magnesium alloys are assumed that the alloy MgLi15.5Al2.5Zn0.8 should have even higher impact and notch impact values than that Alloy ZE10Li3.7. Up to 140 J were obtained on individual samples of the ZE10Li3.7 alloy measured; other samples were taken through the abutment of the testing machine without to break completely, so that no measured value of the impact work could then be determined. The maximum applicable impact energy was 150 J.
  • the degree of deformation had a considerable influence on the impact work of those containing lithium Rehearse.
  • the best impact work was performed on the samples containing lithium Forming temperatures of 200 to 250 ° C achieved.
  • the pressure-pressure curves during extrusion of the lithium-containing alloys at 200 ° C showed that with the alloy AZ31 + 12at% Li as well as AZ31, the material of the bolt did not flow until a higher pressure, for example at 16 MPa Compared to the alloys AM20 + 12at% Li, AZ31 + 21at% Li and ZE10 + 12at% Li, where the flow started at around 12.5 MPa, but also a more favorable, lower pressure was determined after a longer path.
  • R m tensile stress
  • Z elastic + plastic part of the stress. No. alloy tensions strain flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Claims (15)

  1. Procédé de production d'un alliage de magnésium à haute ductilité entre autres par extrusion, dans lequel l'alliage de magnésium est extrudé à une vitesse d'extrusion de 1,5 à 20 m/min et un degré de déformation d'au moins 1,5, étant de ce fait dynamiquement recristallisé avec création de grains d'une taille moyenne <= 40 µm, pouvant contenir des adjonctions ou des traces de Cd inférieures à 1,8 % en poids et des traces de Cu jusqu' à 0,1 % en poids et de Ni jusqu'à 0,05 % en poids, contenant une teneur en Li dans une plage de 0,5 à 6,8 % en poids, contenant en plus des teneurs en Mg et en Li une teneur d'au moins 0,1 % en poids d'au moins un autre élément chimique sélectionné dans le groupe constitué du manganèse, de l'aluminium, du zinc et des éléments des terres rares, y compris le lanthane et l'yttrium, la teneur restante de l'alliage de magnésium étant constituée de magnésium et d'impuretés inévitables, l'alliage de magnésium présentant après extrusion un allongement à la rupture d'au moins 20 %, une résistance à la compression d'au moins 300 MPa et une énergie de choc, mesurée sur des éprouvettes non entaillées, d'au moins 70 J.
  2. Procédé de production d'un alliage de magnésium à haute ductilité selon la revendication 1, caractérisé en ce qu'il s'agit d'un alliage de magnésium à base AZ (aluminium/zinc), l'alliage de magnésium présentant après extrusion une résistance à la compression d'au moins 350 MPa.
  3. Procédé de production d'un alliage de magnésium à haute ductilité selon la revendication 1, caractérisé en ce qu' il s'agit d'un alliage de magnésium à base AM (aluminium/manganèse) ou ZE (zinc/terres rares).
  4. Procédé de production d'un alliage de magnésium selon au moins l'une des revendications précédentes, caractérisé en ce qu'il présente après extrusion une résistance à la traction d'au moins 200 MPa.
  5. Procédé de production d'un alliage de magnésium selon au moins l'une des revendications précédentes, caractérisé en ce qu'il présente après extrusion une partie plastique de la contrainte d'au moins 40 Mpa, déterminée dans l'essai de traction d'après le diagramme de contrainte/allongement à partir de la différence entre la contrainte de traction et la contrainte d'écoulement.
  6. Procédé de production d'un alliage de magnésium selon au moins l'une des revendications précédentes, caractérisé en ce que les corps façonnés à extruder, en particulier des barres, sont homogénéisés pendant 2 à 24 heures à des températures allant de 330 à 380°C.
  7. Procédé de production d'un alliage de magnésium selon au moins l'une des revendications précédentes, caractérisé en ce qu'il est extrudé avec un degré de déformation d'au moins 2.
