EP1175701A1 - Speicherzellenanordnung und verfahren zu deren herstellung - Google Patents

Speicherzellenanordnung und verfahren zu deren herstellung

Info

Publication number
EP1175701A1
EP1175701A1 EP00929252A EP00929252A EP1175701A1 EP 1175701 A1 EP1175701 A1 EP 1175701A1 EP 00929252 A EP00929252 A EP 00929252A EP 00929252 A EP00929252 A EP 00929252A EP 1175701 A1 EP1175701 A1 EP 1175701A1
Authority
EP
European Patent Office
Prior art keywords
trenches
produced
substrate
memory cell
trench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00929252A
Other languages
English (en)
French (fr)
Inventor
Bernhard Sell
Josef Willer
Dirk Schumann
Hans Reisinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1175701A1 publication Critical patent/EP1175701A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate

Definitions

  • the invention relates to a memory cell arrangement and a method for its production.
  • a so-called single-transistor memory cell is currently used almost exclusively, which comprises a transistor and a capacitor.
  • the information of the memory cell is stored in the form of a charge on the capacitor.
  • the capacitor is connected to the transistor in such a way that when the transistor is activated via a word line, the charge on the capacitor can be read out via a bit line.
  • the general aim is to produce a DRAM cell arrangement that has a high packing density.
  • EP 0852396 A2 describes a DRAM cell arrangement which comprises one-transistor memory cells.
  • the transistor of a memory cell is designed as a vertical transistor and is arranged on a flank of a depression in a substrate.
  • the depression is arranged in a rectangular region, which is surrounded by an insulating structure, and adjoins the insulating structure with a first flank.
  • a storage node of a capacitor of the storage cell, which adjoins the lower source / drain region, is arranged in a lower part of the depression.
  • a bit line is arranged on the upper source / drain region.
  • An insulated word line is arranged above the bit line, which has downward protrusions that travel into the recesses of the memory cells. Chen and act as gate electrodes of the transistors of the memory cells.
  • the memory cell is designed as a vertical transistor.
  • An upper and a lower source / drain region are parts of a cuboid projection of a substrate and are surrounded in a ring shape by a gate electrode.
  • the upper source / drain region also serves as a capacitor electrode of a capacitor of the memory cell.
  • a bit line is arranged above the capacitor electrode and at the same time serves as a further capacitor electrode of the storage capacitor.
  • the invention is based on the problem of specifying a further memory cell arrangement in which a memory cell comprises a transistor and a capacitor.
  • a production method for such a memory cell arrangement is also to be specified.
  • a memory cell arrangement in which a memory cell comprises a transistor and a capacitor and has the following features:
  • First trenches parallel to one another and second trenches running transversely to the first trenches are provided in a substrate.
  • An upper source / drain region of the transistor is arranged in the substrate and adjoins two of the first and two of the second trenches.
  • a lower source / drain region of the transistor is arranged in the substrate under the upper source / drain region.
  • the transistor is thus designed as a vertical transistor.
  • Conductive structures are arranged in the first trenches between the second trenches, each adjoining one of the upper source / drain regions on a first flank of the associated first trench and by an insulating structure arranged in the first trench from a second flank and from the bottom of the first trench iso- are.
  • a word line runs parallel to the first trenches and has protuberances that extend into the second trenches. Parts of the word line, which are arranged between the second trenches, are arranged over an insulating layer. The insulating layer is arranged over the upper source / drain region. A further insulating layer is arranged on the word line. Insulating spacers are laterally adjacent to the word line. The capacitor is connected to the upper source / drain region via a contact which is arranged on the conductive structure and between word lines.
  • first trenches which run essentially parallel to one another are produced in a substrate.
  • the first trenches are filled with insulating material.
  • the insulating material is partially replaced by conductive material in such a way that the conductive material adjoins the first flanks of the first trenches and the insulating material adjoins the second flanks and the bottoms of the first trenches.
  • An insulating layer is created that covers the conductive material.
  • Second trenches, which run essentially parallel to one another and transversely to the first trenches are produced in the substrate in such a way that conductive structures which are separate from one another are produced from the conductive material and insulating structures which are separate from one another from the insulating material.
  • Upper source / drain regions of vertical transistors and lower source / drain regions of the transistors arranged below are produced in the substrate such that the upper source / drain regions are in each case on a surface of the substrate, on two of the first trenches and on two of the border the second trenches.
  • word lines are produced in such a way that they have protuberances that extend into the second trenches and partially overlap two of the first trenches.
  • the word lines are isolated by a further insulating layer produced above and by spacers. The insulating layer becomes selective etched to the further insulating layer and to the spacers so that the conductive structures are exposed. Capacitors are created that are connected to the conductive structures via contacts.
  • the conductive structure is laterally adjacent to the upper source / drain region and is separated from the rest of the substrate by the insulating structure.
  • the conductive structure enables the upper source / drain region to be contacted from above, even though the word line is arranged above the upper source / drain region. Since the conductive structure and the upper source / drain region overlap on a large area, a contact resistance between the capacitor and the transistor is particularly small.
  • the memory cell arrangement can be produced with a high packing density, since the production method has many self-aligned process steps, ie process steps without masks to be adjusted, or process steps with large adjustment tolerances.
  • the upper source / drain region can be contacted by the capacitor without precise adjustment. Since the word line does not cover the conductive structure, etching can be carried out selectively to the further insulating layer and to the insulating spacers, so that the contacts are generated between adjacent word lines even if the alignment of the contacts with respect to the upper source / drain Areas is inaccurate.
  • the upper source / drain region can be produced in a self-aligned manner with respect to the first trenches and to the second trenches.
  • the substrate can be implanted, for example, after the first trenches and the second trenches have been produced.
  • a doped layer is produced in the substrate by implantation, which is structured by the first trenches and the second trenches, so that the upper source / drain regions are produced from the doped region.
  • the lower source / drain areas can also be self-aligned under the upper sources. ce / drain areas are generated.
  • the lower source / drain region is part of a buried doped layer of the substrate.
  • the adjustment tolerance of the word line is large, since only the condition that the protuberances extend into the second trenches, where they can act as gate electrodes of the transistors, and that, during selective etching to produce the contact of a memory cell, the upper source / drain Area of the adjacent memory cell is not exposed.
  • a width of the word line is preferably larger than a width of the upper source / drain region. This increases the adjustment tolerance for generating the word line and consequently increases process reliability. In this case, the word line partially overlaps the first two trenches.
  • the space requirement per memory cell of the memory cell arrangement can be 4F-2, where F is the minimum structure size that can be produced in the technology used.
  • F is the minimum structure size that can be produced in the technology used.
  • the first trenches and the second trenches have a width of F. Distances between adjacent first trenches or adjacent second trenches are then also F.
  • conductive material can first be deposited over the entire surface.
  • a strip-shaped word line mask is then generated, the strips of which have a width of F and a distance of F from one another.
  • the strips of the word line mask are then widened by depositing and etching back material, so that spacers are formed on the lateral surfaces of the word line mask.
  • the conductive material for the word lines can then be structured.
  • the memory cell arrangement can be produced in such a way that the word line has a high electrical conductivity, since parts le of the word line are not buried in the substrate and can consequently be produced from metal.
  • doped polysilicon is first deposited and then a metal or a metal silicide. Both materials are then structured using the word line mask.
  • the lower source / drain region can be connected to a bit line which runs transversely to the word line.
  • the bit line is arranged in a lower part of the second trench and adjoins the lower source / drain region on a first edge of the second trench.
  • the lower source / drain region preferably adjoins only the one of the two second trenches and is spaced apart from the other of the two second trenches.
  • the lower source / drain region can be produced, for example, by diffusing out dopant from the bit line.
  • the lower source / drain region can alternatively be produced from the buried doped layer of the substrate, which is structured by the second trenches.
