WO2000075273A1 - Mehrphasige wasch- und reinigungsmittelformkörper mit parfüm - Google Patents

Mehrphasige wasch- und reinigungsmittelformkörper mit parfüm Download PDF

Info

Publication number
WO2000075273A1
WO2000075273A1 PCT/EP2000/004725 EP0004725W WO0075273A1 WO 2000075273 A1 WO2000075273 A1 WO 2000075273A1 EP 0004725 W EP0004725 W EP 0004725W WO 0075273 A1 WO0075273 A1 WO 0075273A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
perfume
phase
detergent
oil
Prior art date
Application number
PCT/EP2000/004725
Other languages
English (en)
French (fr)
Inventor
Hans-Friedrich Kruse
Hubert Freese
Andreas Lietzmann
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to AU50712/00A priority Critical patent/AU5071200A/en
Priority to CA002335039A priority patent/CA2335039A1/en
Publication of WO2000075273A1 publication Critical patent/WO2000075273A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets

Definitions

  • the present invention relates to multi-phase detergent tablets.
  • the invention relates to multi-phase detergent tablets which are used for washing textiles in a household washing machine and are referred to as detergent tablets for short.
  • the form of highly compressed molded articles has a number of advantages which make it desirable to also provide washing and cleaning agents in this form.
  • detergent tablets which are often referred to as detergent tablets for short, which has the particular task of overcoming a central problem of the "tablet" form: the dichotomy between the hardness of the tablets on the one hand and their rate of disintegration on the other hand.
  • Adequate hardness is essential for the packaging, storage, transport and handling of the moldings, while the disintegration properties have a decisive influence on the washing process and a sufficiently rapid disintegration is imperative for the formation of a sufficiently concentrated washing liquor.
  • Two-phase or multi-phase detergent tablets made of compressed particulate detergent, which contain surfactant (s), builder (s) and optionally further detergent and cleaning agent components and in which the surfactant content of the individual phases of the tablet by no more than 3% by weight, based on the weight of the individual phase, varies, are described in the older German patent application DE 198 03 409.1 (Henkel).
  • the detergent tablets disclosed in this document have identical perfume contents in the individual phases.
  • Detergent tablets for automatic dishwashing which contain bleach, bleach activator, perfume and optionally other detergent ingredients and consist of at least two phases, whereby the perfume is not contained in one phase together with the bleach and the bleach activator, are described in the older German patent application DE 198 38 127.1 (Henkel).
  • This document discloses surfactant poor detergent tablets, in which one phase contains perfume, while a second phase is fragrance-free.
  • the problem of incorporating larger amounts of fragrance in the presence of high amounts of surfactant and achieving short disintegration times are not mentioned in this document, since tablets for machine dishwashing have disintegration and dissolving times of several minutes, which are not acceptable for detergent tablets.
  • Perfume-free detergent tablets are the subject of the older German patent application DE 198 52 136.7 (Henkel).
  • the tablets disclosed in this document have high hardness with short disintegration times, which, however, requires the complete absence of fragrances.
  • the incorporation of perfume into detergent tablets is naturally not described in this application.
  • the older German patent application DE 199 03 288.2 (Henkel) describes two-phase or multi-phase detergent tablets which contain surfactant (s), builders (e) and, if appropriate, further detergent and cleaning agent components and in which the surfactant content of the individual phases of the tablet is changed more than 3% by weight, based on the weight of the individual phase, varies, in the phase (s) with the higher surfactant content a cellulose-containing disintegrant which has a maximum of 10% by weight of particles with a particle size below 200 ⁇ m , is contained in higher quantities than in the phase (s) with a lower surfactant content.
  • the two-layer tablets disclosed in the examples of this document contain 0.7% by weight of perfume in the larger layer, while the smaller layer is free of perfume.
  • the problem underlying the present invention was to provide multiphase detergent tablets which contain perfume at a high surfactant content and nevertheless disintegrate quickly, the disintegration and solubility times of the individual phases being said to show little to no difference.
  • shaped articles should be provided which, with the reduced use of perfume and / or other raw materials, have the same performance level as conventional shaped articles. It has now been found that the above-mentioned tasks can be solved if the perfume is not distributed evenly over the entire shaped body, but is present in different concentrations in the individual phases.
  • the invention relates to two-phase or multi-phase detergent tablets made of compressed particulate detergent and detergent, comprising more than 2% by weight of surfactant (s), builder (s), perfume and optionally further detergent and detergent components in which the Perfume content of the individual phases of the shaped body, based on the weight of the individual phase, varies by more than 0.75% by weight, preferably by more than 1% by weight and in particular by more than 1.5% by weight.
  • surfactant s
  • builder s
  • perfume optionally further detergent and detergent components in which the Perfume content of the individual phases of the shaped body, based on the weight of the individual phase, varies by more than 0.75% by weight, preferably by more than 1% by weight and in particular by more than 1.5% by weight.
  • the variation by more than 0.75% by weight, based on the weight of the individual phases means that the absolute values of the perfume content in the phases vary by more than 0.75% by weight.
  • the perfume content of the other phase (s) should be selected according to the invention such that the width of the variation around the value 2.0 is at least 0.75% by weight, that is is below 1.25% by weight or above 2.75% by weight, in each case based on the phase.
  • the percentage value of the perfume content of the least perfume phase is subtracted from the percentage number value of the perfume content of the most perfume phase, the result being> 0.75.
  • the greatest possible difference in perfume content in the individual phases can be achieved if at least one phase contains perfume, while at least one other phase is free of perfume.
  • the perfume-containing phase must contain at least 0.75% by weight of perfume, based on its weight, since otherwise the variation of the perfume content according to the invention is not given.
  • the individual phases of the shaped body can have different spatial shapes.
  • the simplest possible implementation is in two- or multi-layer tablets, with each layer of the shaped body representing a phase.
  • ring-core tablets coated tablets or combinations of the above-mentioned embodiments are possible, for example.
  • Examples of multi-phase moldings can be found in the illustrations in EP-A-0 055 100 (Jeyes), which describes toilet cleaning blocks.
  • the most widespread spatial form of multi-phase tablets is the two- or multi-layer tablet.
  • it is therefore preferred that the phases of the shaped body have the form of layers.
  • the differences in the perfume content of the individual phases can be realized, for example, by the fact that each phase contains a different perfume, the perfume contents differing in the phases. In this way, different fragrance impressions can be realized for each individual phase or the composition of the perfumes can be adapted to the other ingredients of the phase in question. For reasons of manufacturing economy, however, it is preferred if the detergent tablets according to the invention have two layers which contain the same perfume in different amounts.
  • perfume-free As already mentioned, the greatest possible difference in perfume content can be achieved by combining perfume-free with perfume-containing phases.
  • the proportion of the individual phases in the total tablet can be varied within wide limits.
  • detergent tablets are preferred in which the two layers of the tablet in a weight ratio of 5 to 95 to 50 to 50, preferably 10 to 90 to 60 to 40 and in particular 15 to 85 to 65 35 stand, the perfume is preferably concentrated in the proportionately lower layer.
  • the detergent tablets according to the invention contain more than 2% by weight of surfactant (s), builder (s), perfume and, if appropriate, further detergent and cleaning agent components. These are described below.
  • fragrance oils are essential oils, flower oils, extracts from plant and animal drugs, isolated from natural products, chemically modified (semi-synthetic) and purely synthetic "Fragrances" is the colloquial collective name for those fragrances that trigger a pleasant smell in humans and are therefore suitable for perfuming detergents and cleaning agents. In a broader sense, essences and aromas can also be added to the fragrances.
  • fragrance compounds for example the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert.-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allylcyclohexyl benzylatepylpropionate
  • the ethers include, for example, benzylethyl ether, for the aldehydes, for example the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cycl
  • Perfume oils of this type can also contain natural fragrance mixtures such as are obtainable from plant sources, for example pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • fragrance substances In order to be perceptible, a fragrance substance must be volatile, whereby in addition to the nature of the functional groups and the structure of the chemical compound, the molar mass also plays an important role plays. Most odoriferous substances have molecular weights of up to about 200 daltons, while molecular weights of 300 daltons and more are an exception. Due to the different volatility of odoriferous substances, the smell of a perfume or fragrance composed of several odoriferous substances changes during evaporation, whereby the odor impressions are described in "top note”, “heart or middle note” (middle note or body) and “base note” (end note or dry out).
  • the top note of a perfume or fragrance mixture does not consist solely of volatile compounds, while the base note largely consists of less volatile, ie non-stick fragrances.
  • more volatile fragrances can be bound to certain fixatives, for example, which prevents them from evaporating too quickly.
  • fixatives for example, which prevents them from evaporating too quickly.
  • Adhesive odoriferous substances which can be used in the context of the present invention are, for example, the essential oils such as angelica root oil, anise oil, arnica flower oil, basil oil, bay oil, bergamot oil, champa flower oil, noble fir oil, noble pine cone oil, elemi oil, eucalyptus oil, fennel oil, galtonane oil, fichane oil, fichane oil.
  • fragrances of natural or synthetic origin can also be used in the context of the present invention as adhesive fragrances or fragrance mixtures, that is to say fragrances.
  • These compounds include the compounds mentioned below and mixtures of these: ambrettolide, ⁇ -amyl cinnamaldehyde, anethole, anisaldehyde, anis alcohol, anisole, anthranilic acid methyl ester, acetophenone, benzylacetone, benzaldehyde, benzoic acid ethyl ester, benzophenone, benzyl alcohol, benzyl acetate, benzyl formate benzyl formate benzyl formate - valerianat, borneol, bornylacetate, n-decylaldehyde, n-dodecylaldehyde, eugenol, eugenol methyl ether, eucalyptol, farne
  • the more volatile fragrances include, in particular, the lower-boiling fragrances of natural or synthetic origin, which can be used alone or in mixtures.
  • Examples of more volatile fragrances are alkyisothiocyanates (alkyl mustards), butanedione, limonene, linalool, linaylacetate and propionate, menthol, menthone, methyl-n-heptenone, phellandrene, phenylacetaldehyde, te ⁇ inylacetate, citral, citronellal.
  • the content of the individual phases of the molded article can be varied as described above, it being preferred to incorporate the perfume in one layer while the other layer (s) is free of perfume. Regardless of the perfume content in the individual phase (s), detergent tablets are preferred, in which the tablet total perfume contents of 0.05 to 10% by weight, preferably 0.1 to 5% by weight and in particular from 0.25 to 1.5% by weight, based in each case on the weight of the molded body.
