WO2000017307A1 - Wasch- und reinigungsmittelformkörper mit natriumpercarbonat - Google Patents

Wasch- und reinigungsmittelformkörper mit natriumpercarbonat Download PDF

Info

Publication number
WO2000017307A1
WO2000017307A1 PCT/EP1999/006835 EP9906835W WO0017307A1 WO 2000017307 A1 WO2000017307 A1 WO 2000017307A1 EP 9906835 W EP9906835 W EP 9906835W WO 0017307 A1 WO0017307 A1 WO 0017307A1
Authority
WO
WIPO (PCT)
Prior art keywords
detergent
weight
molded article
acid
sodium percarbonate
Prior art date
Application number
PCT/EP1999/006835
Other languages
English (en)
French (fr)
Inventor
Andreas Lietzmann
Monika Böcker
Hans-Friedrich Kruse
Horst-Dieter Speckmann
Markus Semrau
Harald Volk
Christian Nitsch
Katrin Schnepp-Hentrich
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Publication of WO2000017307A1 publication Critical patent/WO2000017307A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/055Peroxyhydrates; Peroxyacids or salts thereof
    • C01B15/10Peroxyhydrates; Peroxyacids or salts thereof containing carbon
    • C01B15/106Stabilisation of the solid compounds, subsequent to the preparation or to the crystallisation, by additives or by coating
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Detergent Compositions (AREA)

Abstract

Die vorliegende Erfindung betrifft Wasch- und Renigungsmittelformkörper, die Natriumpercarbonat enthalten. Solche Formkörper zeichnen sich dann durch eine hohe Härte und Zerfallsgeschwindigkeit aus, wenn das in ihnen enthaltene Natriumpercarbonat zu mindestens 60 Prozent seines Gewichts aus Teilchen mit einer Teilchengröße von weniger als 0,8 mm besteht. Bevorzuhgt besteht das Natriumpercarbonat dabei zu mehr als 90 % seines Gewichts aus Teilchen mit Größen unter 0,8 mm.