  • lower source / drain regions of transistors which are adjacent to one another along the second trench are preferably separated from one another by the first trenches.
  • the first trenches are only deep enough to separate the upper source / drain regions of these transistors from one another, but not the lower source / drain regions of these transistors.
  • the bit line can contain metal to increase the electrical conductivity of the bit line.
  • a lower part of the bit line consists of metal and an upper part of the bit line that connects to the lower source / drain region adjacent, made of polysilicon.
  • a diffusion barrier separates the two parts.
  • the bit line can be designed as part of a capacitor electrode. In this case it runs above the substrate. In this case, lower source / drain regions of transistors which are adjacent to one another along one of the first trenches can be connected to one another.
  • the buried doped layer is preferably provided, which is not separated by the first trenches and the second trenches.
  • the conductive structures can be produced, for example, by first creating a protective layer on the substrate before producing the first trenches.
  • the protective layer consists, for example, of silicon nitride or of another material, which is preferably insulating.
  • the replacement of the insulating material with the conductive material is carried out in such a way that the insulating material is selectively etched to a depth with the aid of a strip-shaped mask, the strips of which run parallel to the first trenches and in each case partially overlap one of the first trenches that lies above the bottoms of the first trenches and then the conductive material is deposited and etched back until the protective layer is exposed.
  • the memory cell arrangement can be a DRAM cell arrangement.
  • the capacitors have a capacitor dielectric which preferably has a dielectric constant that is more than 20.
  • the capacitor dielectric consists of a ferroelectric with a Curie temperature below -50 ° C, e.g. Barium strontium titanate, or from Ta2Ü5.
  • the memory cell arrangement can be a FRAM memory cell arrangement.
  • the accounts capacitors a capacitor dielectric, which is a ferroelectric with a Curie temperature, preferably above 200 ° C.
  • FIG. 1 a shows a cross section through a substrate after a protective layer, first trenches, second trenches (shown in FIG. 1 b), upper source / drain regions, insulating structures and conductive structures have been produced. The position of a photoresist mask is also shown schematically.
  • FIG. 1b shows a cross section perpendicular to the cross section from FIG. 1 a through the substrate after the process steps from FIG.
  • FIG. 2 shows the cross section from FIG. 1b after a first part of an insulating layer and bit lines have been produced.
  • FIG. 3a shows the cross section from FIG. 1a after a second part of the insulating layer, lower source / drain regions, a word line mask, word lines, a second insulating layer and spacers have been produced.
  • FIG. 3b shows the cross section from FIG. 1b after the process steps from FIG. 3a.
  • FIG. 4 shows the cross section from FIG. 3a after insulation, contacts and storage nodes of capacitors have been produced.
  • FIG. 5 shows the cross section from FIG. 4 after a capacitor dielectric and a capacitor electrode of the capacitors have been produced.
  • the figures are not to scale.
  • a substrate 1 made of monocrystalline silicon is provided.
  • Thermal oxidation is carried out in order to generate an approximately 10 nm thick scatter oxide (not shown).
  • n-doping ions With the aid of n-doping ions, an implantation with an energy of approx. 10keV and a dose of approx. 5 * 10 1 4 C m ⁇ 2 is carried out over the entire area, so that a doped layer is produced which is attached to a surface of the substrate 1 adjacent.
  • a protective layer II is then produced by depositing silicon nitride to a thickness of approximately 30 nm (see FIGS. 1a and 1b).
  • first trenches G1 are produced in the substrate 1.
  • the first trenches G1 are approximately 100 nm wide and are at a distance of approximately 100 nm from one another (see FIG. 1 a).
  • SiO 2 is then deposited to a thickness of approx. 100 nm and planarized by chemical-mechanical polishing until the protective layer II is exposed.
  • SiO2 is etched approximately 50 nm deep.
  • the second photoresist mask F2 is removed.
  • the removed SiO 2 is replaced by conductive material in that in situ doped polysilicon is deposited to a thickness of approximately 50 nm and is planarized by chemical mechanical polishing until the protective layer II is exposed.
  • the strips of which run transversely to the first trenches Gl are approximately 100 nm wide and are spaced approximately 100 nm apart
  • the protective layer II is cut through and the substrate 1 approximately 500 nm etched. This creates second trenches G2 which are deeper than the first trenches G1 (see FIG. 1b).
  • the doped layer is structured by the first trenches G1 and the second trenches G2. Remaining parts of the doped layer are suitable as upper source / drain regions S / Do of transistors.
  • SiO 2 and the polysilicon are structured in the first trenches G 1 by the second trenches G 2, so that insulating structures I and conductive structures L are produced (see FIG. 1 a).
  • polysilicon and SiO2 are etched at approximately the same etching rate.
  • the third photoresist mask is removed.
  • SiO 2 is deposited in a thickness of approximately 15 nm.
  • SiO 2 covers the conductive structures L and flanks and bottoms of the second trenches G2.
  • in situ doped polysilicon is deposited to a thickness of approx. 50 nm and planarized by chemical mechanical polishing until the protective layer II is exposed. Then polysilicon is etched back to a depth of approx. 400 nm.
  • the fourth photoresist mask will be removed Subsequently, further in situ doped polysilicon is deposited to a thickness of approx. 50 nm and etched back to a depth of approx. 300 nm, so that a bit line B is generated in each of the second trenches G2, which leads to the second trench G2 on a second flank Substrate 1 adjoins (see Figure 2).
  • the protective layer II is removed (see FIG. 2).
  • Thermal oxidation is carried out to produce a second part of the insulating layer 12.
  • the insulating layer 12 also covers the bit lines B (see FIG. 3b).
  • the thermal oxidation acts as a tempering step, through which the dopant diffuses from the bit lines B into the substrate 1 and forms lower source / drain regions S / Du of the transistors there (see FIG. 3b).
  • Each of the lower source / drain regions S / Du adjoins that second trench G2 in which the bit line B is arranged from which the dopant with which the lower source / drain region was produced has diffused.
  • the lower source / drain region S / Du is arranged between this second trench G2 and an adjacent second trench G2 and is spaced apart from the adjacent second trench G2.
  • Polysilicon is then doped in situ in one
  • silicon nitride is deposited in a thickness of approximately 50 nm (see FIGS. 3a and 3b).
  • SiO 2 is applied in a thickness of approx. 50 nm and structured in a strip shape by means of a photolithographic process, so that the strips run parallel to the first trenches Gl and between see the trenches Gl are arranged.
  • the strips have a width of approximately 100 nm and a distance of approximately 100 nm from one another.
  • SiO 2 is deposited and etched back. This creates the word line mask, the stripes of which have a width of approximately 140 nm.
  • the strips of the word line mask WM each overlap two mutually adjacent first trenches G1 (see FIGS. 3a and 3b).
  • the word line mask WM With the help of the word line mask WM, the further insulating layer 13, tungsten silicide and polysilicon are etched until parts of the insulating layer 12, which are arranged on the bit lines B, are exposed.
  • the polysilicon and the tungsten silicide thus result in word lines W which run transversely to the bit lines B and have downward protuberances which extend into the second trenches G2 (see FIGS. 3a and 3b).
  • thermal oxidation is carried out in such a way that the insulating layer 12 is thickened in sections up to below the word lines W.
  • the insulating layer 12 is therefore thickened in the region of edges of the word lines W. This thermal oxidation corresponds to the so-called reoxidation step in planar transistors.
  • silicon nitride is deposited to a thickness of approximately 10 nm and etched back (see FIG. 3a).
  • the spacers Sp cover lateral surfaces of the word lines W.
  • SiO 2 is deposited in a thickness of approximately 100 nm. With the aid of a fifth photoresist mask (not shown), depressions which are separate from one another are produced in such a way that they each expose one of the conductive structures L (see FIG. 4). For this purpose, SiO 2 is selectively etched to silicon nitride. The adjustment tolerance of the recesses is large because the further insulating layer 13 and the spacers Sp protect the word lines W.
  • titanium and TiN are first deposited in a total thickness of approximately 20 nm. Subsequently, tungsten nitride is deposited in a thickness of approximately 50 nm, so that the depressions are filled. Tungsten nitride, titanium and titanium nitride are removed by chemical mechanical polishing until the insulation 14 is exposed. The contacts K are thereby generated between the word lines W in the depressions.
  • the storage nodes P1 are generated from the tungsten nitride via the contacts K (see FIG. 4).
  • SiO 2 is then etched to an etching depth of approximately 100 nm with hydrofluoric acid, so that parts of the insulation 14 which are arranged above the word lines W and the word line mask WM are removed (see FIG. 5). Titanium and titanium nitride at the storage nodes Pl are then e.g. removed with H2O2 / NH4OH.
  • Ta2Ü5 is deposited in a thickness of approximately 10 nm (see FIG. 5).
  • titanium nitride is deposited in a thickness of approximately 50 nm (see FIG. 5).
  • the memory cell arrangement produced is a DRAM cell arrangement, the memory cells of which each comprise a transistor and a capacitor.
  • the protuberances of the word lines W act as gate electrodes of the transistors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