  • detergents and cleaning agents are molded; in which the disintegration time of at least one phase or layer is above 60 seconds, cannot be washed in via the detergent dispenser of household washing machines.
  • Sufficiently high compression pressures during manufacture make it possible to produce tablets with each premix, which have disintegration times of more than 60 seconds and which, according to previous experience, have been unsatisfactory in terms of application technology.
  • the layer first formed in the matrix when two-layer tablets are compressed is subjected to greater mechanical stress and disintegrates more slowly.
  • tablet disintegrants In order to facilitate the disintegration of highly compressed moldings, it is possible to incorporate disintegration aids, so-called tablet disintegrants, in order to shorten the disintegration times.
  • tablet disintegrants or accelerators of decay are understood as auxiliary substances which are necessary for rapid disintegration of tablets in water or gastric juice and ensure the release of the pharmaceuticals in absorbable form.
  • Preferred detergent tablets contain 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 to 6% by weight of one or more disintegration auxiliaries, in each case based on the molded article weight.
  • Disintegrants based on cellulose are used as preferred disintegrants in the context of the present invention, so that preferred washing and cleaning agents contain such a cellulose-based disintegrant in amounts of 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 to 6% by weight.
  • Pure cellulose has the formal gross composition (C ⁇ H IO O S ) ! , and formally represents a ß-1,4-polyacetal of cellobiose, which in turn is made up of two molecules of glucose.
  • Suitable celluloses consist of approximately 500 to 5000 glucose units and consequently have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions.
  • Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxyl hydrogen atoms have been substituted.
  • celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali celluloses, carboxyme cellulose (CMC), cellulose esters and ethers and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as a cellulose-based disintegrant, but are used in a mixture with cellulose.
  • the content of cellulose derivatives in these mixtures is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrant. Pure cellulose which is free of cellulose derivatives is particularly preferably used as the disintegrant based on cellulose.
  • the cellulose used as disintegration aid is preferably not used in finely divided form, but is converted into a coarser form, for example granulated or compacted, before being added to the premixes to be treated.
  • Detergent tablets which contain disintegrants in granular or optionally granulated form, are described in German patent applications DE 197 09 991 (Stefan Herzog) and DE 197 10 254 (Henkel) and in international patent application WO98 / 40463 (Henkel). These documents can also be found in more detail on the production of granulated, compacted or cogranulated cellulose disintegrants.
  • the particle sizes of such disintegrants are usually above 200 ⁇ m, preferably at least 90% by weight between 300 and 1600 ⁇ m and in particular to at least 90% by weight between 400 and 1200 ⁇ m.
  • the above and described in more detail in the documents cited coarser disintegration aids, are preferred as disintegration aids and are commercially available, for example under the name of Arbocel ® TF-30-HG from Rettenmaier available in the present invention.
  • Microcrystalline cellulose can be used as a further cellulose-based disintegrant or as a component of this component.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which only attack and completely dissolve the amorphous areas (approx. 30% of the total cellulose mass) of the celluloses, but leave the crystalline areas (approx. 70%) undamaged.
  • a subsequent disaggregation of the microfine celluloses resulting from the hydrolysis provides the microcrystalline celluloses, which have primary particle sizes of approximately 5 ⁇ m and can be compacted, for example, to granules with an average particle size of 200 ⁇ m.
  • Detergent tablets preferred in the context of the present invention additionally contain a disintegration aid, preferably a cellulose-based disintegration aid, preferably in granular, cogranulated or compacted form, in amounts of 0.5 to 10% by weight, preferably 3 to 7 % By weight and in particular from 4 to 6% by weight, in each case based on the molded body weight, it being preferred that the disintegration aid is present in higher amounts in the phase (s) with the higher perfume content than in the / the phase (s) with lower perfume content.
  • a disintegration aid preferably a cellulose-based disintegration aid, preferably in granular, cogranulated or compacted form, in amounts of 0.5 to 10% by weight, preferably 3 to 7 % By weight and in particular from 4 to 6% by weight, in each case based on the molded body weight, it being preferred that the disintegration aid is present in higher amounts in the phase (s) with the higher perfume content than in the / the phase (s) with lower perfume content.
  • one phase is fragrance-free, while the other phase contains perfume, causes the phases to dissolve differently.
  • perfume oils are generally hydrophobic substances, perfume-free regions of the molded body disintegrate faster and accordingly also dissolve faster.
  • the increased perfume content of the other layer compared to the lower-perfume or non-perfume layer results in poorer solubility, which is caused by the addition of disintegration aids. can be compared.
  • the proportion of disintegration aids in the low-perfume or free layer can be reduced, as a result of which overall disintegration aids can be saved if the phase with less or less perfume has a larger proportion of the molded body than the phase containing the perfume.
  • the disintegration times of the layers can be adjusted very closely to one another and the problems mentioned above can be avoided.
  • detergent tablets are preferred in which the disintegration times of the layers differ from one another by a maximum of 5 seconds.
  • the resulting difference in the disintegration aid contents in the individual phases or layers can also be quantified in preferred embodiments of the present invention.
  • detergent tablets are preferred in which the disintegration aid content of the more perfume phase (s) is by at least 0.25% by weight, preferably by at least 0.5% by weight and in particular by at least 1% by weight, based on the weight of the individual phase, is higher than in the phase (s) with less perfume.
  • the ratio of the amounts in the individual phases to one another can also be varied.
  • detergent tablets are preferred which consist of two phases and in which the quotient of the difference in the perfume contents and the difference in the disintegration aid contents is less than 2, preferably less than 1 and in particular less than 0.5.
  • the detergent tablets according to the invention can contain further ingredients, the amounts of which depend on the intended use of the tablets.
  • substances from the groups of surfactants, builders and polymers are suitable for use in the detergent tablets according to the invention.
  • the person skilled in the art will have no difficulty selecting the individual components and their amounts.
  • the detergent tablets according to the invention can contain all of the builders customarily used in detergents and cleaning agents, in particular thus zeolites, silicates, carbonates, organic cobuilders and, where there are no ecological prejudices against their use, also the phosphates.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x O 2x + ⁇ 'H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2 , 3 or 4 are.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na Si 2 O 5 'yH O are preferred, wherein ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO-A-91/08171.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying. In the context of this invention is under the term “amo ⁇ h” also understood “roentgenamo ⁇ h”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments.
  • This is to be integrated in such a way that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE-A-44 00 024. Particularly preferred are compressed / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray silicates.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • Commercially available and can preferably be used in the context of the present invention for example a co-crystallizate of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is sold by CONDEA Augusta SpA under the brand name VEGOBOND AX ® and by the formula
  • the zeolite can be used both as a builder in a granular compound and can also be used for a kind of "powdering" of the entire mixture to be used, usually both ways of incohering the zeolite into the premix.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water. It is of course also possible to use the generally known phosphates as builder substances, provided that such use should not be avoided for ecological reasons.
  • alkali metal phosphates with particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), have the greatest importance in the detergent and cleaning agent industry.
  • Alkali metal phosphates is the general term for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish between metaphosphoric acids (HPO 3 ) n and orthophosphoric acid H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: They act as alkali carriers, prevent limescale deposits on machine parts and lime incrustations in tissues and also contribute to cleaning performance.
  • Sodium dihydrogen phosphate, NaH PO exists as a dihydrate (density 1.91 like “3 , melting point 60 °) and as a monohydrate (density 2.04 like “ 3 ). Both salts are white, water-soluble powders, which lose the water of crystallization when heated and at 200 ° C into the weakly acidic diphosphate (disodium hydrogen diphosphate, Na 2 H 2 PO), at higher temperature in sodium trimetaphosphate (Na 3 P Og) and Override Maddrell's salt (see below).
  • NaH PO 4 is acidic; it occurs when phosphoric acid is adjusted to pH 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate (primary or monobasic potassium phosphate, potassium biphosphate, KDP), KH PO 4 , is a white salt with a density of 2.33 "3 , has a melting point of 253 ° [decomposition to form potassium polyphosphate (KPO 3 ) x ] and is easily soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 , is a colorless, very easily water-soluble crystalline salt. It exists anhydrous and with 2 mol. (Density 2.066 gladly “3 , water loss at 95 °), 7 mol. (Density 1.68 gladly “ 3 , melting point 48 ° with loss of 5 H 2 O) and 12 mol. Water ( Density 1.52 "3 , melting point 35 ° with loss of 5 H 2 O), becomes anhydrous at 100 ° and changes to diphosphate Na 4 P 2 O 7 when heated more. Disodium hydrogenphosphate is lost by neutralizing phosphoric acid with soda solution Use of phenolphthalein as an indicator posed. Dipotassium hydrogen phosphate (secondary or dibasic potassium phosphate), K 2 HPO 4 , is an amorphous, white salt that is easily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 PO are colorless crystals that like a dodecahydrate a density of 1.62 "3 and a melting point of 73-76 ° C (decomposition), as a decahydrate (corresponding to 19-20% P 2 O 5 ) have a melting point of 100 ° C. and, in anhydrous form (corresponding to 39-40% P 2 O 5 ), a density of 2.536 ′′ 3 .
  • Trisodium phosphate is readily soluble in water with an alkaline reaction and is produced by evaporating a solution of exactly 1 mol of disodium phosphate and 1 mol of NaOH.
  • Tripotassium phosphate (tertiary or triphase potassium phosphate), K 3 PO 4 , is a white, deliquescent, granular powder with a density of 2.56 " , has a melting point of 1340 ° and is easily soluble in water with an alkaline reaction when heating Thomas slag with coal and potassium sulfate Despite the higher price, the more soluble, therefore highly effective, potassium phosphates are often preferred over corresponding sodium compounds in the cleaning agent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534 like “3 , melting point 988 °, also given 880 °) and as decahydrate (density 1.815-1.836 like " 3 , melting point 94 ° with loss of water) .
  • Substances are colorless crystals that are soluble in water with an alkaline reaction.
  • Na PO is formed by heating disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying.
  • the decahydrate complexes heavy metal salts and hardness formers and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K ⁇ O 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33 "3 ", which is soluble in water, the pH of the 1% solution at 25 ° Is 10.4.