  8. Procédé de production d'un alliage de magnésium selon au moins l'une des revendications précédentes, caractérisé en ce qu'il est extrudé avec une vitesse d'extrusion de 1,5 à 18 m/min, de préférence de 3 à 16 m/min et de manière plus préférable de 5 à 15 m/min.
  9. Procédé de production d'un alliage de magnésium selon au moins l'une des revendications précédentes, caractérisé en ce qu'il est traité thermiquement ou maintenu après extrusion à des températures allant de 80 à 250°C, de préférence de 100 à 150°C.
  10. Procédé de production d'un alliage de magnésium selon au moins l'une des revendications précédentes, caractérisé en ce qu'il est ensuite à nouveau déformé et en ce qu'il est ensuite façonné.
  11. Procédé de production d'un alliage de magnésium selon au moins l'une des revendications précédentes, caractérisé en ce que le demi-produit fabriqué ou le composant réalisé à partirdu ou avec le demi-produit est encore redressé, façonné, usiné, assemblé et/ou traité en surface, par exemple par pliage, pressage, laminage, étirage, emboutissage, façonnage à haute pression interne ou profilage au laminoir.
  12. Procédé de production d'un alliage de magnésium selon au moins l'une des revendications précédentes, caractérisé en ce que le demi-produit ou le composant réalisé à partir de ou avec celui-ci est raccordé à un demi-produit ou un composant similaire ou de nature différente à l'aide au moins d'un procédé d'assemblage sans apport thermique, par exemple le collage, le rivetage, l'enfichage, le pressage, le serrage, le pinçage, l'agrafage, le serrage ou le vissage et/ou au moins d'un procédé d'assemblage avec apport thermique, par exemple le moulage composite, le forgeage composite, l'extrusion composite, le laminage composite, le brasage ou le soudage, en particulier le soudage aux rayons ou le soudage par fusion.
  13. Demi-produit en alliage de magnésium ou composant fabriqué à partir de ou avec celui-ci composite avec un tel demi-produit ou composant, caractérisé en ce qu'il est fabriqué selon au moins l'une des revendications précédentes.
  14. Utilisation d'un alliage de magnésium fabriqué selon au moins l'une des revendications 1 à 12 en tant qu'élément de châssis, élément de cabine de véhicule ou de carrosserie de véhicule, cabine de véhicule ou carrosserie de véhicule, montant de cockpit, carrosserie de cockpit, coque, élément de fond, fond, couvercle, élément de réservoir, clabet de réservoir, support, étançon, montant, équerre, profil creux, tube, élément de déformation, élément de pare-chocs, pare-chocs, amortisseur de choc, bouclier anti-choc, support d'amortisseur, petite pièce, en tant que structure en profilés soudés pour les carrosseries de véhicules, pour les châssis de sièges, de fenêtres et/ou de portes, en tant que demi-produit, composant ou composite de ou dans une automobile ou un avion.
  15. Utilisation d'un demi-produit en alliage de magnésium fabriqué selon au moins l'une des revendications 1 à 12, d'un composant réalisé à partir de ou avec celui-ci et/ou d'un composite comportant au moins un tel demi-produit et/ou composant en tant qu'élément de châssis, élément de cabine de véhicule ou de carrosserie de véhicule, cabine de véhicule ou carrosserie de véhicule, montant de cockpit, carrosserie de cockpit, coque, élément de fond, fond, couvercle, élément réservoir, clabet de réservoir, support, étançon, montant, équerre, profilé creux, tube, élément de déformation, élément de pare-chocs, pare-chocs, amortisseur de chocs, bouclier anti-choc, support d'amortisseur, petite pièce, en tant que structure en profilés soudés pour les carrosseries de véhicules, pour les châssis de sièges, de fenêtres et/ou de portes, en tant que demi-produit, composant ou composite de ou dans une automobile ou un avion.
EP00917040A 1999-04-03 2000-04-03 Procede permettant de produire par coextrusion un alliage de magnesium et utilisation de demi-produits ou de composants coextrudes Expired - Lifetime EP1183402B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02028600A EP1295957A3 (fr) 1999-04-03 2000-04-03 Procédé permettant de produire par extrusion un alliage de magnesium et utilisation de demi-produits ou de composants extrudés

