EP1173539B1 - Wasch- und reinigungsmittelformkörper mit beschichtung - Google Patents

Wasch- und reinigungsmittelformkörper mit beschichtung Download PDF

Info

Publication number
EP1173539B1
EP1173539B1 EP00927026A EP00927026A EP1173539B1 EP 1173539 B1 EP1173539 B1 EP 1173539B1 EP 00927026 A EP00927026 A EP 00927026A EP 00927026 A EP00927026 A EP 00927026A EP 1173539 B1 EP1173539 B1 EP 1173539B1
Authority
EP
European Patent Office
Prior art keywords
weight
copolymers
acid
polymers
esters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP00927026A
Other languages
English (en)
French (fr)
Other versions
EP1173539A1 (de
Inventor
Thomas Otto Gassenmeier
Gerhard Blasey
Markus Semrau
Fred Schambil
Peter Schmiedel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7906692&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1173539(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1173539A1 publication Critical patent/EP1173539A1/de
Application granted granted Critical
Publication of EP1173539B1 publication Critical patent/EP1173539B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0082Coated tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/225Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC

Definitions

  • the present invention is in the field of compact moldings having washing and cleaning properties.
  • Such detergent tablets include, for example, laundry detergent tablets for washing textiles, automatic dishwashing detergent tablets or hard surface cleaning agents. Bleaching tablets for use in washing machines or dishwashers, water softening or stain salt tablets.
  • the invention relates to detergent tablets which are used for washing textiles in a household washing machine and are referred to as detergent tablets for short.
  • Detergent tablets are widely described in the art and are becoming increasingly popular with consumers because of their ease of use. Tabulated detergents and cleaners have a number of advantages over powdered ones: They are easier to dose and to handle and, due to their compact structure, have advantages in storage and transport. Also in the patent literature washing and cleaning agent tablets are thus described comprehensively. A problem which occurs again and again in the application of washing and cleaning-active moldings is the too low disintegration and dissolution rate of the moldings under conditions of use.
  • EP 846 754, EP 846 755 and EP 846 756 (Procter & Gamble) describe coated detergent tablets which comprise a "core" of compacted, particulate detergent and cleaning agent and a “coating", wherein as coating materials dicarboxylic acids, in particular Adipic acid are used, optionally containing other ingredients such as disintegration aids.
  • Coated detergent tablets are also the subject of European Patent Application EP 716144 (Unilever). According to the information in this document, the hardness of the tablets can be enhanced by a "coating", without the disintegration and dissolution times are impaired. Coating agents are mentioned as film-forming substances, in particular copolymers of acrylic acid and maleic acid or sugar.
  • the approaches of the prior art also require individual packaging of the shaped bodies.
  • the moldings must be packed as a single molding or as a dosing unit, which may for example consist of two moldings, in foil so that the tablets lose their properties during storage neither in terms of high hardness nor faster disintegration times. Only after this repackaging of individual moldings, the entire package, which is delivered to the trade, can be packed.
  • the resistance of the moldings to case and friction loads compared to the known moldings should be further improved despite significantly reduced use of coating materials.
  • the coated moldings should be able to be delivered to retailers with minimized packaging costs, ie with less expensive individual packaging or even without individual packaging, without the storage stability of the moldings suffering therefrom.
  • An easy to implement and universally applicable manufacturing process To provide such a coated molded article was another object of the present invention.
  • Water-soluble polymers in the context of the invention are those polymers which are soluble in water at room temperature in excess of 2.5% by weight.
  • the detergent tablets according to the invention are coated with a polymer or polymer mixture, wherein the polymer (and accordingly the entire coating) or at least 50 wt .-% of the polymer mixture (and thus at least 50% of the coating) is selected from certain polymers.
  • the coating consists entirely or at least 50% of its weight of water-soluble polymers from the group of nonionic, amphoteric, zwitterionic, anionic and / or cationic polymers. These polymers are described in more detail below.
  • polymers which are suitable according to the invention are water-soluble amphopolymers.
  • Amphoteric polymers ie polymers which contain both free amino groups and free -COOH or SO 3 H groups in the molecule and are capable of forming internal salts, are zwitterionic polymers which contain quaternary ammonium groups in the molecule. COO - - or -SO 3 - groups, and summarized those polymers containing -COOH or SO 3 H groups and quaternary ammonium groups.
  • amphopolymer which can be used according to the invention is the acrylic resin obtainable under the name Amphomer®, which is a copolymer of tert-butylaminoethyl methacrylate, N- (1,1,3,3-tetramethylbutyl) acrylamide and two or more monomers from the group of acrylic acid, Represents methacrylic acid and its simple esters.
  • Amphomer® is a copolymer of tert-butylaminoethyl methacrylate, N- (1,1,3,3-tetramethylbutyl) acrylamide and two or more monomers from the group of acrylic acid, Represents methacrylic acid and its simple esters.
  • amphopolymers are composed of unsaturated carboxylic acids (eg, acrylic and methacrylic acid), cationically derivatized unsaturated carboxylic acids (eg, acrylamidopropyltrimethylammonium chloride), and optionally further ionic or nonionogenic monomers together, as can be seen for example in German Offenlegungsschrift 39 29 973 and the prior art cited therein.
  • Terpolymers of acrylic acid, methyl acrylate and Methacrylamidopropyltrimoniumchlorid as they are commercially available under the name Merquat®2001 N, according to the invention are particularly preferred amphopolymers.
  • amphoteric polymers are, for example, the octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers available under the names Amphomer® and Amphomer® LV-71 (DELFT NATIONAL).
  • Suitable zwitterionic polymers are, for example, the polymers disclosed in German patent applications DE 39 29 973, DE 21 50 557, DE 28 17 369 and DE 37 08 451 .
  • Acrylamidopropyltrimethylammonium chloride / acrylic acid or methacrylic acid copolymers and their alkali metal and ammonium salts are preferred zwitterionic polymers.
  • Further suitable zwitterionic polymers are Methacroylethylbetain / methacrylate copolymers, which are commercially available under the name Amersette® (AMERCHOL).
  • Cationic polymers preferred according to the invention are quaternized cellulose derivatives and polymeric dimethyldiallylammonium salts and their copolymers.
  • cationic Cellulose derivatives, in particular the commercial product Polymer® JR 400, are very particularly preferred cationic polymers.
  • the detergent tablets according to the invention have already markedly improved properties even with small amounts of coating material. It is preferred within the scope of the present invention that the amount of coating material is less than 0.25% by weight of the total weight of the coated shaped article. Detergent tablets in which the weight ratio of uncoated tablet to coating is greater than 500 to 1 are therefore preferred embodiments of the present invention.
  • the thickness of the coating on the tablet is from 0.1 to 150 .mu.m, preferably from 0.5 to 100 .mu.m and in particular from 5 to 50 .mu.m.
  • polyurethanes can be incorporated into the coating. These impart elasticity and stability to the coating and can account for up to 50% by weight of the coating, according to the amount of water-soluble polymers indicated above.
  • Polyurethanes are water-insoluble in the sense of the invention when they are soluble in water at room temperature to less than 2.5 wt .-%.
  • the compounds (A) may be, for example, diols, triols, diamines, triamines, polyetherols and polyesterols.
  • the compounds having more than 2 active hydrogen atoms are usually used only in small amounts in combination with a large excess of compounds having 2 active hydrogen atoms.
  • Examples of compounds (A) are ethylene glycol, 1,2- and 1,3-propylene glycol, butylene glycols, di-, tri-, tetra- and poly-ethylene and -Propylenglykole, copolymers of lower alkylene oxides such as ethylene oxide, propylene oxide and butylene oxide, Ethylenediamine, propylenediamine, 1,4-diaminobutane, hexamethylenediamine and ⁇ , ⁇ -diamines based on long-chain alkanes or polyalkylene oxides.
  • Polyurethanes in which the compounds (A) are diols, triols and polyetherols may be preferred according to the invention.
  • polyethylene glycols and polypropylene glycols having molecular weights between 200 and 3000, in particular between 1600 and 2500 have proven to be particularly suitable in individual cases.
  • Polyesterols are usually obtained by modifying the compound (A) with dicarboxylic acids such as phthalic acid, isophthalic acid and adipic acid.
  • HMDI hexamethylene diisocyanate
  • R 4 (CH 2 ) 6
  • TDI 2,4- or 2,6-toluene diisocyanate
  • R 4 is C 6 H 3 -CH 3
  • MDI 4,4'-methylenedi (phenyl isocyanate)
  • MDI isophorone diisocyanate
  • R 4 is the isophorone radical (3,5,5-trimethyl-2-cyclohexenone)
  • polyurethanes used in the invention may contain other building blocks such as diamines as chain extenders and hydroxycarboxylic acids.
  • Dialkylolcarboxylic acids such as dimethylolpropionic acid are particularly suitable hydroxycarboxylic acids.
  • further building blocks there is no fundamental restriction as to whether they are nonionic, anionic or cationic building blocks.
  • the polyurethanes were not mixed directly with the other components, but introduced in the form of aqueous dispersions.
  • Such dispersions usually have a solids content of about 20-50%, in particular about 35-45%, and are also commercially available.
  • Detergents and cleaning agent tablets in which the coating in addition to the polymers mentioned polyurethanes in amounts of 5 to 50 wt .-%, preferably from 7.5 to 40 wt .-% and in particular from 10 to 30 wt .-%, respectively on the coating, are preferred according to the invention.
  • the basic tablets contain builder (s) and surfactant (s) as essential components.
  • builder s
  • surfactant s
  • all builders commonly used in detergents and cleaners may be present, in particular zeolites, silicates, carbonates, organic co-builders and-where there are no ecological prejudices against their use-also the phosphates.
  • Suitable crystalline layered sodium silicates have the general formula NaMSi x O 2x + 1 H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2 , 3 or 4 are.
  • Such crystalline sheet silicates are described, for example, in European Patent Application EP-A-0 164 514 .
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred, whereby ⁇ -sodium disilicate can be obtained, for example, by the process described in international patent application WO-A-91/08171 .
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which Delayed and have secondary washing properties.
  • the dissolution delay compared to conventional amorphous sodium silicates can be achieved in various ways, For example, be caused by surface treatment, compounding, compaction / densification or over-drying.
  • the term "amorphous" is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of size 10 to a few hundred nm, values of up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray-amorphous silicates which likewise have a dissolution delay compared to the conventional water glasses, are described, for example, in German patent application DE-A-44 00 024 .
  • Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are particularly preferred.
  • zeolite X and zeolite A are cocrystal of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is sold by the company CONDEA Augusta SpA under the brand name VEGOBOND AX® and by the formula nNa 2 O • (1-n) K 2 O • Al 2 O 3 • (2 - 2.5) SiO 2 • (3.5-5.5) H 2 O can be described.
  • the zeolite can be used both as a builder in a granular compound, as well as to a kind of "powdering" of the entire mixture to be pressed, whereby usually both ways for incorporating the zeolite are used in the Vorgcmisch.
  • Suitable zeolites have an average particle size of less than 10 microns (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22 wt .-%, in particular 20 to 22 wt .-% of bound water.
  • the alkali metal phosphates with a particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), have the greatest importance in the washing and cleaning agent industry.
  • Alkali metal phosphates is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids, in which one can distinguish metaphosphoric acids (HPO 3 ) n and orthophosphoric H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 PO 4 exists as a dihydrate (density 1.91 gcm -3 , melting point 60 °) and as a monohydrate (density 2.04 gcm -3 ). Both salts are white powders which are very soluble in water and which lose their water of crystallization when heated and at 200 ° C into the weak acid diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 O 7 ), at higher temperature in sodium trimetaphosphate (Na 3 P 3 O 9 ) and Maddrell's salt (see below).
  • NaH 2 PO 4 is acidic; It arises when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate potassium phosphate primary or monobasic potassium phosphate, KDP
  • KH 2 PO 4 is a white salt of 2.33 gcm -3 density, has a melting point of 253 ° [decomposition to form potassium polyphosphate (KPO 3 ) x ] and is light soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 , is a colorless, very slightly water-soluble crystalline salt. It exists anhydrous and with 2 mol. (Density 2.066 gcm -3 , water loss at 95 °), 7 mol. (Density 1.68 gcm -3 , melting point 48 ° with loss of 5 H 2 O and 12 mol. Water (density 1.52 gcm -3 , melting point 35 ° with loss of 5 H 2 O) becomes anhydrous at 100 ° C. and on more intense heating passes into the diphosphate Na 4 P 2 O 7.
  • Disodium hydrogen phosphate is prepared by neutralization of phosphoric acid with sodium carbonate solution using phenolphthalein as indicator. dibasic potassium phosphate), K 2 HPO 4 , is an amorphous, white salt that is readily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 PO 4 are colorless crystals which have a density of 1.62 gcm -3 as dodecahydrate and a melting point of 73-76 ° C (decomposition), as decahydrate (corresponding to 19-20% P 2 O 5 ) have a melting point of 100 ° C and in anhydrous form (corresponding to 39-40% P 2 O 5 ) have a density of 2.536 gcm -3 .
  • Trisodium phosphate is readily soluble in water under alkaline reaction and is prepared by evaporating a solution of exactly 1 mole of disodium phosphate and 1 mole of NaOH.
  • Trikallum phosphate (tertiary or tribasic potassium phosphate), K 3 PO 4 , is a white, deliquescent, granular powder of density 2.56 gcm -3 , has a melting point of 1340 ° and is readily soluble in water with an alkaline reaction. It arises, for example, when heating Thomasschlacke with coal and potassium sulfate. Despite the higher price, the more soluble, therefore highly effective, potassium phosphates are often preferred over the corresponding sodium compounds in the detergent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534 gcm -3 , melting point 988 °, also indicated 880 °) and as decahydrate (density 1.815-1.836 gcm -3 , melting point 94 ° with loss of water) , For substances are colorless, in water with alkaline reaction soluble crystals.
  • Na 4 P 2 O 7 is formed on heating of disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying.
  • the decahydrate complexes heavy metal salts and hardness agents and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K 4 P 2 O 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33 gcm -3 , which is soluble in water, the pH being 1% Solution at 25 ° 10.4.
  • Sodium and potassium phosphates in which one can distinguish cyclic representatives, the sodium or Kaliummetaphosphate and chain types, the sodium or potassium polyphosphates. In particular, for the latter are a variety of names in use: hot or cold phosphates, Graham's salt, Kurrolsches and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • pentasodium triphosphate Na 5 P 3 O 10 (sodium tripolyphosphate)
  • sodium tripolyphosphate sodium tripolyphosphate
  • n 3
  • 100 g of water dissolve at room temperature about 17 g, at 60 ° about 20 g, at 100 ° around 32 g of the salt water-free salt; after two hours of heating the solution to 100 ° caused by hydrolysis about 8% orthophosphate and 15% diphosphate.
  • pentasodium triphosphate In the preparation of pentasodium triphosphate, phosphoric acid is reacted with sodium carbonate solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dehydrated by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.). Pentakaliumtriphosphat, K 5 P 3 O 10 (potassium tripolyphosphate), for example, in the form of a 50 wt .-% solution (> 23% P 2 O 5 , 25% K 2 O) in the trade. The potassium polyphosphates are widely used in the washing and cleaning industry. There are also sodium potassium tripolyphosphates which can also be used in the context of the present invention. These arise, for example, when hydrolyzed sodium trimetaphosphate with KOH: (NaPO 3 ) 3 + 2 KOH ⁇ Na 3 K 2 P 3 O 10 + H 2 O
  • sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two are used according to the invention exactly as sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two; also mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of Sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can be used according to the invention.
  • organic cobuilders it is possible in particular to use polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, further organic cobuilders (see below) and phosphonates in the base moldings. These classes of substances are described below.
  • Useful organic builder substances are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those having a relative molecular mass of from 500 to 70,000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which due to its structural relationship with the investigated polymers provides realistic molecular weight values. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of (co) polymeric polycarboxylates in the compositions is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • the polymers may also contain allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid as a monomer.
  • biodegradable polymers of more than two different monomer units for example those which contain as monomers salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or as monomers salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives ,
  • copolymers are those which are described in the German patent applications DE-A-43 03 320 and DE-A-44 17 734 and preferably have as monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors.