  • Sodium and potassium phosphates in which one can differentiate cyclic representatives, the sodium or potassium metaphosphates and chain-like types, the sodium or potassium polyphosphates. A large number of terms are used in particular for the latter: melt or glow phosphates, Graham's salt, Kurrol's and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • pentasodium triphosphate Na 5 P 3 O ⁇ o (sodium tripolyphosphate)
  • sodium tripolyphosphate sodium tripolyphosphate
  • anhydrous or 6 HO crystallizing, non-hygroscopic, white, water-soluble salt of the general formula NaO- [P (O) (ONa) -O] n -Na n 3.
  • Approx. 17 g of the salt free from water of crystallization dissolve in 100 g of water at room temperature, approx. 20 g at 60 ° and 32 g at 100 °; After heating the solution at 100 ° for two hours, hydrolysis produces about 8% orthophosphate and 15% diphosphate.
  • pentasodium triphosphate In the production of pentasodium triphosphate, phosphoric acid is reacted with sodium carbonate solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dewatered by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.). Pentapotassium triphosphate, K 5 P 3 O I ⁇ (potassium tripolyphosphate), is commercially available, for example, in the form of a 50% strength by weight solution (> 23% PO 5 , 25% KO). The potassium polyphosphates are widely used in the detergent and cleaning agent industry. There are also sodium potassium tripolyphosphates which can also be used in the context of the present invention. These occur, for example, when hydrolyzing sodium trimetaphosphate with KOH:
  • these can be used just like sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two; Mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can also be used according to the invention.
  • Organic cobuilders which can be used in the detergent tablets according to the invention are, in particular, polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates are used. These classes of substances are described below.
  • Usable organic builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids being understood to mean those carboxylic acids which carry more than one acid function.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), as long as such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaning agents.
  • Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures thereof can be mentioned in particular.
  • Polymeric polycarboxylates are also suitable as builders, for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 500 to 70,000 g / mol.
  • the molecular weights given for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used.
  • the measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the investigated polymers. This information differs significantly from the molecular weight information for which polystyrene sulfonic acids are used as standard.
  • the molecular weights measured against polystyrene sulfonic acids are generally significantly higher than the molecular weights given in this document.
  • Suitable polymers are, in particular, polyacrylates, which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates which have molar masses from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, can in turn be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids, is generally 2,000 to 70,000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of (co) polymeric polycarboxylates in the agents is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • the polymers can also contain AUylsulfonic acids, such as, for example, allyloxybenzenesulfonic acid and methallylsulfonic acid, as monomers.
  • AUylsulfonic acids such as, for example, allyloxybenzenesulfonic acid and methallylsulfonic acid
  • biodegradable polymers composed of more than two different monomer units, for example those which contain salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives as monomers or those which contain salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives as monomers .
  • copolymers are those which are described in German patent applications DE-A-43 03 320 and DE-A-44 17 734 and which preferably contain acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids their salts or their precursor substances.
  • Polyas- Paraginic acids or their salts and derivatives of which it is disclosed in German patent application DE-A-195 40 086 that, in addition to cobuilder properties, they also have a bleach-stabilizing effect.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme-catalyzed, processes. They are preferably hydrolysis products with average molar masses in the range from 400 to 500,000 g / mol.
  • DE dextrose equivalent
  • oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • oxidizing agents capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 and EP-A-0 542 496 as well as international patent applications WO 92 / 18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 and WO 95/20608.
  • Oxydisuccinates and other derivatives of disuccinates, preferably ethylenediaminisisuccinate, are further suitable cobuilders.
  • Ethylene diamine N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • Glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are 3 to 15% by weight in formulations containing zeolite and / or silicate.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such cobuilders are described, for example, in international patent application WO 95/20029.
  • phosphonates are, in particular, hydroxyalkane or aminoalkane phosphonates.
  • hydroxyalkane phosphonates l-hydroxyethane-l, l-diphosphonate (HEDP) is of particular importance as a cobuilder. It is preferably used as the sodium salt, the disodium salt reacting neutrally and the tetrasodium salt in an alkaline manner (pH 9).
  • Preferred aminoalkane phosphonates are ethylenediaminetetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs.
  • HEDP is preferably used as the builder from the class of the phosphonates.
  • the aminoalkanephosphonates also have a pronounced ability to bind heavy metals. Accordingly, it may be preferred, particularly if the agents also contain bleach, to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • the amount of builder is usually between 10 and 70% by weight, preferably between 15 and 60% by weight and in particular between 20 and 50% by weight. How- the amount of builders used is therefore dependent on the intended use, so that bleach tablets can have higher amounts of builders (for example between 20 and 70% by weight, preferably between 25 and 65% by weight and in particular between 30 and 55% by weight) ), for example detergent tablets (usually 10 to 50% by weight, preferably 12.5 to 45% by weight and in particular between 17.5 and 37.5% by weight).
  • Preferred detergent tablets also contain one or more surfactant (s).
  • Anionic, nonionic, cationic and / or amphoteric surfactants or mixtures of these can be used in the detergent tablets according to the invention. Mixtures of anionic and nonionic surfactants are preferred from an application point of view.
  • the total surfactant content of the molded article is 5 to 60% by weight, based on the molded article weight, surfactant contents above 15% by weight being preferred.
  • Anionic surfactants used are, for example, those of the sulfonate and sulfate type.
  • Preferred surfactants of the sulfonate type are C 9 3 alkylbenzenesulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates such as are obtained, for example, from C 2- i 8 monoolefins with an end or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation products.
  • alkanesulfonates which are for example obtained from 2- C ⁇ ⁇ 8 alkanes by sulfochlorination or sulfoxidation and subsequent hydrolysis or neutralization.
  • the esters of ⁇ -sulfofatty acids (ester sulfonates), for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, are also suitable.
  • sulfonated fatty acid glycerol esters are sulfonated fatty acid glycerol esters.
  • Fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and their mixtures as obtained in the production by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol become.
  • Preferred sulfated fatty acid glycerol esters are the sulfate products of saturated fat acids with 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • alk (en) yl sulfates the alkali and in particular the sodium salts of the sulfuric acid semiesters of the C 2 -C 8 fatty alcohols, for example from coconut oil alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 0 -C 2 o- Oxo alcohols and those half esters of secondary alcohols of this chain length are preferred.
  • alk (en) yl sulfates of the chain length mentioned which contain a synthetic, straight-chain alkyl radical prepared on a petrochemical basis and which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
  • C 2 -C 6 alkyl sulfates and C 12 -C 5 alkyl sulfates and C 4 -C 5 alkyl sulfates are preferred for reasons of washing technology.
  • 2,3-alkyl sulfates which are produced for example in accordance with US Patent No. 3,234,258 or 5,075,041 and can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched C7-21 alcohols ethoxylated with 1 to 6 moles of ethylene oxide, such as 2-methyl-branched Cg. ⁇ alcohols with an average of 3.5 moles of ethylene oxide (EO) or C 2-2 8 fatty alcohols 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in cleaning agents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8- ⁇ 8 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Soaps are particularly suitable as further anionic surfactants.
  • Saturated fatty acid soaps are suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular from natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol in which the alcohol radical has a methyl or linear branching in the 2-position may be or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow fat or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 2 -C 4 alcohols with 3 EO or 4 EO, C 9 n alcohol with 7 EO, C 3 -C 5 alcohols with 3 EO, 5 EO, 7 EO or 8 EO , -C 2 - is alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C ⁇ 2- ⁇ alcohol with 3 EO and C ⁇ 2- ⁇ g alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • alkyl glycosides of the general formula RO (G) x can also be used as further nonionic surfactants, in which R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular Fatty acid methyl esters as described, for example, in Japanese patent application JP 58/217598 or which are preferably prepared by the process described in international patent application WO-A-90/13533.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula (I),
  • RCO for an aliphatic acyl radical with 6 to 22 carbon atoms
  • R for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms and [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II)
  • R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R represents a linear, branched or cyclic alkyl radical or Aryl radical or an oxy-alkyl radical with 1 to 8 carbon atoms, C ⁇ -4 - alkyl or phenyl radicals are preferred and [Z] stands for a linear polyhydroxyalkyl radical whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this rest.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then, for example according to the teaching of international application WO-A-95/07331, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • detergent tablets are preferred which contain anionic (s) and nonionic (s) surfactant (s), with application technology advantages being able to result from certain quantitative ratios in which the individual classes of surfactants are used.
  • detergent tablets are particularly preferred in which the ratio of anionic surfactant (s) to nonionic surfactant (s) is between 10: 1 and 1:10, preferably between 7.5: 1 and 1: 5 and in particular between 5: 1 and 1: 2.
  • surfactant (s) contain anionic (s) and / or nonionic (s) surfactant (s) in amounts of 5 to 40% by weight, preferably 7.5 to 35% by weight. %, particularly preferably from 10 to 30% by weight and in particular from 12.5 to 25% by weight, in each case based on the molded body weight.
  • a further important embodiment of the present invention therefore provides that at least one phase of the molded article is free from nonionic surfactants.
  • detergent tablets Similar to the nonionic surfactants, the omission of anionic surfactants from individual or all phases can result in detergent tablets which are better suited for certain areas of application. It is therefore also conceivable within the scope of the present invention for detergent tablets to be made in which at least one phase of the tablet is free from anionic surfactants.
  • the detergent tablets according to the invention can furthermore contain one or more substances from the group of bleaching agents, bleach activators, enzymes, pH regulators, perfume carriers, fluorescent agents, dyes, foam inhibitors, silicone contain oils, anti-redeposition agents, optical brighteners, graying inhibitors, color transfer inhibitors and corrosion inhibitors.
  • the detergent tablets according to the invention can contain bleaches, the usual bleaches from the group sodium perborate monohydrate, sodium perborate tetrahydrate and sodium percarbonate having proven particularly useful.
  • a particularly preferred bleaching agent is sodium percarbonate.
  • Sodium percarbonate is a non-specific term for sodium carbonate peroxohydrates, which strictly speaking are not “percarbonates” (ie salts of percarbonic acid) but hydrogen peroxide adducts with sodium carbonate.
  • the merchandise has the average composition 2 Na 2 CO 3 -3 H 2 O and is therefore not peroxy carbonate.
  • Sodium percarbonate often forms a white, water-soluble powder with a density of 2.14 " , which easily disintegrates into sodium carbonate and bleaching or oxidizing oxygen.
  • the industrial production of sodium percarbonate is mainly produced by precipitation from an aqueous solution (so-called wet process).