Description

"Wasch- und Reinigungsmittelformkörper mit Natriumpercarbonat"
Die vorliegende Erfindung betrifft Wasch- und Reinigungsmittelformkörper, die Percarbo- nat enthalten. Insbesondere betrifft die Erfindung solche Formkörper wie Waschmitteltabletten, Reinigungsmitteltabletten, Bleichtabletten oder Wasserenthärtertabletten mit Per- carbonat.
Wasch- und Reinigungsmittelzusammensetzungen in Form von Formkörpem, insbesondere Tabletten, sind im Stand der Technik lange bekannt und breit beschrieben, obwohl diese Angebotsform auf dem Markt bislang keine herausragende Bedeutung hat. Dies hat seine Ursache darin, daß die Angebotsform des Formkörpers neben einer Reihe von Vorteilen auch Nachteile hat, die sowohl die Herstellung und Verwendung als auch die Verbraucherakzeptanz beeinträchtigen. Die wesentlichen Vorteile von Formkörpern wie der Wegfall des Abmessens der benötigten Produktmenge durch den Verbraucher, die höhere Dichte und damit der verringerte Verpackungs- und Lageraufwand und ein nicht zu unterschätzender ästhetischer Aspekt werden dabei durch Nachteile wie die Dichotomie zwischen akzeptabler Härte und genügend schneller Desintegration und Auflösung der Formköφer sowie zahlreiche technologische Schwierigkeiten bei der Herstellung und Veφak- kung relativiert.
Insbesondere die Dichotomie zwischen einem genügen harten Formköφer und einer hinreichend schnellen Zerfallszeit ist dabei ein zentrales Problem. Da hinreichend stabile, d.h. form- und bruchbeständige Formköφer nur durch verhältnismäßig hohe Preßdrücke hergestellt werden können, kommt es zu einer starken Verdichtung der Formköφerbestandteile und zu einer daraus folgenden verzögerten Desintegration des Formköφers in der wäßrigen Flotte und damit zu einer zu langsamen Freisetzung der Aktivsubstanzen im Wasch- bzw. Reinigungsvorgang. Die verzögerte Desintegration der Formköφer hat weiterhin den Nachteil, daß sich übliche Wasch- und Reinigungsmittelformköφer nicht über die Ein- spülkammer von Haushaltswaschmaschinen einspülen lassen, da die Tabletten nicht in hinreichend schneller Zeit in Sekundäφartikel zerfallen, die klein genug sind, um aus der Einspülkammer in die Waschtrommel eingespült zu werden.
Zur Überwindung der Dichotomie zwischen Härte, d.h. Transport- und Handhabungsstabilität, und leichtem Zerfall der Formköφer sind im Stand der Technik viele Lösungsansätze entwickelt worden. Ein insbesondere aus der Pharmazie bekannter und auf das Gebiet der Wasch- und Reinigungsmittelformköφer ausgedehnter Ansatz ist die Inkoφoration bestimmter Desintegrationshilfsmittel, die den Zutritt von Wasser erleichtern oder bei Zutritt von Wasser quellen bzw. gasentwickelnd oder in anderer Form desintegrierend wirken. Andere Lösungsvorschläge aus der Patentliteratur beschreiben die Veφressung von Vorgemischen bestimmter Teilchengrößen, die Trennung einzelner Inhaltsstoffe von bestimmten anderen Inhaltsstoffen sowie die Beschichtung einzelner Inhaltsstoffe oder des gesamten Formköφers mit Bindemitteln.
So offenbart die EP-A-0 522 766 (Unilever) Formköφer aus einer kompaktierten, teilchen- förmigen Waschmittelzusammensetzung, enthaltend Tenside, Builder und Desintegrationshilfsmittel (beispielsweise auf Cellulosebasis), wobei zumindest ein Teil der Partikel mit dem Desintegrationsmittel beschichtet ist, das sowohl Binder- als auch Desintegrationswirkung beim Auflösen der Formköφer in Wasser zeigt. Diese Schrift weist auch auf die generelle Schwierigkeit hin, Formköφer mit adäquater Stabilität bei gleichzeitig guter Löslichkeit herzustellen. Die Teilchengröße im zu veφressenden Gemisch soll dabei oberhalb von 200 μm liegen, wobei Ober- und Untergrenze der einzelnen Teilchengrößen um nicht mehr als 700 μm voneinander abweichen sollen.
Weitere Schriften, die sich mit der Herstellung vom Waschmittelformköφern befassen, sind die EP-A-0 716 144 (Unilever), die Formköφer mit einer externen Hülle aus wasserlöslichem Material beschreibt, sowie die EP-A-0 711 827 (Unilever), die als Inhaltsstoff ein Citrat mit einer definierten Löslichkeit enthalten. Der Einsatz von Bindemitteln, die gegebenenfalls Sprengwirkung entfalten (insbesondere Polyethylenglycol), wird in der EP-A-0 711 828 (Unilever) offenbart, die Waschmittel- formköφer beschreibt, welche durch Veφressen einer teilchenförmigen Waschmittelzusammensetzung bei Temperaturen zwischen 28°C und dem Schmelzpunkt des Bindematerials hergestellt werden, wobei stets unterhalb der Schmelztemperatur veφreßt wird. Aus den Beispielen dieser Schrift ist zu entnehmen, daß die gemäß ihrer Lehre hergestellten Formköφer höhere Bruchfestigkeiten aufweisen, wenn bei erhöhter Temperatur veφreßt wird.
Waschmitteltabletten, in denen einzelne Inhaltsstoffe getrennt von anderen vorliegen, werden auch in der EP-A-0 481 793 (Unilever) beschrieben. Die in dieser Schrift offenbarten Waschmitteltabletten enthaltend Natriumpercarbonat, das von allen anderen Komponenten, die seine Stabilität beeinflussen könnten, räumlich getrennt vorliegt. Angaben zur Teilchengröße des Bleichmittels sind dieser Schrift nicht zu entnehmen.
Die europäische Patentanmeldung EP-A-0 466 484 (Unilever) beansprucht Waschmitteltabletten, die durch Neφressung von teilchenförmigem Material hergestellt werden, welches Partikelgrößen im Bereich von 200 bis 2000 μm aufweist, wobei die Ober- und die Untergrenze der Partikelgrößen um nicht mehr als 700 μm differieren sollen. Der Einsatz von Bleichmitteln wird in dieser Schrift lediglich als optional erwähnt, Teilchengrößenbereiche für die Bleichmittel werden nicht angegeben.
Die ältere deutsche Patentanmeldung DE 198 06 200.1 (Henkel) beschreibt Wasch- und Reinigungsmittelformköφer, welche Bleichmittel mit einer mittleren Teilchengröße oberhalb von 400 μm enthalten und vorzugsweise frei von Anteilen unter 200 μm sind. Als Beispiele und Vergleichsbeispiele werden in dieser Anmeldung lediglich Formköφer offenbart, die Νatriumperborat enthalten.
In keinem der genannten Dokumente des Standes der Technik, die sich mit Wasch- und Reinigungsmittelformköφern beschäftigen, wird ein wohldefinierter Teilchengrößebereich für Bleichmittel auf Percarbonat-Basis angegeben. Keines der genannten Dokumente be- schäftigt sich mit der Verbesserung der Löslichkeit von Wasch- und Reinigungsmitteltabletten durch gezielten Einsatz von Natriumpercarbonat innerhalb bestimmter Teilchengrößebereiche.
Der vorliegenden Erfindung liegt demnach die Aufgabe zugrunde, Wasch- und Reini- gungsmittelformköφer bereitzustellen, welche Percarbonat(e) enthalten und eine hohe Härte aufweisen sowie über hervorragende Zerfallseigenschaften verfügen. Diese Wasch- und Reinigungsmittelformköφer sollen dabei auch über die Einspülkammer dosiert werden können, ohne daß dem Verbraucher hierdurch Nachteile durch Rückstände in der Einspülkammer und zu wenig Waschmittel in der Waschlauge erwachsen. Neben diesen Formkörper-spezifischen Eigenschaften sollen auch die Wasch- und Reinigungsleistungen der erfindungsgemäßen Formköφer vorbildlich sein.
Gegenstand der Erfindung sind Wasch- und Reinigungsmittelformköφer aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, umfassend Natriumpercarbonat, Gerüst- stoff(e) sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile, wobei mindestens 60 Gew.-% der Natriumpercarbonat-Teilchen eine Teilchengröße unterhalb 0,8 mm aufweisen.
Es ist im Rahmen der vorliegenden Erfindung bevorzugt, wenn deutlich mehr als 60 Gew.- % der Natriumpercarbonat-Teilchen Größen unterhalb 0,8 mm aufweisen. Bevorzugte Wasch- und Reinigungsmittelformköφer enthalten daher Natriuempercarbonat-Qualitäten, bei denen mindestens 70 Gew.-%, vorzugsweise mindestens 80 Gew.-% und insbesondere mindestens 90 Gew.-%, der Natriumpercarbonat-Teilchen eine Teilchengröße unterhalb 0,8 mm aufweisen.