  • polyaspartic acids or their salts and derivatives which is disclosed in the German patent application DE-A-195 40 086 , that they also have a bleach-stabilizing effect in addition to Cobuilder properties.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • oxidizing agents capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and methods of their preparation are for example from European Patent Applications EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 and EP-A-0 542 496 and International Patent Applications WO 92/18542, WO 93/08251, WO 93 / 16110, WO 94/28030, WO 95/07303, WO 95/12619 and WO 95/20608 .
  • an oxidized oligosaccharide according to the German patent application DE-A-196 00 018.
  • a product oxidized to C 6 of the saccharide ring may be particularly advantageous.
  • Oxydisuccinates and other derivatives of disuccinates are other suitable co-builders.
  • ethylenediamine-N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are in zeolithissen and / or silicate-containing formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such co-builders are described, for example, in International Patent Application WO 95/20029 .
  • phosphonates are, in particular, hydroxyalkane or aminoalkanephosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a co-builder.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkanephosphonates are ethylenediamine tetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of neutral sodium salts, eg. B.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the Aminoalkanphosphonate also have a pronounced Schwennetallbindeabmögen. Accordingly, especially when the agents also contain bleach, it may be preferable to use aminoalkane phosphonates, DTPMP in particular, or to use mixtures of said phosphonates.
  • the amount of builder is usually between 10 and 70 wt .-%, preferably between 15 and 60 wt .-% and in particular between 20 and 50 wt .-%.
  • the amount of Buildem used depends on the intended use, so that bleach tablets may have higher amounts of builders (for example between 20 and 70% by weight, preferably between 25 and 65% by weight and in particular between 30 and 55% by weight) as, for example, detergent tablets (usually 10 to 50% by weight, preferably 12.5 to 45% by weight, in particular between 17.5 and 37.5% by weight).
  • Preferred base tablets also contain one or more surfactants.
  • anionic, nonionic, cationic and / or amphoteric surfactants or mixtures thereof may be used. From an application point of view, preference is given to mixtures of anionic and nonionic surfactants.
  • the total surfactant content of the molded articles is from 5 to 60% by weight, based on the molded article weight, preference being given to surfactant contents of more than 15% by weight.
  • anionic surfactants for example, those of the sulfonate type and sulfates are used.
  • surfactants of the sulfonate type are preferably C 9-13- alkylbenzenesulfonates, olefinsulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as they are, for example, from C 12-18 monoolefins with terminal or innenbeschcr double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation products into consideration.
  • alkanesulfonates which are obtained from C 12-18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids ester sulfonates
  • esters of hydrogenated coconut, palm kernel or tallow fatty acids suitable.
  • sulfated fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and mixtures thereof, as obtained in the preparation by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) ylsulfates are the alkali metal salts and, in particular, the sodium salts of the sulfuric monoesters of C 12 -C 18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of these chain lengths are preferred. Also preferred are alk (en) ylsulfates of said chain length, which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • the C 12- C 16 and C -Alkytsulfate preferably 12 -C 15 alkyl sulfates and C 14 -C 15 alkyl sulfates.
  • 2,3-alkyl sulfates prepared, for example, according to U.S. Patents 3,234,258 or 5,075,041, which can be obtained as commercial products of the Shell Oil Company under the name DAN®, are suitable anionic surfactants.
  • EO ethylene oxide
  • Fatty alcohols with 1 to 4 EO are suitable. Due to their high foaming behavior, they are only used in detergents in relatively small amounts, for example in amounts of from 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8-18 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which in themselves constitute nonionic surfactants (see description below).
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) yl-succinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • anionic surfactants are particularly soaps into consideration.
  • Suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular of natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohols with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants and alkyl glycosides of the general formula RO (G) x can be used in which R is a primary straight-chain or methyl-branched, especially in the 2-position methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1.2 to 1.4.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain, especially fatty acid methyl esters as they are for example, in Japanese Patent Application JP 58/217598, or which are preferably prepared according to the method described in International Patent Application WO-A-90/13533.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • polyhydroxy fatty acid amides of the formula (IX) wherein RCO is an aliphatic acyl group having 6 to 22 carbon atoms, R 1 is hydrogen, an alkyl or hydroxyalkyl group having 1 to 4 carbon atoms and [Z] is a linear or branched polyhydroxyalkyl group having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (X) in the R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, with C 1-4 alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this residue.
  • R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be synthesized, for example, according to the teaching of international application WO-A-95/07331 by reaction with Fatty acid methyl esters are converted in the presence of an alkoxide as a catalyst into the desired polyhydroxy fatty acid amides.
  • base moldings which contain anionic (s) and nonionic surfactant (s) are preferred, it being possible for performance advantages to result from certain proportions in which the individual surfactant classes are used.
  • base moldings are particularly preferred in which the ratio of anionic surfactant (s) to nonionic surfactant (s) between 10: 1 1 and 1:10, preferably between 7.5: 1 and 1: 5 and in particular between 5: 1 and 1 : 2 is.
  • detergent tablets which contain surfactant (s), preferably anionic and / or nonionic surfactant (s), in amounts of from 5 to 40% by weight, preferably from 7.5 to 35% by weight .-%, particularly preferably from 10 to 30 wt .-% and in particular from 12.5 to 25 wt .-%, in each case based on the weight of the molded article.
  • surfactant preferably anionic and / or nonionic surfactant (s)
  • s preferably anionic and / or nonionic surfactant
  • anionic surfactants Similar to the nonionic surfactants, the omission of anionic surfactants from individual or all phases may also result in base tablets which are more suitable for certain fields of application. It is therefore within the scope of the present invention also possible to use detergent tablets in which at least one phase of the tablets is free of anionic surfactants.
  • excipients are understood to mean excipients which are suitable for rapid disintegration of tablets in water or gastric juice and for the release of the drugs in resorbable form.
  • Preferred basic shaped tablets contain from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight of one or more disintegration aids, in each case based on the weight of the molded body.
  • Preferred disintegrating agents used in the present invention disintegrating agents based on cellulose, so that preferred base tablets such cellulose-based disintegrating agent in amounts of 0.5 to 10 wt .-%, preferably 3 to 7 wt .-% and in particular 4 to 6 wt .-% contain.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and formally represents a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrating agents which can be used in the context of the present invention are also cellulose derivatives obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • Celluloses in which the hydroxy groups have been replaced by functional groups which are not bonded via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as disintegrating agents based on cellulose, but used in admixture with cellulose.
  • the content of these mixtures of cellulose derivatives is preferably below 50% by weight, more preferably below 20% by weight, based on the cellulose-based disintegrating agent. It is particularly preferred to use cellulose-based disintegrating agent which is free of
  • the cellulose used as a disintegration aid is preferably not used in finely divided form, but converted into a coarser form, for example granulated or compacted, before it is added to the premixes to be tabletted.
  • Detergents and cleaning agent tablets containing disintegrators in granular or optionally cogranulated form are described in German patent applications DE 197 09 991 (Stefan Herzog) and DE 197 10 254 (Henkel) and in international patent application WO 98/40463 (Henkel). Further details of the production of granulated, compacted or cogranulated cellulose explosives can be found in these publications.
  • the particle sizes of such disintegrating agents are usually above 200 .mu.m, preferably at least 90 wt .-% between 300 and 1600 .mu.m and in particular at least 90 wt .-% between 400 and 1200 microns.
  • the coarser ones mentioned above and described in more detail in the cited documents Cellulose-based disintegration aids are preferably used as disintegration aids in the context of the present invention and are commercially available, for example, under the name Arbocel® TF-30-HG from Rettenmaier.
  • microcrystalline cellulose can be used as a further disintegrating agent based on cellulose or as a component of this component.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which attack and completely dissolve only the amorphous regions (about 30% of the total cellulose mass) of the celluloses, leaving the crystalline regions (about 70%) intact.
  • Subsequent deaggregation of the microfine celluloses produced by the hydrolysis yields the microcrystalline celluloses which have primary particle sizes of about 5 ⁇ m and can be compacted, for example, into granules having an average particle size of 200 ⁇ m.
  • preferred detergent tablets also contain a disintegration aid, preferably a cellulose-based disintegration assistant, preferably in granular, cogranulated or compacted form, in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight. % and in particular from 4 to 6 wt .-%, each based on the molding weight, wherein preferred disintegration aids have average particle sizes above 300 microns, preferably above 400 microns and in particular above 500 microns.
  • a disintegration aid preferably a cellulose-based disintegration assistant, preferably in granular, cogranulated or compacted form, in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight. % and in particular from 4 to 6 wt .-%, each based on the molding weight, wherein preferred disintegration aids have average particle sizes above 300 microns, preferably above 400 microns and in particular above 500 microns.
  • the detergent tablets according to the invention may contain further ingredients customary in detergents and cleaners from the group of bleaches, bleach activators, dyes, perfumes, optical brighteners, enzymes, foam inhibitors, silicone oils, anti-redeposition agents, grayness inhibitors, Color transfer inhibitors and corrosion inhibitors.
  • the detergent tablets of the present invention may contain bleaching agents.
  • the common bleaching agents from the group of sodium perborate monohydrate, sodium perborate tetrahydrate and sodium percarbonate have proven useful.
  • Sodium percarbonate is a term used in unspecified form for sodium carbonate peroxohydrates, which strictly speaking are not “percarbonates” (ie salts of percarbonic acid) but hydrogen peroxide adducts of sodium carbonate.
  • the commercial product has the average composition 2 Na 2 CO 3 ⁇ 3 H 2 O 2 and is therefore no peroxycarbonate.
  • Sodium percarbonate forms a white, water-soluble powder with a density of 2.14 gcm -3 , which readily decomposes into sodium carbonate and bleaching or oxidizing oxygen.
  • the industrial production of sodium percarbonate is predominantly produced by precipitation from aqueous solution (so-called wet process).
  • aqueous solutions of sodium carbonate and hydrogen peroxide, Kristallisieryskar (for example, polyphosphates, polyacrylates) and stabilizers are combined and the sodium percarbonate by salting-out agent (mainly sodium chloride) (for example, Mg 2+ ions) like.
  • the precipitated salt which still contains 5 to 12 wt .-% mother liquor, is then removed by centrifugation and dried in a fluidized bed dryer at 90 ° C.
  • the bulk density of the finished product may vary between 800 and 1200 g / l, depending on the manufacturing process.
  • the percarbonate is stabilized by an additional coating. Coating methods and materials used for coating are widely described in the patent literature. In principle, all commercially available percarbonate types can be used according to the invention, as offered for example by the companies Solvay Interox, Degussa, Kemira or Akzo.
  • the content of the shaped bodies of these substances depends on the intended use of the shaped bodies. While conventional universal detergents in tablet form contain between 5 and 30% by weight, preferably between 7.5 and 25% by weight and in particular between 12.5 and 22.5% by weight of bleach, the levels are bleach or bleach booster tablets between 15 and 50% by weight, preferably between 22.5 and 45% by weight, in particular between 30 and 40% by weight.
  • the detergent tablets according to the invention may contain bleach activator (s), which is preferred in the context of the present invention.
  • Bleach activators are incorporated into detergents to achieve improved bleaching performance when washed at temperatures of 60 ° C and below.
  • As bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic acid, hydrated acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5-diacetoxy 2,5-dihydrofuran.
  • TAED tetraacety
  • bleach catalysts can be incorporated into the moldings.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes are useful as bleach catalysts.
  • the shaped bodies according to the invention contain bleach activators, they contain, in each case based on the entire shaped body, between 0.5 and 30% by weight, preferably between 1 and 20% by weight and in particular between 2 and 15% by weight of one or more Bleach activators or bleach catalysts. Depending on the intended use of the molded body produced, these quantities may vary. Thus, in typical universal detergent tablets bleach activator levels between 0.5 and 10 wt .-%, preferably between 2 and 8 wt .-% and in particular between 4 and 6 wt .-% usual, while bleach tablets quite higher levels, for example between 5 and 30 wt .-%, preferably between 7.5 and 25 wt .-% and in particular between 10 and 20 wt .-% may have. The person skilled in the art is not limited in its formulation freedom and can thus produce stronger or weaker bleaching detergent tablets, detergent tablets or bleach tablets by varying the levels of bleach activator and bleach.
  • a particularly preferred bleach activator is N, N, N ', N'-tetraacetylethylenediamine, which is widely used in detergents and cleaners. Accordingly, preferred detergent tablets are characterized in that the bleach activator is tetraacetylethylenediamine in the abovementioned amounts.
  • the detergent tablets according to the invention may contain further ingredients customary in detergents and cleaners from the group of dyes, perfumes, optical brighteners, enzymes, foam inhibitors, silicone oils, antiredeposition agents, grayness inhibitors, Color transfer inhibitors and corrosion inhibitors.
  • the detergent tablets can be dyed with suitable dyes.
  • Preferred dyes the selection of which presents no difficulty to the skilled person, have a high storage stability and insensitivity to the other ingredients of the agents and to light and no pronounced substantivity to textile fibers so as not to stain them.
  • Preferred for use in the detergent tablets according to the invention are all colorants which can be oxidatively destroyed in the washing process and mixtures thereof with suitable blue dyes, so-called blue toners. It has proved to be advantageous to use colorants which are soluble in water or at room temperature in liquid organic substances. Suitable are, for example, anionic colorants, e.g. anionic nitrosofarads. A possible colorant is, for example, naphthol green (Color Index (CI) Part 1: Acid Green 1, Part 2: 10020), which is available as a commercial product, for example as Basacid® Green 970 from BASF, Ludwigshafen, and mixtures thereof with suitable blue dyes.
  • CI Color Index
  • Pigmosol® Blue 6900 (CI 74160), Pigmosol® Green 8730 (CI 74260), Basonyl® Red 545 FL (CI 45170), Sandolan® Rhodamine EB400 (CI 45100), Basacid® Yellow 094 (CI 47005), Sicovit® Patent Blue 85 E 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol® Blue GLW (CAS 12219-32-8, CI Acidblue 221 ), Nylosan® Yellow N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) and / or Sandolan® Blue (Cl Acid Blue 182, CAS 12219-26-0).
  • the colorant When choosing the colorant, it must be taken into account that the colorants do not have too high an affinity for the textile surfaces and, in particular, for synthetic fibers. At the same time, it should also be taken into account when choosing suitable colorants that colorants have different stabilities to the oxidation. In general, water-insoluble colorants are more stable to oxidation than water-soluble colorants. Depending on the solubility and thus also on the sensitivity to oxidation, the concentration of the colorant in the detergents or cleaners varies. In the case of readily water-soluble colorants, for example those mentioned above Basacid® Green or the above-mentioned Sandolan® Blue are typically selected to have colorant concentrations in the range of a few 10 -2 to 10 -3 wt%.
  • the suitable concentration of the colorant in detergents or cleaners is typically between 10 -3 and 10 -4 % by weight.
  • the molded articles may contain optical brighteners of the diaminostilbene disulfonic acid derivatives or their alkali metal salts. Suitable are e.g. Salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or similarly constructed compounds which, instead of the morpholino group, a diethanolamino group , a methylamino group, an anilino group or a 2-methoxyethylamino group. Furthermore, brighteners of the substituted diphenylstyrene type may be present, e.g.
  • optical brighteners are in the detergent tablets according to the invention in concentrations between 0.01 and 1 wt .-%, preferably between 0.05 and 0.5 wt .-% and in particular between 0.1 and 0.25 wt. %, in each case based on the entire molded body used.