  • aqueous solutions of sodium carbonate and hydrogen peroxide are combined and the sodium percarbonate is precipitated by salting-out agents (predominantly sodium chloride), crystallization aids (for example polyphosphates, polyacrylates) and stabilizers (for example Mg 2+ ions).
  • the precipitated salt which still contains 5 to 12% by weight of mother liquor, is then filtered off and dried at 90 ° C. in fluid bed dryers.
  • the bulk density of the finished product can vary between 800 and 1200 g / 1 depending on the manufacturing process.
  • the percarbonate is stabilized by an additional coating.
  • the detergent tablets according to the invention may contain bleach activator (s), which is preferred in the context of the present invention.
  • Bleach activators are incorporated into detergents and cleaning agents to achieve an improved bleaching effect when washing at temperatures of 60 ° C and below.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • TAED tetraacetylethylene
  • bleach catalysts can also be incorporated into the moldings.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N- containing tripod ligands and Co, Fe, Cu and Ru amine complexes can be used as bleaching catalysts.
  • the molded articles according to the invention contain bleach activators, they each contain, based on the total molded article, between 0.5 and 30% by weight, preferably between 1 and 20% by weight and in particular between 2 and 15% by weight, of one or more Bleach activators or bleach catalysts. These quantities can vary depending on the intended use of the molded articles produced. For example, bleach activator contents of between 0.5 and 10% by weight, preferably between 2 and 8% by weight and in particular between 4 and 6% by weight are common in typical universal detergent tablets, while bleach tablets contain quite high contents, for example between 5 and 30 wt .-%, preferably between 7.5 and 25 wt .-% and in particular between 10 and 20 wt .-% can have. The person skilled in the art is not restricted in its freedom of formulation and can thus produce more or less bleaching detergent tablets, detergent tablets or bleach tablets by varying the bleach activator and bleach content.
  • a particularly preferred bleach activator is N, N, N ', N'-tetraacetylethylenediamine, which is widely used in detergents and cleaning agents. Accordingly, preferred shaped detergents and cleaning agents are characterized in that tetraacetylethylenediamine is used as the bleach activator in the amounts mentioned above.
  • the detergent tablets can be colored with suitable dyes.
  • Preferred dyes the selection of which does not pose any difficulty to the person skilled in the art, have a high storage stability and are insensitive to the other ingredients of the compositions and to light, and have no pronounced substantivity to textile fibers, in order not to dye them.
  • Preferred for use in the detergent tablets according to the invention are all colorants which can be oxidatively destroyed in the washing process and Mixtures of these with suitable blue dyes, so-called blue tones. It has proven to be advantageous to use colorants which are soluble in water or at room temperature in liquid organic substances.
  • anionic colorants for example anionic nitroso dyes, are suitable.
  • a possible colorant is, for example, Naphfholmony (Color Index (CI) Part 1: Acid Green 1; Part 2: 10020), which is available as a commercial product, for example as Basacid Green 970 from BASF, Ludwigshafen, and mixtures of these with suitable blue Dyes.
  • Pigmosol ® Blue 6900 (CI 74160), Pigmosol ® Green 8730 (CI 74260), Basonyl ® Red 545 FL (CI 45170), Sandolan ® Rhodamine EB400 (CI 45100), Basacid ® Yellow 094 (CI 47005), Sicovit ® Patentblau 85 E 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol ® Blau GLW (CAS 12219-32-8, CI Acidblue 221 )), Nylosan ® Yellow N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) and / or Sandolan ® Blue (CI Acid Blue 182, CAS 12219-26-0).
  • the colorants do not have too strong an affinity for the textile surfaces and especially for synthetic fibers.
  • suitable colorants it must also be taken into account that colorants have different stabilities against oxidation.
  • water-insoluble colorants are more stable to oxidation than water-soluble colorants.
  • concentration of the colorant in the washing or cleaning agents varies.
  • colorants which are readily water-soluble e.g. the above-mentioned basacid
  • colorant concentrations are typically selected in the range from a few 10 " to 10 " % by weight. In those that are particularly preferred due to their brilliance, but are less water-soluble
  • the suitable concentration of the colorant in washing or cleaning agents is typically a few 10- " 3 to 10 " % by weight.
  • the more perfume phase additionally contains dye.
  • a phase preferably a layer, is particularly preferably free of dyes and perfume, while another phase contains both perfume and dye. This separation has the advantage that the mostly yellow-colored perfume oils do not impair the color impression of the dye-free “white” layer. In addition, the color impression of the colored layer becomes more intense due to the moistening with hydrophobic perfume, so that dye can be saved.
  • the moldings can contain optical brighteners of the type of derivatives of diaminostilbenedisulfonic acid or their alkali metal salts. Suitable are e.g. Salts of 4,4'-bis (2-anilino-4-mo ⁇ holino-l, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which, instead of the Mo ⁇ holino group, contain a diefhanolamino - carry a group, a methylamino group, an anilino group or a 2-mefhoxyefhylamino group.
  • brighteners of the substituted diphenylstyryl type may be present, e.g.
  • the optical brighteners are in the detergent tablets according to the invention in concentrations between 0.01 and 1% by weight, preferably between 0.05 and 0.5% by weight and in particular between 0.1 and 0.25% by weight. %, each based on the entire molded body, used.
  • Particularly suitable enzymes are those from the classes of hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All these hydrolases help to remove stains such as protein, fat or starchy stains and graying in the laundry. Cellulases and other glycosyl hydrolases can also help to retain color and increase the softness of the textile by removing pilling and microfibrils. Oxidoreductases can also be used for bleaching or for inhibiting color transfer.
  • hydrolases such as proteases, esterases, lipases or lipolytically active enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All these hydrolases help to remove stains such as protein, fat or starchy stains and graying in the laundry. Cellulases and other glycosyl hydrolases can also help to retain color and increase
  • Bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus and Humicola insolens and from are particularly well suited their genetically modified variants obtained enzymatic active ingredients.
  • Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example, from protease and amylase or protease and lipase or lipolytically active enzymes or protease and cellulase or from cellulase and lipase or lipolytically active enzymes or from protease, amylase and lipase or lipolytically active enzymes or protease, lipase or lipolytically active enzymes and cellulase, but in particular protease and / or lipase-containing mixtures or mixtures with lipolytically active enzymes of particular interest.
  • Known cutinases are examples of such lipolytically active enzymes.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • Suitable amylases include in particular alpha-amylases, iso-amylases, pullulanases and pectinases.
  • Cellobiohydrolases, endoglucanases and glucosidases, which are also called cellobiases, or mixtures thereof, are preferably used as cellulases. Since different cellulase types differ in their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases.
  • the enzymes can be adsorbed on carriers or embedded in coating substances to protect them against premature decomposition.
  • the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, about 0.1 to 5% by weight, preferably 0.5 to about 4.5% by weight.
  • the detergent tablets can also contain components that positively influence the oil and fat washability from textiles (so-called soil repell ents). This effect becomes particularly clear when a textile is soiled that has already been washed several times beforehand with a detergent according to the invention which contains this oil and fat-dissolving component.
  • the preferred oil- and fat-dissolving components include, for example, nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups of 15 to 30% by weight and of hydroxypropoxyl groups of 1 to 15% by weight, in each case based on the nonionic cellulose ether and the polymers of phthalic acid and / or terephthalic acid or their derivatives known from the prior art, in particular special polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives of these. Of these, the sulfonated derivatives of phthalic acid and terephthalic acid polymers are particularly preferred.
  • Another object of the present invention is a process for the production of multi-phase detergent tablets by conventional compression of different particulate premixes, in which the perfume content of the individual premixes, based in each case on the weight of the premixes, is more than 0.75% by weight .-%, preferably by more than 1 wt .-% and in particular by more than 1.5 wt .-%, are accordingly preferred, as are processes in which two premixes are pressed into a two-layer molded body, one of which is based on its weight contains more than 0.75% by weight, preferably more than 1% by weight and in particular more than 2% by weight of perfume, while the other, based on its weight, contains less than 1% by weight, preferably less than 0.5 wt .-%, particularly preferably less than 0.1 wt .-% and in particular contains no perfume.
  • the perfume can be introduced into the moldings according to the invention in different ways.
  • the simplest way is that the perfume is introduced into the perfume-containing phase (s) by spraying onto the premix (s). Since the premixes to be ve ⁇ ressen to the respective phases are usually mixtures of different particulate and possibly liquid or pasty substances, the perfume can be easily added in the mixing step. A fine distribution, for example atomizing, is preferable to simple pouring.
  • the fragrances can also be applied to carrier substances before adding them to the respective premix or to increase their adhesion in a suitable manner.
  • Cyclodextrin-perfume complexes or encapsulated perfumes are suitable for this.
  • Methods in which the perfume is introduced into the perfume-containing phase (s) by adding such solid fragrance preparation forms to the premix (s) are also preferred.
  • the use of further ingredients can also be transferred to the method according to the invention.
  • the particulate premix additionally contains surfactant-containing granules and has a bulk density of at least 500 g / 1, preferably at least 600 g / 1 and in particular at least 700 g / 1.
  • the surfactant-containing granulate has particle sizes between 100 and 2000 ⁇ m, preferably between 200 and 1800 ⁇ m, particularly preferably between 400 and 1600 ⁇ m and in particular between 600 and 1400 ⁇ m.
  • the further ingredients of the detergent tablets according to the invention can also be incorporated into the method according to the invention, for which reference is made to the above statements.
  • Preferred processes are characterized in that the particulate premix additionally contains one or more substances from the group of bleaching agents, bleach activators, disintegration aids, enzymes, pH regulators, fluorescent agents, dyes, foam inhibitors, silicone oils, anti-redeposition agents, optical brighteners, graying inhibitors, color transfer inhibitors and Contains corrosion inhibitors.
  • the molded articles according to the invention are first produced by dry mixing the constituents of the individual phases, which can be wholly or partially pre-granulated, and then providing information, in particular compresses to tablets, whereby conventional methods for producing multi-phase molded articles can be used.
  • the premixes are compressed in a so-called die between two punches to form a solid compact. This process, which is briefly referred to as tableting in the following, is divided into four sections: metering, compression (elastic deformation), plastic deformation and ejection.
  • Tableting takes place in commercially available tablet presses, which can in principle be equipped with single or double punches. In the latter case, not only is the upper stamp used to build up pressure, the lower stamp also moves during the Pressing process towards the upper punch, while the upper punch presses down.