Ein Transistor einer Speicherzelle weist ein oberes (S/Do) und ein unteres Source/Drain-Gebiet auf, die zwischen zwei ersten Gräben (G1) und zwei dazu quer verlaufenden zweiten Gräben angeordnet sind. Eine isolierte Wortleitung (W) überlappt das obere Source/Drain-Gebiet (S/Do) und weist Ausstülpungen auf, die in die zweiten Gräben (G2) hineinreichen. Eine leitende Struktur (L), die in einem der ersten Gräben (G1) angeordnet ist und seitlich an das obere Source/Drain-Gebiet (S/Do) angrenzt, wird von oben durch einen Kontakt (K) kontaktiert, der zwischen zueinander benachbarten Wortleitungen (W) angeordnet ist. Der Kontakt (K) ist mit einem Kondensator (P1, Kd, P2) der Speicherzelle verbunden, der über den Wortleitungen angeordnet ist.

Description

Beschreibung
Speicherzellenanordnung und Verfahren zu deren Herstellung
Die Erfindung betrifft eine Speicherzellenanordnung und ein Verfahren zu deren Herstellung.
Als Speicherzelle einer DRAM-Zellenanordnung, d. h. eine Speicherzellenanordnung mit dynamischen wahlfreien Zugriff, wird derzeit fast ausschließlich eine sogenannte EinTransistor-Speicherzelle eingesetzt, die einen Transistor und einen Kondensator umfaßt. Die Information der Speicherzelle ist in Form einer Ladung auf dem Kondensator gespeichert. Der Kondensator ist mit dem Transistor so verbunden, daß bei An- Steuerung des Transistors über eine Wortleitung die Ladung des Kondensators über eine Bitleitung ausgelesen werden kann.
Es wird allgemein angestrebt, eine DRAM-Zellenanordnung zu erzeugen, die eine hohe Packungsdichte aufweist.
In EP 0852396 A2 wird eine DRAM-Zellenanordnung beschrieben, die Ein-Transistor-Speicherzellen umfaßt. Der Transistor einer Speicherzelle ist als vertikaler Transistor ausgestaltet und ist an einer Flanke einer Vertiefung eines Substrats an- geordnet. Die Vertiefung ist in einem rechteckigen Bereich angeordnet, der von einer isolierenden Struktur umgeben wird, und grenzt mit einer ersten Flanke an die isolierende Struktur an. An einer zweiten, der ersten Flanke gegenüberliegenden Flanke der Vertiefung grenzen ein oberes Source/Drain- Gebiet und ein unteres Source/Drain-Gebiet des Transistors an, die im Substrat angeordnet sind. In einem unteren Teil der Vertiefung ist ein Speicherknoten eines Kondensators der Speicherzelle angeordnet, der an das untere Source/Drain- Gebiet angrenzt. Auf dem oberen Source/Drain-Gebiet ist eine Bitleitung angeordnet. Über der Bitleitung ist eine isolierte Wortleitung angeordnet, die nach unten gerichtete Ausstülpungen aufweist, die in die Vertiefungen der Speicherzellen rei- chen und als Gateelektroden der Transistoren der Speicherzellen wirken.
In US 4630088 ist eine DRAM-Zellenanordnung beschrieben, die Ein-Transistor-Speicherzellen umfaßt. Der Transistor einer
Speicherzelle ist als vertikaler Transistor ausgestaltet. Ein oberes und ein unteres Source/Drain-Gebiet sind Teile eines quaderförmigen Vorsprunges eines Substrats und werden von einer Gateelektrode ringförmig umgeben. Das obere Source/Drain- Gebiet dient gleichzeitig als Kondensatorelektrode eines Kondensators der Speicherzelle. Eine Bitleitung ist über der Kondensatorelektrode angeordnet und dient gleichzeitig als weitere Kondensatorelektrode des Speicherkondensators.
Der Erfindung liegt das Problem zugrunde, eine weitere Speicherzellenanordnung anzugeben, bei der eine Speicherzelle einen Transistor und einen Kondensator umfaßt. Ferner soll ein Herstellungsverfahren für eine solche Speicherzellenanordnung angegeben werden.
Das Problem wird gelöst durch eine Speicherzellenanordnung, bei der eine Speicherzelle einen Transistor und einen Kondensator umfaßt und folgende Merkmale aufweist:
In einem Substrat sind zueinander parallele erste Gräben und quer zu den ersten Gräben verlaufende zweite Gräben vorgesehen. Ein oberes Source/Drain-Gebiet des Transistors ist im Substrat angeordnet und grenzt an zwei der ersten und an zwei der zweiten Gräben an. Unter dem oberen Source/Drain-Gebiet ist ein unteres Source/Drain-Gebiet des Transistors im Substrat angeordnet. Der Transistor ist also als vertikaler Transistor ausgestaltet. In den ersten Gräben zwischen den zweiten Gräben sind leitende Strukturen angeordnet, die jeweils bei einer ersten Flanke des zugehörigen ersten Grabens an eines der oberen Source/Drain-Gebiete angrenzen und durch eine im ersten Graben angeordnete isolierende Struktur von einer zweiten Flanke und vom Boden des ersten Grabens iso- liert sind. Eine Wortleitung verläuft parallel zu den ersten Gräben und weist Ausstülpungen auf, die in die zweiten Gräben hineinreichen. Teile der Wortleitung, die zwischen den zweiten Gräben angeordnet sind, sind über einer isolierenden Schicht angeordnet. Die isolierende Schicht ist über dem oberen Source/Drain-Gebiet angeordnet. Auf der Wortleitung ist eine weitere isolierende Schicht angeordnet. Isolierende Spacer grenzen seitlich an die Wortleitung an. Der Kondensator ist über einen Kontakt, der auf der leitenden Struktur und zwischen Wortleitungen angeordnet ist, mit dem oberen Source/Drain-Gebiet verbunden.
Das Problem wird ferner gelöst durch ein Verfahren zur Herstellung einer Speicherzellenanordnung, bei dem in einem Sub- strat im wesentlichen parallel zueinander verlaufende erste Gräben erzeugt werden. Die ersten Gräben werden mit isolierendem Material gefüllt. Das isolierende Material wird teilweise durch leitendes Material so ersetzt, daß das leitende Material an erste Flanken der ersten Gräben und das isolie- rende Material an zweite Flanken und an Böden der ersten Gräben angrenzen. Eine isolierende Schicht wird erzeugt, die das leitende Material bedeckt. Im Substrat werden zweite Gräben, die im wesentlichen parallel zueinander und quer zu den ersten Gräben verlaufen, so erzeugt, daß aus dem leitenden Ma- terial voneinander getrennte leitende Strukturen aus dem isolierenden Material voneinander getrennte isolierende Strukturen erzeugt werden. Im Substrat werden obere Source/Drain- Gebiete von vertikalen Transistoren und darunter angeordnete untere Source/Drain-Gebiete der Transistoren so erzeugt, daß die oberen Source/Drain-Gebiete jeweils an eine Oberfläche des Substrats, an zwei der ersten Gräben und an zwei der zweiten Gräben angrenzen. Parallel zu den ersten Gräben werden Wortleitungen so erzeugt, daß sie Ausstülpungen aufweisen, die in die zweiten Gräben reichen und jeweils zwei der ersten Gräben teilweise überlappen. Die Wortleitungen werden durch eine darüber erzeugte weitere isolierende Schicht und durch Spacer isoliert. Die isolierende Schicht wird selektiv zur weiteren isolierenden Schicht und zu den Spacern geätzt, so daß die leitenden Strukturen freigelegt werden. Kondensatoren werden erzeugt, die über Kontakte mit den leitenden Strukturen verbunden werden.