  • Fragrances are added to the compositions according to the invention in order to improve the aesthetic impression of the products and to provide the consumer, in addition to the performance of the product, with a visually and sensory "typical and unmistakable" product.
  • perfume oils or fragrances individual perfume compounds, for example the synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons can be used.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzylformate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and benzylsalicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals with 8-18 C-atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones eg the ionone, oc-isomethylionone and methyl-cedrylketone, to the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • fragrance oils may also contain natural fragrance mixtures as are available from vegetable sources, eg pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage, chamomile, clove, lemon balm, mint, cinnamon, lime, juniper, vetiver, olibanum, galbanum and labdanum, and orange blossom, neroliol, orange peel and sandalwood.
  • the content of perfume in the detergent tablets of the invention is up to 2% by weight of the total formulation.
  • the fragrances can be incorporated directly into the compositions of the invention, but it may also be advantageous to apply the fragrances on carriers, which enhance the adhesion of the perfume on the laundry and provide by a slower release of fragrance for long-lasting fragrance of the textiles.
  • carrier materials for example, cyclodextrins have been proven, the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • Particularly suitable enzymes are those from the classes of hydrolases such as the proteases, esterases, lipases or lipolytic enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases in the wash contribute to the removal of stains such as proteinaceous, greasy or starchy stains and graying. In addition, cellulases and other glycosyl hydrolases may contribute to color retention and to enhancing the softness of the fabric by removing pilling and microfibrils. It is also possible to use oxidoreductases for bleaching or inhibiting color transfer.
  • subtilisin-type proteases and in particular proteases derived from Bacillus lentus are used.
  • enzyme mixtures for example from protease and amylase or protease and lipase or lipolytic enzymes or protease and cellulase or from cellulase and lipase or lipolytic enzymes or from protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic enzymes and cellulase, but in particular protease and / or lipase-containing mixtures or mixtures with lipolytic enzymes of particular interest.
  • lipolytic enzymes are the known cutinases. Peroxidases or oxidases have also proved suitable in some cases.
  • Suitable amylases include, in particular, alpha-amylases, iso-amylases, pullulanases and pectinases.
  • Cellulases used are preferably cellobiohydrolases, endoglucanases and glucosidases, which are also called cellobiases, or mixtures of these. Since different cellulase types differ by their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases.
  • the enzymes may be adsorbed to carriers or embedded in encapsulants to protect against premature degradation.
  • the proportion of enzymes, enzyme mixtures or enzyme granules may be, for example, about 0.1 to 5 wt .-%, preferably 0.5 to about 4.5 wt .-%.
  • the detergent tablets may also contain components which positively influence the oil and grease washability from textiles (so-called soil repellents). This effect is particularly evident when a textile is dirty, which has been previously washed several times with a detergent according to the invention, which contains this oil and fat dissolving component.
  • the preferred oil and fat dissolving components include, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxy-propylcellulose with a proportion of methoxyl groups of 15 to 30 wt .-% and hydroxypropoxyl groups of 1 to 15 wt .-%, each based on the nonionic cellulose ether, as well as the known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or Polyethylene glycol terephthalates or anionic and / or nonionic modified derivatives of these. Particularly preferred of these are the sulfonated derivatives of phthalic and terephthalic acid polymers.
  • the shaped bodies according to the invention are produced in two steps.
  • washing and cleaning agent tablets are produced in a manner known per se by compressing particulate detergent and cleaner compositions, the second step being provided with the coating.
  • the production of the shaped bodies to be coated later according to the invention is first carried out by the dry mixing of the constituents, which may be pre-granulated in whole or in part, and subsequent informing, in particular pressing into tablets, wherein conventional methods can be used.
  • the premix is compacted in a so-called matrix between two punches to form a solid compressed product. This process, hereinafter referred to as tabletting, is divided into four sections: dosing, compaction (elastic deformation), plastic deformation and ejection.
  • the premix is introduced into the die, wherein the filling amount and thus the weight and the shape of the resulting shaped body are determined by the position of the lower punch and the shape of the pressing tool.
  • the constant dosage even at high molding throughputs is preferably achieved via a volumetric metering of the premix.
  • the upper punch contacts the pre-mix and continues to descend toward the lower punch.
  • the particles of the premix are pressed closer to each other, with the void volume within the filling between the punches decreasing continuously. From a certain position of the upper punch (and thus from a certain pressure on the premix) begins the plastic deformation, in which the particles flow together and it comes to the formation of the molding.
  • the finished molded body is pushed out of the die by the lower punch and carried away by subsequent transport means. At this time, only the weight of the shaped body is finally determined because the compacts due to physical processes (re-expansion, crystallographic effects, cooling, etc.) can change their shape and size.
  • the tabletting is carried out in commercial tablet presses, which can be equipped in principle with single or double punches.
  • eccentric tablet presses are preferably used in which the die or punches are attached to an eccentric disc, which in turn is mounted on an axis at a certain rotational speed.
  • the movement of these punches is comparable to the operation of a conventional four-stroke engine.
  • the compression can be done with a respective upper and lower punch, but it can also be attached more stamp on an eccentric disc, the number of Matrizenbohritch is extended accordingly.
  • the throughputs of eccentric presses vary depending on the type of a few hundred to a maximum of 3000 tablets per hour.
  • rotary tablet presses are selected in which a larger number of dies are arranged in a circle on a so-called die table.
  • the number of matrices varies between 6 and 55 depending on the model, although larger matrices are commercially available.
  • Each die on the die table is assigned an upper and lower punch, in turn, the pressing pressure can be actively built only by the upper or lower punch, but also by both stamp.
  • the die table and the punches move about a common vertical axis, the punches are brought by means of rail-like cam tracks during the circulation in the positions for filling, compression, plastic deformation and ejection.
  • Plastic coatings, plastic inserts or plastic stamps are particularly advantageous.
  • Rotary punches have also proved to be advantageous, wherein, if possible, upper and lower punches should be rotatable. With rotating punches can be dispensed with a plastic insert usually. Here, the stamp surfaces should be electropolished.
  • Tableting machines suitable for the purposes of the present invention are obtainable, for example, from Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Horn & Noack Pharmatechnik GmbH, Worms, IMAmaschinessysteme GmbH Viersen, KILIAN, Cologne, KOMAGE, Kell on the lake, KORSCH presses AG, Berlin, as well as Romaco GmbH, Worms.
  • Other providers include Dr. med. Herbert Pete, Vienna (AU), Mapag Maschinenbau AG, Berne (CH), BWI Manesty, Liverpool (GB), I. Holand Ltd., Nottingham (GB), Courtoy NV, Halle (BE / LU) and Mediopharm Kamnik (SI ).
  • the hydraulic double pressure press HPF 630 LAEIS D.
  • Tabletting tools are, for example, the company Adams tabletting tools, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber% Sons GmbH, Hamburg, Hofer GmbH, Weil, Horn & Noack, Pharmatechnik GmbH, Worms, Ritter Pharmatechnik GmbH, Hamburg, Romaco, GmbH, Worms and Notter negligencebau, Tamm available.
  • Other providers are e.g. Senss AG, Reinach (CH) and Medicopharm, Kamnik (SI).
  • the moldings can be made in a predetermined spatial form and predetermined size.
  • the training as a blackboard the bar or bar form, Würfelcl, cuboid and corresponding space elements with flat side surfaces and in particular cylindrical configurations with a circular or oval cross-section.
  • This last embodiment covers the presentation form of the tablet up to compact cylinder pieces with a ratio of height to diameter above 1.
  • the portioned compacts can be designed in each case as separate individual elements, which corresponds to the predetermined dosage amount of the washing and / or cleaning agent.
  • the formation of the portioned compacts as tablets, in cylindrical or cuboidal form may be appropriate, with a diameter / height ratio in the range of about 0.5: 2 to 2: 0.5 is preferred.
  • Commercially available hydraulic presses, eccentric presses or rotary presses are suitable devices, in particular for producing such compacts.
  • the spatial form of another embodiment of the moldings is adapted in their dimensions of the dispenser of commercial household washing machines, so that the moldings can be metered without dosing directly into the dispenser, where it dissolves during the dispensing process.
  • a use of the detergent tablets via a dosing is easily possible and preferred in the context of the present invention.
  • Another preferred molded article which can be produced has a plate-like or tabular structure with alternately thick long and thin short segments, so that individual segments of this "bar" at the predetermined breaking points, which are the short thin segments, broken and in the Machine can be entered.
  • This principle of the "bar-shaped" detergent body can also in other geometric shapes, such as vertical triangles, which are connected together only on one side thereof alongside, are realized.
  • the various components are not pressed into a single tablet, but that moldings are obtained which have multiple layers, ie at least two layers. It is also possible that these different layers have different dissolution rates. This can result in advantageous performance properties of the molded body. If, for example, components are contained in the moldings which interact negatively, it is possible to integrate one component in the faster soluble layer and to incorporate the other component into a slower soluble layer, so that the first component has already reacted, when the second goes into solution.
  • the layer structure of the moldings can be carried out both in a staggered manner, wherein a dissolution process of the inner layer (s) takes place at the edges of the molded body already when the outer layers are not completely dissolved, but it can also be a complete coating of the inner layer (s ) are reached through the respective outer layer (s), which leads to a prevention of premature dissolution of constituents of the inner layer (s).
  • a shaped body consists of at least three layers, ie two outer and at least one inner layer, at least in one of the inner layers containing a peroxy bleach, while the stacked shaped body, the two outer layers and the envelope-shaped body
  • outermost layers are free of peroxy bleach.
  • peroxy bleach and optionally present bleach activators and / or enzymes spatially in a molding from each other.
  • Such multilayer moldings have the advantage that they can be used not only via a dispensing compartment or via a metering device, which is placed in the wash liquor; Rather, it is also possible in such cases, to give the molding in direct contact with the textiles in the machine without stains caused by bleach and the like to be feared.
  • multiphase shaped bodies can also be produced in the form of ring-core tablets, core-coat tablets or so-called "bulleye" tablets.
  • An overview of such embodiments of multiphase tablets is described in EP 055 100 (Jeyes Group).
  • This document discloses toilet cleaner blocks comprising a molded body of a slow-dissolving detergent composition in which a bleach tablet is embedded.
  • this document discloses the most varied forms of embodiment of multiphase shaped bodies, from the simple multiphase tablet to complex multilayer systems with inserts.
  • the detergent tablets After pressing, the detergent tablets have a high stability.
  • is the diametrical fracture stress (DFS) in Pa
  • P is the force in N which results in the pressure applied to the molded article causing the breakage of the molded article
  • D is the molded article diameter in meters and t the height of the moldings.
  • Preferred production processes for detergent tablets are based on a surfactant-containing granulate which is processed with further preparation components to form a particulate premix to be compressed.
  • the particulate premix additionally contains surfactant-containing granules (e) and has a bulk density of at least 500 g / l, preferably at least 600 g / l and in particular at least 700 g / l.
  • the surfactant-containing granules have particle sizes between 100 and 2000 .mu.m, preferably between 200 and 1800 .mu.m, more preferably between 400 and 1600 .mu.m and in particular between 600 and 1400 .mu.m.
  • the particulate premix additionally comprises one or more of bleaches, bleach activators, disintegrants, enzymes, pH adjusters, perfumes, perfume carriers, fluorescers, dyes, foam inhibitors, silicone oils, anti redeposition agents, optical brighteners, grayness inhibitors, Contains color transfer inhibitors and corrosion inhibitors.
  • the second step of the process of the invention comprises applying the coating.
  • coating bodies can be used, in particular the immersion of the body in or the spraying of the body with a melt, solution or dispersion of said polymers.
  • an aqueous solution of one or more polymers from groups a) to e) is sprayed onto the moldings, the aqueous solution, in each case based on the solution, 1 to 20 wt .-%, preferably 2 to 15 wt.
  • polymer (s) from groups a) to e) optionally up to 20% by weight, preferably up to 10% by weight and in particular below 5 %
  • water-miscible solvents optionally up to 20% by weight, preferably up to 10% by weight and in particular below 5 %
  • water-miscible volatile solvents can be added to the aqueous solution.
  • these are in particular from the group of alcohols, with ethanol, n-propanol and iso-propanol being preferred.
  • ethanol and isopropanol are particularly recommended.
  • the polymers from groups a) to e) make up from 50 to 100% by weight of the coating of the shaped bodies according to the invention. Accordingly, the ceremoniessprühende on the moldings solution may contain other ingredients, with an addition of polyurethanes - as mentioned above - is preferred. If water-insoluble polyurethanes are added, the liquid to be sprayed is present as a dispersion.
  • a further preferred embodiment of the process according to the invention is therefore a process variant in which an aqueous dispersion of one or more polyurethanes, which additionally contains one or more dissolved polymers from groups a) to e), is sprayed onto the moldings, the dispersion, in each case based on the dispersion, 1 to 20 wt .-%, preferably 2 to 15 wt .-% and in particular 4 to 10 wt .-% polyurethane (s), 1 to 20 wt .-%, preferably 2 to 15 wt.
  • polymer (s) from groups a) to e) optionally up to 20 wt .-%, preferably up to 10 wt .-% and in particular below 5 wt .-% of one or a plurality of water-miscible solvents and the balance water.
  • aqueous dispersions are to be understood as meaning those dispersions whose outer phase consists predominantly of water.
  • the outer phase may further contain other water-miscible solvents such as ethanol and iso-propanol; These further solvents are contained in maximum amounts of up to 20 wt .-%, based on the total agent.
  • the outer phase contains water as the sole solvent; a further preferred embodiment contains in the outer phase, based on the total agent, not more than 5% of further solvents.
  • the spraying of such aqueous solutions or dispersions can be carried out in different ways, which are familiar to the expert.
  • the solution or dispersion can be fed by means of a pumping system to a nozzle, where the solution or dispersion is finely atomized by the high shear forces.
  • the resulting spray mist can then be directed to the shaped bodies to be coated, which are subsequently optionally dried with the aid of suitable measures (for example, blowing with heated air).
  • suitable measures for example, blowing with heated air.
  • a two-fluid nozzle is used and compressed air is used as the carrier gas.
  • other carrier gases such as nitrogen, noble gases, lower alkanes or ethers may be used.
  • polyurethanes or other ingredients are to be part of the coating, these may include the polymers from groups a) to e) in the above-mentioned. Frame recipe replace up to 50% of said weight.
  • ingredients of the spray-on dispersions may be, for example, dyes or fragrances or pigments.
  • additives improve, for example, the visual or olfactory impression of the shaped bodies coated according to the invention.
  • Dyes and fragrances have been described in detail above.
  • Suitable pigments are, for example, white pigments, such as titanium dioxide or zinc sulfide, pearlescent pigments or color pigments, the latter being able to be divided into inorganic pigments and organic pigments. All said pigments are preferably finely divided in case of their use, i. used with average particle sizes of 100 microns and well below.
  • the solution or dispersion of the coating materials is atomize as finely as possible before it impinges on the shaped body.
  • a surfactant granulate was mixed with further preparation components and compressed on an eccentric tablet press into shaped bodies.
  • the composition of the surfactant granules is given in the following Table 1, the composition of the premix to be compressed (and thus the composition of the moldings) can be found in Table 2.
  • the tabletting premix was compressed in a Korsch eccentric press into tablets (diameter: 44 mm, height: 22 mm, weight: 37.5 g).
  • Example E1 150 mg of the polymer were applied as a coating, corresponding to a ratio of uncoated shaped body to coating of 250 to 1.
  • Example E2 100 mg of polymer were applied (corresponding to a ratio of uncoated shaped body to coating of 375: 1). and the experiment repeated with only 50 mg of polymer (E2 ', corresponding to a ratio of uncoated body to coating of 750 to 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)