Der Anteil an Natriumpercarbonat-Teilchen mit Größen oberhalb 800 μm soll erfmdungs- gemäß unter 40 Gew.-%, bezogen auf die Gesamtheit der Natriumpercarbonat-Teilchen, betragen, wobei Werte unter 30, vorzugsweise unter 20 und insbesondere unter 10 Gew.-% bevorzugt sind. Um eine vorteilhafte homogene Teilchengrößenverteilung zu besitzen, sollte das eingesetzte Natriumpercarbonat insbesondere frei von groben Anteilen sein, also keine Teilchen über 1,6 mm Durchmesser enthalten. Besonders bevorzugte Wasch- und Reinigungsmittelformköφer enthalten ein Natriumpercarbonat, das substantiell frei von Teilchen mit Größen oberhalb 1,2 mm ist.
Unter "substantiell frei" werden im Rahmen der vorliegenden Erfindung Gehalte unter 2 Gew.-%, vorzugsweise unter 1 Gew.-% und insbesondere unter 0,5 Gew.-%, jeweils bezogen auf die Gesamtheit der Teilchen, verstanden.
Das in den erfindungsgemäßen Wasch- und Reinigungsmittelformköφern eingesetzte Natriumpercarbonat ist vorzugsweise hinsichtlich seiner mittleren Teilchengröße feinteilig, wobei es bevorzugt ist, wenn das Natriumpercarbonat mehr als 40 Gew.-%, vorzugsweise mehr als 50 Gew.-% und insbesondere mehr als 60 Gew.-% Teilchen einer Größe unterhalb 0,6 mm aufweist. Besonders bevorzugt ist es dabei, daß das Natriumpercarbonat mehr als 10 Gew.-%, vorzugsweise mehr als 20 Gew.-% und insbesondere mehr als 25 Gew.-% Teilchen einer Größe unterhalb 0,4 mm aufweist.
Zur Entfaltung der gewünschten Bleichleistung enthalten die Wasch- und Reinigungsmittelformköφer der vorliegenden Erfindung Natriumpercarbonat. Dabei ist „Natriumpercarbonat" eine in unspezifischer Weise verwendete Bezeichnung für Natriumcarbonat- Peroxohydrate, welche streng genommen keine „Percarbonate" (also Salze der Perkohlensäure) sondern Wasserstoffperoxid-Addukte an Natriumcarbonat sind. Die Handelsware hat die durchschnittliche Zusammensetzung 2 Na2CO3-3 H2O2 und ist damit kein Peroxy- carbonat. Natriumpercarbonat bildet ein weißes, wasserlösliches Pulver der Dichte 2,14 gern"3, das leicht in Natriumcarbonat und bleichend bzw. oxidierend wirkenden Sauerstoff zerfällt.
Natriumcarbonatperoxohydrat wurde erstmals 1899 durch Fällung mit Ethanol aus einer Lösung von Natriumcarbonat in Wasserstoffperoxid erhalten, aber irrtümlich als Peroxy- carbonat angesehen. Erst 1909 wurde die Verbindung als Wasserstoffperoxid- Anlagerungsverbindung erkannt, dennoch hat die historische Bezeichnung „Natriumper- carbonat" sich in der Praxis durchgesetzt, weshalb sie auch im Rahmen der vorliegenden Anmeldung Verwendung findet.
Die industrielle Herstellung von Natriumpercarbonat wird überwiegend durch Fällung aus wäßriger Lösung (sogenanntes Naßverfahren) hergestellt. Hierbei werden wäßrige Lösungen von Natriumcarbonat und Wasserstoffperoxid vereinigt und das Natriumpercarbonat durch Aussalzmittel (überwiegend Natriumchlorid), Kristallisierhilfsmittel (beispielsweise Polyphosphate, Polyacrylate) und Stabilisatoren (beispielsweise Mg2+-Ionen) gefällt. Das ausgefällte Salz, das noch 5 bis 12 Gew.-% Mutterlauge enthält, wird anschließend abzen- trifuigiert und in Fließbett-Trocknern bei 90°C getrocknet. Das Schüttgewicht des Fertigprodukts kann je nach Herstellungsprozeß zwischen 800 und 1200 g/1 schwanken. In der Regel wird das Percarbonat durch ein zusätzliches Coating stabilisiert. Coatingverfahren und Stoffe, die zur Beschichtung eingesetzt werden, sind in der Patentliteratur breit beschrieben. Grundsätzlich können erfindungsgemäß alle handelsüblichen Percarbonattypen eingesetzt werden, wie sie beispielsweise von den Firmen Solvay Interox, Degussa, Kemira oder Akzo angeboten werden. Die Vorteilhaftigkeit des schnellen Formköφerzerfalls resultiert erfindungsgemäß aus der definierten Partikelgröße des Percarbonats.
Das Natriumpercarbonat Bleichmittel wird in Abhängigkeit vom gewünschten Produkt in variierenden Mengen in den erfindungsgemäßen Wasch- und Reinigungsmittelformköφern eingesetzt. Übliche Gehalte liegen dabei zwischen 5 und 50 Gew.-%, vorzugsweise zwischen 10 und 40 Gew.-% und insbesondere zwischen 15 und 35 Gew.-%, jeweils bezogen auf den gesamten Formköφer.
Auch ist beim Natriumpercarbonat der Gehalt der Formköφer an diesem Stoff vom Einsatzzweck der Formköφer abhängig. Während übliche Universalwaschmittel in Tablettenform zwischen 5 und 30 Gew.-%, vorzugsweise zwischen 7,5 und 25 Gew.-% und insbesondere zwischen 12,5 und 22,5 Gew.-% Natriumpercarbonat enthalten, liegen die Gehalte bei Bleichmittel- oder Bleichboostertabletten zwischen 15 und 50 Gew.-%, vorzugsweise zwischen 22,5 und 45 Gew.-% uns insbesondere zwischen 30 und 40 Gew.-%. Zusätzlich zum Natriumpercarbonat können die erfindungsgemäßen Wasch- und Reinigungsmittelformköφer Bleichaktivator(en) enthalten, was im Rahmen der vorliegenden Erfindung bevorzugt ist. Bleichaktivatoren werden in Wasch- und Reinigungsmittel eingearbeitet, um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhy- drolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C- Atomen, insbesondere 2 bis 4 C- Atomen, und/oder gegebenenfalls substituierte Perbenzoe- säure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N- Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoyl- gruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraa- cetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere l,5-Diacetyl-2,4- dioxohexahydro-l,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetyl- glykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5- dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Formköφer eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder - carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N- haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Die erfindungsgemäßen Formköφer enthalten, jeweils bezogen auf den gesamten Formköφer, zwischen 0,5 und 30 Gew.-%, vorzugsweise zwischen 1 und 20 Gew.-% und insbesondere zwischen 2 und 15 Gew.-% eines oder mehrerer Bleichaktivatoren oder Bleichkatalysatoren. Je nach Verwendungszweck der hergestellten Formköφer können diese Mengen variieren. So sind in typischen Universalwaschmitteltabletten Bleichaktivator-Gehalte zwischen 0,5 und 10 Gew.-%, vorzugsweise zwischen 2 und 8 Gew.-% und insbesondere zwischen 4 und 6 Gew.-% üblich, während Bleichmitteltabletten durchaus höhere Gehalte, beispielsweise zwischen 5 und 30 Gew.-%, vorzugsweise zwischen 7,5 und 25 Gew.-% und insbesondere zwischen 10 und 20 Gew.-% aufweisen können. Der Fachmann ist dabei in seiner Formulierungsfreiheit nicht eingeschränkt und kann auf diese Weise stärker oder schwächer bleichende Waschmitteltabletten, Reinigungsmitteltabletten oder Bleichmitteltabletten herstellen, indem er die Gehalte an Bleichaktivator und Bleichmittel variiert.
Ein besonders bevorzugt verwendeter Bleichaktivator ist das N,N,N',N'- Tetraacetylethylendiamin, das in Wasch- und Reinigungsmitteln breite Verwendung findet. Dementsprechend sind bevorzugte Wasch- und Reinigungsmittelformköφer dadurch gekennzeichnet, daß als Bleichaktivator Tetraacetylethylendiamm in den oben genannten Mengen eingesetzt wird.
Neben den genannten Inhaltsstoffen können die erfindungsgemäßen Wasch- und Reinigungsmittelformköφer weitere Inhaltsstoffe enthalten, deren Mengen sich nach dem Verwendungszweck der Formköφer richten. So sind insbesondere Stoffe aus den Gruppen der Tenside, der Gerüststoffe und der Polymere für den Einsatz in den erfindungsgemäßen Wasch- und Reinigungsmittelformköφer geeignet. Dem Fachmann wird es auch hier keine Schwierigkeiten bereiten, die einzelnen Komponenten und ihre Mengengehalte auszuwählen. So wird eine Universalwaschmitteltablette höhere Mengen an Tensid(en) enthalten, während bei einer Bleichmitteltabletten auf deren Einsatz eventuell sogar ganz verzichtet werden kann. Auch die Menge an Gerüststoff(en), die eingesetzt werden, variiert je nach beabsichtigtem Verwendungszweck.