  • eccentric tablet presses are preferably used, in which the punch or stamps are fastened to an eccentric disc, which in turn is mounted on an axis with a certain rotational speed. The movement of these rams is comparable to that of a conventional four-stroke engine.
  • the pressing can take place with one upper and one lower punch, but several punches can also be attached to one eccentric disk, the number of die holes being increased accordingly.
  • the throughputs of eccentric presses vary from a few hundred to a maximum of 3000 tablets per hour, depending on the type.
  • rotary tablet presses are selected in which a larger number of dies is arranged in a circle on a so-called die table.
  • the number of matrices varies between 6 and 55 depending on the model, although larger matrices are also commercially available.
  • Each die on the die table is assigned an upper and lower punch, and again the pressure can be built up actively only by the upper or lower punch, but also by both stamps.
  • the die table and the stamps move about a common vertical axis, the stamps being brought into the positions for filling, compaction, plastic deformation and ejection by means of rail-like cam tracks during the rotation.
  • these cam tracks are supported by additional low-pressure pieces, low-tension rails and lifting tracks.
  • the die is filled via a rigidly arranged feed device, the so-called filling shoe, which is connected to a storage container for the premix.
  • the pressing pressure on the premix can be individually adjusted via the pressing paths for the upper and lower punches, the pressure being built up by rolling the punch shaft heads past adjustable pressure rollers.
  • Rotary presses can also be provided with two filling shoes to increase the throughput, with only a semicircle having to be run through to produce a tablet.
  • several filling shoes are arranged one behind the other without the slightly pressed first layer being ejected before further filling.
  • Appropriate process control means that se also coated and dot tablets can be produced, which have an onion-shell-like structure, wherein in the case of the dot tablets the top of the core or the core layers is not covered and thus remains visible.
  • Rotary tablet presses can also be equipped with single or multiple tools, so that, for example, an outer circle with 50 and an inner circle with 35 holes can be used simultaneously for pressing.
  • the throughputs of modern rotary tablet presses are over one million molded articles per hour.
  • Non-stick coatings known from the art are suitable for reducing stamp caking.
  • Plastic coatings, plastic inserts or plastic stamps are particularly advantageous.
  • Rotating punches have also proven to be advantageous, with the upper and lower punches being designed to be rotatable if possible.
  • a plastic insert can generally be dispensed with.
  • the stamp surfaces should be electropolished here.
  • Tableting machines suitable in the context of the present invention are available, for example, from the companies Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Hörn & Noack Pharmatechnik GmbH, Worms, IMA Ve ⁇ ackungssysteme GmbH Viersen, KILIAN, Cologne, KOMAGE, Kell am See, KORSCH Pressen AG, Berlin, and Romaco GmbH, Worms.
  • Other providers include Dr. Herbert Pete, Vienna (AU), Mapag Maschinenbau AG, Bern (CH), BWI Manesty, Liverpool (GB), I. Holand Ltd., Nottingham (GB), Courtoy NV, Halle (BE / LU) and Mediopharm Kamnik (SI).
  • the hydraulic double pressure press HPF 630 from LAEIS, D. Tablettierwerkmaschinee are, for example, from the companies Adams Tablettierwerkmaschinee, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber% Söhne GmbH, Hamburg, Hofer GmbH, Weil, Hörn & Noack, Pharmatechnik GmbH, Worms, Ritter Pharamatechnik GmbH, Hamburg, Romaco, GmbH, Worms and Notter negligencebau, Tamm available.
  • Other providers are e.g. Senss AG, Reinach (CH) and Medicopharm, Kamnik (SI).
  • the shaped bodies can be manufactured in a predetermined spatial shape and size, whereby they always consist of several phases, i.e. Layers, inclusions or cores and rings exist. Practically all sensibly manageable configurations come into consideration as spatial form, for example, the training as a board, the rod or. Bar shape, cubes, cuboids and corresponding spatial elements with flat side surfaces and in particular cylindrical designs with a circular or oval cross section. This last embodiment covers the presentation form from the tablet to compact cylinder pieces with a ratio of height to diameter above 1.
  • the portioned compacts can each be designed as separate individual elements that correspond to the predetermined dosage of the washing and / or cleaning medium corresponds. It is also possible, however, to form compacts which connect a plurality of such mass units in one compact, the portioned smaller units being easy to separate, in particular by predetermined predetermined breaking points.
  • the portioned compacts as tablets, in cylinder or cuboid form can be expedient, with a diameter / height ratio in the range from about 0.5: 2 to 2: 0.5 is preferred.
  • Commercial hydraulic presses, eccentric presses or rotary presses are suitable devices, in particular for the production of such pressed articles.
  • the spatial shape of another embodiment of the molded body is adapted in its dimensions to the detergent dispenser of commercially available household washing machines, so that the molded body can be metered directly into the dispenser without metering aid, where it dissolves during the dispensing process.
  • the detergent tablets can also be used without problems using a dosing aid.
  • Another preferred multi-phase molded body that can be produced has a plate-like or panel-like structure with alternately thick long and thin short segments, so that individual segments of this "multi-phase lock" are broken off at the predetermined breaking points, which represent the short thin segments and can be entered into the machine.
  • This principle of the "bar-shaped" shaped body washing agent can also be implemented in other geometric shapes, for example vertically standing triangles, which are connected to one another only on one of their sides along the side. For optical reasons, it makes sense to design the triangular base that connects the individual segments as one phase, while the triangle tip forms the second phase. Different coloring of both phases is particularly attractive in this embodiment.
  • stands for diametral fracture stress (DFS) in Pa
  • P is the force in N that leads to the pressure exerted on the molded body that causes the molded body to break
  • D is the molded body diameter in meters and t the height of the molded body.
  • Two-layer detergent tablets were produced on a Korsch rotary runner press from the two premixes (surfactant granules + preparation components), the proportion of the first layer being 75% by weight of the total mass and the proportion of the second layer being 25% by weight of the total mass of the tablet.
  • the diameter of the tablets was 44 mm, the weight 37.5 g.
  • Table 2 shows the compositions of the detergent tablets broken down by phase. The values in the columns of the table indicate the amount of the substance in question in the respective phase of the tablet, ie the values in one column add up to 100%. The amount of the substance in question in the entire tablet can be easily calculated from the proportion of the individual phases.
  • the tablet hardness fluctuated by approx. ⁇ 10% and the disintegration times by approx. 5 seconds.
  • the hardness of the tablets was measured by deforming the tablet to fracture, the force acting on the side surfaces of the tablet and the maximum force that the tablet was able to withstand.
  • the tablet was placed in a beaker with water (600 ml of water, temperature 30 ° C.) and the time until the tablet disintegrated completely.
  • the experimental data of the individual tablets are also shown in Table 2.
  • Repelotex-SRP-4 is a terephthalic acid-ethylene glycol-polyethylene glycol ester from Rhönen-Poulenc.
  • Table 2 shows that the division of the perfume according to the invention with the same perfume content can reduce the proportion of disintegration aid in the overall tablet without having to accept a loss in performance. Rather, in the comparison of the molded article according to the invention with the comparative example, with just under 80% of the disintegration aid, significantly better disintegration times are achieved.
  • the tablet according to the invention has a higher degree of whiteness in the uncolored layer than the comparative example.
  • the colored layer also has a higher brilliance and a stronger color impression. It is also interesting ner the fact that the fragrance impression of the tablets according to the invention is consistently better rated by test persons in spite of the identical amount of perfume in comparison to the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Zwei- oder mehrphasige Wasch- und Reinigungsmittelformkörper aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, die mehr als 2 Gew.-% Tensid(e), Gerüststoff(e), Parfüm sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile enthalten und bei denen der Parfümgehalt der einzelnen Phasen des Formkörpers, bezogen auf das Gewicht der einzelnen Phase, um mehr als 0,75 Gew.-%, vorzugsweise um mehr als 1 Gew.-% und insbesondere um mehr als 1,5 Gew.-%, variiert, weisen bei verringertem Einsatz von Desintegrationshilfsmitteln kurze Zerfallszeiten und hohe Härten auf. Darüber hinaus werden Weissgrad und Farbbrillanz ungefärbter und gefärbter Phasen verbessert sowie der Dufteindruck bei gleichem Parfümgehalt verstärkt.

Description

„Mehrphasige Wasch- und Reinigungsmittelformkörper mit Parfüm"
Die vorliegende Erfindung betrifft mehrphasige Wasch- und Reinigungsmittelformkörper. Insbesondere betrifft die Erfindung mehrphasige Waschmittelformkörper, die zum Waschen von Textilien in einer Haushaltswaschmaschine eingesetzt und kurz als Waschmitteltabletten bezeichnet werden.
Aufgrund der Bequemlichkeit ihrer Dosierung und weiterer Vorteile hinsichtlich Verpak- kung, Transport und Lagerung hat die Angebotsform hochverdichteter Formkörper eine Vielzahl von Vorteilen, die es wünschenswert erscheinen lassen, in dieser Angebotsform auch Wasch- und Reinigungsmittel bereitzustellen. Zu Wasch- und Reinigungsmittelformkörpern, die oft kurz als Waschmitteltabletten bezeichnet werden, existiert ein breiter Stand der Technik, der sich insbesondere die Aufgabe stellt, ein zentrales Problem der Angebotsform "Tablette" zu überwinden: Die Dichotomie zwischen der Härte der Formkörper einerseits und ihrer Zerfallsgeschwindigkeit andererseits. Eine ausreichende Härte ist für Verpackung, Lagerung, Transport und Handhabung der Formkörper unerläßlich, während die Zerfallseigenschaften den Waschvorgang entscheidend beeinflussen und ein ausreichend schneller Zerfall für die Bildung einer hinreichend konzentrierten Waschflotte zwingend notwendig ist.
Das Problem, zwischen Härte und Zerfall einen technisch vernünftigen Kompromiß zu finden, wird bei mehrphasigen Formkörpern weiter erschwert: Es kann aus wasch- oder reinigungstechnischen Gründen von Vorteil sein, bestimmte Wasch- und Reinigungsmittelinhaltsstoffe voneinander zu trennen. Diese Trennung bedingt aber ein unterschiedliches physikalisches Eigenschaftsprofil der unterschiedlichen Phasen im Formkörper. So kann im Extremfall die Haftung zwischen den Phasen so gering werden, daß sich mehrphasige Formkörper nicht mehr herstellen lassen. Eine zu unterschiedliche Härte unterschiedlicher Phasen würde dazu führen, daß einzelne Phasen verpackungs-, transport- oder handha- bungsbedingt stärker beschädigt werden als andere Phasen. Zusätzlich ist auch eine zu unterschiedliche Zerfalls- und Auflösegeschwindigkeit einzelner Phasen nicht wünschenswert, da sonst Wirkstoffe aus der schlechter zerfallenden bzw. löslichen Phase im Waschprozeß nicht zur Verfügung stehen.