Description

  • Die vorliegende Erfindung liegt auf dem Gebiet der kompakten Formkörper, die wasch- und reinigungsaktive Eigenschaften aufweisen. Solche Wasch- und Reinigungsmittelformkörper umfassen beispielsweise Waschmittelformkörper für das Waschen von Textilien, Reinigungsmittelformkörper für das maschinelle Geschirrspülen oder die Reinigung harter Oberflächen. Bleichmittelformkörper zum Einsatz in Wasch- oder Geschirrspülmaschinen, Wasserenthärtungsfomikörper oder Fleckensalztabletten. Insbesondere betrifft die Erfindung Wasch- und Reinigungsmittelformkörper, die zum Waschen von Textilien in einer Haushaltswaschmaschine eingesetzt und kurz als Waschmitteltabletten bezeichnet werden.
  • Wasch- und Reinigungsmittelformkörper sind im Stand der Technik breit beschrieben und erfreuen sich beim Verbraucher wegen der einfachen Dosierung zunehmender Beliebtheit. Tabiettierte Wasch- und Reinigungsmittel haben gegenüber pulverförmigen eine Reihe von Vorteilen: Sie sind einfacher zu dosieren und zu handhaben und haben aufgrund ihrer kompakten Struktur Vorteile bei der Lagerung und beim Transport. Auch in der Patentliteratur sind Wasch- und Reinigungsmittelformkörper folglich umfassend beschrieben. Ein Problem, das bei der Anwendung von wasch- und reinigungsaktiven Formkörpern immer wieder auftritt, ist die zu geringe Zerfalls- und Lösegeschwindigkeit der Formkörper unter Anwendungsbedingungen. Da hinreichend stabile, d.h. Form- und bruchbeständige Formkörper nur durch verhältnismäßig hohe Preßdrucke hergestellt werden können, kommt es zu einer starken Verdichtung der Formkörperbestandteile und zu einer daraus folgenden verzögerten Desintegration des Formkörpers in der wäßrigen Flotte und damit zu einer zu langsamen Freisetzung der Aktivsubstanzen im Wasch- bzw. Reinigungsvorgang. Die verzögerte Desintegration der Formkörper hat weiterhin den Nachteil, daß sich übliche Wasch- und Reinigungsmittelformkörper nicht über die Einspülkammer von Haushaltswaschmaschinen einspülen lassen, da die Tabletten nicht in hinreichend schneller Zeit in Sekundärpartikel zerfallen, die klein genug sind, um aus Einspülkammer in die Waschtrommel cingespült zu werden. Ein weiteres Problem, das insbesondere bei Wasch- und Reinigungsmittelformkörpern auftritt, ist die Friabilität der Formkörper bzw. deren oftmals unzureichende Stabilität gegen Abrieb. So können zwar hinreichend bruchstabile, d.h. harte Wasch- und Reinigungsmittelformkörper hergestellt werden, oft sind diese aber den Belastungen bei Verpackung, Transport und Handhabung, d.h. Fall- und Reibebeanspruchungen, nicht ausreichend gewachsen, so daß Kantenbruch- und Abrieberscheinungen das Erscheinungsbild des Formkörpers beeinträchtigen oder gar zu einer völligen Zerstörung der Formkörperstruktur führen.
  • Zur Überwindung der Dichotomie zwischen Härte, d.h. Transport- und Handhabungsstabilität, und leichtem Zerfall der Formkörper sind im Stand der Technik viele Lösungsansätze entwickelt worden. Ein insbesondere aus der Pharmazie bekannter und auf das Gebiet der Wasch- und Reinigungsmittelformkörper ausgedehnter Ansatz ist die Inkorporation bestimmter Desintegrationshilfsmittel, die den Zutritt von Wasser erleichtern oder bei Zutritt von Wasser quellen bzw. gasentwickelnd oder in anderer Form desintegrierend wirken. Andere Lösungsvorschläge aus der Patentliteratur beschreiben die Verpressung von Vorgemischen bestimmter Teilchengrößen, die Trennung einzelner Inhaltsstoffe von bestimmten anderen Inhaltsstoffen sowie die Beschichtung einzelner Inhaltsstoffe oder des gesamten Formkörpers mit Bindemitteln.
  • Die Beschichtung von Wasch- und Reinigungsmittelformkörpern, die auch im deutschen Sprachgebrauch zunehmend als "coating" bezeichnet wird, ist Gegenstand einiger Patentanmeldungen.
  • So beschreiben die europäischen Patentanmeldungen EP 846 754, EP 846 755 und EP 846 756 (Procter & Gamble) beschichtete Waschmitteltabletten, die einen "Kern" aus verdichtetem, teilchenförmigen Wasch- und Reinigungsmittel sowie ein "coating" umfassen, wobei als Beschichtungsmaterialien Dicarbonsäuren, insbesondere Adipinsäure eingesetzt werden, die gegebenenfalls weitere Inhaltsstoffe wie beispielsweise Desintegrationshilfsmittel, enthalten.
  • Beschichtete Waschmitteltabletten sind auch Gegenstand der europäischen Patentanmeldung EP 716 144 (Unilever). Nach den Angaben in dieser Schrift läßt sich die Härte der Tabletten durch ein "coating" verstärken, ohne daß die Zerfalls- und Lösezeiten beeinträchtigt werden. Als Beschichtungsagentien werden filmbildende Substanzen, insbesondere Copolymere von Acrylsäure und Maleinsäure oder Zucker genannt.
  • Allen genannten Schriften sind nur wenig Angaben zum Aufbringen der Beschichtung zu entnehmen. Angaben zur Dicke der Coatingschicht fehlen ebenfalls.
  • Während nach der Lehre der erstgenannten Schriften weit über 5 Gew.-% des Gesamtgewichts der beschichteten Tablette aus Beschichtungsmaterial bestehen, sind es nach der Lehre der letztgenannten Schrift immer noch mindestens 1 Gew.-%. Zusätzlich benötigen auch die Lösungsansätze aus dem Stand der Technik eine Einzelverpackung der Formkörper. Hierbei müssen die Formkörper als einzelner Formkörper oder als Dosiereinheit, die beispielsweise aus zwei Formkörpern bestehen kann, in Folie verpackt werden, damit die Tabletten während der Lagerung ihre Eigenschaften weder hinsichtlich der hohen Härte noch hinsichtlich schneller Zerfallszeiten verlieren. Erst nach dieser Umverpackung einzelner Formkörper kann das gesamte Paket, das an den Handel ausgeliefert wird, gepackt werden.
  • Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, beschichtete Wasch- und Reinigungsmittelformkörper bereitzustellen, bei denen die vorteilhaften Eigenschaften der höheren Härten ohne Beeinträchtigung der kurzen Zerfallszeiten mit geringeren Mengen an Beschichtungsagentien erreicht werden, wobei deutlich weniger als 1 Gew.-% des gesamten Formkörpers vom Beschichtungsmaterial ausgemacht werden sollten. Insbesondere sollte die Resistenz der Formkörper gegenüber Fall- und Reibebelastungen gegenüber den bekannten Formkörpern trotz deutlich verringerten Einsatzes von Beschichtungsmaterialien weiter verbessert werden. Im Idealfall sollten die beschichteten Formkörper mit minimiertem Verpackungsaufwand, d.h. mit einer kostengünstigeren Einzelverpackung oder sogar ganz ohne Einzelverpackung an den Handel ausgeliefert werden können, ohne daß die Lagerstabilität der Formkörper hierunter leidet. Ein leicht durchzuführendes und universell anwendbares Verfahren zur Herstellung solcher beschichteter Formkörper bereitzustellen, war eine weitere Aufgabe der vorliegenden Erfindung.
  • Es wurde nun gefunden, daß sich bestimmte wasserlösliche Polymere auch in äußerst geringen Mengen zur Beschichtung von Wasch- und Reinigungsmittelformkörpern eignen und diesen vorteilhafte Eigenschaften verleihen.
  • Gegenstand der Erfindung sind daher Wasch- und Reinigungsmittelformkörper aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, enthaltend Gerüststoff(e), Tensid(e) sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile, die mit einem Polymer oder Polymergemisch beschichtet sind, wobei das Polymer bzw. mindestens 50 Gew.-% des Polymergemischs ausgewählt ist aus
    • a) wasserlöslichen nichtionischen Polymeren aus der Gruppe der
      • a1) Polyvinylpyrrolidone,
      • a2) Vinylpyrrolidon/Vinylester-Copolymere,
      • a3) Celluloseether
    • b) wasserlöslichen amphoteren Polymeren aus der Gruppe der
      • b1) Alkylacrylamid/Acrylsäure-Copolymere
      • b2) Alkylacrylamid/Methacrylsäure-Copolymere
      • b3) Alkylacrylamid/Methylmethacrylsäure-Copolymere
      • b4) Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymere
      • b5) Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)acrylsäure Copolymere
      • b6) Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere
      • b7) Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat-Copolymere
      • b8) Copolymere aus
        • b8i) ungesättigten Carbonsäuren
        • b8ii) kationisch derivatisierten ungesättigten Carbonsäuren
        • b8iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    • c) wasserlöslichen zwitterionischen Polymeren aus der Gruppe der
      • c1) Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
      • c2) Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
      • c3) Methacroylethylbetain/Methacrylat-Copolymere
    • d) wasserlöslichen anionischen Polymeren aus der Gruppe der
      • d1) Vinylacetat/Crotonsäure-Copolymere
      • d2) Vinylpyrrolidon/Vinylacrylat-Copolymere
      • d3) Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere
      • d4) Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen
      • d5) gepfropften und vemetzten Copolymere aus der Copolymerisation von
        • d5i) mindesten einem Monomeren vom nicht-ionischen Typ,
        • d5ii) mindestens einem Monomeren vom ionischen Typ,
        • d5iii) von Polyethylenglycol und
        • d5iv) einem Vernetzter
      • d6) durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltenen Copolymere:
        • d6i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren,
        • d6ii) ungesättigte Carbonsäuren,
        • d6iii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe d6ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8-18-Alkohols
      • d7) Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester
      • d8) Tetra- und Pentapolymere aus
        • d8i) Crotonsäure oder Allyloxyessigsäure
        • d8ii) Vinylacetat oder Vinylpropionat
        • d8iii) verzweigten Allyl- oder Methallylestern
        • d8iv) Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern
      • d9) Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, Vinylbenzol, Vinylmethylether, Acrylamid und deren wasserlöslicher Salze
      • d10) Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α-Stellung verzweigten Monocarbonsäure
    • e) wasserlöslichen kationischen Polymeren aus der Gruppe der
      • e1) quaternierten Cellulose-Derivate
      • e2) Polysiloxane mit quatemären Gruppen
      • e3) kationischen Guar-Derivate
      • e4) polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure
      • e5) Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats
      • e6) Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere
      • e7) quaternierter Polyvinylalkohol
      • e8) unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegeben Polymere, wobei das Gewitchtsverhältnis von unbeschichtetem Formkörper zur Beschichtung größer als 250 zu 1 ist.
  • Wasserlösliche Polymere im Sinne der Erfindung sind solche Polymere, die bei Raumtemperatur in Wasser zu mehr als 2,5 Gew.-% löslich sind.
  • Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper sind mit einem Polymer oder Polymergemisch beschichtet, wobei das Polymer (und dementsprechend die gesamte Beschichtung) bzw. mindestens 50 Gew.-% des Polymergemischs (und damit mindestens 50% der Beschichtung) aus bestimmten Polymeren ausgewählt ist. Dabei besteht die Beschichtung ganz oder zu mindestens 50% ihres Gewichts aus wasserlöslichen Polymeren aus der Gruppe der nichtionischen, amphoteren, zwitterionischen, anionischen und/oder kationischen Polymere. Diese Polymere werden nachfolgend näher beschrieben.
  • Erfindungsgemäß bevorzugte wasserlösliche Polymere sind nichtionisch. Geeignete nichtionogene Polymere sind beispielsweise:
    • Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden. Polyvinylpyrrolidone sind bevorzugte nichtionische Polymere im Rahmen der Erfindung.
      Polyvinylpyrrolidone [Poly(1-vinyl-2-pyrrolidinone)], Kurzzeichen PVP, sind Polymere der allg. Formel (I)
      Figure imgb0001
      die durch radikalische Polymerisation von 1-Vinylpyrrolidon nach Verfahren der Lösungs- oder Suspensionspolymerisation unter Einsatz von Radikalbildnern (Peroxide, Azo-Verbindungen) als Initiatoren hergestellt werden. Die ionische Polymerisation des Monomeren liefert nur Produkte mit niedrigen Molmassen. Handelsübliche Polyvinylpyrrolidone haben Molmassen im Bereich von ca. 2500-750000 g/mol, die über die Angabe der K-Werte charakterisiert werden und - K-Wertabhängig - Glasübergangstemperaturen von 130-175° besitzen. Sie werden als weiße, hygroskopische Pulver oder als wäßrige. Lösungen angeboten. Polyvinylpyrrolidone sind gut löslich in Wasser und einer Vielzahl von organischen Lösungsmitteln (Alkohole, Ketone, Eisessig, Chlorkohlenwasserstoffe, Phenole u.a.).
    • Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind besonders bevorzugte nichtionische Polymere.
      Die Vinylester-Polymere sind aus Vinylestern zugängliche Polymere mit der Gruppierung der Formel (II)
      Figure imgb0002
      als charakteristischem Grundbaustein der Makromoleküle. Von diesen haben die Vinylacetat-Polymere (R = CH3) mit Polyvinylacetaten als mit Abstand wichtigsten Vertretern die größte technische Bedeutung.
      Die Polymerisation der Vinylester erfolgt radikalisch nach unterschiedlichen Verfahren (Lösungspolymerisation, Suspensionspolymerisation, Emulsionspolymerisation, Substanzpolymerisation.). Copolymere von Vinylacetat mit Vinylpyrrolidon enthalten Monomereinheiten der Formeln (I) und (II)
    • Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylhydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden. Celluloseether lassen sich durch die allgemeine Formel (III) beschreiben,
      Figure imgb0003
      in R für H oder einen Alkyl-, Alkenyl-, Alkinyl-, Aryl- oder Alkylarylrest steht. In bevorzugten Produkten steht mindestens ein R in Formel (III) für -CH2CH2CH2-OH oder -CH2CH2-OH. Celluloseether werden technisch durch Veretherung von Alkalicellulose (z.B. mit Ethylenoxid) hergestellt. Celluloseether werden charakterisiert über den durchschnittlichen Substitutionsgrad DS bzw. den molaren Substitutionsgrad MS, die angeben, wieviele Hydroxy-Gruppen einer Anhydroglucose-Einheit der Cellulose mit dem Veretherungsreagens reagiert haben bzw. wieviel mol des Veretherungsreagens im Durchschnitt an eine Anhydroglucose-Einheit angelagert wurden. Hydroxyethylcellulosen sind ab einem DS von ca. 0,6 bzw. einem MS von ca. 1 wasserlöslich. Handelsübliche Hydroxyethyl- bzw. Hydroxypropylcellulosen haben Substitutionsgrade im Bereich von 0,85-1,35 (DS) bzw. 1,5-3 (MS). Hydroxyethyl- und -propylcellulosen werden als gelblich-weiße, geruch- und geschmacklose Pulver in stark unterschiedlichen Polymerisationsgraden vermarktet. Hydroxyethyl- und -propylcellulosen sind in kaltem und heißem Wasser sowie in einigen (wasserhaltigen) organischen Lösungsmitteln löslich, in den meisten (wasserfreien) organischen Lösungsmitteln dagegen unlöslich; ihre wäßrigen Lösungen sind relativ unempfindlich gegenüber Änderungen des pH-Werts oder Elektrolyt-Zusatz.
  • Weitere erfindungsgemäß geeignete Polymere sind wasserlösliche Amphopolymere. Unter dem Oberbegriff Ampho-Polymere sind amphotere Polymere, d.h. Polymere, die im Molekül sowohl freie Aminogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO-- oder -SO3 --Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO3H-Gruppen und quartäre Ammoniumgruppen enthalten. Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer® erhältliche Acrylharz, das ein Copolymer aus tert.-Butylaminoethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt. Ebenfalls bevorzugte Amphopolymere setzen sich aus ungesättigten Carbonsäuren (z.B. Acryl- und Methacrylsäure), kationisch derivatisierten ungesättigten Carbonsäuren (z.B. Acrylamidopropyl-trimethyl-ammoniumchlorid) und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren zusammen, wie beispielsweise in der deutschen Offenlegungsschrift 39 29 973 und dem dort zitierten Stand der Technik zu entnehmen sind. Terpolymere von Acrylsäure, Methylacrylat und Methacrylamidopropyltrimoniumchlorid, wie sie unter der Bezeichnung Merquat®2001 N im Handel erhältlich sind, sind erfindungsgemäß besonders bevorzugte Ampho-Polymere. Weitere geeignete amphotere Polymere sind beispielsweise die unter den Bezeichnungen Amphomer® und Amphomer® LV-71 (DELFT NATIONAL) erhältlichen Octylacrylamid/Methylmethacrylat/tert.-Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere.
  • Geeignete zwitterionische Polymere sind beispielsweise die in den deutschen Patentanmeldungen DE 39 29 973, DE 21 50 557, DE 28 17 369 und DE 37 08 451 offenbarten Polymerisate. Acrylamidopropyltrimethylammoniumchlorid/Acrylsäure- bzw. -Methacrylsäure-Copolymerisate und deren Alkali- und Ammoniumsalze sind bevorzugte zwitterionische Polymere. Weiterhin geeignete zwitterionische Polymere sind Methacroylethylbetain/Methacrylat-Copolymere, die unter der Bezeichnung Amersette® (AMERCHOL) im Handel erhältlich sind.
  • Erfindungsgemäß geeignete anionische Polymere sind u. a.:
    • Vinylacetat/Crotonsäure-Copolymere, wie sie beispielsweise unter den Bezeichnungen Resyn® (NATIONAL STARCH), Luviset® (BASF) und Gafset® (GAF) im Handel sind.
      Diese Polymere weisen neben Monomereinheiten der vorstehend genannten Formel (II) auch Monomereinheiten der allgemeinen Formel (IV) auf:

              [-CH(CH3)-CH(COOH)-]n     (IV)
    • Vinylpyrrolidon/Vinylacrylat-Copolymere, erhältlich beispielsweise unter dem Warenzeichen Luvlflex® (BASF). Ein bevorzugtes Polymer ist das unter der Bezeichnung Luviflex® VBM-35 (BASF) erhältliche Vinylpyrrolidon/Acrylat-Terpolymere.
    • Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere, die beispielsweise unter der Bezeichnung Ultrahold® strong (BASF) vertrieben werden.
    • Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen
      Solche gepfropften Polymere von Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch mit anderen copolymerisierbaren Verbindungen auf Polyalkylenglycolen werden durch Polymerisation in der Hitze in homogener Phase dadurch erhalten, daß man die Polyalkylenglycole in die Monomeren der Vinylester, Ester von Acrylsäure oder Methacrylsäure, in Gegenwart von Radikalbildner einrührt.
      Als geeignete Vinylester haben sich beispielsweise Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylbenzoat und als Ester von Acrylsäure oder Methacrylsäure diejenigen, die mit aliphatischen Alkoholen mit niedrigem Molekulargewicht, also insbesondere Ethanol, Propanol, Isopropanol, 1-Butanol, 2-Butanol, 2-Methy-1-Propanol, 2-Methyl-2-Propanol, 1-Pentanol, 2-Pentanol, 3-Pentanol, 2,2-Dimethyl-1-Propanol, 3-Methyl-1-butanol; 3-Methyl-2-butanol, 2-Methyl-2-butanol, 2-Methyl-1-Butanol, 1-Hexanol, erhältlich sind, bewährt.
      Als Polyalkylenglycole kommen insbesondere Polyethylenglycole und Polypropylenglycole in Betracht. Polymere des Ethylenglycols, die der allgemeinen Formel V

              H-(O-CH2-CH2)n-OH     (V)

      genügen, wobei n Werte zwischen 1 (Ethylenglycol) und mehreren tausend annehmen kann. Für Polyethylenglycole existieren verschiedene Nomenklaturen, die zu Verwirrungen führen können. Technisch gebräuchlich ist die Angabe des mittleren relativen Molgewichts im Anschluß an die Angabe "PEG", so daß "PEG 200" ein Polyethylenglycol mit einer relativen Molmasse von ca. 190 bis ca. 210 charakterisiert. Für kosmetische Inhaltsstoffe wird eine andere Nomenklatur verwendet, in der das Kurzzeichen PEG mit einem Bindestrich versehen wird und direkt an den Bindestrich eine Zahl folgt, die der Zahl n in der oben genannten Formel V entspricht. Nach dieser Nomenklatur (sogenannte INCI-Nomenklatur, CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997) sind beispielsweise PEG-4, PEG-6, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14 und PEG-16 einsetzbar. Kommerziell erhältlich sind Polyethylenglycole beispielsweise unter den Handelsnamen Carbowax® PEG 200 (Union Carbide), Emkapol® 200 (ICI Americas), Lipoxol® 200 MED (HÜLS America), Polyglycol® E-200 (Dow Chemical), Alkapol® PEG 300 (Rhone-Poulenc). Lutrol® E300 (BASF) sowie den entsprechenden Handelsnamen mit höheren Zahlen.
      Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel VI
      Figure imgb0004
      genügen, wobei n Werte zwischen 1 (Propylenglycol) und mehreren tausend annehmen kann. Technisch bedeutsam sind hier insbesondere Di-, Tri- und Tetrapropylenglycol, d.h. die Vertreter mit n=2, 3 und 4 in Formel VI.
      Insbesondere können die auf Polyethylenglycole gepfropften Vinylacetatcopolymeren und die auf Polyethylenglycole gepfropften Polymeren von Vinylacetat und Crotonsäure eingesetzt werden.
    • gepfropfte und vemetzte Copolymere aus der Copolymerisation von
      • i) mindesten einem Monomeren vom nicht-ionischen Typ,
      • ii) mindestens einem Monomeren vom ionischen Typ,
      • iii) von Polyethylenglycol und
      • iv) einem Vernetzter
        Das verwendete Polyethylenglycol weist ein Molekulargewicht zwischen 200 und mehreren Millionen, vorzugsweise zwischen 300 und 30.000, auf.
        Die nicht-ionischen Monomeren können von sehr unterschiedlichem Typ sein und unter diesen sind folgende bevorzugt: Vinylacetat, Vinylstearat, Vinyllaurat, Vinylpropionat, Allylstearat, Allyllaurat, Diethylmaleat, Allylacetat, Methylmethacrylat, Cetylvinylether, Stearylvinylether und 1-Hexen.
        Die nicht-ionischen Monomeren können gleichermaßen von sehr unterschiedlichen Typen sein, wobei unter diesen besonders bevorzugt Crotonsäure, Allyloxyessigsäure, Vinylessigsäure, Maleinsäure, Acrylsäure und Methacrylsäure in den Pfropfpolameren enthalten sind.
        Als Vernetzer werden vorzugsweise Ethylenglycoldimethacrylat, Diallylphthalat, ortho-, meta- und para-Divinylbenzol, Tetraallyloxyethan und Polyallylsaccharosen mit 2 bis 5 Allylgruppen pro Molekül Saccharin.
        Die vorstehend beschriebenen gepfropften und vernetzten Copolymere werden vorzugsweise gebildet aus:
      • i) 5 bis 85 Gew.-% mindesten eine Monomeren vom nicht-ionischen Typ,
      • ii) 3 bis 80 Gew.-% mindestens eines Monomeren vom ionischen Typ,
      • iii) 2 bis 50 Gew.-%, vorzugsweise 5 bis 30 Gew.-% Polyethylenglycol und
      • iv) 0,1 bis 8 Gew.-% eines Vemetzers, wobei der Prozentsatz des Vemetzers durch das Verhältnis der Gesamtgewichte von i), ii) und iii) ausgebildet ist.
    • durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltene Copolymere:
      • i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren,
      • ii) ungesättigte Carbonsäuren,
      • iii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8-18-Alkohols