In den erfindungsgemäßen Wasch- und Reinigungsmittelformköφern können alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und -wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen- auch die Phosphate. Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 Η2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A- 0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na^i^ ' yH2O bevorzugt, wobei ß-Natrium- disilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amoφhe Natriumsilikate mit einem Modul NajO : SiO2 von 1 :2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amoφhen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amoφh" auch "röntgenamoφh" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu inteφretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamor- phe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amoφhe Silikate, compoundierte amoφhe Silikate und übertrocknete röntgenamoφhe Silikate. Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa (l-n)K2O Al2O3 (2 - 2,5)SiO2 (3,5 - 5,5) H2O
beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granulären Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu veφres- senden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkoφoration des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Coun- ter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersub- stanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtri- phosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel- Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei. Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gern"3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gern"3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat,
Figure imgf000013_0001
bei höherer Temperatur in Natiumtrimetaphosphat
Figure imgf000013_0002
und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH- Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihy- drogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gern"3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)J und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gern"3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gern"3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gern"3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amoφhes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, NajP ,, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gern"3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39^40% P2O5) eine Dichte von 2,536 gern"3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gern"3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Er- hitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium- Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gern"3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gern"3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gern"3 dar, das in Wasser löslich ist, wobei der pH- Wert der l%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen ent- wässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall- Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphos- phat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%- igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH -» Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmit- telformköφern insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxy- late, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citro- nensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adi- pinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Buil- derwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH- Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV- Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäu- re-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbessung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE- A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/ Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyas- paraginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dial- dehyden mit Polyolcarbonsäuren, welche 5 bis 7 C- Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialde- hyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkata- lysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Poly- saccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglu- cosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A- 196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendia- mindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'- disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Gly- cerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathalti- gen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbon- säuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das l-Hydroxyethan-l,l-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Die Menge an Gerüststoff beträgt üblicherweise zwischen 10 und 70 Gew.-%, vorzugsweise zwischen 15 und 60 Gew.-% und insbesondere zwischen 20 und 50 Gew.-%. Wiederum ist die Menge an eingesetzten Buildern abhängig vom Verwendungszweck, so daß Bleichmitteltabletten höhere Mengen an Gerüststoffen aufweisen können (beispielsweise zwischen 20 und 70 Gew.-%, vorzugsweise zwischen 25 und 65 Gew.-% und insbesondere zwischen 30 und 55 Gew.-%), als beispielsweise Waschmitteltabletten (üblicherweise 10 bis 50 Gew.-%, vorzugsweise 12,5 bis 45 Gew.-% uns insbesondere zwischenl7,5 und 37,5 Gew.-%).
Bevorzugte Wasch- und Reinigungsmittelformköφer enthalten weiterhin ein oder mehrere Tensid(e).
In den erfindungsgemäßen Wasch- und Reinigungsmittelformköφern können anionische, nichtionische, kationische und/oder amphotere Tenside beziehungsweise Mischungen aus diesen eingesetzt werden. Bevorzugt sind aus anwendungstechnischer Sicht Mischungen aus anionischen und nichtionischen Tensiden. Der Gesamttensidgehalt der Formköφer liegt bei 5 bis 60 Gew.-%, bezogen auf das Formköφergewicht, wobei Tensidgehalte über 15 Gew.-% bevorzugt sind.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9.13- Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansul- fonaten sowie Disulfonaten, wie man sie beispielsweise aus C]2.18-Monoolefmen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasformigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12.,8-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglyce- rinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfieφrodukte von gesättigten Fett- säuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Ca- prinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalko- hol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf pe- trochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die CI2-C16-Alkylsulfate und C,2-C15- Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7.21 -Alkohole, wie 2-Methyl- verzweigte C9.π -Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12.18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobemsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8.18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbemsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kaliumoder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxy- lierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C- Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalko- holresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C- Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C,2.14-Alkohole mit 3 EO oder 4 EO, C9.n-Alkohol mit 7 EO, C13.15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12. 18- Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12.14-Alkohol mit 3 EO und C12.18-Alkohol mit 5 EO. Die angegebenen Ethoxy- lierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykose- einheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungs- grad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und pro- poxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkyl- kette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealka- nolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
R1
R-CO-N-[Z] (I)
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R* für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuk- kers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylie- rung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
R!-O-R2
I
R-CO-N-[Z] (II)
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Aryl- rest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C,.4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformköφer bevorzugt, die anionische(s) und nichtionische(s) Tensid(e) enthalten, wobei anwendungs- technische Vorteile aus bestimmten Mengenverhältnissen, in denen die einzelnen Tensidklassen eingesetzt werden, resultieren können.