Die leitende Struktur grenzt seitlich an das obere Source/Drain-Gebiet an und ist vom restlichen Substrat durch die isolierende Struktur getrennt. Die leitende Struktur ermöglicht die Kontaktierung des oberen Source/Drain-Gebiets von oben, obwohl die Wortleitung über dem oberen Source/Drain- Gebiet angeordnet ist. Da die leitende Struktur und das obere Source/Drain-Gebiet sich auf einer großen Fläche überlappen, ist ein Kontaktwiderstand zwischen dem Kondensator und dem Transistor besonders klein.
Die Speicherzellenanordnung ist mit einer hohen Packungsdichte herstellbar, da das Herstellungsverfahren viele selbstjustierte Prozeßschritte, d. h. Prozeßschritte ohne zu justierende Masken, oder Prozeßschritte mit großen Justiertoleran- zen aufweist. Beispielsweise kann das obere Source/Drain- Gebiet durch den Kondensator ohne genaue Justierung kontaktiert werden. Da die Wortleitung die leitende Struktur nicht bedeckt, kann selektiv zur weiteren isolierenden Schicht und zu den isolierenden Spacern geätzt werden, so daß die Kontak- te selbst dann zwischen zueinander benachbarten Wortleitungen erzeugt werden, wenn die Justierung der Kontakte bezüglich den oberen Source/Drain-Gebieten ungenau ist. Das obere Source/Drain-Gebiet kann selbstjustiert zu den ersten Gräben und zu den zweiten Gräben erzeugt werden. Dazu kann beispielswei- se nach Erzeugung der ersten Gräben und der zweiten Gräben eine Implantation des Substrats durchgeführt werden. Alternativ wird vor Erzeugung der ersten Gräben und/oder der zweiten Gräben durch Implantation eine dotierte Schicht im Substrat erzeugt, die durch die ersten Gräben und die zweiten Gräben strukturiert wird, so daß die oberen Source/Drain-Gebiete aus dem dotierten Gebiet erzeugt werden. Auch die unteren Source/Drain-Gebiete können selbstjustiert unter den oberen Sour- ce/Drain-Gebieten erzeugt werden. Beispielsweise ist das untere Source/Drain-Gebiet Teil einer vergrabenen dotierten Schicht des Substrats. Die Justiertoleranz der Wortleitung ist groß, da lediglich die Bedingung erfüllt werden muß, daß die Ausstülpungen in die zweiten Gräben hineinreichen, wo sie als Gateelektroden der Transistoren wirken können, und daß beim selektiven Ätzen zur Erzeugung des Kontakts einer Speicherzelle das obere Source/Drain-Gebiet der benachbarten Speicherzelle nicht freigelegt wird.
Um die letztgenannte Bedingung zu erfüllen, ist eine Breite der Wortleitung vorzugsweise größer als eine Breite des oberen Source/Drain-Gebiets . Dadurch wird die Justiertoleranz zur Erzeugung der Wortleitung vergrößert und folglich die Prozeßsicherheit erhöht. Die Wortleitung überlappt in diesem Fall die zwei ersten Gräben teilweise.
Der Platzbedarf pro Speicherzelle der Speicherzellenanordnung kann 4F-2 betragen, wobei F die minimale, in der verwendeten Technologie herstellbare Strukturgröße ist. Dazu weisen die ersten Gräben und die zweiten Gräben eine Breite von F auf. Abstände zwischen benachbarten ersten Gräben bzw. benachbarten zweiten Gräben betragen dann ebenfalls F.
Zur Erzeugung einer besonders breiten Wortleitung kann zunächst leitendes Material ganzflächig abgeschieden werden. Anschließend wird eine streifenförmige Wortleitungsmaske erzeugt, deren Streifen eine Breite von F aufweisen und ein Abstand von F voneinander aufweisen. Die Streifen der Wortlei- tungsmaske werden anschließend verbreitert indem Material abgeschieden und rückgeätzt wird, so daß an seitlichen Flächen der Wortleitungsmaske Spacer entstehen. Mit Hilfe der verbreiterten Wortleitungsmaske kann anschließend das leitende Material zu den Wortleitungen strukturiert werden.
Die Speicherzellenanordnung ist so herstellbar, daß die Wortleitung eine hohe elektrische Leitfähigkeit aufweist, da Tei- le der Wortleitung nicht im Substrat vergraben sind und folglich aus Metall herstellbar sind. Zur Erzeugung einer solchen Wortleitung wird zunächst dotiertes Polysilizium abgeschieden und anschließend ein Metall oder ein Metallsilizid. Beide Ma- terialien werden anschließend mit der Wortleitungsmaske strukturiert. Das untere Source/Drain-Gebiet kann mit einer Bitleitung verbunden sein, die quer zur Wortleitung verläuft. Die Bitleitung ist in einem unteren Teil des zweiten Grabens angeordnet und grenzt bei einer ersten Flanke des zweiten Grabens an das untere Source/Drain-Gebiet an.
Um Floating-Body-Effekte zu vermeiden, grenzt das untere Source/Drain-Gebiet vorzugsweise nur an den einen der beiden zweiten Gräben an und ist vom anderen der beiden zweiten Grä- ben beabstandet. Das untere Source/Drain-Gebiet kann zum Beispiel durch Ausdiffusion von Dotierstoff aus der Bitleitung erzeugt werden.
Das untere Source/Drain-Gebiet kann alternativ aus der ver- grabenen dotierten Schicht des Substrats erzeugt werden, die durch die zweiten Gräben strukturiert wird.
Zur Vermeidung von Leckströmen sind untere Source/Drain- Gebiete von Transistoren, die entlang des zweiten Grabens zu- einander benachbart sind, vorzugsweise durch die ersten Gräben voneinander getrennt.
Alternativ sind die ersten Gräben nur so tief, daß sie die oberen Source/Drain-Gebiete dieser Transistoren voneinander trennen, die unteren Source/Drain-Gebiete dieser Transistoren jedoch nicht.