      Unter kurzkettigen Carbonsäuren bzw. Alkoholen sind dabei solche mit 1 bis 8 Kohlenstoffatomen zu verstehen, wobei die Kohlenstoffketten dieser Verbindungen gegebenenfalls durch zweibindige Heterogruppen wie -O-, -NH-, -S_ unterbrochen sein können.
    • Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester Diese Terpolymere enthalten Monomereinheiten der allgemeinen Formeln (II) und (IV) (siehe oben) sowie Monomereinheiten aus einem oder mehreren Allyl- oder Methallyestem der Formel VII:
      Figure imgb0005

    worin R3 für -H oder -CH3, R2 für -CH3 oder -CH(CH3)2 und R1 für -CH3 oder einen gesättigten geradkettigen oder verzweigten C1-6-Alkylrest steht und die Summe der Kohlenstoffatome in den Resten R1 und R2 vorzugsweise 7, 6, 5, 4, 3 oder 2 ist.
    Die vorstehend genannten Terpolymeren resultieren vorzugsweise aus der Copolymerisation von 7 bis 12 Gew.-% Crotonsäure, 65 bis 86 Gew.-%, vorzugsweise 71 bis 83 Gew.-% Vinylacetat und 8 bis 20 Gew.-%, vorzugsweise 10 bis 17 Gew.-% Allyl- oder Methallylestern der Formel VII.
    • Tetra- und Pentapolymere aus
      • i) Crotonsäure oder Allyloxyessigsäure
      • ii) Vinylacetat oder Vinylpropionat
      • iii) verzweigten Allyl- oder Methallylestern
      • iv) Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern
    • Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, Vinylbenzol, Vinylmethylether, Acrylamid und deren wasserlöslicher Salze
    • Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α-Stellung verzweigten Monocarbonsäure.
  • Weitere, bevorzugt als Bestandteil der Beschichtung einsetzbare Polymere sind kationische Polymere. Unter den kationischen Polymeren sind dabei die permanent kationischen Polymere bevorzugt. Als "permanent kationisch" werden erfindungsgemäß solche Polymeren bezeichnet, die unabhängig vom pH-Wert der Mittels (also sowohl der Beschichtung als auch des Formkörpers) eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten.
    Bevorzugte kationische Polymere sind beispielsweise
    • quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quaternierte Cellulose-Derivate.
    • Polysiloxane mit quatemären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Coming; ein stabilisiertes Trimethylsilylamodimethicon), Dow Coming® 929 Emulsion (enthaltend ein hydroxyl-aminomodifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt; diquaternäre Polydime- thylsiloxane, Quaternium-80),
    • Kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosmedia®Guar und Jaguar® vertiebenen Produkte,
    • Polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat®100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyldiallylammoniumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere.
    • Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quatemierte Vinylpyrrolidon-Dimethylaminomethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich.
    • Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere, wie sie unter der Bezeichnung Luviquat® angeboten werden.
    • quaternierter Polyvinylalkohol
    sowie die unter den Bezeichnungen
    • Polyquaternium 2,
    • Polyquaternium 17,
    • Polyquaternium 18 und
    • Polyquaternium 27
    bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette. Die genannten Polymere sind dabei nach der sogenannten INCI-Nomenklatur bezeichnet, wobei sich detaillierte Angaben im CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997, finden, auf die hier ausdrücklich Bezug genommen wird.
  • Erfindungsgemäß bevorzugte kationische Polymere sind quaternisierte Cellulose-Derivate sowie polymere Dimethyldiallylammoniumsalze und deren Copolymere. Kationische Cellulose-Derivate, insbesondere das Handelsprodukt Polymer®JR 400, sind ganz besonders bevorzugte kationische Polymere.
  • Die erfindungsgemäß beschichteten Wasch- und Reinigungsmittelformkörper weisen auch bei geringen Mengen an Beschichtungsmaterial bereits deutlich verbesserte Eigenschaften auf. Es ist im Rahmen der vorliegenden Erfindung bevorzugt, daß die Menge an Beschichtungsmaterial weniger als 0,25 Gew.-% des Gesamtgewichts des beschichteten Formkörpers ausmacht. Wasch- und Reinigungsmittelformkörper, bei denen das Gewichtsverhältnis von unbeschichtetem Formkörper zu Beschichtung größer als 500 zu 1 ist, sind daher bevorzugte Ausführungsformen der vorliegenden Erfindung.
  • Durch die geringen Mengen, in denen die vorstehend genannten Polymere bereits eine hoch belastbare und vorteilhafte Beschichtung der vorher verpreßten Wasch- und Reinigungsmittelformkörper bewirken, lassen sich Beschichtungsdicken realisieren, die im Vergleich zu den Abmessungen der Formkörper klein sind. In bevorzugten Wasch- und Reinigungsmittelformkörpern beträgt die Dicke der Beschichtung auf dem Formkörper 0,1 bis 150 µm, vorzugsweise 0,5 bis 100 µm und insbesondere 5 bis 50 µm.
  • Um die Beschichtung noch resistenter gegen mechanische Beanspruchung zu machen, können Polyurethane in die Beschichtung eingearbeitet werden. Diese verleihen der Beschichtung Elastizität und Stabilität und können nach der vorstehend angegebenen Menge an wasserlöslichen Polymeren bis zu 50 Gew.-% der Beschichtung ausmachen.
  • Polyurethane sind wasserunlöslich im Sinne der Erfindung, wenn sie bei Raumtemperatur in Wasser zu weniger als 2,5 Gew.-% löslich sind.
  • Die Polyurethane bestehen aus mindestens zwei verschiedenen Monomertypen,
    • einer Verbindung (A) mit mindestens 2 aktiven Wasserstoffatomen pro Molekül und
    • einem Di- oder Polyisocyanat (B).
  • Bei den Verbindungen (A) kann es sich beispielsweise um Diole, Triole, Diamine, Triamine, Polyetherole und Polyesterole handeln. Dabei werden die Verbindungen mit mehr als 2 aktiven Wasserstoffatomen üblicherweise nur in geringen Mengen in Kombination mit einem großen Überschuß an Verbindungen mit 2 aktiven Wasserstoffatomen eingesetzt.
  • Beispiele für Verbindungen (A) sind Ethylenglykol, 1,2- und 1,3-Propylenglykol, Butylenglykole, Di-, Tri-, Tetra- und Poly-Ethylen- und -Propylenglykole, Copolymere von niederen Alkylenoxiden wie Ethylenoxid, Propylenoxid und Butylenoxid, Ethylendiamin, Propylendiamin, 1,4-Diaminobutan, Hexamethylendiamin und α,ω-Diamine auf Basis von langkettigen Alkanen oder Polyalkylenoxiden.
  • Polyurethane, bei denen die Verbindungen (A) Diole, Triole und Polyetherole sind, können erfindungsgemäß bevorzugt sein. Insbesondere Polyethylenglykole und Polypropylenglykole mit Molmassen zwischen 200 und 3000, insbesondere zwischen 1600 und 2500, haben sich in einzelnen Fällen als besonders geeignet erwiesen. Polyesterole werden üblicherweise durch Modifizierung der Verbindung (A) mit Dicarbonsäuren wie Phthalsäure, Isophthalsäure und Adipinsäure erhalten.
  • Als Verbindungen (B) werden überwiegend Hexamethylendiisocyanat, 2,4- und 2,6-Toluoldiisocyanat, 4,4'-Methylendi(phenylisocyanat) und insbesondere Isophorondiisocyanat eingesetzt. Diese Verbindungen lassen sich durch die allgemeine Formel VIII beschreiben:

            O=C=N-R4-N=C=O     (VIII),

    in der R4 für eine verbindende Gruppierung von Kohlenstoffatomen, beispielsweise eine Methylen- Ethylen- Propylen-, Butylen, Pentylen-, Hexylen usw. -Gruppe steht. In den vorstehend genannten, technisch am meisten eingesetzten Hexamethylendiisocyanat (HMDI) gilt R4 = (CH2)6, in 2,4- bzw. 2,6-Toluoldiisocyanat (TDI) steht R4 für C6H3-CH3), in 4,4'-Methylendi(phenylisocyanat) (MDI) für C6H4-CH2-C6H4) und in Isophorondiisocyanat steht R4 für den Isophoronrest (3,5,5-Trimethyl-2-cyclohexenon).
  • Weiterhin können die erfindungsgemäß verwendeten Polyurethane noch Bausteine wie beispielsweise Diamine als Kettenverlängerer und Hydroxycarbonsäuren enthalten. Dialkylolcarbonsäuren wie beispielsweise Dimethylolpropionsäure sind besonders geeignete Hydroxycarbonsäuren. Hinsichtlich der weiteren Bausteine besteht keine grundsätzliche Beschränkung dahingehend, ob es sich um nichtionische, anionischen oder kationische Bausteine handelt.
  • Bezüglich weiterer Informationen über den Aufbau und die Herstellung der Polyurethane wird ausdrücklich auf die Artikel in den einschlägigen Übersichtswerken wie Römpps Chemie-Lexikon und Ullmanns Enzyklopädie der technischen Chemie Bezug genommen.
  • Als in vielen Fällen erfindungsgemäß besonders geeignet haben sich Polyurethane erwiesen, die wie folgt charakterisiert werden können:
    • ausschließlich aliphatische Gruppen im Molekül
    • keine freien Isocyanatgruppen im Molekül
    • Polyether- und Polyesterpolyurethane
    • anionische Gruppen im Molekül.
  • Weiterhin hat es sich als für die Herstellung der erfindungsgemäßen beschichteten Wasch- und Reinigungsmittelformkörper als vorteilhaft erwiesen, wenn die Polyurethane nicht direkt mit den weiteren Komponenten gemischt, sondern in Form von wäßrigen Dispersionen eingebracht wurden. Solche Dispersionen weisen üblicherweise einen Feststoffgehalt von ca. 20-50 %, insbesondere etwa 35-45%, auf und sind auch kommerziell erhältlich.
  • Wasch- und Reinigungsmittelformkörper, bei denen die Beschichtung zusätzlich zu den genannten Polymeren Polyurethane in Mengen von 5 bis 50 Gew.-%, vorzugsweise von 7,5 bis 40 Gew.-% und insbesondere von 10 bis 30 Gew.-%, jeweils bezogen auf die Beschichtung, enthält, sind erfindungsgemäß bevorzugt.
  • Vorstehend wurden die Bestandteile der Beschichtung der erfindungsgemäßen Formkörper näher beschrieben. Im folgenden werden die Bestandteile der Formkörper an sich, d.h. der unbeschichteten Formkörper, beschrieben. Diese Formkörper werden nachfolgend zum Teil als "Basisformkörper" bezeichnet, um eine verbale Abgrenzung gegen den Begriff "Formkörper" oder "Tablette" für die erfindungsgemäß beschichteten Wasch- und Reinigungsmittelformkörper zu erreichen, zum Teil wird aber auch der allgemeine Begriff "Formkörper" verwendet. Da der Gegenstand der vorliegenden Erfindung mit einer Beschichtung versehene Basisformkörper sind, gelten die nachstehend für den Basisformkörper gemachten Angaben selbstverständlich auch für erfindungsgemäße Wasch- und Reinigungsmittelformkörper, die die entsprechenden Bedingungen erfüllen, und umgekehrt.
  • Die Basisformkörper enthalten als wesentliche Bestandteile Gerüststoff(e) und Tensid(e). In den erfindungsgemäßen Basisformkörpern können alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und -wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen- auch die Phosphate.
  • Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5·yH2O bevorzugt, wobei ß-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
  • Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
  • Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel

            nNa2O · (1-n)K2O · Al2O3 · (2 - 2,5)SiO2 · (3,5 - 5,5) H2O

    beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgcmisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
  • Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
  • Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall-(insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
  • Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
  • Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O) wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
  • Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikallumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, kömiges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
  • Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1 %igen Lösung bei 25° 10,4 beträgt.
  • Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
  • Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:

            (NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
  • Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
  • Als organische Cobuildcr können in den Basisformkörpern insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bemsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
  • Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bemsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
  • Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
  • Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
  • Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
  • Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
  • Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
  • Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäurcsalze bzw. Acrolein und Vinylacetat aufweisen.
  • Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben CobuilderEigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
  • Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldchyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
  • Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A-196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
  • Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
  • Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
  • Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwennetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
  • Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
  • Die Menge an Gerüststoff beträgt üblicherweise zwischen 10 und 70 Gew.-%, vorzugsweise zwischen 15 und 60 Gew.-% und insbesondere zwischen 20 und 50 Gew.-%. Die Menge an eingesetzten Buildem ist abhängig vom Verwendungszweck, so daß Bleichmitteltabletten höhere Mengen an Gerüststoffen aufweisen können (beispielsweise zwischen 20 und 70 Gew.-%, vorzugsweise zwischen 25 und 65 Gew.-% und insbesondere zwischen 30 und 55 Gew.-%), als beispielsweise Waschmitteltabletten (üblicherweise 10 bis 50 Gew.-%, vorzugsweise 12,5 bis 45 Gew.-% uns insbesondere zwischen17,5 und 37,5 Gew.-%).
  • Bevorzugte Basisformkörper enthalten weiterhin ein oder mehrere Tensid(e). In den Basisformkörpern können anionische, nichtionische, kationische und/oder amphotere Tenside beziehungsweise Mischungen aus diesen eingesetzt werden. Bevorzugt sind aus anwendungstechnischer Sicht Mischungen aus anionischen und nichtionischen Tensiden. Der Gesamttensidgehalt der Formkörper liegt bei 5 bis 60 Gew.-%, bezogen auf das Formkörpergewicht, wobei Tensidgehalte über 15 Gew.-% bevorzugt sind.
  • Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständigcr Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkem- oder Talgfettsäuren geeignet.
  • Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
  • Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkytsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
  • Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
  • Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbemsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
  • Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
  • Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
  • Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11 -Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (IX),
    Figure imgb0006
    in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
  • Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (X),
    Figure imgb0007
    in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
  • [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestem in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Im Rahmen der vorliegenden Erfindung sind Basisformkörper bevorzugt, die anionische(s) und nichtionische(s) Tensid(e) enthalten, wobei anwendungstechnische Vorteile aus bestimmten Mengenverhältnissen, in denen die einzelnen Tensidklassen eingesetzt werden, resultieren können.
  • So sind beispielsweise Basisformkörper besonders bevorzugt, bei denen das Verhältnis von Aniontensid(en) zu Niotensid(en) zwischen 10:1 1 und 1:10, vorzugsweise zwischen 7,5:1 und 1:5 und insbesondere zwischen 5:1 und 1:2 beträgt. Bevorzugt sind auch Wasch- und Reinigungsmittelformkörper, die anionische(s) und/oder nichtionische(s) Tensid(e) enthalten und Gesamt-Tensidgehalte oberhalb von 2,5 Gew.-%, vorzugsweise oberhalb von 5 Gew.-% und insbesondere oberhalb von 10 Gew.-%, jeweils bezogen auf das Formkörpergewicht, aufweisen. Besonders bevorzugt sind Wasch- und Reinigungsmittelformkörper, die Tensid(e), vorzugsweise anionische(s) und/oder nichtionische(s) Tensid(e), in Mengen von 5 bis 40 Gew.-%, vorzugsweise von 7,5 bis 35 Gew.-%, besonders bevorzugt von 10 bis 30 Gew.-% uns insbesondere von 12,5 bis 25 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
  • Es kann aus anwendungstechnischer Sicht Vorteile haben, wenn bestimmte Tensidklassen in einigen Phasen der Basisformkörper oder im gesamten Formkörper, d.h. in allen Phasen, nicht enthalten sind. Eine weitere wichtige Ausführungsform der vorliegenden Erfindung sieht daher vor, daß mindestens eine Phase der Formkörper frei von nichtionischen Tensiden ist.
  • Umgekehrt kann aber auch durch den Gehalt einzelner Phasen oder des gesamten Formkörpers, d.h. aller Phasen, an bestimmten Tensiden ein positiver Effekt erzielt werden. Das Einbringen der oben beschriebenen Alkylpolyglycoside hat sich dabei als vorteilhaft erwiesen, so daß Basisformkörper bevorzugt sind, in denen mindestens eine Phase der Formkörper Alkylpolyglycoside enthält.
  • Ähnlich wie bei den nichtionischen Tensiden können auch aus dem Weglassen von anionischen Tensiden aus einzelnen oder allen Phasen Basisformkörper resultieren, die sich für bestimmte Anwendungsgebiete besser eignen. Es sind daher im Rahmen der vorliegenden Erfindung auch Wasch- und Reinigungsmittelformkörper denkbar, bei denen mindestens eine Phase der Formkörper frei von anionischen Tensiden ist.
  • Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
  • Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Cascin-Derivate.
  • Bevorzugte Basissmittelformkörper enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desintegrationshilfsmittel, jeweils bezogen auf das Formkörpergewicht.
  • Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Basisformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der - Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
  • Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformkörper, die Sprengmittel in granularer oder gegebenenfalls cogranulierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Stefan Herzog) und DE 197 10 254 (Henkel) sowie der internationalen Patentanmeldung W098/40463 (Henkel) beschrieben. Diesen Schriften sind auch nähere Angaben zur Herstellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entnehmen. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 µm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 µm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 µm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
  • Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.
  • Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper enthalten zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht, wobei bevorzugte Desintegrationshilfsmittel mittlere Teilchengrößen oberhalb von 300 µm, vorzugsweise oberhalb von 400 µm und insbesondere oberhalb von 500 µm aufweisen.
  • Neben den genannten Bestandteilen Builder, Tensid und Desintegrationshilfsmittel, können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper weitere in Wasch- und Reinigungsmittel übliche Inhaltsstoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Farbstoffe, Duftstoffe, optischen Aufheller, Enzyme, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthalten.
  • Zur Entfaltung der gewünschten Bleichleistung können die Wasch- und Reinigungsmittelformkörper der vorliegenden Erfindung Bleichmittel enthalten. Hierbei haben sich insbesondere die gebräuchlichen Bleichmittel aus der Gruppe Natriumperborat-Monohydrat, Natriumperborat-Tetrahydrat und Natriumpercarbonat bewährt.
  • "Natriumpercarbonat" ist eine in unspezifischer Weise verwendete Bezeichnung für Natriumcarbonat-Peroxohydrate, welche streng genommen keine "Percarbonate" (also Salze der Perkohlensäure) sondern Wasserstoffperoxid-Addukte an Natriumcarbonat sind. Die Handelsware hat die durchschnittliche Zusammensetzung 2 Na2CO3·3 H2O2 und ist damit kein Peroxycarbonat. Natriumpercarbonat bildet ein weißes, wasserlösliches Pulver der Dichte 2,14 gcm-3, das leicht in Natriumcarbonat und bleichend bzw. oxidierend wirkenden Sauerstoff zerfällt.
  • Natriumcarbonatperoxohydrat wurde erstmals 1899 durch Fällung mit Ethanol aus einer Lösung von Natriumcarbonat in Wasserstoffperoxid erhalten, aber irrtümlich als Peroxycarbonat angesehen. Erst 1909 wurde die Verbindung als Wasserstoffperoxid-Anlagerungsverbindung erkannt, dennoch hat die historische Bezeichnung "Natriumpercarbonat" sich in der Praxis durchgesetzt.
  • Die industrielle Herstellung von Natriumpercarbonat wird überwiegend durch Fällung aus wäßriger Lösung (sogenanntes Naßverfahren) hergestellt. Hierbei werden wäßrige Lösungen von Natriumcarbonat und Wasserstoffperoxid vereinigt und das Natriumpercarbonat durch Aussalzmittel (überwiegend Natriumchlorid), Kristallisierhilfsmittel (beispielsweise Polyphosphate, Polyacrylate) und Stabilisatoren (beispielsweise Mg2+-Ionen) gefällt. Das ausgefällte Salz, das noch 5 bis 12 Gew.-% Mutterlauge enthält, wird anschließend abzentrifugiert und in Fließbett-Trocknem bei 90°C getrocknet. Das Schüttgewicht des Fertigprodukts kann je nach Herstellungsprozeß zwischen 800 und 1200 g/l schwanken. In der Regel wird das Percarbonat durch ein zusätzliches Coating stabilisiert. Coatingverfahren und Stoffe, die zur Beschichtung eingesetzt werden, sind in der Patentliteratur breit beschrieben. Grundsätzlich können erfindungsgemäß alle handelsüblichen Percarbonattypen eingesetzt werden, wie sie beispielsweise von den Firmen Solvay Interox, Degussa, Kemira oder Akzo angeboten werden.
  • Bei den eingesetzten Bleichmitteln ist der Gehalt der Formkörper an diesen Stoffen vom Einsatzzweck der Formkörper abhängig. Während übliche Universalwaschmittel in Tablettenform zwischen 5 und 30 Gew.-%, vorzugsweise zwischen 7,5 und 25 Gew.-% und insbesondere zwischen 12,5 und 22,5 Gew.-% Bleichmittel enthalten, liegen die Gehalte bei Bleichmittel- oder Bleichboostertabletten zwischen 15 und 50 Gew.-%, vorzugsweise zwischen 22,5 und 45 Gew.-% uns insbesondere zwischen 30 und 40 Gew.-%.
  • Zusätzlich zu den eingesetzten Bleichmitteln können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper Bleichaktivator(en) enthalten, was im Rahmen der vorliegenden Erfindung bevorzugt ist. Bleichaktivatoren werden in Wasch- und Reinigungsmittel eingearbeitet, um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäurcanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Formkörper eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
  • Wenn die erfindungsgemäßen Formkörper Bleichaktivatoren enthalten, enthalten sie, jeweils bezogen auf den gesamten Formkörper, zwischen 0,5 und 30 Gew.-%, vorzugsweise zwischen 1 und 20 Gew.-% und insbesondere zwischen 2 und 15 Gew.-% eines oder mehrerer Bleichaktivatoren oder Bleichkatalysatoren. Je nach Verwendungszweck der hergestellten Formkörper können diese Mengen variieren. So sind in typischen Universalwaschmitteltabletten Bleichaktivator-Gehalte zwischen 0,5 und 10 Gew.-%, vorzugsweise zwischen 2 und 8 Gew.-% und insbesondere zwischen 4 und 6 Gew.-% üblich, während Bleichmitteltabletten durchaus höhere Gehalte, beispielsweise zwischen 5 und 30 Gew.-%, vorzugsweise zwischen 7,5 und 25 Gew.-% und insbesondere zwischen 10 und 20 Gew.-% aufweisen können. Der Fachmann ist dabei in seiner Formulierungsfreiheit nicht eingeschränkt und kann auf diese Weise stärker oder schwächer bleichende Waschmitteltabletten, Reinigungsmitteltabletten oder Bleichmitteltabletten herstellen, indem er die Gehalte an Bleichaktivator und Bleichmittel variiert.
  • Ein besonders bevorzugt verwendeter Bleichaktivator ist das N,N,N',N'-Tetraacetylethylendiamin, das in Wasch- und Reinigungsmitteln breite Verwendung findet. Dementsprechend sind bevorzugte Wasch- und Reinigungsmittelformkörper dadurch gekennzeichnet, daß als Bleichaktivator Tetraacetylethylendiamin in den oben genannten Mengen eingesetzt wird.
  • Neben den genannten Bestandteilen Bleichmittel, Bleichaktivator, Builder, Tensid und Desintegrationshilfsmittel, können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper weitere in Wasch- und Reinigungsmittel übliche Inhaltsstoffe aus der Gruppe der Farbstoffe, Duftstoffe, optischen Aufheller, Enzyme, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthalten.
  • Um den ästhetischen Eindruck der erfindungsgemäßen Wasch- und Reinigungsmittelformkörper zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
  • Bevorzugt für den Einsatz in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern sind alle Färbemittel, die im Waschprozeß oxidativ zerstört werden können sowie Mischungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönern. Es hat sich als vorteilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z.B. anionische Nitrosofarbstoffe. Ein mögliches Färbemittel ist beispielsweise Naphtholgrün (Colour Index (CI) Teil 1: Acid Green 1; Teil 2: 10020), das als Handelsprodukt beispielsweise als Basacid® Grün 970 von der Fa. BASF, Ludwigshafen, erhältlich ist, sowie Mischungen dieser mit geeigneten blauen Farbstoffen. Als weitere Färbemittel kommen Pigmosol® Blau 6900 (CI 74160), Pigmosol® Grün 8730 (CI 74260), Basonyl® Rot 545 FL (CI 45170), Sandolan® Rhodamin EB400 (CI 45100), Basacid® Gelb 094 (CI 47005), Sicovit® Patentblau 85 E 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol® Blau GLW (CAS 12219-32-8, CI Acidblue 221)), Nylosan® Gelb N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) und/oder Sandolan® Blau (Cl Acid Blue 182, CAS 12219-26-0) zum Einsatz.
  • Bei der Wahl des Färbemittels muß beachtet werden, daß die Färbemittel keine zu starke Affinität gegenüber den textilen Oberflächen und hier insbesondere gegenüber Kunstfasern aufweisen. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, daß Färbemittel unterschiedliche Stabilitäten gegenüber der Oxidation aufweisen. Im allgemeinen gilt, daß wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasserlösliche Färbemittel. Abhängig von der Löslichkeit und damit auch von der Oxidationsempfindlichkeit variiert die Konzentration des Färbemittels in den Wasch- oder Reinigungsmitteln. Bei gut wasserlöslichen Färbemitteln, z.B. dem oben genannten Basacid® Grün oder dem gleichfalls oben genannten Sandolan® Blau, werden typischerweise Färbemittel-Konzentrationen im Bereich von einigen 10-2 bis 10-3 Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen Pigmentfarbstoffen, z.B. den oben genannten Pigmosol®-Farbstoffen, liegt die geeignete Konzentration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10-3 bis 10-4 Gew.-%.
  • Die Formkörper können optische Aufheller vom Typ der Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Die optischen Aufheller werden in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörper in Konzentrationen zwischen 0,01 und 1 Gew.-%, vorzugsweise zwischen 0,05 und 0,5 Gew.-% und insbesondere zwischen 0,1 und 0,25 Gew.-%, jeweils bezogen auf den gesamten Formkörper, eingesetzt.
  • Duftstoffe werden den erfindungsgemäßen Mitteln zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Leistung des Produkts ein visuell und sensorisch "typisches und unvenvechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
    Üblicherweise liegt der Gehalt der erfindungsgemäßen Wasch- und Reinigungsmittelformkörper an Duftstoffen bis zu 2 Gew.-% der gesamten Formulierung. Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
  • Als Enzyme kommen insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verfleckungen und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und -Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
    Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-% betragen.
  • Zusätzlich können die Wasch- und Reinigungsmittelformkörper auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxy-propylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
  • Die erfindungsgemäßen Formkörper werden in zwei Schritten hergestellt. Im ersten Schritt werden in an sich bekannter Weise Wasch- und Reinigungsmittelformkörper durch Verpressen teilchenförmiger Wasch- und Reinigungsmittelzusammensetzungen hergestellt, die zweiten Schritt mit der Beschichtung versehen werden.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung von dem zu vor beschriebenen beschichteten Wasch- und Reinigungsmittelformkörpern durch an sich bekanntes Verpressen einer teilchenförmigen Wasch- und Reinigungsmittelzusammensetzung und nachfolgendes Eintauchen in oder Besprühen mit eine(r) Schmelze, Lösung oder Dispersion eines oder mehrerer Polymere aus den Gruppe der
    • a) wasserlöslichen nichtionischen Polymeren aus der Gruppe der
      • a1) Polyvinylpyrrolidone,
      • a2) Vinylpyrrolidon/Vinylester-Copolymere,
      • a3) Celluloseether
    • b) wasserlöslichen amphoteren Polymeren aus der Gruppe der
      • b1) Alkylacrylamid/Acrylsäure-Copolymere
      • b2) Alkylacrylamid/Methacrylsäure-Copolymere
      • b3) Alkylacrylamid/Methylmethacrylsäure-Copolymere
      • b4) Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymere
      • b5) Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)acrylsäure - Copolymere
      • b6) Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere
      • b7) Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat-Copolymere
      • b8) Copolymere aus
        • b8i) ungesättigten Carbonsäuren
        • b8ii) kationisch derivatisierten ungesättigten Carbonsäuren
        • b8iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    • c) wasserlöslichen zwitterionischen Polymeren aus der Gruppe der
      • c1) Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
      • c2) Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
      • c3) Methacroylethylbetain/Methacrylat-Copolymere
    • d) wasserlöslichen anionischen Polymeren aus der Gruppe der
      • d1) Vinylacetat/Crotonsäure-Copolymere
      • d2) Vinylpyrrolidon/Vinylacrylat-Copolymere
      • d3) Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere
      • d4) Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen
      • d5) gepropften und vernetzten Copolymere aus der Copolymerisation von
        • d5i) mindesten einem Monomeren vom nicht-ionischen Typ,
        • d5ii) mindestens einem Monomeren vom ionischen Typ,
        • d5iii) von Polyethylenglycol und
        • d5iv) einem Vernetzter
      • d6) durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltenen Copolymere:
        • d6i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren,
        • d6ii) ungesättigte Carbonsäuren,
        • d6iii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe d6ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8-18-Alkohols
      • d7) Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester
      • d8) Tetra- und Pentapolymere aus
        • d8i) Crotonsäure oder Allyloxyessigsäure
        • d8ii) Vinylacetat oder Vinylpropionat
        • d8iii) verzweigten Allyl- oder Methallylestern
        • d8iv) Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern
      • d9) Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, Vinylbenzol, Vinylmethylether, Acrylamid und deren wasserlöslicher Salze
      • d10) Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α-Stellung verzweigten Monocarbonsäure
    • e) wasserlöslichen kationischen Polymeren aus der Gruppe der
      • e1) quaternierten Cellulose-Derivate
      • e2) Polysiloxane mit quatemären Gruppen
      • e3) kationischen Guar-Derivate