So sind beispielsweise Wasch- und Reinigungsmittelformköφer besonders bevorzugt, bei denen das Verhältnis von Aniontensid(en) zu Niotensid(en) zwischen 10:1 und 1:10, vorzugsweise zwischen 7,5:1 und 1:5 und insbesondere zwischen 5:1 und 1:2 beträgt.
Es kann aus anwendungstechnischer Sicht Vorteile haben, wenn bestimmte Tensidklassen in einigen Phasen der Wasch- und Reinigungsmittelformköφer oder im gesamten Formköφer, d.h. in allen Phasen, nicht enthalten sind. Eine weitere wichtige Ausführungsform der vorliegenden Erfindung sieht daher vor, daß mindestens eine Phase der Formköφer frei von nichtionischen Tensiden ist.
Umgekehrt kann aber auch durch den Gehalt einzelner Phasen oder des gesamten Form- köφers, d.h. aller Phasen, an bestimmten Tensiden ein positiver Effekt erzielt werden. Das Einbringen der oben beschriebenen Alkylpolyglycoside hat sich dabei als vorteilhaft erwiesen, so daß Wasch- und Reinigungsmittelformköφer bevorzugt sind, in denen mindestens eine Phase der Formköφer Alkylpolyglycoside enthält.
Ähnlich wie bei den nichtionischen Tensiden können auch aus dem Weglassen von anionischen Tensiden aus einzelnen oder allen Phasen Wasch- und Reinigungsmittelformköφer resultieren, die sich für bestimmte Anwendungsgebiete besser eignen. Es sind daher im Rahmen der vorliegenden Erfindung auch Wasch- und Reinigungsmittelformköφer denkbar, bei denen mindestens eine Phase der Formköφer frei von anionischen Tensiden ist.
Um den Zerfall hochverdichteter Formköφer zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein- Derivate.
Bevorzugte Wasch- und Reinigungsmittelformköφer enthalten zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formköφergewicht.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittelformköφer ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H]0O5)n auf und stellt formal betrachtet ein ß-l,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy- Gruppen gegen funktioneile Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose- Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Cellulo- seester und -ether sowie Aminocellulosen.
Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist. Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu veφressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformköφer, die Sprengmittel in granulärer oder gegebenenfalls cogranulierter Form enthalten, werden in der deutschen Patentanmeldung DE 197 10 254 (Henkel) beschrieben. Solche Formköφer sind im Rahmen der vorliegenden Erfindung bevorzugt.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amoφhen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kom- paktierbar sind.
Als desintegrationsfordernde Systeme werden in Wasch- und Reinigungsmittelformkörpern oft auch sogenannte „Brausesysteme" eingesetzt. Üblicherweise werden in Brausesystemen oligomere Oligocarbonsäuren wie Bernsteinsäure, Maleinsäure und insbesondere Citronensäure in Kombination mit Carbonaten oder Hydrogencarbonaten eingesetzt. In bevorzugten Ausführungsformen der vorliegenden Erfindung ist der Wasch- und Reini- gungsmittelformköφer allerdings keine „Brausetablette", d.h. bevorzugte Wasch- und Reinigungsmittelformköφer sind frei von oligomeren Oligocarbonsäuren, insbesondere Citronensäure.
Technisch möglich ist auch die Beschichtung des Formköφers, mit einem Coating, das den gesamten Formköφer überzieht. Solche beschichteten Wasch- und Reinigungsmittelformköφer können durch Aufsprühen einer Schmelze oder Lösung des Coatingmaterials auf den Formköφer oder Eintauchen des Formköφers in die Schmelze oder Lösung hergestellt werden. In bevorzugten Ausführungsformen der vorliegenden Erfindung sind die Wasch- und Reinigungsmittelformköφer allerdings nicht mit einem Coating, das den gesamten Formköφer überzieht, beschichtet.
Durch den erfindungsgemäßen Einsatz des Percarbonats im genannten Teilchengrößenbereich und optional durch den Einsatz von Desintegrationshilfsmitteln unterstützt (siehe oben), lassen sich erfindungsgemäß Wasch- und Reinigungsmittelformköφer herstellen, welche bei hohen Härten in Wasser äußerst schnell in ihre Bestandteile zerfallen. Besonders bevorzugt sind im Rahmen der vorliegenden Erfindung Wasch- und Reinigungsmittelformköφer, die in Wasser bei 30°C in weniger als 60 Sekunden vollständig in ihre Sekundäφartikel zerfallen, welche so klein sind, daß sie sich über die Einspülkammer einer haushaltsüblichen Waschmaschine einspülen lassen.
Neben den genannten Bestandteilen Bleichmittel, Bleichaktivator, Builder, Tensid und Desintegrationshilfsmittel, können die erfindungsgemäßen Wasch- und Reinigungsmittelformköφer weitere in Wasch- und Reinigungsmittel übliche Inhaltsstoffe aus der Gruppe der Farbstoffe, Duftstoffe, optischen Aufheller, Enzyme, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthalten. Um den ästhetischen Eindruck der erfindungsgemäßen Wasch- und Reinigungsmittelformköφer zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Bevorzugt für den Einsatz in den erfindungsgemäßen Wasch- und Reinigungsmittelform- köφern sind alle Färbemittel, die im Waschprozeß oxidativ zerstört werden können sowie Mischungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönern. Es hat sich als vorteilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z.B. anionische Nitrosofarbstoffe. Ein mögliches Färbemittel ist beispielsweise Naphtholgrün (Colour Index (CI) Teil 1: Acid Green 1; Teil 2: 10020), das als Handelsprodukt beispielsweise als Basacid® Grün 970 von der Fa. BASF, Ludwigshafen, erhältlich ist, sowie Mischungen dieser mit geeigneten blauen Farbstoffen. Als weitere Färbemittel kommen Pigmosol® Blau 6900 (CI 74160), Pigmosol® Grün 8730 (CI 74260), Basonyl® Rot 545 FL (CI 45170), Sandolan® Rhodamin EB400 (CI 45100), Basacid® Gelb 094 (CI 47005), Sicovit® Patentblau 85 E 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol® Blau GLW (CAS 12219-32-8, CI Acidblue 221)), Nylosan® Gelb N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) und/oder Sandolan® Blau (CI Acid Blue 182, CAS 12219-26-0) zum Einsatz.
Bei der Wahl des Färbemittels muß beachtet werden, daß die Färbemittel keine zu starke Affinität gegenüber den textilen Oberflächen und hier insbesondere gegenüber Kunstfasern aufweisen. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, daß Färbemittel unterschiedliche Stabilitäten gegenüber der Oxidation aufweisen. Im allgemeinen gilt, daß wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasserlösliche Färbemittel. Abhängig von der Löslichkeit und damit auch von der Oxidati- onsempfindlichkeit variiert die Konzentration des Färbemittels in den Wasch- oder Reini- gungsmitteln. Bei gut wasserlöslichen Färbemitteln, z.B. dem oben genannten Basacid Grün oder dem gleichfalls oben genannten Sandolan® Blau, werden typischerweise Färbemittel-Konzentrationen im Bereich von einigen 10"2 bis 10"3 Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen Pigmentfarbstoffen, z.B. den oben genannten Pigmosol®-Farbstoffen, liegt die geeignete Konzentration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10"3 bis 10"4 Gew.-%.
Die Formköφer können optische Aufheller vom Typ der Derivate der Diaminostilbendi- sulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'- Bis(2-anilino-4-moφholino- 1 ,3 ,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Moφholino-Gruppe eine Diethanolamino- gruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylamino- gruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3- sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Die optischen Aufheller werden in den erfindungsgemäßen Wasch- und Reinigungsmittelformköφer in Konzentrationen zwischen 0,01 und 1 Gew.-%, vorzugsweise zwischen 0,05 und 0,5 Gew.-% und insbesondere zwischen 0,1 und 0,25 Gew.-%, jeweils bezogen auf den gesamten Formköφer, eingesetzt.