Zur Erhöhung der elektrischen Leitfähigkeit der Bitleitung kann die Bitleitung Metall enthalten. Vorzugsweise besteht ein unterer Teil der Bitleitung aus Metall und ein oberer Teil der Bitleitung, der an das untere Source/Drain-Gebiet angrenzt, aus Polysilizium. Eine Dif usionsbarriere trennt die beiden Teile voneinander.
Die Bitleitung kann als Teil einer Kondensatorelektrode aus- gestaltet sein. In diesem Fall verläuft sie oberhalb des Substrats. Untere Source/Drain-Gebiete von Transistoren, die entlang eines der ersten Gräben zueinander benachbart sind, können in diesem Fall miteinander verbunden sein. Vorzugsweise ist die vergrabene dotierte Schicht vorgesehen, das durch die ersten Gräben und die zweiten Gräben nicht durchgetrennt wird.
Die leitenden Strukturen können beispielsweise erzeugt werden, indem zunächst vor Erzeugung der ersten Gräben eine Schutzschicht auf dem Substrat erzeugt wird. Die Schutzschicht besteht beispielsweise aus Siliziumnitrid oder aus einem anderen Material, das vorzugsweise isolierend ist. Das Ersetzen des isolierenden Materials durch das leitende Material wird so durchgeführt, daß mit Hilfe einer streifenförmi- gen Maske, deren Streifen parallel zu den ersten Gräben verlaufen und jeweils einen der ersten Gräben teilweise überlappen, das isolierende Material selektiv zur Schutzschicht bis zu einer Tiefe geätzt wird, die oberhalb der Böden der ersten Gräben liegt und anschließend das leitende Material abge- schieden und rückgeätzt wird, bis die Schutzschicht freigelegt wird.
Die Speicherzellenanordnung kann eine DRAM-Zellenanordnung sein. Zur Erhöhung der Kapazitäten der Kondensatoren, weisen die Kondensatoren ein Kondensatordielektrikum auf, das vorzugsweise eine Dielektrizitätskonstante aufweist, die mehr als 20 beträgt. Z.B. besteht das Kondensatordielektrikum aus einem Ferroelektriku mit einer Curietemperatur unter -50°C, wie z.B. Bariumstrontiumtitanat, oder aus Ta2Ü5.
Die Speicherzellenanordnung kann eine FRAM- Speicherzellenanordnung sein. In diesem Fall weisen die Kon- densatoren ein Kondensatordielektrikum auf, das ein Ferro- elektrikum mit einer Curietemperatur vorzugsweise über 200°C.
Im folgenden wird ein Ausführungsbeispiel der Erfindung an- hand der Figuren näher erläutert.
Figur la zeigt einen Querschnitt durch ein Substrat, nachdem eine Schutzschicht, erste Gräben, zweite Gräben (in Figur lb dargestellt) , obere Source/Drain-Gebiete isolierende Strukturen und leitende Strukturen erzeugt wurden. Ferner wird die Position einer Fotolackmaske schematisch dargestellt.
Figur lb zeigt einen zum Querschnitt aus Figur la senkrechten Querschnitt durch das Substrat nach den Prozeßschritten aus Figur la.
Figur 2 zeigt den Querschnitt aus Figur lb, nachdem ein erster Teil einer isolierenden Schicht und Bitleitun- gen erzeugt wurden.
Figur 3a zeigt den Querschnitt aus Figur la, nachdem ein zweiter Teil der isolierenden Schicht, untere Source/Drain-Gebiete, eine Wortleitungsmaske, Wortlei- tungen, eine zweite isolierende Schicht und Spacer erzeugt wurden.
Figur 3b zeigt den Querschnitt aus Figur lb nach den Prozeßschritten aus Figur 3a.
Figur 4 zeigt den Querschnitt aus Figur 3a, nachdem eine Isolation, Kontakte und Speicherknoten von Kondensatoren erzeugt wurden.
Figur 5 zeigt den Querschnitt aus Figur 4, nachdem ein Kondensatordielektrikum und eine Kondensatorelektrode der Kondensatoren erzeugt wurden. Die Figuren sind nicht maßstabsgerecht.
Im Ausführungsbeispiel ist ein Substrat 1 aus monokristalli- nem Silizium vorgesehen.
Zur Erzeugung eines ca. lOnm dicken Streuoxids (nicht dargestellt) wird eine thermische Oxidation durchgeführt.
Mit Hilfe von n-dotierenden Ionen wird eine Implantation mit einer Energie von ca. lOkeV und einer Dosis von ca.5*1014Cm~2 ganzflächig durchgeführt, so daß eine dotierte Schicht erzeugt wird, die an eine Oberfläche des Substrats 1 angrenzt. Anschließend wird eine Schutzschicht II erzeugt, indem Sili- ziumnitrid in einer Dicke von ca. 30 nm abgeschieden wird (siehe Figuren la und lb) .
Mit Hilfe einer streifenförmigen ersten Fotolackmaske (nicht dargestellt) werden ca. 400nm tiefe erste Gräben Gl im Sub- strat 1 erzeugt. Die ersten Gräben Gl sind ca. 100 nm breit und weisen einen Abstand von ca. 100 nm voneinander auf (siehe Figur la) .
Anschließend wird Siθ2 in einer Dicke von ca. lOOn abge- schieden und durch chemisch-mechanisches Polieren planari- siert, bis die Schutzschicht II freigelegt wird.
Mit Hilfe einer zweiten Fotolackmaske F2, die der ersten Fotolackmaske entspricht, jedoch senkrecht zu den ersten Gräben um ca. 35 nm verschoben ist, so daß ihre Streifen jeweils einen der ersten Gräben nur teilweise überlappen, wird Siθ2 ca. 50nm tief geätzt. Die zweite Fotolackmaske F2 wird entfernt. Das entfernte Siθ2 wird durch leitendes Material ersetzt, indem in situ dotiertes Polysilizium in einer Dicke von ca. 50nm abgeschieden und durch chemisch-mechanisches Polieren planarisiert wird, bis die Schutzschicht II freigelegt wird. Mit Hilfe einer streifenförmigen dritten Fotolackmaske (nicht dargestellt) , deren Streifen quer zu den ersten Gräben Gl verlaufen, ca. 100 nm breit sind und einen Abstand von ca. 100 nm voneinander aufweisen, wird die Schutzschicht II durchtrennt und das Substrat 1 ca. 500 nm geätzt. Dadurch werden zweite Gräben G2 erzeugt, die tiefer als die ersten Gräben Gl sind (siehe Figur lb) . Die dotierte Schicht wird durch die ersten Gräben Gl und die zweiten Gräben G2 strukturiert. Übrigbleibende Teile der dotierten Schicht sind als obere Source/Drain-Gebiete S/Do von Transistoren geeignet.
Durch die zweiten Gräben G2 wird Siθ2 und das Polysilizium in den ersten Gräben Gl strukturiert, so daß isolierende Strukturen I und leitende Strukturen L erzeugt werden (siehe Figur la) . Bei der Erzeugung der zweiten Gräben G2 werden Polysili- zium und Siθ2 mit näherungsweise derselben Ätzrate geätzt.
Die dritte Fotolackmaske wird entfernt.
Zur Erzeugung eines ersten Teils einer isolierenden Schicht 12 wird Siθ2 in einer Dicke von ca. 15nm abgeschieden. Das