Es ist also bei mehrphasigen Wasch- und Reinigungsmittelformkörpern von zentraler Bedeutung, daß alle Phasen aneinander haften, eine ausreichende und möglichst gleiche Härte sowie ein ausreichend schnelles und möglichst identisches Zerfalls- und Löseprofil zeigen. Lösungsvorschläge zu dieser Problematik sind im Stand der Technik nur in untergeordnetem Maße beschrieben.
Zwei- oder mehrphasige Wasch- und Reinigungsmittelformkörper aus verdichtetem teil- chenförmigen Wasch- und Reinigungsmittel, die Tensid(e), Gerüststoff(e) sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile enthalten und bei denen der Tensidgehalt der einzelnen Phasen des Formkörpers um nicht mehr als 3 Gew.-%, bezogen auf das Gewicht der einzelnen Phase, variiert, werden in der älteren deutschen Patentanmeldung DE 198 03 409.1 (Henkel) beschrieben. Die in dieser Schrift offenbarten Waschmitteltabletten weisen in den einzelnen Phasen identische Parfümgehalte auf.
Ähnliche Waschmitteltabletten, in denen der Tensidgehalt der einzelnen Phasen des Formkörpers um mehr als 3 Gew.-%, bezogen auf das Gewicht der einzelnen Phase, variiert, wobei in der/den Phase(n) mit dem höheren Tensidgehalt eine Komponente mit einer Ölabsorptionskapazität von mindestens 20g/100g in höheren Mengen enthalten ist als in der/den Phase(n) mit niedrigerem Tensidgehalt, sind Gegenstand der älteren deutschen Patentanmeldung DE 198 03 410.5 (Henkel). Auch hier weisen die offenbarten Formkörper in allen Phasen identische Parfümgehalte auf.
Reinigungsmittelformkörper zum maschinellen Geschirrspülen, die Bleichmittel, Bleichaktivator, Parfüm sowie optional andere Reinigungsmittel-Inhaltsstoffe enthalten und aus mindestens zwei Phasen bestehen, wobei das Parfüm nicht in einer Phase zusammen mit dem Bleichmittel und dem Bleichaktivator enthalten ist, werden in der älteren deutschen Patentanmeldung DE 198 38 127.1 (Henkel) beschrieben. Diese Schrift offenbart tensid- arme Reinigungsmittelformkörper, bei denen eine Phase Parfüm enthält, während eine zweite Phase parfümfrei ist. Das Problem der Einarbeitung größerer Duftstoffmengen bei gleichzeitiger Gegenwart hoher Tensidmengen sowie die Erreichung kurzer Zerfallszeiten werden in dieser Schrift nicht erwähnt, da Tabletten für das maschinelle Geschirrspülen Zerfalls- und Lösezeiten von mehreren Minuten aufweisen, welche für Waschmitteltabletten nicht akzeptabel sind.
Parfümfreie Wasch- und Reinigungsmittelformkörper sind Gegenstand der älteren deutschen Patentanmeldung DE 198 52 136.7 (Henkel). Die in dieser Schrift offenbarten Tabletten weisen hohe Härten bei kurzen Zerfallszeiten auf, was allerdings einen völligen Verzicht auf Duftstoffe erfordert. Die Inkorporation von Parfüm in Wasch- und Reinigungsmittelformkörper ist naturgemäß in dieser Anmeldung nicht beschrieben.
Die ältere deutsche Patentanmeldung DE 199 03 288.2 (Henkel) beschreibt zwei- oder mehrphasige Wasch- und Reinigungsmittelformkörper, die Tensid(e), Gerüststoff(e) sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile enthalten und bei denen der Tensidgehalt der einzelnen Phasen des Formkörpers um mehr als 3 Gew.-%, bezogen auf das Gewicht der einzelnen Phase, variiert, wobei in der/den Phase(n) mit dem höheren Tensidgehalt ein cellulosehaltiges Desintegrationsmittel, das maximal 10 Gew.-% Teilchen mit einer Teilchengröße unter 200 μm aufweist, in höheren Mengen enthalten ist als in der/den Phase(n) mit niedrigerem Tensidgehalt. Die in den Beispielen dieser Schrift offenbarten Zweischichttabletten enthalten in der mengenmäßig größeren Schicht 0,7 Gew.-% Parfüm, während die mengenmäßig kleinere Schicht frei von Parfüm ist.
Das der vorliegende Erfindung zugrunde liegende Problem bestand darin, mehrphasige Wasch- und Reinigungsmittelformkörper bereitzustellen, die bei hohem Tensidgehalt Parfüm enthalten und dennoch schnell zerfallen, wobei die Zerfalls- und Löslichkeitszeiten der einzelnen Phasen nur geringe bis gar keine Unterschiede zeigen sollen. Zusätzlich sollten Formkörper bereitgestellt werden, die bei verringertem Einsatz von Parfüm und/oder anderen Rohstoffen das gleiche Leistungsniveau aufweisen wie herkömmliche Formkörper aufweisen. Es wurde nun gefunden, daß sich die genannten Aufgabenfelder lösen lassen, wenn das Parfüm nicht gleichmäßig über den gesamten Formkörper verteilt wird, sondern in den einzelnen Phasen unterschiedlich konzentriert vorliegt.
Gegenstand der Erfindung sind zwei- oder mehrphasige Wasch- und Reinigungsmittelformkörper aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, umfassend mehr als 2 Gew.-% Tensid(e), Gerüststoff(e), Parfüm sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile, bei denen der Parfümgehalt der einzelnen Phasen des Formkörpers, bezogen auf das Gewicht der einzelnen Phase, um mehr als 0,75 Gew.-%, vorzugsweise um mehr als 1 Gew.-% und insbesondere um mehr als 1,5 Gew.-%, variiert.
Im Rahmen der vorliegenden Anmeldung bedeutet die Variation um mehr als 0,75 Gew.- %, bezogen auf das Gewicht der einzelnen Phasen, daß die Absolutwerte des Parfümgehaltes in den Phasen um mehr als 0,75 Gew.-% variieren. Enthält also eine Phase 2,0 Gew.-% Parfüm, so sollte der Parfümgehalt der anderen Phase(n) erfindungsgemäß so ausgewählt werden, daß die Breite der Variation um den Wert 2,0 minimal 0,75 Gew.-% beträgt, also unter 1,25 Gew.-% oder über 2,75 Gew.-%, jeweils bezogen auf die Phase, beträgt. In anderen Worten wird der Prozent-Zahlenwert des Parfümgehalts der parfümärmsten Phase vom Prozent-Zahlenwert des Parfümgehalts der parfümreichsten Phase subtrahiert, wobei das Ergebnis > 0,75 sein muß. Der größtmögliche Unterschied des Parfümgehalts in den einzelnen Phasen läßt sich erreichen, wenn mindestens eine Phase Parfüm enthält, während mindestens eine andere Phase frei von Parfüm ist. Dies ist eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung. Hierbei muß die parfümhaltige Phase bezogen auf ihr Gewicht mindestens 0,75 Gew.-% Parfüm enthalten, da sonst die erfindungsgemäße Variation des Parfümgehalts nicht gegeben ist.
Die einzelnen Phasen des Formkörpers können im Rahmen der vorliegenden Erfindung unterschiedliche Raumformen aufweisen. Die einfachste Realisierungsmöglichkeit liegt dabei in zwei- oder mehrschichtigen Tabletten, wobei jede Schicht des Formkörpers eine Phase darstellt. Es ist aber erfindungsgemäß auch möglich, mehrphasige Formkörper herzustellen, in denen einzelne Phasen die Form von Einlagerungen in (eine) andere Phase(n) aufweisen. Neben sogenannten "Ring-Kern-Tabletten" sind dabei beispielsweise Manteltabletten oder Kombinationen der genannten Ausführungsformen möglich. Beispiele für mehrphasige Formkörper finden sich in den Abbildungen der EP-A-0 055 100 (Jeyes), die Toilettenreinigungsblöcke beschreibt. Die technisch derzeit verbreitetste Raumform mehrphasiger Formkörper ist die Zwei- oder Mehrschichttablette. Im Rahmen der vorliegenden Erfindung ist es daher bevorzugt, daß die Phasen des Formkörpers die Form von Schichten aufweisen.
Die Unterschiede im Parfümgehalt der einzelnen Phasen lassen sich beispielsweise dadurch realisieren, daß jede Phase ein unterschiedliches Parfüm enthält, wobei sich die Parfümgehalte in den Phasen unterscheiden. Auf diese Weise können unterschiedliche Dufteindrücke für jede einzelne Phase realisiert oder die Zusammensetzung der Parfüme an die übrigen Inhaltsstoffe der betreffenden Phase angepaßt werden. Bevorzugt ist es aus Gründen der Herstellungökonomie jedoch, wenn die erfmdungsgemäßen Wasch- und Reinigungsmittelformkörper zwei Schichten aufweisen, die das gleiche Parfüm in unterschiedlichen Mengen enthalten.
Wie bereits erwähnt, läßt sich der größtmögliche Unterschied im Parfümgehalt durch die Kombination von parfümfreien mit parfümhaltigen Phasen erreichen. Bei einem zweischichtigen Formkörper bedeutet dies, daß Wasch- und Reinigungsmittelformkörper bevorzugt sind, die zwei Schichten aufweisen, von denen eine frei von Parfüm ist.
Der Anteil der einzelnen Phasen an der Gesamttablette kann in breiten Grenzen variiert werden. Für den erfindungsgemäß bevorzugten Fall einer Zweischichttablette sind Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen die beiden Schichten des Formkörpers im Gewichtsverhältnis von 5 zu 95 bis 50 zu 50, vorzugsweise von 10 zu 90 bis 60 zu 40 und insbesondere von 15 zu 85 bis 65 zu 35 stehen, wobei das Parfüm vorzugsweise in der anteilsmäßig geringeren Schicht höher konzentriert ist.