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19915276 1999-04-03
DE19915276A DE19915276A1 (de) 1999-04-03 1999-04-03 Verfahren zum Herstellen einer Magnesiumlegierung durch Strangpressen und Verwendung der stranggepreßten Halbzeuge und Bauteile
PCT/EP2000/002945 WO2000060133A1 (fr) 1999-04-03 2000-04-03 Procede permettant de produire par coextrusion un alliage de magnesium et utilisation de demi-produits ou de composants coextrudes

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP02028600A Division EP1295957A3 (fr) 1999-04-03 2000-04-03 Procédé permettant de produire par extrusion un alliage de magnesium et utilisation de demi-produits ou de composants extrudés
EP02028600.1 Division-Into 2002-12-20

Publications (2)

Publication Number Publication Date
EP1183402A1 EP1183402A1 (fr) 2002-03-06
EP1183402B1 true EP1183402B1 (fr) 2003-11-26

Family

ID=7903523

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02028600A Withdrawn EP1295957A3 (fr) 1999-04-03 2000-04-03 Procédé permettant de produire par extrusion un alliage de magnesium et utilisation de demi-produits ou de composants extrudés
EP00917040A Expired - Lifetime EP1183402B1 (fr) 1999-04-03 2000-04-03 Procede permettant de produire par coextrusion un alliage de magnesium et utilisation de demi-produits ou de composants coextrudes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP02028600A Withdrawn EP1295957A3 (fr) 1999-04-03 2000-04-03 Procédé permettant de produire par extrusion un alliage de magnesium et utilisation de demi-produits ou de composants extrudés

Country Status (4)

Country Link
EP (2) EP1295957A3 (fr)
AT (1) ATE255170T1 (fr)
DE (2) DE19915276A1 (fr)
WO (1) WO2000060133A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11890004B2 (en) 2021-05-10 2024-02-06 Cilag Gmbh International Staple cartridge comprising lubricated staples

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10201592A1 (de) * 2002-01-16 2003-10-02 Franz Hehmann Kontinuierliches Bandgießen für hochreine Bänder auf Magnesiumbasis
DE10207161B4 (de) * 2002-02-20 2004-12-30 Universität Hannover Verfahren zur Herstellung von Implantaten
PL1574590T3 (pl) * 2004-03-11 2007-09-28 Gkss Forschungszentrum Geesthacht Gmbh Sposób wytwarzania profili z materiału na bazie magnezu za pomocą wyciskania
AT506283A2 (de) * 2006-10-09 2009-07-15 Neuman Aluminium Fliesspresswe Verfahren und werkzeuge zum fliesspressen von magnesium-knetlegierungen
US20090028743A1 (en) 2007-07-26 2009-01-29 Gm Global Technology Operations, Inc. Forming magnesium alloys with improved ductility
WO2009026652A1 (fr) * 2007-08-31 2009-03-05 Cast Crc Limited Alliage de corroyage de magnésium
DE102009038449B4 (de) 2009-08-21 2017-01-05 Techmag Ag Magnesiumlegierung
US8435444B2 (en) 2009-08-26 2013-05-07 Techmag Ag Magnesium alloy
DE102013006170A1 (de) * 2013-04-10 2014-10-16 Ulrich Bruhnke Aluminiumfreie Magnesiumlegierung
DE102013006169A1 (de) * 2013-04-10 2014-10-16 Ulrich Bruhnke Aluminiumfreie Magnesiumlegierung
US9637175B2 (en) 2015-08-13 2017-05-02 Ford Global Technologies, Llc Extruded vehicle body component
CN113025857B (zh) * 2021-02-10 2021-11-23 北京科技大学 一种用于全金属桥塞胶筒的可溶镁合金材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465376A1 (fr) * 1990-06-01 1992-01-08 Pechiney Electrometallurgie Alliage de magnésium à haute résistance mécanique contenant du strontium et procédé d'obtention par solidification rapide