Duftstoffe werden den erfindungsgemäßen Mitteln zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Leistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl- carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl- glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethy lether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hy- droxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, <x- Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Teφineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Teφene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Pat- chouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Ka- millenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt der erfindungsgemäßen Wasch- und Reinigungsmittelformköφer an Duftstoffen bis zu 2 Gew.-% der gesamten Formulierung. Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Als Enzyme kommen insbesondere solche aus der Klassen der Hydrolasen wie der Protea- sen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verfleckungen und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha- Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und -Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase- Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-% betragen.
Zusätzlich können die Wasch- und Reinigungsmittelformköφer auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methyl- cellulose und Methylhydroxy-propylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäu- re-Polymere.
Die Herstellung wasch- und reinigungsaktiver Formköφer geschieht durch Anwendung von Druck auf ein zu veφressendes Gemisch, das sich im Hohlraum einer Presse befindet. Im einfachsten Fall der Formköφerherstellung, die nachfolgend vereinfacht Tablettierung genannt wird, wird die zu tablettierende Mischung direkt, d.h. ohne vorhergehende Granulation veφreßt. Die Vorteile dieser sogenannten Direkttablettierung sind ihre einfache und kostengünstige Anwendung, da keine weiteren Verfahrensschritte und demzufolge auch keine weiteren Anlagen benötigt werden. Diesen Vorteilen stehen aber auch Nachteile gegenüber. So muß eine Pulvermischung, die direkt tablettiert werden soll, eine ausreichende plastische Verformbarkeit besitzen und gute Fließeigenschaften aufweisen, weiterhin darf sie während der Lagerang, des Transports und der Befüllung der Matrize keinerlei Entmischungstendenzen zeigen. Diese drei Voraussetzungen sind bei vielen Substanzgemischen nur außerordentlich schwierig zu beherrschen, so daß die Direkttablettierung insbesondere bei der Herstellung von Wasch- und Reinigungsmittel-tabletten nicht oft angewendet wird. Der übliche Weg zur Herstellung von Wasch- und Reinigungsmitteltabletten geht daher von pulverförmigen Komponenten ("Primärteilchen") aus, die durch geeignete Verfahren zu Sekundäφartikeln mit höherem Teilchendurchmesser agglomeriert bzw. granuliert werden. Diese Granulate oder Gemische unterschiedlicher Granulate werden dann mit einzelnen pulverförmigen Zuschlagstoffen vermischt und der Tablettierung zugeführt.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper werden durch Veφressen eines teilchenförmigen Vorgemischs aus mindestens einem tensidhaltigen Granulat und mindestens einer nachträglich zugemischten pulverformigen Komponente erhalten. Die tensidhaltigen Granulate können dabei über übliche Granulier- verfahren wie Mischer- und Tellergranulation, Wirbelschichtgranulation, Extrusion, Pelletierung oder Kompaktierung hergestellt werden. Es ist dabei für die späteren Wasch- und Reinigungsmittelformköφer von Vorteil, wenn das zu veφressende Vorgemisch ein Schüttgewicht von mindestens 500 g/1, vorzugsweise mindestens 600 g/1 und insbesondere oberhalb von 700 g/1, aufweist. Ein weiterer Vorteil kann aus einer engeren Teilchengrößenverteilung der eingesetzten Tensidgranulate resultieren. Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformköφer bevorzugt, bei denen die Granulate Teilchengrößen zwischen 10 und 4000 μm, vorzugsweise zwischen 100 und 2000 μm und insbesondere zwischen 600 und 1400 μm aufweisen.
Es ist weiterhin bevorzugt, daß die nachträglich zugemischte(n) Komponente(n) das Natriumpercarbonat in der genannten erfindungsgemäßen Teilchengrößenverteilung umfaßt.
Vor der Veφressung des teilchenförmigen Vorgemischs zu Wasch- und Reinigungsmittel- formköφern kann das Vorgemisch mit feinteiligen Oberflächenbehandlungsmitteln "abgepudert" werden. Dies kann für die Beschaffenheit und physikalischen Eigenschaften sowohl des Vorgemischs (Lagerung, Veφressung) als auch der fertigen Wasch- und Reinigungsmittelformköφer von Vorteil sein. Feinteilige Abpuderungsmittel sind im Stand der Technik altbekannt, wobei zumeist Zeolithe, Silikate oder andere anorganische Salze eingesetzt werden. Bevorzugt wird das Vorgemisch jedoch mit feinteiligem Zeolith "abgepudert", wobei Zeolithe vom Faujasit-Typ bevorzugt sind. Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Neben dem Zeolith X sind also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeo- lithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind als Abpu- derungsmittel einsetzbar, wobei es von Vorteil ist, wenn mindestens 50 Gew.-% des Abpu- derungsmittels aus einem Zeolithen vom Faujasit-Typ bestehen.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformköφer bevorzugt, die aus einem teilchenförmigen Vorgemisch bestehen, das granuläre Komponenten und nachträglich zugemischte pulverfÖrmige Stoffe enthält, wobei die bzw. eine der nachträglich zugemischten pulverförmigen Komponenten ein Zeolith vom Faujasit-Typ mit Teilchengrößen unterhalb lOOμm, vorzugsweise unterhalb lOμm und insbesondere unterhalb 5μm ist und mindestens 0,2 Gew.-%, vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu veφressenden Vorgemischs ausmacht.
Die feinteiligen Aufbereitungskomponenten mit den obengenannten Teilchengrößen können dabei dem zu veφressenden Vorgemisch trocken zugemischt werden. Es ist aber auch möglich und bevorzugt, sie durch Zugabe geringer Mengen flüssiger Stoffe an die Oberfläche der gröberen Teilchen "anzukleben". Diese Abpuderungsverfahren sind im Stand der Technik breit beschrieben und dem Fachmann geläufig. Als flüssige Komponenten, die sich zur Haftvermittlung der Abpuderangsmittel eignen, können beispielsweise nichtionischen Tenside oder wäßrige Lösungen von Tensiden oder anderen Wasch- und Reinigungsmittelinhaltsstoffen eingesetzt werden. Im Rahmen der vorliegenden Erfindung ist es bevorzugt, als flüssigen Haftvermittler zwischen feinteiligem Abpuderangsmittel und den grobkörnigen Teilchen Parfüm einzusetzen.
Zur Herstellung der erfindungsgemäßen Formköφer werden die Vorgemische in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfachoder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Ver- pressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohran- gen entsprechend erweitert ist. Die Durchsätze von Exzenteφressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Be- füllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befül- lung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für die Vorgemische verbunden ist. Der Preßdruck auf das jeweilige Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Drackaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Drackrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formköφer werden mehrere Füll- schuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Veφressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formköφer pro Stunde.
Bei der Tablettierung mit Rundläufeφressen hat es sich als vorteilhaft erwiesen, die Tablettierung mit möglichst geringen Gewichtschwankungen der Tablette durchzuführen. Auf diese Weise lassen sich auch die Härteschwankungen der Tablette reduzieren. Geringe Gewichtschwankungen können auf folgende Weise erzielt werden:
- Verwendung von Kunststoffeinlagen mit geringen Dickentoleranzen
- Geringe Umdrehungszahl des Rotors
- Große Füllschuhe
- Abstimmung des Füllschuhflügeldrehzahl auf die Drehzahl des Rotors
- Füllschuh mit konstanter Pulverhöhe
- Entkopplung von Füllschuh und Pulvervorlage