Siθ2 bedeckt die leitenden Strukturen L und Flanken und Böden der zweiten Gräben G2.
Anschließend wird in situ dotiertes Polysilizium in einer Dicke von ca. 50nm abgeschieden und durch chemischmechanisches Polieren planarisiert, bis die Schutzschicht II freigelegt wird. Anschließend wird Polysilizium ca. 400nm tief rückgeätzt.
Mit Hilfe einer vierten streifenförmigen Fotolackmaske (nicht dargestellt) , deren Streifen erste Flanken der zweiten Gräben G2 nicht bedecken, wird freiliegendes Siθ2 mit z.B. Flußsäure entfernt. Übrigbleibendes Siθ2 bildet den ersten Teil der isolierenden Schicht 12 (siehe Figur 2).
Die vierte Fotolackmaske wird entfern Anschließend wird weiteres in situ dotiertes Polysilizium in einer Dicke von ca. 50nm abgeschieden und ca. 300nm tief rückgeätzt, so daß in den zweiten Gräben G2 jeweils eine Bitleitung B erzeugt wird, die bei einer zweiten Flanke des zu- gehörigen zweiten Grabens G2 an das Substrat 1 angrenzt (siehe Figur 2) .
Die Schutzschicht II wird entfernt (siehe Figur 2) .
Zur Erzeugung eines zweiten Teils der isolierenden Schicht 12 wird eine thermische Oxidation durchgeführt. Die isolierende Schicht 12 bedeckt auch die Bitleitungen B (siehe Figur 3b) . Die thermische Oxidation wirkt als Temperschritt, durch den Dotierstoff aus den Bitleitungen B in das Substrat 1 diffun- diert und dort untere Source/Drain-Gebiete S/Du der Transistoren bildet (siehe Figur 3b) . Jedes der unteren Source/Drain-Gebiete S/Du grenzt an jenen zweiten Graben G2 an, in dem jene Bitleitung B angeordnet ist, aus der der Dotierstoff, mit dem das untere Source/Drain-Gebiet erzeugt wurde, diffundiert ist. Das untere Source/Drain-Gebiet S/Du ist zwischen diesem zweiten Graben G2 und einem benachbarten zweiten Graben G2 angeordnet und ist vom benachbarten zweiten Graben G2 beabstandet.
Anschließend wird in situ dotiertes Polysilizium in einer
Dicke von ca. 40 nm abgeschieden, so daß die zweiten Gräben G2 gefüllt werden. Darüber wird Wolframsilizid in einer Dicke von ca. 50nm abgeschieden.
Zur Erzeugung einer weiteren isolierenden Schicht 13 wird Siliziumnitrid in einer Dicke von ca. 50nm abgeschieden (siehe Figuren 3a und 3b) .
Zur Erzeugung einer Wortleitungsmaske WM wird Siθ2 in einer Dicke von ca. 50nm aufgebracht und durch ein fotolithografi- sches Verfahren streifenförmig strukturiert, so daß die Streifen parallel zu den ersten Gräben Gl verlaufen und zwi- sehen den Gräben Gl angeordnet sind. Die Streifen weisen eine Breite von ca. 100 nm und einen Abstand von ca. 100 nm voneinander auf. Zur Verbreiterung der Streifen wird Siθ2 abgeschieden und rückgeätzt. Dadurch wird die Wortleitungsmaske erzeugt, deren Streifen eine Breite von ca. 140 nm aufweisen. Die Streifen der Wortleitungsmaske WM überlappen jeweils zwei zueinander benachbarte erste Gräben Gl (siehe Figuren 3a und 3b) .
Mit Hilfe der Wortleitungsmaske WM wird die weitere isolierende Schicht 13, Wolframsilizid und Polysilizium geätzt, bis Teile der isolierenden Schicht 12, die auf den Bitleitungen B angeordnet sind, freigelegt werden. Aus dem Polysilizium und dem Wolframsilizid entstehen dadurch quer zu den Bitleitungen B verlaufende Wortleitungen W, die nach unten gerichtete Ausstülpungen aufweisen, welche in die zweiten Gräben G2 reichen (siehe Figuren 3a und 3b) .
Zur Verkleinerung von Leckströmen wird eine thermische Oxida- tion so durchgeführt, daß die isolierende Schicht 12 abschnittsweise bis unter die Wortleitungen W verdickt werden. Im Bereich von Kanten der Wortleitungen W ist die isolierende Schicht 12 also verdickt. Diese thermische Oxidation entspricht dem sogenannten Reoxidationsschritt bei planaren Transistoren.
Zur Erzeugung von isolierenden Spacern Sp wird Siliziumnitrid in einer Dicke von ca. 10 nm abgeschieden und rückgeätzt (siehe Figur 3a) . Die Spacer Sp bedecken seitliche Flächen der Wortleitungen W.
Zur Erzeugung einer Isolation 14 wird Siθ2 in einer Dicke von ca. lOOOnm abgeschieden. Mit Hilfe einer fünften Fotolackmaske (nicht dargestellt) werden voneinander getrennte Vertie- fungen so erzeugt, daß sie jeweils eine der leitenden Strukturen L freilegen (siehe Figur 4) . Dazu wird Siθ2 selektiv zu Siliziumnitrid geätzt. Die Justiertoleranz der Vertiefungen ist groß, da die weitere isolierende Schicht 13 und die Spacer Sp die Wortleitungen W schützen.
Zur Erzeugung von Kontakten K und von Speicherknoten Pl von Kondensatoren in den Vertiefungen wird zunächst Titan und TiN in einer Gesamtdicke von ca. 20nm abgeschieden. Anschießend wird Wolframnitrid in einer Dicke von ca. 50nm abgeschieden, so daß die Vertiefungen gefüllt werden. Durch chemischmechanisches Polieren werden Wolframnitrid, Titan und Titan- nitrid abgetragen, bis die Isolation 14 freigelegt wird. Zwischen den Wortleitungen W werden dadurch in den Vertiefungen die Kontakte K erzeugt. Über den Kontakten K entstehen aus dem Wolframnitrid die Speicherknoten Pl erzeugt (siehe Figur 4) .
Anschließend wird Siθ2 bis zu einer Ätztiefe von ca. lOOOnm mit Flußsäure geätzt, so daß Teile der Isolation 14, die über den Wortleitungen W angeordnet sind, sowie die Wortleitungsmaske WM entfernt werden (siehe Figur 5) . Titan und Titanni- trid an den Speicherknoten Pl werden anschließend z.B. mit H2O2/NH4OH entfernt.
Zur Erzeugung eines Kondensatordielektrikums Kd der Kondensatoren wird Ta2Ü5 in einer Dicke von ca. lOnm abgeschieden (siehe Figur 5) .
Zur Erzeugung einer gemeinsamen Kondensatorelektrode P2 der Kondensatoren wird Titannitrid in einer Dicke von ca. 50nm abgeschieden (siehe Figur 5) .
Die erzeugte Speicherzellenanordnung ist eine DRAM- Zellenanordnung, deren Speicherzellen jeweils einen Transistor und einen Kondensator umfaßt. Die Ausstülpungen der Wortleitungen W wirken als Gateelektroden der Transistoren.
Es sind viele Variationen des Ausführungsbeispiels denkbar, die ebenfalls im Rahmen der Erfindung liegen. So können Ab- messungen der Schichten, Gräben und Masken an die jeweiligen Erfordernisse angepaßt werden. Dasselbe gilt für die Wahl von Materialien.