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR755918A (fr) * 1933-05-23 1933-12-01 Trione & Co G Alliage métallique antifriction pour coussinets
US2073515A (en) * 1934-02-06 1937-03-09 Magnesium Dev Corp Alloy
DE756335C (de) * 1938-11-09 1953-02-16 Ig Farbenindustrie Ag Verfahren zur Herstellung von Magnesium-Zirkon-Legierungen
US2380202A (en) * 1942-08-31 1945-07-10 Aluminum Co Of America Method of thermal treatment
DE1259578B (de) * 1959-05-01 1968-01-25 Dow Chemical Co Verfahren zur pulvermetallurgischen Herstellung einer dispersionsverfestigten Magnesiumlegierung
US3094413A (en) * 1960-09-14 1963-06-18 Magnesium Elektron Ltd Magnesium base alloys
US3119684A (en) * 1961-11-27 1964-01-28 Dow Chemical Co Article of magnesium-base alloy and method of making
US3119725A (en) * 1961-11-27 1964-01-28 Dow Chemical Co Die-expressed article of magnesium-base alloy and method of making
US3709745A (en) * 1970-10-19 1973-01-09 Dow Chemical Co Thermal process for improving the mechanical forming of magnesium alloys
JPS627837A (ja) * 1985-07-04 1987-01-14 Showa Alum Corp 微細結晶粒組織を有するマグネシウム合金の製造法
JPS62287034A (ja) * 1986-06-04 1987-12-12 Japan Metals & Chem Co Ltd 超塑性Mg−A1系共晶合金
US4770850A (en) * 1987-10-01 1988-09-13 The United States Of America As Represented By The Secretary Of The Air Force Magnesium-calcium-nickel/copper alloys and articles
US5238646A (en) * 1988-12-29 1993-08-24 Aluminum Company Of America Method for making a light metal-rare earth metal alloy
JP2705996B2 (ja) * 1990-06-13 1998-01-28 健 増本 高力マグネシウム基合金
US5071474A (en) * 1990-06-15 1991-12-10 Allied-Signal Inc. Method for forging rapidly solidified magnesium base metal alloy billet
USH1411H (en) * 1992-11-12 1995-02-07 Deshmukh; Uday V. Magnesium-lithium alloys having improved characteristics
JPH06192799A (ja) * 1992-12-24 1994-07-12 Kobe Steel Ltd 耐熱性に優れたMg合金展伸材およびその製造方法
JP2730847B2 (ja) * 1993-06-28 1998-03-25 宇部興産株式会社 高温クリープ強度に優れた鋳物用マグネシウム合金

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0465376A1 (fr) * 1990-06-01 1992-01-08 Pechiney Electrometallurgie Alliage de magnésium à haute résistance mécanique contenant du strontium et procédé d'obtention par solidification rapide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Haferkamp, H. et al. "State, Development and Perspectives of Lithium Containing Magnesium Alloys" in Magnesium Alloys and their Applications, 1998, Ed. B.L. Mordike, K.U. Kainer, Werkstoff-Information Gesellschaft mbH, Frankfurt, S. 157-162 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11890004B2 (en) 2021-05-10 2024-02-06 Cilag Gmbh International Staple cartridge comprising lubricated staples
US11998192B2 (en) 2021-05-10 2024-06-04 Cilag Gmbh International Adaptive control of surgical stapling instrument based on staple cartridge type