Zur Verminderung von Stempelanbackungen bieten sich sämtliche aus der Technik bekannte Antihaftbeschichtungen an. Besonders vorteilhaft sind Kunststoffbeschichtungen, Kunststoffeinlagen oder Kunststoffstempel. Auch drehende Stempel haben sich als vorteilhaft erwiesen, wobei nach Möglichkeit Ober- und Unterstempel drehbar ausgeführt sein sollten. Bei drehenden Stempeln kann auf eine Kunststoffeinlage in der Regel verzichtet werden. Hier sollten die Stempeloberflächen elektropoliert sein.
Es zeigte sich weiterhin, daß lange Preßzeiten vorteilhaft sind. Diese können mit Drack- schienen, mehreren Druckrollen oder geringen Rotordrehzahlen eingestellt werden. Da die Härteschwankungen der Tablette durch die Schwankungen der Preßkräfte verursacht werden, sollten Systeme angewendet werden, die die Preßkraft begrenzen. Hier können elastische Stempel, pneumatische Kompensatoren oder federnde Elemente im Kraftweg eingesetzt werden. Auch kann die Druckrolle federnd ausgeführt werden.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Hörn & Noack Pharmatechnik GmbH, Worms, IMA Veφackungssysteme GmbH Viersen, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen AG, Berlin, sowie Romaco GmbH, Worms. Weitere Anbieter sind beispielsweise Dr. Herbert Pete, Wien (AU), Mapag Maschinenbau AG, Bern (CH), BWI Manesty, Li- veφool (GB), I. Holand Ltd., Nottingham (GB), Courtoy N.V., Halle (BE/LU) sowie Me- diopharm Kamnik (SI). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D. Tablettierwerkzeuge sind beispielsweise von den Firmen Adams Tablettierwerkzeuge, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber % Söhne GmbH, Hamburg, Hofer GmbH, Weil, Hörn & Noack, Pharmatechnik GmbH, Worms, Ritter Pharamatechnik GmbH, Hamburg, Romaco, GmbH, Worms und Notter Werkzeugbau, Tamm erhältlich. Weitere Anbieter sind z.B. die Senss AG, Reinach (CH) und die Medicopharm, Kamnik (SI).
Die Formköφer können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden, wobei sie immer aus mehreren Phasen, d.h. Schichten, Einschlüssen oder Kernen und Ringen bestehen. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stabbzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderformige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1. Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungsmittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe- Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Exzenteφressen oder Rundläufeφressen sind geeignete Vorrichtungen insbesondere zur Herstellung derartiger Preßlinge.
Die Raumform einer anderen Ausführangsform der Formköφer ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formköφer ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmittelformköφer über eine Dosierhilfe problemlos möglich.
Ein weiterer bevorzugter mehφhasiger Formköφer, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Mehφhasen-Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Formköφerwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiek- ken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden. Hier bietet es sich aus optischen Gründen an, die Dreiecksbasis, die die einzelnen Segmente miteinander verbindet, als eine Phase auszubilden, während die Dreiecksspitze die zweite Phase bildet. Eine unterschiedliche Anfärbung beider Phasen ist in dieser Ausführangsform besonders reizvoll. Als optische Differenzierung kann neben der Form und einem mehrschichtigen Aufbau auch eine Einarbeitung von farbigen Partikeln, sogenannten Sprenkeln, in die Formköφer erfolgen. Hierbei kann beispielsweise ein weißer Formköφer homogen mit farbigen, beispielsweise blauen, roten, grünen, gelben usw., Sprenkeln eingefärbt werden. Um eine homogene Verteilung der farbigen Sprenkel über die gesamte Tablette und damit einen visuell attraktiven Formköφer bereitzustellen, sollte die Menge an Farbsprenkeln und ihre Teilchengröße dem übrigen Vorgemisch, das die Formköφermatrix bildet, aus welcher die Sprenkel optisch hervortreten, angepaßt werden. Weist eine Tablettiermischung beispielsweise ein Kornspektrum von 200 bis 1800 μm auf, so erzielen Sprenkel, die sich im gleichen oder gröberen Kornspektrum bewegen, erst oberhalb eines Schwellenwertes von > 6 Gew.-%, bezogen auf die Tablettiermischung, eine homogene Verteilung. Geringere Mengen führen dann zu optisch unschöner Häufung von Sprenkeln in einigen Formköφerbe- reichen, während andere Bereiche nahezu ungesprenkelt bleiben. Um auch bei niedrigeren Einsatzkonzentrationen an eingefärbten Partikeln einen homogene Eindruck zu erzielen, empfiehlt es sich, die Teilchengröße der Farbsprenkel-Partikel zu reduzieren. So wird in vorstehendem Beispiel der Tablettiermischung im Komspektram von 200 bis 1800 μm schon mit 2 bis 3 Gew.-% Farbsprenkelpartikeln eine homogene Verteilung der Sprenkel erreicht, wenn diese Teilchengrößen zwischen 200 und 800 μm aufweisen.
Durch eine homogene Sprenkelung, die in der vorstehend beschriebenen Weise durch Anpassung der Sprenkelpartikelgröße und -menge an das Vorgemisch erreicht werden kann, läßt sich auch ein Schichtaufbau der Formköφer visualisieren. Auf diese Weise sind zwei- oder mehrschichtige Formköφer herstellbar, deren eine Schicht ungefärbt ist, während eine zweite Schicht durch Sprenkel optisch hervorgehoben wird. Dieses Konzept kann beispielsweise auch auf dreischichtige Tabletten übertragen werden, in denen eine Schicht ungefärbt, die zweite gesprenkelt und die dritte durchgefärbt ist. Neben der Einfärbung von Schichten können beispielsweise auch Kerne oder andere Teilbereiche in Kern- Manteltabletten, Ringkerntabletten oder Punkttabletten eingefärbt oder eingesprenkelt werden. Bei der Variation dieser Realisierangsmöglichkeiten zur optischen Differenzierung sind dem Fachmann kaum Grenzen gesetzt. Nach dem Veφressen weisen die Wasch- und Reinigungsmittelformköφer eine hohe Stabilität auf. Die Bruchfestigkeit zylinderformiger Formköφer kann über die Meßgröße der diametralen Brachbeansprachung erfaßt werden. Diese ist bestimmbar nach
2 σ = πDt
Hierin steht σ für die diametrale Brachbeansprachung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formköφer ausgeübten Drack führt, der den Brach des Formköφers verursacht, D ist der Formköφerdurchmesser in Meter und t ist die Höhe der Formköφer.
Beispiele:
Zur Herstellung Natriumpercarbonat-haltiger Wasch- und Reinigungsmittelformköφer wurde ein Tensidgranulat mit weiteren Aufbereitungskomponenten vermischt und auf einer Exzenter-Tablettenpresse zu Formköφern veφreßt. Das über die Aufbereitungskomponenten zugegebene Natriumpercarbonat wies dabei je nach Formköφer-Serie unterschiedliche Teilchengrößenverteilungen auf. Die Zusammensetzung des Tensidgranulats ist in der folgenden Tabelle 1 angegeben, die Zusammensetzung des zu veφressenden Vorgemischs (und damit die Zusammensetzung der Formköφer) findet sich in Tabelle 2. Tabelle 3 zeigt die Teilchengrößenverteilungen des in den unterschiedlichen Formköφern eingesetzten Natriumpercarbonats.
Tabelle 1 : Tensidgranulat [Gew.-%]
Figure imgf000042_0001
Tabelle 2: Vorgemisch [Gew.-%]
Figure imgf000043_0001
Oxyper® S14X (Solvay-Interox)
Tabelle 3: Natriumpercarbonat: Teilchengrößenverteilung [Gew.-%]
Figure imgf000043_0002
Die tablettierfähigen Vorgemische wurden in einer Korsch-Exzenteφresse zu Tabletten (Durchmesser: 44 mm, Höhe: 22 mm, Gewicht: 37,5 g) veφreßt. Dabei wurde der Preß- drack so eingestellt, daß jeweils drei Serien von Formköφern erhalten wurden (E, E', E" und V, V, V"), die sich in ihrer Härte unterscheiden. Die Härte der Tabletten wurde durch Verformung der Tablette bis zum Brach gemessen, wobei die Kraft auf die Seitenflächen der Tablette einwirkte und die maximale Kraft, der die Tablette standhielt, ermittelt wurde.
Zur Bestimmung des Tablettenzerfalls wurde die Tablette in ein Becherglas mit Wasser gelegt (600ml Wasser, Temperatur 30°C) und die Zeit bis zum vollständigen Tablettenzerfall gemessen. Die experimentellen Daten der einzelnen Tablettenserien zeigt Tabelle 4:
Tabelle 4: Waschmitteltabletten [physikalische Daten]
Figure imgf000044_0001