Claims

Patentansprüche
1. Speicherzellenanordnung,
- bei der eine Speicherzelle einen Transistor und einen Kon- densator umfaßt,
- bei der in einem Substrat (1) zueinander parallele erste Gräben (Gl) und quer zu den ersten Gräben (Gl) verlaufende zweite Gräben (G2) vorgesehen sind,
- bei der ein oberes Source/Drain-Gebiet (S/Do) des Transi- stors im Substrat (S) angeordnet ist und an zwei der ersten
(Gl) und an zwei der zweiten Gräben (G2) angrenzt,
- bei der unter dem oberen Source/Drain-Gebiet (S/Do) im Substrat (1) ein unteres Source/Drain-Gebiet (S/Du) des Transistors angeordnet ist, - bei der in den ersten Gräben (Gl) zwischen den zweiten Gräben (G2) leitende Strukturen (L) angeordnet sind, die jeweils bei einer ersten Flanke des zugehörigen ersten Grabens (Gl) an eines der oberen Source/Drain-Gebiete (S/Do) angrenzen und durch eine im ersten Graben (Gl) angeordnete isolierende Struktur (I) von einer zweiten Flanke und vom Boden des ersten Grabens (Gl) isoliert sind,
- bei der eine Wortleitung (W) parallel zu den ersten Gräben
(Gl) verläuft, Ausstülpungen aufweist, die in die zweiten Gräben (G2) hineinreichen, zwischen den zweiten Gräben (G2) über einer isolierenden Schicht (12) angeordnet ist und die über dem oberen Source/Drain-Gebiet (S/Do) angeordnet ist,
- bei der auf der Wortleitung (W) eine weitere isolierende Schicht (13) angeordnet ist, und isolierende Spacer (Sp) seitlich an die Wortleitung (W) angrenzen, - bei der der Kondensator über einen Kontakt (K) , der auf der leitenden Struktur (L) und zwischen Wortleitungen (W) angeordnet ist, mit dem oberen Source/Drain-Gebiet (S/Do) verbunden ist.
2. Speicherzellenanordnung nach Anspruch 1,
- bei der das untere Source/Drain-Gebiet (S/Du) bei einer ersten Flanke eines der beiden zweiten Gräben (G2) an eine Bitleitung (B) angrenzt, die in einem unteren Teil des zweiten Grabens (G2) angeordnet ist.
3. SpeicherZellenanordnung nach Anspruch 1 oder 2, - bei der die ersten Gräben (Gl) so tief sind, daß sie die unteren Source/Drain-Gebiete (S/Du) von Transistoren, die entlang des zweiten Grabens (G2) zueinander benachbart sind, voneinander trennen.
4. Verfahren zur Herstellung einer Speicherzellenanordnung,
- bei dem in einem Substrat (1) im wesentlichen parallel zueinander verlaufende erste Gräben (Gl) erzeugt werden,
- bei dem die ersten Gräben (Gl) mit isolierendem Material gefüllt werden, - bei dem das isolierende Material teilweise durch leitendes Material so ersetzt wird, daß das leitende Material an erste Flanken und das isolierende Material an zweite Flanken und an Böden der ersten Gräben (Gl) angrenzen,
- bei dem eine isolierende Schicht (12) erzeugt wird, die das leitende Material bedeckt,
- bei dem im Substrat (1) zweite Gräben (G2), die im wesentlichen parallel zueinander und quer zu den ersten Gräben (Gl) verlaufen, so erzeugt werden, daß aus dem leitenden
Material voneinander getrennte leitende Strukturen (L) und aus dem isolierenden Material voneinander getrennte isolierende Strukturen (I) erzeugt werden,
- bei dem im Substrat (1) obere Source/Drain-Gebiete (S/Do) von vertikalen Transistoren und darunter untere Source/Drain-Gebiete (S/Du) der Transistoren so erzeugt werden, daß die oberen Source/Drain-Gebiete (S/Do) jeweils an eine Oberfläche des Substrates (1), an zwei der ersten Gräben (Gl) und an zwei der zweiten Gräben (G2) angrenzen,
- bei dem parallel zu den ersten Gräben (Gl) Wortleitungen
(W) so erzeugt werden, daß sie Ausstülpungen aufweisen, die in die zweiten Gräben (G2) reichen, und jeweils zwei der ersten Gräben (Gl) teilweise überlappen, - bei dem die Wortleitungen (W) durch eine darüber erzeugte weitere isolierende Schicht (13) und durch Spacer (Sp) isoliert werden,
- bei dem die isolierende Schicht (12) selektiv zur weiteren isolierenden Schicht (13) und zu den Spacern (Sp) geätzt wird, so daß die leitenden Strukturen (L) freigelegt werden,
- bei dem Kondensatoren erzeugt werden, die über Kontakte (K) mit den leitenden Strukturen (L) verbunden werden.
5. Verfahren nach Anspruch 4,
- bei dem in unteren Teilen der zweiten Gräben (G2) jeweils eine Bitleitung (B) so erzeugt wird, daß sie bei einer ersten Flanke des zugehörigen zweiten Grabens (G2) an die un- teren Source/Drain-Gebiete (S/Du) angrenzt, die an den zweiten Graben (G2) angrenzen.
6. Verfahren nach Anspruch 5,
- bei dem die ersten Gräben (Gl) so tief erzeugt werden, daß sie die unteren Source/Drain-Gebiete (S/Du) von Transistoren, die entlang des zweiten Grabens (G2) zueinander benachbart sind, voneinander trennen.
7. Verfahren nach einem der Ansprüche 4 bis 6, - bei dem vor Erzeugung der ersten Gräben (Gl) eine Schutzschicht (II) auf dem Substrat (1) erzeugt wird,
- bei dem das isolierende Material teilweise durch das leitende Material ersetzt wird, indem mit Hilfe einer strei- fenförmigen Maske, deren Streifen parallel zu den ersten Gräben (Gl) verlaufen und jeweils einen der ersten Gräben (Gl) teilweise überlappen, das isolierende Material selektiv zur Schutzschicht (II) bis zu einer Tiefe geätzt wird, die oberhalb der Böden der ersten Gräben (Gl) liegt, und anschließend das leitende Material abgeschieden und rückge- ätzt wird, bis die Schutzschicht (II) freigelegt wird.
EP00929252A 1999-03-30 2000-03-27 Speicherzellenanordnung und verfahren zu deren herstellung Withdrawn EP1175701A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19914490A DE19914490C1 (de) 1999-03-30 1999-03-30 Speicherzellenanordnung und Verfahren zu deren Herstellung
DE19914490 1999-03-30
PCT/DE2000/000932 WO2000060667A1 (de) 1999-03-30 2000-03-27 Speicherzellenanordnung und verfahren zu deren herstellung