Also Published As

Publication number Publication date
EP1295957A2 (fr) 2003-03-26
WO2000060133A1 (fr) 2000-10-12
DE50004572D1 (de) 2004-01-08
DE19915276A1 (de) 2000-10-05
EP1295957A3 (fr) 2010-03-10
ATE255170T1 (de) 2003-12-15
EP1183402A1 (fr) 2002-03-06

Similar Documents

Publication Publication Date Title
DE102016118729B4 (de) Aluminiumlegierung, geeignet für Hochdruckgießen
DE112005000511B4 (de) Magnesiumknetlegierung mit verbesserter Extrudierbarkeit und Formbarkeit
DE102013012259B3 (de) Aluminium-Werkstoff mit verbesserter Ausscheidungshärtung, Verfahren zu dessen Herstellung und Verwendung des Aluminium-Werkstoffes
DE112015000499B4 (de) Verfahren zum Herstellen eines plastisch verformten Aluminiumlegierungsprodukts
DE102008033027B4 (de) Verfahren zur Erhöhung von Festigkeit und Verformbarkeit von ausscheidungshärtbaren Werkstoffen
DE60010418T2 (de) Verfahren zur Herstellung eines stranggepressten Werkstoffs aus einer Aluminiumlegierung für Strukturbauteile eines Kraftfahrzeuges
DE112014002336T5 (de) Kostengünstiges feinkörniges Magnesiumlegierungsblech mit schwacher Textur und Verfahren zur Herstellung desselben
EP1183402B1 (fr) Procede permettant de produire par coextrusion un alliage de magnesium et utilisation de demi-produits ou de composants coextrudes
EP0902842B2 (fr) Methode de production d&#39;un element de construction
DE112008001968B4 (de) Bilden von Magnesiumlegierungen mit verbesserter Duktilität
EP1518000B1 (fr) Alliage al-cu-mg-ag avec si, produit semi-fini realise a partir de cet alliage, et procede de realisation d&#39;un produit semi-fini de ce type
EP1171643B1 (fr) Alliages de magnesium a haute ductilite, leur procede de production et leur utilisation
DE102021129463A1 (de) Magnesiumlegierung und schmiedeteil
DE102020100994A1 (de) HOCHFESTE DUKTILE EXTRUSIONEN AUS ALUMINIUMLEGIERUNG DER 6000er SERIE
DE102020129422A1 (de) Verfahren zum Ausbilden von Gegenständen aus einer magnesiumbasierten Legierung bei hohen Deformationsgeschwindigkeiten
DE2235168C2 (de) Verfahren zur Herstellung von Aluminiumlegierungen und deren Verwendung
DE102009048450A1 (de) Hochduktile und hochfeste Magnesiumlegierungen
DE19915238A1 (de) Magnesiumlegierungen hoher Duktilität, Verfahren zu deren Herstellung und deren Verwendung
DE102021114769A1 (de) Kornfeiner für magnesiumlegierungen
DE2242235B2 (de) Superplastische Aluminiumlegierung
EP1171331A1 (fr) Element de deformation realise dans un materiau metallique leger ductile et son utilisation
DE2500083C3 (de) Halbzeug aus Aluminium-Knetlegierungen und Verfahren zu dessen Herstellung
DE69633002T2 (de) Fahrzeugrahmenbauteile mit verbesserter Energieabsorptionsfähigkeit, Verfahren zu ihrer Herstellung und eine Legierung
DE60215579T2 (de) Aluminiumlegierung geeignet für Bleche und ein Verfahren zu deren Herstellung
EP2426228B1 (fr) Demi-produits de tôle de magnésium ayant une capacité de formage à froid améliorée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020606

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031126

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20031126

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50004572

Country of ref document: DE

Date of ref document: 20040108

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040226

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040403

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20031126

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: *VOLKSWAGEN A.G.

Effective date: 20040430

26N No opposition filed

Effective date: 20040827

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040426

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50004572

Country of ref document: DE

Representative=s name: ,

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140428

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160430

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50004572

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103