Claims

Patentansprüche:
1. Wasch- und Reinigungsmittelformköφer aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, umfassend Natriumpercarbonat, Gerüststoff(e) sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile, dadurch gekennzeichnet, daß mindestens 60 Gew.-% der Natriumpercarbonat-Teilchen eine Teilchengröße unterhalb 0,8 mm aufweisen.
2. Wasch- und Reinigungsmittelformköφer nach Ansprach 1, dadurch gekennzeichnet, daß mindestens 70 Gew.-%, vorzugsweise mindestens 80 Gew.-% und insbesondere mindestens 90 Gew.-%, der Natriumpercarbonat-Teilchen eine Teilchengröße unterhalb 0,8 mm aufweisen.
3. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Natriumpercarbonat substantiell frei von Teilchen mit Größen oberhalb 1,2 mm ist.
4. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Natriumpercarbonat mehr als 40 Gew.-%, vorzugsweise mehr als 50 Gew.-% und insbesondere mehr als 60 Gew.-% Teilchen einer Größe unterhalb 0,6 mm aufweist.
5. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Natriumpercarbonat mehr als 10 Gew.-%, vorzugsweise mehr als 20 Gew.-% und insbesondere mehr als 25 Gew.-% Teilchen einer Größe unterhalb 0,4 mm aufweist.
6. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie frei von oligomeren Oligocarbonsäuren, insbesondere Citro- nensäure, sind.
7. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formköφergewicht, enthalten.
8. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie nicht mit einem Coating, das den gesamten Formköφer überzieht, beschichtet sind.
9. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie in Wasser bei 30°C in weniger als 60 Sekunden vollständig in ihre Sekundäφartikel zerfallen.
10. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Formköφer weiterhin ein oder mehrere Bleichaktivator(en) enthält.
11. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Formköφer weiterhin ein oder mehrere Tensid(e) enthält.
12. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß sie durch Veφressen eines teilchenförmigen Vorgemischs aus mindestens einem tensidhaltigen Granulat und mindestens einer nachträglich zugemischten pulverförmigen Komponente erhalten wurden.
13. Wasch- und Reinigungsmittelformköφer nach Ansprach 12, dadurch gekennzeichnet, daß die Granulate über übliche Granulierverfahren wie Mischer- und Tellergranulation, Wirbelschichtgranulation, Extrusion, Pelletierang oder Kompaktierung hergestellt wurden.
14. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, daß die Granulate Teilchengrößen zwischen 10 und 4000 μm, vorzugsweise zwischen 100 und 2000 μm und insbesondere zwischen 600 und 1400 μm aufweisen.
15. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, daß die nachträglich zugemischte(n) pulverformige(n) Komponente(n) das Natriumpercarbonat umfaßt.
16. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, daß das zu veφressende Vorgemisch ein Schüttgewicht von mindestens 500 g/1, vorzugsweise mindestens 600 g/1 und insbesondere oberhalb von 700 g/1, aufweist.
17. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 16, enthaltend weiterhin einen oder mehrere Stoffe aus der Gruppe der Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertra- gungsinhibitoren und Korrosionsinhibitoren.
PCT/EP1999/006835 1998-09-24 1999-09-15 Wasch- und reinigungsmittelformkörper mit natriumpercarbonat WO2000017307A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1998143778 DE19843778A1 (de) 1998-09-24 1998-09-24 Wasch- und Reinigungsmittelformkörper mit Natriumpercarbonat
DE19843778.1 1998-09-24

Publications (1)

Publication Number Publication Date
WO2000017307A1 true WO2000017307A1 (de) 2000-03-30

Family

ID=7882070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/006835 WO2000017307A1 (de) 1998-09-24 1999-09-15 Wasch- und reinigungsmittelformkörper mit natriumpercarbonat

Country Status (2)

Country Link
DE (1) DE19843778A1 (de)
WO (1) WO2000017307A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8025972B2 (en) 2004-06-29 2011-09-27 SOLVAY (Société Anonyme Coated sodium percarbonate particles having excellent long term stability, process for their production, their use and detergent compositions containing them
US8034758B2 (en) 2004-06-29 2011-10-11 Solvay (Societe Anonyme) Coated sodium percarbonate particles, process for their production, their use and detergent compositions containing them

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19920119A1 (de) * 1999-05-03 2000-11-09 Henkel Kgaa Waschverfahren mit Waschmitteltabletten
DE102004020082A1 (de) * 2004-04-24 2005-05-19 Henkel Kgaa Verfahren zur Herstellung von Wasch- und/oder Reinigungsmitteln

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953350A (en) * 1973-10-25 1976-04-27 Kao Soap Co., Ltd. Foaming bleaching composition
EP0481793A1 (de) * 1990-10-19 1992-04-22 Unilever Plc Detergenszusammensetzungen in Tablettenform
EP0737738A2 (de) * 1995-04-12 1996-10-16 Cleantabs A/S Bleichmitteltabletten
WO1998030670A2 (en) * 1997-01-10 1998-07-16 Gerald Thomas Hinton Bleaching compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3953350A (en) * 1973-10-25 1976-04-27 Kao Soap Co., Ltd. Foaming bleaching composition
EP0481793A1 (de) * 1990-10-19 1992-04-22 Unilever Plc Detergenszusammensetzungen in Tablettenform
EP0737738A2 (de) * 1995-04-12 1996-10-16 Cleantabs A/S Bleichmitteltabletten
WO1998030670A2 (en) * 1997-01-10 1998-07-16 Gerald Thomas Hinton Bleaching compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8025972B2 (en) 2004-06-29 2011-09-27 SOLVAY (Société Anonyme Coated sodium percarbonate particles having excellent long term stability, process for their production, their use and detergent compositions containing them
US8034758B2 (en) 2004-06-29 2011-10-11 Solvay (Societe Anonyme) Coated sodium percarbonate particles, process for their production, their use and detergent compositions containing them

Also Published As

Publication number Publication date
DE19843778A1 (de) 2000-03-30

Similar Documents

Publication Publication Date Title
DE19920118B4 (de) Wasch- und Reinigungsmittelformkörper mit Beschichtung und Verfahren zu seiner Herstellung
DE19955240A1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
EP1165742B1 (de) Ein- oder mehrphasige wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
EP1123378B1 (de) Wasch- und reinigungsmittelformkörper mit wasserfrei granuliertem brausesystem
EP1138756A2 (de) Wasch-und Reinigungsmittelformkörper mit speziellem Tensidgranulat
EP1165741B1 (de) Wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
WO2000075273A1 (de) Mehrphasige wasch- und reinigungsmittelformkörper mit parfüm
EP1188820B1 (de) Wasch- und Reinigungsmittelformkörper mit Polyurethan-Beschichtung
WO2000014196A1 (de) Waschmitteltabletten mit bindemitteln
WO2000017307A1 (de) Wasch- und reinigungsmittelformkörper mit natriumpercarbonat
EP1123380A1 (de) Wasch- und reinigungsmittelformkörper/verpackung-kombination
EP1159392B1 (de) Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination
DE19925503A1 (de) Mehrphasige Wasch- und Reinigungsmittelformkörper mit optischen Aufhellern
DE10026334A1 (de) Wasch- und Reinigungsmittelformkörper mit Pfropfcopolymer-Beschichtung
DE10044073A1 (de) Beschichtete Tabletten und Verfahren zur Tablettenbeschichtung
WO2000022087A1 (de) Wasch- und reinigungsmittelformkörper mit organischen oligocarbonsäuren
WO2000065017A1 (de) Bleichmittelhaltige waschmitteltabletten
WO2000017305A1 (de) Wasch- und reinigungsmittelformkörper mit grobteiligen aufbereitungskomponenten
WO2001014512A1 (de) Wasch- oder reinigungsmittelformkörper
WO2000022086A1 (de) Bleichaktivator-haltige wasch- und reiningungsmittelformkörper
WO2000015753A1 (de) Abs-haltige wasch- und reinigungsmittelformkörper
WO2000053716A1 (de) Wasch- und reinigungsmittelformkörper mit tensid-builderkombination
DE19919445A1 (de) Wasch- und Reinigungsmittelformkörper mit festen Bindemitteln
WO2000017306A1 (de) Wasch- und reinigungsmittelformkörper mit feinteiligen aufbereitungskomponenten
DE102004020009A1 (de) Wasch- und Reinigungsmittelformkörper mit Celluloseetherderivat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): HU JP KR PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 501201

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: GB

Ref document number: 200106944

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642