      • e4) polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure
      • e5) Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats
      • e6) Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere
      • e7) quaternierter Polyvinylalkohol
      • e8) unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegeben Polymere.
  • Analog zu den Ausführungen zu den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern sind auch beim erfindungsgemäßen Verfahren die genannten Polymere bevorzugt, so daß auf die vorstehenden Ausführungen verwiesen werden kann.
  • Es folgt eine Beschreibung der zwei wesentlichen Verfahrensschritte.
  • Die Herstellung der erfindungsgemäß später zu beschichtenden Formkörper erfolgt zunächst durch das trockene Vermischen der Bestandteile, die ganz oder teilweise vorgranuliert sein können, und anschließendes Informbringen, insbesondere Verpressen zu Tabletten, wobei auf herkömmliche Verfahren zurückgegriffen werden kann. Zur Herstellung der Formkörper wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
  • Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.
    Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfach- oder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
  • Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
    Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kemschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.
  • Bei der Tablettierung mit Rundläuferpressen hat es sich als vorteilhaft erwiesen, die Tablettierung mit möglichst geringen Gewichtschwankungen der Tablette durchzuführen. Auf diese Weise lassen sich auch die Härteschwankungen der Tablette reduzieren. Geringe Gewichtschwankungen können auf folgende Weise erzielt werden:
    • Verwendung von Kunststoffeinlagen mit geringen Dickentoleranzen
    • Geringe Umdrehungszahl des Rotors
    • Große Füllschuhe
    • Abstimmung des Füllschuhflügeldrehzahl auf die Drehzahl des Rotors
    • Füllschuh mit konstanter Pulverhöhe
    • Entkopplung von Füllschuh und Pulvervorlage
  • Zur Verminderung von Stempelanbackungen bieten sich sämtliche aus der Technik bekannte Antihaftbeschichtungen an. Besonders vorteilhaft sind Kunststoffbeschichtungen, Kunststoffeinlagen oder Kunststoffstempel. Auch drehende Stempel haben sich als vorteilhaft erwiesen, wobei nach Möglichkeit Ober- und Unterstempel drehbar ausgeführt sein sollten. Bei drehenden Stempeln kann auf eine Kunststoffeinlage in der Regel verzichtet werden. Hier sollten die Stempeloberflächen elektropoliert sein.
  • Es zeigte sich weiterhin, daß lange Preßzeiten vorteilhaft sind. Diese können mit Druckschienen, mehreren Druckrollen oder geringen Rotordrehzahlen eingestellt werden. Da die Härteschwankungen der Tablette durch die Schwankungen der Preßkräfte verursacht werden, sollten Systeme angewendet werden, die die Preßkraft begrenzen. Hier können elastische Stempel, pneumatische Kompensatoren oder federnde Elemente im Kraftweg eingesetzt werden. Auch kann die Druckrolle federnd ausgeführt werden.
  • Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Horn & Noack Pharmatechnik GmbH, Worms, IMA Verpackungssysteme GmbH Viersen, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen AG, Berlin, sowie Romaco GmbH, Worms. Weitere Anbieter sind beispielsweise Dr. Herbert Pete, Wien (AU), Mapag Maschinenbau AG, Bern (CH), BWI Manesty, Liverpool (GB), I. Holand Ltd., Nottingham (GB), Courtoy N.V., Halle (BE/LU) sowie Mediopharm Kamnik (SI). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D. Tablettierwerkzeuge sind beispielsweise von den Firmen Adams Tablettierwerkzeuge, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber % Söhne GmbH, Hamburg, Hofer GmbH, Weil, Horn & Noack, Pharmatechnik GmbH, Worms, Ritter Pharmatechnik GmbH, Hamburg, Romaco, GmbH, Worms und Notter Werkzeugbau, Tamm erhältlich. Weitere Anbieter sind z.B. die Senss AG, Reinach (CH) und die Medicopharm, Kamnik (SI).
  • Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfcl, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
  • Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungsmittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe-Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Exzenterpressen oder Rundläuferpressen sind geeignete Vorrichtungen insbesondere zur Herstellung derartiger Preßlinge.
  • Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmittelformkörper über eine Dosierhilfe problemlos möglich und im Rahmen der vorliegenden Erfindung bevorzugt.
  • Ein weiterer bevorzugter Formkörper, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Formkörperwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden.
  • Möglich ist es aber auch, daß die verschiedenen Komponenten nicht zu einer einheitlichen Tablette verpreßt werden, sondern daß Formkörper erhalten werden, die mehrere Schichten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, daß diese verschiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formkörper resultieren. Falls beispielsweise Komponenten in den Formkörpern enthalten sind, die sich wechselseitig negativ beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbeiten, so daß die erste Komponente bereits abreagiert hat, wenn die zweite in Lösung geht. Der Schichtaufbau der Formkörper kann dabei sowohl stapelartig erfolgen, wobei ein Lösungsvorgang der inneren Schicht(en) an den Kanten des Formkörpers bereits dann erfolgt, wenn die äußeren Schichten noch nicht vollständig gelöst sind, es kann aber auch eine vollständige Umhüllung der inneren Schicht(en) durch die jeweils weiter außen liegende(n) Schicht(en) erreicht werden, was zu einer Verhinderung der frühzeitigen Lösung von Bestandteilen der inneren Schicht(en) führt.
  • In einer weiter bevorzugten Ausführungsform der Erfindung besteht ein Formkörper aus mindestens drei Schichten, also zwei äußeren und mindestens einer inneren Schicht, wobei mindestens in einer der inneren Schichten ein Peroxy-Bleichmittel enthalten ist, während beim stapelförmigen Formkörper die beiden Deckschichten und beim hüllenförmigen Formkörper die äußersten Schichten jedoch frei von Peroxy-Bleichmittel sind. Weiterhin ist es auch möglich, Peroxy-Bleichmittel und gegebenenfalls vorhandene Bleichaktivatoren und/oder Enzyme räumlich in einem Formkörper voneinander zu trennen. Derartige mehrschichtige Formkörper weisen den Vorteil auf, daß sie nicht nur über eine Einspülkammer oder über eine Dosiervorrichtung, welche in die Waschflotte gegeben wird, eingesetzt werden können; vielmehr ist es in solchen Fällen auch möglich, den Formkörper im direkten Kontakt zu den Textilien in die Maschine zu geben, ohne daß Verfleckungen durch Bleichmittel und dergleichen zu befürchten wären.
  • Neben dem Schichtaufbau können mehrphasige Formkörper auch in Form von Ringkemtabletten, Kernmanteltabletten oder sogenannten "bulleye"-Tabletten hergestellt werden. Eine Übersicht über solche Ausführungsformen mehrphasiger Tabletten ist in der EP 055 100 (Jeyes Group) beschrieben. Diese Schrift offenbart Toilettenreinigungsmittelblöcke, die einen geformten Körper aus einer langsam löslichen Reinigungsmittelzusammensetzung umfassen, in den eine Bleichmitteltablette eingebettet ist. Diese Schrift offenbart gleichzeitig die unterschiedlichsten Ausgestaltungsformen mehrphasiger Formkörper von der einfachen Mehrphasentablette bis hin zu komplizierten mehrschichtigen Systemen mit Einlagen.
  • Nach dem Verpressen weisen die Wasch- und Reinigungsmittelformkörper eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach σ = 2 P π D t
    Figure imgb0008
  • Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formkörper ausgeübten Druck führt, der den Bruch des Formkörpers verursacht, D ist der Formkörperdurchmesser in Meter und t ist die Höhe der Formkörper.
  • Bevorzugte Herstellverfahren für Wasch- und Reinigungsmittelformkörper gehen von einem tensidhaltigen Granulat aus, das mit weiteren Aufbereitungskomponenten zu einem zu verpressenden teilchenförmigen Vorgemisch aufbereitet wird. Völlig analog zu den vorstehenden Ausführungen über bevorzugte Inhaltsstoffe der erfindungsgemäßen Wasch- und Reinigungsmittelformkörper ist auch der Einsatz weiterer Inhaltsstoffe auf deren Herstellung zu übertragen. In bevorzugten Verfahren enthält das teilchenförmige Vorgemisch zusätzlich tensidhaltige(s) Granulat(e) und weist ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere mindestens 700 g/l auf.
  • In bevorzugten erfindungsgemäßen Verfahren weist das tensidhaltige Granulat Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwischen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbesondere zwischen 600 und 1400µm, auf.
  • Auch die weiteren Inhaltsstoffe der erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können in das erfindungsgemäße Verfahren eingebracht werden, wozu auf die obenstehenden Ausführungen verwiesen wird. Bevorzugte Verfahren sind dadurch gekennzeichnet, daß das teilchenförmige Vorgemisch zusätzlich einen oder mehrere Stoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Desintegrationshilfsmittel, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthält.
  • Der zweite Schritt des erfindungsgemäßen Verfahrens umfaßt das Aufbringen der Beschichtung. Hierzu kann auf gängige Verfahren der Beschichtung von Körpern zurückgegriffen werden, insbesondere also das Eintauchen des Körpers in oder das Besprühen des Körpers mit eine(r) Schmelze, Lösung oder Dispersion der genannten Polymere.
  • Da das Eintauchen von Wasch- und Reinigungsmittelformkörpern in Schmelzen oder Lösungen bzw. Dispersionen nur unter hohem technischen Aufwand zu den gewünschten dünnen Beschichtungen führt, ist es im Rahmen der vorliegenden Erfindung bevorzugt, Polymerlösungen bzw. Dispersionen auf die Formkörper aufzusprühen, wobei das Lösungs- bzw. Dispergiermittel verdampft und eine Beschichtung auf dem Formkörper zurückläßt. In bevorzugten erfindungsgemäßen Verfahren wird eine wäßrige Lösung eines oder mehrerer Polymere aus den Gruppen a) bis e) auf die Formkörper aufgesprüht, wobei die wäßrige Lösung, jeweils bezogen auf die Lösung, 1 bis 20 Gew.-%, vorzugsweise 2 bis 15 Gew.-% und insbesondere 4 bis 10 Gew.-% Polymer(e) aus den Gruppen a) bis e), optional bis zu 20 Gew.-%, vorzugsweise bis zu 10 Gew.-% und insbesondere unter 5 Gew.-% eines oder mehrerer mit Wasser mischbarer Lösungsmittel sowie als Rest Wasser, enthält.
  • Um die Trocknungszeit zu verkürzen, können der wäßrigen Lösung weitere mit Wasser mischbare leichtflüchtige Lösungsmittel zugemischt werden. Diese stammen insbesondere aus der Gruppe der Alkohole, wobei Ethanol, n-Propanol und iso-Propanol bevorzugt sind. Aus Kostengründen empfehlen sich besonders Ethanol und iso-Propanol.
  • Die Polymere aus den Gruppen a) bis e) machen 50 bis 100 Gew.-% der Beschichtung der erfindungsgemäßen Formkörper aus. Dementsprechend kann die auf die Formkörper aufzusprühende Lösung weitere Inhaltsstoffe enthalten, wobei ein Zusatz von Polyurethanen - wie oben erwähnt - bevorzugt ist. Werden hierbei wasserunlösliche Polyurethane zugesetzt, so liegt die aufzusprühende Flüssigkeit als Dispersion vor.
  • Eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist daher eine Verfahrensvariante, bei der eine wäßrige Dispersion eines oder mehrere Polyurethane, die zusätzlich eines oder mehrere gelöste Polymere aus den Gruppen a) bis e) enthält, auf die Formkörper aufgesprüht wird, wobei die Dispersion, jeweils bezogen auf die Dispersion, 1 bis 20 Gew.-%, vorzugsweise 2 bis 15 Gew.-% und insbesondere 4 bis 10 Gew.-% Polyurethan(e), 1 bis 20 Gew.-%, vorzugsweise 2 bis 15 Gew.-% und insbesondere 4 bis 10 Gew.-% Polymer(e) aus den Gruppen a) bis e), optional bis zu 20 Gew.-%, vorzugsweise bis zu 10 Gew.-% und insbesondere unter 5 Gew.-% eines oder mehrerer mit Wasser mischbarer Lösungsmittel sowie als Rest Wasser, enthält.
  • Unter wäßrigen Dispersionen im Sinne der Erfindung sind solche Dispersionen zu verstehen, deren äußere Phase überwiegend aus Wasser besteht. Die äußere Phase kann darüber hinaus weitere, mit Wasser mischbare Lösungsmittel wie beispielsweise Ethanol und iso-Propanol enthalten; diese weiteren Lösungsmittel sind maximal in Mengen bis zu 20 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Bevorzugt enthält die äußere Phase Wasser als einziges Lösungsmittel; eine weitere bevorzugte Ausführungsform enthält in der äußeren Phase, bezogen auf das gesamte Mittel, nicht mehr als 5 % weiterer Lösungsmittel.
  • Das Aufsprühen solcher wäßrigen Lösungen bzw. Dispersionen kann auf unterschiedliche Arten erfolgen, die dem Fachmann geläufig sind. Beispielsweise kann die Lösung bzw. Dispersion mittels eines Pumpsystems einer Düse zugeführt werden, wo die Lösung bzw. Dispersion durch die hohen Scherkräfte fein zerstäubt wird. Der entstehende Sprühnebel kann dann auf die zu beschichtenden Formkörper gerichtet werden, welche nachfolgend optional unter Zuhilfenahme geeigneter Maßnahmen (beispielsweise Anblasen mit erwärmter Luft) getrocknet werden. Es ist aber auch möglich, eine Mehrstoffdüse zu verwenden und die wäßrigen Lösungen bzw. Dispersionen mit Hilfe eines Gasstroms durch die Düse zu vernebeln. Im einfachsten Fall wird eine Zweistoffdüse eingesetzt und als Trägergas Druckluft verwendet. Um die Dispersion gegebenenfalls vor Oxidation oder anderen Wechselwirkungen mit dem Trägergas zu schützen, können auch andere Trägergase wie beispielsweise Stickstoff, Edelgase, niedere Alkane oder Ether eingesetzt werden.
  • Es ist ebenfalls möglich, den Gehalt der Dispersion bzw. Lösung an Wasser zu verringern, was die Trocknungszeiten verkürzt, Wechselwirkungen mit feuchtigkeitsempfindlichen Inhaltsstoffen auf der Formkörperoberfläche minimiert und die Produktionskosten senkt. Auch hier bieten sich die vorstehend genannten niederen Alkohole als Lösungsmittel an, wobei völlig wasserfreie Lösungsmittelgemische weniger bevorzugt sind, da bestimmte Mengen an Wasser die Ausbildung einer gleichmäßigen Coating-Schicht begünstigen. In bevorzugten erfindungsgemäßen Verfahren wird eine Lösung bzw. Dispersion eines oder mehrerer Polymere aus den Gruppen a) bis e) in einem Lösungsmittel oder Lösungsmittelgemisch aus der Gruppe Wasser, Ethanol, Propanol, iso-Propanol, n-Heptan und deren Mischungen mit Hilfe von inerten Treibmitteln aus der Gruppe Stickstoff, Distickstoffoxid, Propan, Butan, Dimethylether und deren Mischungen auf die Formkörper aufgesprüht.
  • Bei solchen erfindungsgemäß bevorzugten Verfahrensvarianten weisen die Lösungen bzw. Dispersionen vorteilhafterweise folgende Zusammensetzung auf, wobei sich die Angaben jeweils auf die aufzusprühende Dispersion beziehen:
    • i) 30 bis 99 Gew.-%, vorzugsweise 40 bis 90 Gew.-% und insbesondere 50 bis 85 Gew.-% Ethanol, Propanol, iso-Propanol, n-Heptan oder deren Mischungen,
    • ii) 0 bis 20, vorzugsweise 1 bis 15 und insbesondere 2 bis 10 Gew.-% Wasser,
    • iii) 1 bis 50, vorzugsweise 2 bis 25 und insbesondere 3 bis 10 Gew.-% eines oder mehrerer Polymere aus den Gruppen a) bis e).
  • Sollen Polyurethane oder andere Inhaltsstoffe Bestandteil der Beschichtung sein, so können diese die Polymere aus den Gruppen a) bis e) in der o.g. Rahmenrezeptur bis zu 50 % des genannten Gewichts ersetzen.
  • Andere Inhaltsstoffe der aufzusprühenden Dispersionen können beispielsweise Farb- oder Duftstoffe bzw. Pigmente sein. Solche Additive verbessern beispielsweise den visuellen oder olfaktorischen Eindruck der erfindungsgemäß beschichteten Formkörper. Farb- und Duftstoffe wurden vorstehend ausführlich beschrieben. Als Pigmente kommen beispielsweise Weißpigmente wie Titandioxid oder Zinksulfid, Perlglanzpigmente oder Farbpigmente in Betracht, wobei letztere in anorganische Pigmente und organische Pigmente aufgeteilt werden können. Alle genannten Pigmente werden im Falle ihres Einsatzes vorzugsweise feinteilig, d.h. mit mittleren Teilchengrößen von 100 µm und deutlich darunter, eingesetzt.
  • Um die Ausbildung einer gleichmäßigen und möglichst dünnen Beschichtung zu erreichen, ist es bevorzugt, die Lösung bzw. Dispersion der Beschichtungsmaterialien möglichst fein zu vernebeln, bevor sie auf den Formkörper auftrifft. Erfindungsgemäße Verfahren, in denen die betreffende Lösung und/oder Dispersion über eine Düse auf die Formkörper aufgebracht wird, wobei die mittlere Tröpfchengröße im Sprühnebel weniger als 100 µm, vorzugsweise weniger als 50 µm und insbesondere weniger als 35 µm, beträgt, sind dabei bevorzugt Auf diese Weise läßt sich die vorstehend genannte bevorzugte Dicke der Beschichtung leicht realisieren.
  • Beispiele:
  • Zur Herstellung unbeschichterer Wasch- und Reinigungsmittelformkörper wurde ein Tensidgranulat mit weiteren Aufbereitungskomponenten vermischt und auf einer Exzenter-Tablettenpresse zu Formkörpern verpreßt. Die Zusammensetzung des Tensidgranulats ist in der folgenden Tabelle 1 angegeben, die Zusammensetzung des zu verpressenden Vorgemischs (und damit die Zusammensetzung der Formkörper) findet sich in Tabelle 2. Tabelle 1: Tensidgranulat [Gew.-%]
    C9-13-Alkylbenzolsulfonat 18,4
    C12-18-Fettalkoholsulfat 4,9
    C12-18-Fettalkohol mit 7 EO 4,9
    Seife 1,6
    Natriumcarbonat 18,8
    Natriumsilikat 5,5
    Zeolith A (wasserfreie Aktivsubstanz) 31,3
    optischer Aufheller 0,3
    Na-Hydroxyethan-1,1-diphosphonat 0,8
    Acrylsäure-Maleinsäure-Copolymer 5,5
    Wasser, Salze Rest
    Tabelle 2: Vorgemisch [Gew.-%]
    Tensidgranulat 62,95
    Natriumperborat-Monohydrat 17,00
    Tetraacetylethylendiamin 7,30
    Schauminhibitor 3,50
    Enzyme 1,70
    Repel-O-Tex® SRP 4* 1,10
    Parfüm 0,45
    Zeolith A 1,00
    Cellulose 5,00
    ** Terephthalsäure-Ethylenglycol-Poylethylenglycol-Ester (Rhodia, Rhöne-Poulenc)
  • Das tablettierfähige Vorgemisch wurde in einer Korsch-Exzenterpresse zu Tabletten (Durchmesser: 44 mm, Höhe: 22 mm, Gewicht: 37,5 g) verpreßt.
  • Diese Tabletten wurden in drei Serien unterteilt, deren erste Serie unbehandelt als Vergleichsbeispiel (V) diente, während die zweite Serie (E1) mit einer 20 Gew.-%-igen Lösung eines Polyvinylpyrrolidon/Polyvinylacetat-Copolymers in Ethanol/Wasser bedüst wurde. Die dritte Serie (E2) wurde mit einer Lösung von Polyvinylpyrrolidon/Vinylalkohol-Copolymer und Butylaminoethylmethacrylat in Wasser/Isopropanol bedüst. In beiden Fällen E1 und E2 diente Dimethylether als Treibmittel für die Dispersionen, die auf eine Tröpfchengröße von 30 µm zerstäubt wurden. Im Falle des Beispiels E1 wurden 150 mg des Polymers als Coating aufgebracht, entsprechend einem Verhältnis von unbeschichtetem Formkörper zu Beschichtung von 250 zu 1. Im erfindungsgemäßen Beispiel E2 wurden 100 mg Polymer aufgetragen (entsprechend einem Verhältnis von unbeschichtetem Formkörper zu Beschichtung von 375 zu 1) und der Versuch mit lediglich 50 mg Polymer (E2', entsprechend einem Verhältnis von unbeschichtetem Formkörper zu Beschichtung von 750 zu 1) wiederholt.
  • Je zwei Tabletten aus den drei Serien V, E1 und E2 wurden auf ein Sieb mit 4 mm Maschenweite gelegt und auf einer Retsch-Siebmaschine bei höchster Amplitude 120 Sekunden lang gerüttelt. Nach diesem Versuch wurde der Gewichtsverlust der Tabletten ermittelt. Die nachfolgende Tabelle 3 zeigt den Gewichtsverlust der Formkörper E1, E2 und V, wobei die Werte Mittelwerte aus fünf Bestimmungen sind.
  • Zur Bestimmung des Tablettenzerfalls wurde die Tablette in ein Becherglas mit Wasser gelegt (600ml Wasser, Temperatur 30°C) und die Zeit bis zum vollständigen Tablettenzerfall gemessen. Die experimentellen Daten der einzelnen Tablettenserien zeigt Tabelle 3: Tabelle 3: Waschmitteltabletten [physikalische Daten]
    Tablette E1 E2 E2' V
    Gewichtsverlust [Gew.-%] 3,36 4,0 4,3 6,7
    Tablettenzerfall [s] 15 14 13 13
  • Die Ergebnisse zeigen, daß der Abrieb schon mit äußerst geringen Mengen an Beschichtungsmaterial deutlich verringert werden kann, ohne die Zerfallszeit zu beeinflussen.