Publications (1)

Publication Number Publication Date
EP1175701A1 true EP1175701A1 (de) 2002-01-30

Family

ID=7902997

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00929252A Withdrawn EP1175701A1 (de) 1999-03-30 2000-03-27 Speicherzellenanordnung und verfahren zu deren herstellung

Country Status (7)

Country Link
US (1) US6627940B1 (de)
EP (1) EP1175701A1 (de)
JP (1) JP3875493B2 (de)
KR (1) KR100465040B1 (de)
DE (1) DE19914490C1 (de)
TW (1) TW465088B (de)
WO (1) WO2000060667A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10318625B4 (de) * 2003-04-24 2006-08-03 Infineon Technologies Ag Vertikale Speicherzelle und Verfahren zu deren Herstellung
JP2009182105A (ja) 2008-01-30 2009-08-13 Elpida Memory Inc 半導体装置及びその製造方法
JP2010141259A (ja) 2008-12-15 2010-06-24 Elpida Memory Inc 半導体装置及びその製造方法
US11404091B2 (en) 2020-06-19 2022-08-02 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array word line routing
US11423966B2 (en) 2020-07-30 2022-08-23 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array staircase structure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793365B2 (ja) * 1984-09-11 1995-10-09 株式会社東芝 半導体記憶装置およびその製造方法
JP2932635B2 (ja) * 1990-08-11 1999-08-09 日本電気株式会社 半導体記憶装置
JP2518147B2 (ja) * 1993-04-02 1996-07-24 日本電気株式会社 半導体メモリ装置とその製造方法
US5497017A (en) 1995-01-26 1996-03-05 Micron Technology, Inc. Dynamic random access memory array having a cross-point layout, tungsten digit lines buried in the substrate, and vertical access transistors
DE19519159C2 (de) 1995-05-24 1998-07-09 Siemens Ag DRAM-Zellenanordnung und Verfahren zu deren Herstellung
US5937296A (en) * 1996-12-20 1999-08-10 Siemens Aktiengesellschaft Memory cell that includes a vertical transistor and a trench capacitor
TW428313B (en) * 1998-05-19 2001-04-01 Siemens Ag Integrated circuit-arrangement with at least a transistor and a capacitor and method to it production
DE19911148C1 (de) 1999-03-12 2000-05-18 Siemens Ag DRAM-Zellenanordnung und Verfahren zu deren Herstellung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO0060667A1 *

Also Published As

Publication number Publication date
TW465088B (en) 2001-11-21
JP3875493B2 (ja) 2007-01-31
US6627940B1 (en) 2003-09-30
DE19914490C1 (de) 2000-07-06
KR20010110478A (ko) 2001-12-13
JP2002541667A (ja) 2002-12-03
WO2000060667A1 (de) 2000-10-12
KR100465040B1 (ko) 2005-01-13

Similar Documents

Publication Publication Date Title
DE19928781C1 (de) DRAM-Zellenanordnung und Verfahren zu deren Herstellung
DE19727466C2 (de) DRAM-Zellenanordnung und Verfahren zu deren Herstellung
WO2004038770A2 (de) Integrierte schaltungsanordnung mit kondensator und herstellungsverfahren
DE19911148C1 (de) DRAM-Zellenanordnung und Verfahren zu deren Herstellung
DE19811882A1 (de) DRAM-Zellenanordnung und Verfahren zu deren Herstellung
DE10344862A1 (de) Verfahren zur Herstellung eines dicken Isolationskragens mit reduzierter Länge
EP0945901A1 (de) DRAM-Zellenanordnung mit vertikalen Transistoren und Verfahren zu deren Herstellung
EP0317934B1 (de) Dreidimensionale 1-Transistorzellenanordnung für dynamische Halbleiterspeicher mit Grabenkondensator und Verfahren zu ihrer Herstellung
DE19845004C2 (de) DRAM-Zellenanordnung und Verfahren zu deren Herstellung
EP1125328B1 (de) Verfahren zur herstellung einer dram-zellenanordnung
EP0917203A2 (de) Gain Cell DRAM Struktur und Verfahren zu deren Herstellung
DE19720193C2 (de) Integrierte Schaltungsanordnung mit mindestens zwei vertikalen MOS-Transistoren und Verfahren zu deren Herstellung
DE19929211B4 (de) Verfahren zur Herstellung eines MOS-Transistors sowie einer DRAM-Zellenanordung
EP1129482B1 (de) Verfahren zur Herstellung von einer DRAM-Zellenanordnung
DE19954867C1 (de) DRAM-Zellenanordnung und Verfahren zu deren Herstellung
EP1552561A2 (de) Integrierte schaltungsanordnung mit kondensatoren und mit vorzugsweise planaren transistoren und herstellungsverfahren
EP0883185A1 (de) Selbstverstärkende DRAM-Zellenanordnung und Verfahren zu deren Herstellung
WO2000060667A1 (de) Speicherzellenanordnung und verfahren zu deren herstellung
DE19914496A1 (de) Speicherzellenanordnung und Verfahren zu deren Herstellung
WO2000049654A1 (de) Verfahren zum herstellen einer dram-zelle mit einem grabenkondensator
DE19923262C1 (de) Verfahren zur Erzeugung einer Speicherzellenanordnung
EP1118116B1 (de) Substrat mit einer vertiefung, das für eine integrierte schaltungsanordnung geeignet ist, und verfahren zu dessen herstellung
EP1097471B1 (de) Integrierte schaltungsanordnung mit mindestens einem transistor und einem kondensator und verfahren zu deren herstellung
DE19957303B4 (de) MOS-Transistor und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IE IT

17Q First examination report despatched

Effective date: 20070205

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091001