Phasen mit höherem Duftstoffanteil können diese nicht so stark binden, d.h. der Duftstoff liegt weniger stark im Formkörper haftend vor und kann beim Öffnen der verpackten Tablette vom Verbraucher intensiver wahrgenommen werden. Auch lassen sich durch die Variation des Parfümgehalts in den Schichten der Tablette die Stabilitäten beider Schichten sowie ihre Zerfallszeiten anpassen oder gezielt steuern. Ein zusätzlicher Effekt tritt bei höheren Parfümgehalten in einer farbigen Schicht auf, da deren Farbintensität erhöht wird.
Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper enthalten mehr als 2 Gew.-% Tensid(e), Gerüststoff(e), Parfüm sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile. Diese werden nachfolgend beschrieben.
Der Begriff „Parfüm", ein eingedeutschtes Wort, das sich wie auch das französische Stammwort „parfum" vom lateinischen „per fumum" = durch (Opfer-)Rauch ableitet, wird im deutschen Sprachgebrauch mit unterschiedlichen Bedeutungen verwendet. So versteht man Unter Parfümen alkoholische Lösungen geeigneter Riechstoffe (Duftstoffe), aber auch den Duft bzw. den Duftstoff selbst, gelegentlich werden auch die Begriffe Parfümerie und Parfüm gleichgesetzt. Im Rahmen der vorliegenden Anmeldung kennzeichnet der Begriff „Parfüm" sowohl einzelne Duftstoffe als auch Duftstoffgemische in konzentrierter oder mit geeigneten Lösungsmitteln verdünnter Form. Der Begriff „Parfumöl" wird daneben für das reine Duftstoffgemisch, das nicht mit Lösungsmitteln verdünnt ist, verwendet. Grundstoffe der Parfümöle sind etherische Öle, Blütenöle, Extrakte aus pflanzlichen und animalischen Drogen, aus Naturprodukten isolierte, chemisch veränderte (halbsynthetische) sowie rein synthetisch gewonnene Riechstoffe. „Duftstoffe" ist die umgangssprachliche Sammelbezeichnung für diejenigen Riechstoffe, die beim Menschen ein angenehmes Geruchs- Empfmden auslösen und daher zur Parfümierung von Wasch- und Reinigungsmitteln geeignet sind. In erweitertem Sinne lassen sich auch Essenzen und Aromen zu den Duftstoffen rechnen.
Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethy- lether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronel- lal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeo- nal, zu den Ketonen z.B. die Jonone, cc-Isomefhylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Ter- pineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Teφene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Linden- blütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die allgemeine Beschreibung der einsetzbaren Parfüme (siehe oben) stellt dabei allgemein die unterschiedlichen Substanzklassen von Riechstoffen dar. Um wahrnehmbar zu sein, muß ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Aufgrund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms bzw. Duftstoffs während des Verdampfens, wobei man die Geruchseindrücke in "Kopfnote" (top note), "Herz- bzw. Mittelnote" (middle note bzw. body) sowie "Basisnote" (end note bzw. dry out) unterteilt. Da die Geruchswahrnehmung zu einem großen Teil auch auf der Geruchsintensität beruht, besteht die Kopfnote eines Parfüms bzw. Duftstoffgemischs nicht allein aus leichtflüchtigen Verbindungen, während die Basisnote zum größten Teil aus weniger flüchtigen, d.h. haftfesten Riechstoffen besteht. Bei der Komposition von Parfüms können leichter flüchtige Riechstoffe beispielsweise an bestimmte Fixative gebunden werden, wodurch ihr zu schnelles Verdampfen verhindert wird. Bei der nachfolgenden Einteilung der Riechstoffe in "leichter flüchtige" bzw. "haftfeste" Riechstoffe ist also über den Geruchseindruck und darüber, ob der entsprechende Riechstoff als Kopf- oder Herznote wahrgenommen wird, nichts ausgesagt. Durch eine geeignete Auswahl der genannten Duftstoffe bzw. Parfümöle kann auf diese Weise sowohl der Produktgeruch als auch der Geruch der Wäsche beim Öffnen der Waschmaschine und nach dem Trocknen beeinflußt werden. Für den letzteren Geruchseindruck ist die Verwendung haftfesterer Riechstoffe vorteilhaft, während zur Produktbeduf- tung auch leichterflüchtige Riechstoffe einsetzbar sind. Haftfeste Riechstoffe, die im Rahmen der vorliegenden Erfindung einsetzbar sind, sind beispielsweise die ätherischen Öle wie Angelikawurzelöl, Anisöl, Arnikablütenöl, Basilikumöl, Bayöl, Bergamottöl, Cham- pacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, Eukalyptusöl, Fenchelöl, Fich- tennandelöl, Galbanumöl, Geraniumöl, Gingergrasöl, Guajakholzöl, Gurjunbalsamöl, He- lichrysumöl, Ho-Öl, Ingweröl, Irisöl, Kajeputöl, Kalmusöl, Kamillenöl, Kampferöl, Ka- nagaöl, Kardamomenöl, Kassiaöl, Kiefernnadelöl, Kopaϊ'vabalsamöl, Korianderöl, Krau- seminzeöl, Kümmelöl, Kuminöl, Lavendelöl, Lemongrasöl, Limetteöl, Mandarinenöl, Me- lissenöl, Moschuskörneröl, Myrrhenöl, Nelkenöl, Neroliöl, Niaouliöl, Olibanumöl, Oran- genöl, Origanumöl, Palmarosaöl, Patschuliöl, Perubalsamöl, Petitgrainöl, Pfefferöl, Pfef- ferminzöl, Pimentöl, Pine-Öl, Rosenöl, Rosmarinöl, Sandelholzöl, Sellerieöl, Spiköl, Sternanisöl, Teφentinöl, Thujaöl, Thymianöl, Verbenaöl, Vetiveröl, Wacholderbeeröl, Wermutöl, Wintergrünöl, Ylang-Ylang-Öl, Ysop-Öl, Zimtöl, Zimtblätteröl, Zitronellöl, Zitronenöl sowie Zypressenöl. Aber auch die höhersiedenden bzw. festen Riechstoffe natürlichen oder synthetischen Ursprungs können im Rahmen der vorliegenden Erfindung als haftfeste Riechstoffe bzw. Riechstoffgemische, also Duftstoffe, eingesetzt werden. Zu diesen Verbindungen zählen die nachfolgend genannten Verbindungen sowie Mischungen aus diesen: Ambrettolid, α-Amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranilsäuremethylester, Acetophenon, Benzylaceton, Benzaldehyd, Benzoesäureethyle- ster, Benzophenon, Benzylakohol, Benzylacetat, Benzylbenzoat, Benzylformiat, Benzyl- valerianat, Borneol, Bornylacetat, α-Bromstyrol, n-Decylaldehyd, n-Dodecylaldehyd, Eu- genol, Eugenolmethylether, Eukalyptol, Farnesol, Fenchon, Fenchylacetat, Geranylacetat, Geranylformiat, Heliotropin, Heptincarbonsäuremethylester, Heptaldehyd, Hydrochinon- Dimethylether, Hydroxyzimtaldehyd, Hydroxyzimtalkohol, Indol, Iron, Isoeugenol, Isoeu- genolmethylether, Isosafrol, Jasmon, Kampfer, Karvakrol, Karvon, p-Kresolmethylether, Cumarin, p-Methoxyacetophenon, Methyl-n-amylketon, Methylanthranilsäuremethylester, p-Methylacetophenon, Methylchavikol, p-Methylchinolin, Methyl-ß-naphthylketon, Me- thyl-n-nonylacetaldehyd, Methyl-n-nonylketon, Muskon, ß-Naphtholethylether, ß- Naphtholmethylether, Nerol, Nitrobenzol, n-Nonylaldehyd, Nonylakohol, n-Octylaldehyd, p-Oxy-Acetophenon, Pentadekanolid, ß-Phenylethylakohol, Phenylacetaldehyd- Dimethyacetal, Phenylessigsäure, Pulegon, Safrol, Salicylsäureisoamylester, Salicylsäure- methylester, Salicylsäurehexylester, Salicylsäurecyclohexylester, Santalol, Skatol, Teφi- neol, Thymen, Thymol, γ-Undelacton, Vanilin, Veratrumaldehyd, Zimtaldehyd, Zimatal- kohol, Zimtsäure, Zimtsäureethylester, Zimtsäurebenzylester. Zu den leichter flüchtigen Riechstoffen zählen insbesondere die niedriger siedenden Riechstoffe natürlichen oder synthetischen Usprung, die allein oder in Mischungen eingesetzt werrden können. Beispiele für leichter flüchtige Riechstoffe sind Alkyisothiocyanate (Alkylsenföle), Butandion, Limonen, Linalool, Linaylacetat und -propionat, Menthol, Menthon, Methyl-n-heptenon, Phellandren, Phenylacetaldehyd, Teφinylacetat, Zitral, Zitronellal.
Der Gehalt der einzelnen Phasen der Formköφer kann wie vorstehend beschrieben variiert werden, wobei es bevorzugt ist, das Parfüm in eine Schicht einzuarbeiten, während die andere(n) Schicht(en) frei von Parfüm ist. Unabhängig vom Parfümgehalt in der/den einzelnen Phase(n) sind Wasch- und Reinigungsmittelformköφer bevorzugt, bei denen die Formköφer Gesamt-Parfümgehalte von 0,05 bis 10 Gew.-%, vorzugsweise von 0,1 bis 5 Gew.-% und insbesondere von 0,25 bis 1,5 Gew.-%, jeweils bezogen auf das Formköφer- gewicht, aufweisen.
Wie bereits vorstehend erwähnt, sind Wasch- und Reinigungsmittelformköφer; bei denen die Zerfallszeit mindestens einer Phase bzw. Schicht oberhalb von 60 Sekunden liegt, nicht über die Einspülkammern von Haushaltswaschmaschinen einspülbar. Durch genügend hohe Preßdrucke bei der Herstellung lassen sich mit jedem Vorgemisch Tabletten herstellen, welche Zerfallszeiten oberhalb von 60 Sekunden aufweisen und nach den bisherigen Erfahrungen anwendungstechnisch unbefriedigend sind. Insbesondere die bei der Veφres- sung von Zweischichttabletten zuerst in der Matrize gebildete Schicht wird intensiver mechanisch beansprucht und zerfällt langsamer. Durch den erfindungsgemäßen Einsatz des Parfüms in unterschiedlichen Mengen in den einzelnen Schichten lassen sich Tabletten herstellen, bei denen auch die erste Schicht schnell und rückstandsfrei zerfällt sich somit einspülen läßt. Obwohl es erfindungsgemäß möglich ist, die Tabletten so hart zu veφres- sen, daß Zerfallszeiten über zwei Minuten realisierbar sind, ist aus anwendungstechnischer Sicht (Einspülzyklus von Haushaltswaschmaschinen) die Herstellung erfindungsgemäßer Formköφer bevorzugt, welche Zerfallszeiten unter 100 Sekunden aufweisen. Auch mit der erfindungsgemäßen Parfümaufteilung sind leicht und schnell zerfallende Tabletten bevorzugt, so daß im Rahmen der vorliegenden Erfindung Wasch- und Reinigungsmittelformköφer, die in Wasser bei 30°C in weniger als 60 Sekunden vollständig in ihre Sekundärpartikel zerfallen welche so klein sind, daß sie sich über die Einspülkammer einer haushaltsüblichen Waschmaschine einspülen lassen, besonders bevorzugt sind.