Claims (16)

  1. Wasch- und Reinigungsmittelformkörper aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, enthaltend Gerüststoff(e), Tensid(e) sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile, dadurch gekennzeichnet, daß die Formkörper mit einem Polymer oder Polymergemisch beschichtet sind, wobei das Polymer bzw. mindestens 50 Gew.-% des Polymergemischs ausgewählt ist aus
    a) wasserlöslichen nichtionischen Polymeren aus der Gruppe der
    a1) Polyvinylpyrrolidone,
    a2) Vinylpyrrolidon/Vinylester-Copolymere,
    a3) Celluloseether
    b) wasserlöslichen amphoteren Polymeren aus der Gruppe der
    b1) Alkylacrylamid/Acrylsäure-Copolymere
    b2) Alkylacrylamid/Methacrylsäure-Copolymere
    b3) Alkylacrylamid/Methylmethacrylsäure-Copolymere
    b4) Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymere
    b5) Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymere
    b6) Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere
    b7) Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat-Copolymere
    b8) Copolymere aus
    b8i) ungesättigten Carbonsäuren
    b8ii) kationisch derivatisierten ungesättigten Carbonsäuren
    b8iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    c) wasserlöslichen zwitterionischen Polymeren aus der Gruppe der
    c1) Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
    c2) Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
    c3) Methacroylethylbetain/Methacrylat-Copolymere
    d) wasserlöslichen anionischen Polymeren aus der Gruppe der
    d1) Vinylacetat/Crotor säure-Copolymere
    d2) Vinylpyrrolidon/Vinylacrylat-Copolymere
    d3) Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere
    d4) Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen
    d5) gepropften und vernetzten Copolymere aus der Copolymerisation von
    d5i) mindesten einem Monomeren vom nicht-ionischen Typ,
    d5ii) mindestens einem Monomeren vom ionischen Typ,
    d5iii) von Polyethylenglycol und
    d5iv) einem Vernetzter
    d6) durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltenen Copolymere:
    d6i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren,
    d6ii) ungesättigte Carbonsäuren,
    d6iii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe d6ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8-18-Alkohols
    d7) Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester
    d8) Tetra- und Pentapolymere aus
    d8i) Crotonsäure oder Allyloxyessigsäure
    d8ii) Vinylacetat oder Vinylpropionat
    d8iii) verzweigten Allyl- oder Methallylestern
    d8iv) Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern
    d9) Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, vinylbenzol, Vinylmethylether, Acrylamid und deren wasserlöslicher Salze
    d10) Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α-Stellung verzweigten Monocarbonsäure
    e) wasserlöslichen kationischen Polymeren aus der Gruppe der
    e1) quaternierten Cellulose-Derivate
    e2) Polysiloxane mit quatemären Gruppen
    e3) kationischen Guar-Derivate
    e4) polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure
    e5) Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats
    e6) Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere
    e7) quaternierter Polyvinylalkohol
    e8) unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegeben Polymere,

    wobei das Gewichtsverhältnis von unbeschichtetem Formkörper zur Beschichtung größer als 250 zu 1 ist.
  2. Wasch- und Reinigungsmittelformkörper nach Anspruch 1, dadurch gekennzeichnet, daß das Gewichtsverhältnis von unbeschichtetem Formkörper zu Beschichtung größer als 500 zu 1 ist.
  3. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Dicke der Beschichtung auf dem Formkörper 0,1 bis 150 µm, vorzugsweise 0.5 bis 100 µm und insbesondere 5 bis 50 µm, beträgt.
  4. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Beschichtung zusätzlich zu den genannten Polymeren Polyurethane in Mengen von 5 bis 50 Gew.-%, vorzugsweise von 7.5 bis 40 Gew.-% und insbesondere von 10 bis 30 Gew.%, jeweils bezogen auf die Beschichtung, enthält.
  5. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%. vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten, wobei bevorzugte Desintegrationshilfsmittel mittlere Teilchengrößen oberhalb vcn 300 µm, vorzugsweise oberhalb von 400 µm und insbesondere oberhalb von 500 µm aufweisen.
  6. Wasch- und Reinigungsmitte formkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie anionische(s) und/oder nichtionische(s) Tensid(e) enthalten und Gesamt-Tensidgehalte oberhalb von 2,5 Gew.-%, vorzugsweise oberhalb von 5 Gew.-% und insbesondere oberhalb von 10 Gew.-%, jeweils bezogen auf das Formkörpergewicht, aufweisen.
  7. Verfahren zur Herstellung von beschichteten Wasch- und Reinigungsmittelformkörpern nach einem der Ansprüche 1 bis 6 durch an sich bekanntes Verpressen einer teilchenförmigen Wasch- und Reinigungsmittelzusammensetzung und nachfolgendes Eintauchen in oder Besprühen mit eine(r) Schmelze, Lösung oder Dispersion eines oder mehrerer Polymere aus den Gruppe der
    a) wasserlöslichen nichtionischen Polymeren aus der Gruppe der
    a1) Polyvinylpyrrolidone,
    a2) Vinylpyrrolidon/Vinylester-Copolymere,
    a3) Celluloseether
    b) wasserlöslichen amphoteren Polymeren aus der Gruppe der
    b1) Alkylacrylamid/Acrylsäure-Copolymere
    b2) Alkylacrylamid/Methacrylsäure-Copolymere
    b3) Alkylacrylamid/Methy methacrylsäure-Copolymere
    b4) Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymere
    b5) Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymere
    b6) Alkylacrylamid/Methylmethacrytsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere
    b7) Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat Copolymere
    b8) Copolymere aus
    b8i) ungesättigten Carbonsäuren
    b8ii) kationisch derivatisierten ungesättigten Carbonsäuren
    b8iii) gegebener falls weiteren ionischen oder nichtionogenen Monomeren
    c) wasserlöslichen zwitterionischen Polymeren aus der Gruppe der
    c1) Acrylamidoalkyltrialky ammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
    c2) Acrylamidoalkyltrialky;ammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Aminoniumsalze
    c3) Methacroylethylbetain/Methacrylat-Copolymere
    d) wasserlöslichen anionischen Polymeren aus der Gruppe der
    d1) Vinylacetat/Crotonsäure-Copolymere
    d2) Vinylpyrrolidon/Vinylacrylat-Copolymere
    d3) Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere
    d4) Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen
    d5) gepropften und vemetzten Copolymere aus der Copolymerisation von
    d5i) mindesten einem Monomeren vom nicht-ionischen Typ,
    d5ii) mindestens einem Monomeren vom ionischen Typ,
    d5iii) von Polyethylenglycol und
    d5iv) einem Vernetzer
    d6) durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltenen Copolymere:
    d6i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren,
    d6ii) ungesättigte Carbonsäuren,
    d6iii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe d6ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8-18-Alkohols
    d7) Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester
    d8) Tetra- und Pentapolymere aus
    d8i) Crotonsäure oder Allyloxyessigsäure
    d8ii) Vinylacetat oder Vinylpropionat
    d8iii) verzweigten Allyl- oder Methallylestern
    d8iv) Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern
    d9) Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen. Vinylbenzol, Vinylmethylether, Acrylamid und deren wasserlöslicher Salze
    d10) Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α-Stellung verzweigten Monocarbonsäure
    e) wasserlöslichen kationischen Polymeren aus der Gruppe der
    e1) quaternierten Cellulose-Derivate
    e2) Polysiloxane mit quatomären Gruppen
    e3) kationischen Guar-Derivate
    e4) polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acry säure und Methacrylsäure
    e5) Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialhylaminoacrylats und -methacrylats
    e6) Vinylpyrrvlidon-Methcimidazvliniumchlorid-Copolymere
    e7) quaternierter Polyvinylalkohol
    e8) unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegeben Polymere.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß eine wäßrige Lösung eines oder mehrerer Polymere aus den Gruppen a) bis e) auf die Formkörper aufgesprüht wird, wobei die wäßrige Lösung, jeweils bezogen auf die Lösung, 1 bis 20 Gew.-%, vorzugsweise 2 bis 15 Gew.-% und insbesondere 4 bis 10 Gew.-% Polymer(e) aus den Gruppen a) bis e), optional bis zu 20 Gew.-%, vorzugsweise bis zu 10 Gew.-% und insbesondere unter 5 Gew.-% eines oder mehrerer mit Wasser mischbarer Lösungsmittel sowie als Rest Wasser, enthält.
  9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß eine wäßrige Dispersion eines oder mehrere Polyurethane, die zusätzlich eines oder mehrere gelöste Polymere aus den Gruppen a) bis e) enthält, auf die Formkörper aufgesprüht wird, wobei die Dispersion, jeweils bezogen auf die Dispersion, 1 bis 20 Gew.-%, vorzugsweise 2 bis 15 Gew.-% und insbesondere 4 bis 10 Gew.-% Polyurethan(e), 1 bis 20 Gew.-%, vorzugsweise 2 bis 15 Gew.-% und insbesondere 4 bis 10 Gew.-% Polymer(e) aus den Gruppen a) bis e), optional bis zu 20 Gew.-%, vorzugsweise bis zu 10 Gew.-% und insbesondere unter 5 Gew.-% eines oder mehrerer mit Wasser mischbarer Lösungsmittel sowie als Rest Wasser, enthält.
  10. Verfahren nach Anspruch 7. dadurch gekennzeichnet, daß eine Lösung bzw. Dispersion eines oder mehrerer Polymere aus den Gruppen a) bis e) in einem Lösungsmittel oder Lösungsmittelgemisch aus der Gruppe Wasser, Ethanol, Propanol, iso-Propanol, n-Heptan und deren Mischungen mit Hilfe von inerten Treibmitteln aus der Gruppe Stickstoff, Distickstoffoxid, Propan, Butan, Dimethylether und deren Mischungen auf die Formkörper aufgesprüht wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die Lösung bzw. Dispersion folgende Zusammensetzung aufweist:
    i) 30 bis 99 Gew.-%, vorzugsweise 40 bis 90 Gew.-% und insbesondere 50 bis 85 Gew.-% Ethanol, Propanol, iso-Propanol, n-Heptan oder deren Mischungen,
    ii) 0 bis 20, vorzugsweise 1 bis 15 und insbesondere 2 bis 10 Gew.-% Wasser,
    iii) 1 bis 50, vorzugsweise 2 bis 25 und insbesondere 3 bis 10 Gew.-% eines oder mehrerer Polymere aus den Gruppen a) bis e).
  12. Verfahren nach einem der Ansprüche 7 bis 11. dadurch gekennzeichnet, daß die betreffende Lösung und/oder Dispersion über eine Düse auf die Formkörper aufgebracht wird, wobei die mittlere Tröpfchengröße im Sprühnebel weniger als 100 µm, vorzugsweise weniger als 50 µm und insbesondere weniger als 35 µm, beträgt.
  13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, daß der zu beschichtende Formkörper durch Verpressen eines teilchenförmigen Vorgemischs erhalten wird, das tensidhaltige(s) Granulat(e) enthält und ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere mindestens 700 g/l aufweist.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß das tensidhaltige Granulat Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwischen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbesondere zwischen 600 und 1400µm, aufweist.
  15. Verfahren nach einem der Ansprüche 13 oder 14. dadurch gekennzeichnet, daß das tensidhaltige Granulat anionische und/oder nichtionische Tenside sowie Gerüststoffe enthält und Gesamt-Tensidgehalte von mindestens 10 Gew.-%, vorzugsweise mindestens 20 Gew.-% und insbesondere mindestens 25 Gew.-%, aufweist.
  16. Verfahren nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß das teilchenförmige Vorgemisch zusätzlich einen oder mehrere Stoffe aus der Gruppe der Bleichmittel. Bleichaktivatoren, Desintegrationshilfsmittel, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthält.
EP00927026A 1999-05-03 2000-04-22 Wasch- und reinigungsmittelformkörper mit beschichtung Revoked EP1173539B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19920118.8A DE19920118B4 (de) 1999-05-03 1999-05-03 Wasch- und Reinigungsmittelformkörper mit Beschichtung und Verfahren zu seiner Herstellung
DE19920118 1999-05-03
PCT/EP2000/003662 WO2000066701A1 (de) 1999-05-03 2000-04-22 Wasch- und reinigungsmittelformkörper mit beschichtung

Publications (2)

Publication Number Publication Date
EP1173539A1 EP1173539A1 (de) 2002-01-23
EP1173539B1 true EP1173539B1 (de) 2006-01-11

Family

ID=7906692

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00927026A Revoked EP1173539B1 (de) 1999-05-03 2000-04-22 Wasch- und reinigungsmittelformkörper mit beschichtung

Country Status (7)

Country Link
EP (1) EP1173539B1 (de)
AT (1) ATE315630T1 (de)
AU (1) AU4555000A (de)
CA (1) CA2307429A1 (de)
DE (2) DE19920118B4 (de)
ES (1) ES2256002T3 (de)
WO (1) WO2000066701A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196531A1 (de) 2008-12-05 2010-06-16 Dalli-Werke GmbH & Co. KG Polymer beschichtete Reinigungsmitteltablette
EP3409754A1 (de) 2017-05-31 2018-12-05 Dalli-Werke GmbH & Co. KG Beschichtete zitronensäureteilchen in reinigungsmitteln

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19940547A1 (de) 1999-08-26 2001-03-01 Henkel Kgaa Wasch- oder Reinigungsmittelformkörper mit Partialcoating
DE10026334A1 (de) * 2000-05-26 2001-12-06 Henkel Kgaa Wasch- und Reinigungsmittelformkörper mit Pfropfcopolymer-Beschichtung
AU2001276470A1 (en) * 2000-07-31 2002-02-13 Robert Mcbride Ltd Coating tablets
DE10044073A1 (de) * 2000-09-07 2002-04-04 Henkel Kgaa Beschichtete Tabletten und Verfahren zur Tablettenbeschichtung
DE10045267B4 (de) * 2000-09-13 2006-04-13 Henkel Kgaa Wasch- und Reinigungsmittelformkörper mit Polyurethan-Beschichtung
DE10064985A1 (de) * 2000-12-23 2002-07-11 Henkel Kgaa Wasch- und Reinigungsmittelformkörper mit Beschichtung
GB0118027D0 (en) * 2001-07-24 2001-09-19 Unilever Plc Polymer products
DE10245262A1 (de) * 2002-05-24 2004-04-08 Henkel Kgaa Einspülkammer-dosierbare Tabletten-Portionen II
DE102004040330A1 (de) * 2004-08-20 2006-03-02 Henkel Kgaa Beschichteter Wasch- oder Reinigungsmittelformkörper
DE102004054849B4 (de) * 2004-11-13 2007-08-16 Clariant Produkte (Deutschland) Gmbh Kosmetische, pharmazeutische und dermatologische Zubereitungen enthaltend Copolymerwachse
EP1808482A1 (de) 2006-01-14 2007-07-18 Dalli-Werke GmbH & Co. KG Umhüllte Reinigungszusammensetzungen und Herstellungsverfahren
EP2318498B1 (de) 2008-08-28 2015-06-24 The Procter and Gamble Company Stoffpflegezusammensetzungen, herstellungsverfahren und verwendung
US20100050346A1 (en) 2008-08-28 2010-03-04 Corona Iii Alessandro Compositions and methods for providing a benefit
DE102008060469A1 (de) 2008-12-05 2010-06-10 Henkel Ag & Co. Kgaa Maschinelle Geschirrspülmitteltablette

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3231505A (en) * 1961-04-03 1966-01-25 Colgate Palmolive Co Process for manufacturing detergent tablet
BE617018A (de) * 1961-04-28
BE631834A (de) * 1962-05-03
JPH05171198A (ja) * 1991-12-25 1993-07-09 Lion Corp 固型洗浄剤
GB9422924D0 (en) * 1994-11-14 1995-01-04 Unilever Plc Detergent compositions
EP0831146B1 (de) * 1996-07-23 2003-03-05 The Procter & Gamble Company Waschmittelkomponenten oder Waschmittelzusammensetzungen mit einem Schutzüberzug
JPH1088199A (ja) * 1996-09-13 1998-04-07 Kao Corp タブレット型又はブリケット型洗浄剤組成物の製造方法
ATE360056T1 (de) * 1996-12-06 2007-05-15 Procter & Gamble Beschichtetes reinigungsmittels in tablettenform und herstellungsverfahren dafür
JP2002521558A (ja) * 1998-07-29 2002-07-16 ザ、プロクター、エンド、ギャンブル、カンパニー プラズマ誘導水溶性被覆を有する洗浄剤組成物およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196531A1 (de) 2008-12-05 2010-06-16 Dalli-Werke GmbH & Co. KG Polymer beschichtete Reinigungsmitteltablette
EP3409754A1 (de) 2017-05-31 2018-12-05 Dalli-Werke GmbH & Co. KG Beschichtete zitronensäureteilchen in reinigungsmitteln

Also Published As

Publication number Publication date
DE19920118A1 (de) 2000-11-09
CA2307429A1 (en) 2000-11-03
EP1173539A1 (de) 2002-01-23
AU4555000A (en) 2000-11-17
ATE315630T1 (de) 2006-02-15
WO2000066701A1 (de) 2000-11-09
DE50012053D1 (de) 2006-04-06
ES2256002T3 (es) 2006-07-16
DE19920118B4 (de) 2016-08-11

Similar Documents

Publication Publication Date Title
EP1287109B1 (de) Wasch- oder reinigungsmittelformkörper
WO2001014509A1 (de) Wasch- oder reinigungsmittelformkörper mit partialcoating
EP1192241B1 (de) Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
EP1322743B1 (de) Muldentabletten und verfahren zu ihrer herstellung
EP1173539B1 (de) Wasch- und reinigungsmittelformkörper mit beschichtung
DE10010760A1 (de) Mehrphasige Wasch- und Reinigungsmittelformkörper mit nicht-gepreßten Anteilen
EP1360271B1 (de) Wasch- und reinigungsmittelformkörper mit beschichtung
DE10064635A1 (de) Wasch-und Reinigungsmittelformkörper mit Partialcoating
DE19934704A1 (de) Wasch- und Reinigungsmittelformkörper mit Dispersionsmitteln
EP1165742B1 (de) Ein- oder mehrphasige wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
DE19955240A1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
DE10045267B4 (de) Wasch- und Reinigungsmittelformkörper mit Polyurethan-Beschichtung
EP1165741B1 (de) Wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
DE19925518A1 (de) Mehrphasige Wasch- und Reinigungsmittelformkörper mit Parfüm
WO2000017307A1 (de) Wasch- und reinigungsmittelformkörper mit natriumpercarbonat
DE10044073A1 (de) Beschichtete Tabletten und Verfahren zur Tablettenbeschichtung
EP1158041A1 (de) Wasch- und Reinigungsmittelformkörper mit Pfropfcopolymer-Beschichtung
DE19925503A1 (de) Mehrphasige Wasch- und Reinigungsmittelformkörper mit optischen Aufhellern
DE19919444B4 (de) Wasch- und Reinigungsmittelformkörper mit Bindemittelcompound, Verfahren zu seiner Herstellung sowie Verwendung von Bindemittelcompounds
WO2001014512A1 (de) Wasch- oder reinigungsmittelformkörper
DE102004020009A1 (de) Wasch- und Reinigungsmittelformkörper mit Celluloseetherderivat
WO2000065017A1 (de) Bleichmittelhaltige waschmitteltabletten
WO2001007244A1 (de) Tablettierstempel und pressverfahren
WO2000022086A1 (de) Bleichaktivator-haltige wasch- und reiningungsmittelformkörper
DE19919445A1 (de) Wasch- und Reinigungsmittelformkörper mit festen Bindemitteln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20041209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50012053

Country of ref document: DE

Date of ref document: 20060406

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060411

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060612

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2256002

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: DALLI-WERKE GMBH & CO. KG

Effective date: 20061011

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 20060430

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HENKEL AG & CO. KGAA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100325

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100521

Year of fee payment: 11

Ref country code: ES

Payment date: 20100505

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100430

Year of fee payment: 11

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20101110

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20101110

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110421

Year of fee payment: 12