Um den Zerfall hochverdichteter Formköφer zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein- Derivate.
Bevorzugte Wasch- und Reinigungsmittelformköφer enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desintegrationshilfsmittel, jeweils bezogen auf das Formköφergewicht.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reini- gungsmittelformköφer ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (CÖHIOOS)!, auf und stellt formal betrachtet ein ß-l,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy- Gruppen gegen fünktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose- Derivate fallen beispielsweise Alkalicellulosen, Carboxyme hylcellulose (CMC), Cellulo- seester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feintei- liger Form eingesetzt, sondern vor dem Zumischen zu den zu veφressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformköφer, die Sprengmittel in granulärer oder gegebenenfalls cogranu- lierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Stefan Herzog) und DE 197 10 254 (Henkel) sowie der internationalen Patentanmeldung WO98/40463 (Henkel) beschrieben. Diesen Schriften sind auch nähere Angaben zur Herstellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entnehmen. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 μm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 μm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 μm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amoφhen Bereiche (ca. 30% der Gesamt-Celiulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kom- paktierbar sind.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformköφer enthalten zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granulärer, cogranulierter oder kompak- tierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formköφergewicht, wobei es bevorzugt ist, daß in der/den Phase(n) mit dem höheren Parfümgehalt das Desintegrationshilfsmittel in höheren Mengen enthalten ist als in der/den Phase(n) mit niedrigerem Parfümgehalt.
Der erfindungsgemäß unterschiedliche Gehalt der einzelnen Phasen an Parfüm, wobei besonders bevorzugte Ausführungsformen vorsehen, daß eine Phase parfümfrei ist, während die andere Phase Parfüm enthält, bedingt eine unterschiedliche Lösekinetik der Phasen. Da Parfümöle in der Regel hydrophobe Substanzen sind, zerfallen parfümfreie Regionen des Formköφers schneller und lösen sich dementsprechend auch schneller auf. Der gegenüber der parfümärmeren bzw. -freien Schicht erhöhte Parfümgehalt der anderen Schicht bedingt eine schlechtere Löslichkeit, die durch den Zusatz von Desintegrationshilfsmitteln ausge- glichen werden kann. In der parfümarmen bzw. freien Schicht kann der Anteil an Desintegrationshilfsmitteln demgegenüber verringert werden, wodurch sich insgesamt Desintegrationshilfsmittel einsparen läßt, wenn die parfümärmere bzw. -freie Phase einen größeren Anteil am Formköφer hat als die parfümhaltige Phase.
Durch den Einsatz des vorzugsweise cellulosehaltigen Desintegrationshilfsmittels in unterschiedlichen Mengen in den einzelnen Schichten lassen sich sie Zerfallszeiten der Schichten sehr nah aneinander angleichen und die oben genannten Probleme umgehen. Hierbei sind im Rahmen der vorliegenden Erfindung Wasch- und Reinigungsmittelformköφer bevorzugt, bei denen die Zerfallszeiten der Schichten um maximal 5 Sekunden voneinander differieren.
Auch die daraus resultierende Differenz der Desintegrationshilfsmittelgehalte in den einzelnen Phasen bzw. Schichten läßt sich in bevorzugten Ausführungsformen der vorliegenden Erfindung quantifizieren. Hier sind Wasch- und Reinigungsmittelformköφer bevorzugt, bei denen der Gehalt der parfümreicheren Phase(n) an Desintegrationshilfsmittel um mindestens 0,25 Gew.-%, vorzugsweise um mindestens 0,5 Gew.-% und insbesondere um mindestens 1 Gew.-%, bezogen auf das Gewicht der einzelnen Phase, höher ist als in der/den parfümärmeren Phase(n).
Neben dem absoluten Gehalt der einzelnen Phasen an Parfüm und dem vorzugsweise cellulosehaltigen Desintegrationshilfsmittel, der sich jeweils auf die Zusammensetzung der einzelnen Phase bezieht, ist auch das Verhältnis der Mengen in den einzelnen Phasen zueinander variierbar. Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformköφer bevorzugt, die aus zwei Phasen bestehen und bei denen der Quotient aus der Differenz der Parfümgehalte und der Differenz der Desintegrationshilfsmittelgehalte kleiner als 2, vorzugsweise kleiner als 1 und insbesondere kleiner als 0,5 ist.
Zieht man zur Verdeutlichung das Beispiel einer Zweischichttablette heran, bei der der Gehalt der einen Phase an Parfüm pl Gew.-%, der der anderen Phase p2 Gew.-% beträgt und bezeichnet man analog den Desintegrationshilfsmittelgehalt der parfümreicheren Phase mit dl, den der parfümärmeren Phase mit d2, so gilt in bevorzugten Ausführungsformen der vorliegenden Erfindung die mathematische Beziehung (pl - p2) / (dl - d2) < 2, vorzugsweise < 1 und insbesondere < 0,5.
Neben den genannten Inhaltsstoffen können die erfindungsgemäßen Wasch- und Reinigungsmittelformköφer weitere Inhaltsstoffe enthalten, deren Mengen sich nach dem Verwendungszweck der Formköφer richten. So sind insbesondere Stoffe aus den Gruppen der Tenside, der Gerüststoffe und der Polymere für den Einsatz in den erfindungsgemäßen Wasch- und Reinigungsmittelformköφer geeignet. Dem Fachmann wird es auch hier keine Schwierigkeiten bereiten, die einzelnen Komponenten und ihre Mengengehalte auszuwählen.
In den erfindungsgemäßen Wasch- und Reinigungsmittelformköφern können alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und -wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen- auch die Phosphate.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+ι 'H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP- A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na Si2O5 ' yH O bevorzugt, wobei ß-Natrium- disilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amoφhe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 :2 bis 1:3,3, vorzugsweise von 1 :2 bis 1 :2,8 und insbesondere von 1:2 bis 1 :2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amoφhen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amoφh" auch "röntgenamoφh" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu inteφretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamor- phe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amoφhe Silikate, compoundierte amoφhe Silikate und übertrocknete röntgenamoφhe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O (l-n)K2O ' Al2O3 ' (2 - 2,5)SiO2 (3,5 - 5,5) H2O
beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granulären Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu veφres- senden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkoφoration des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Coun- ter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser. Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersub- stanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtri- phosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel- Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH PO , existiert als Dihydrat (Dichte 1,91 gern"3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gern"3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P O ), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P Og) und Maddrellsches Salz (siehe unten), übergehen. NaH PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH- Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihy- drogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH PO4, ist ein weißes Salz der Dichte 2,33 gern"3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gern"3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gern"3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gern"3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator her- gestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amoφhes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO , sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gern"3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gern"3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein wei- ßes, zerfließliches, körniges Pulver der Dichte 2,56 gern" , hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium- Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gern"3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gern"3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na P O entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), KΛO7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gern"3 dar, das in Wasser löslich ist, wobei der pH- Wert der l%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO bzw. des KH PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3Oιo (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphos- phat, K5P3OI Ö (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%- igen Lösung (> 23% P O5, 25% K O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH -> Na3K2P3Oιo + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmit- telformköφern insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxy- late, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citro- nensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Buil- derwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH- Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV- Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäu- re-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen. Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch AUylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE- A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/ Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyas- paraginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dial- dehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialde- hyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Poly- saccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglu- cosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A- 196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein. Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendia- mindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'- disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Gly- cerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathalti- gen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbon- säuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das l-Hydroxyethan-l,l-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Die Menge an Gerüststoff beträgt üblicherweise zwischen 10 und 70 Gew.-%, vorzugsweise zwischen 15 und 60 Gew.-% und insbesondere zwischen 20 und 50 Gew.-%. Wie- derum ist die Menge an eingesetzten Buildern abhängig vom Verwendungszweck, so daß Bleichmitteltabletten höhere Mengen an Gerüststoffen aufweisen können (beispielsweise zwischen 20 und 70 Gew.-%, vorzugsweise zwischen 25 und 65 Gew.-% und insbesondere zwischen 30 und 55 Gew.-%), als beispielsweise Waschmitteltabletten (üblicherweise 10 bis 50 Gew.-%, vorzugsweise 12,5 bis 45 Gew.-% uns insbesondere zwischenl7,5 und 37,5 Gew.-%).
Bevorzugte Wasch- und Reinigungsmittelformköφer enthalten weiterhin ein oder mehrere Tensid(e). In den erfindungsgemäßen Wasch- und Reinigungsmittelformköφern können anionische, nichtionische, kationische und/oder amphotere Tenside beziehungsweise Mischungen aus diesen eingesetzt werden. Bevorzugt sind aus anwendungstechnischer Sicht Mischungen aus anionischen und nichtionischen Tensiden. Der Gesamttensidgehalt der Formköφer liegt bei 5 bis 60 Gew.-%, bezogen auf das Formköφergewicht, wobei Ten- sidgehalte über 15 Gew.-% bevorzugt sind.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C93- Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansul- fonaten sowie Disulfonaten, wie man sie beispielsweise aus Cι2-i8-Monoolefmen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus Cι2-ι8-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglyce- rinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfieφrodukte von gesättigten Fett- säuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Ca- prinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der Cι2-Cι8-Fettalkohole, beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der Cι0-C2o-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die Cι2-Ci6-Alkylsulfate und C12- Cι5-Alkylsulfate sowie Cι4-Cι5-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21 -Alkohole, wie 2 -Methyl- verzweigte Cg.π -Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder Cι28-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-ι8-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kaliumoder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxy- lierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalko- holresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Cι2-ι4-Alkohole mit 3 EO oder 4 EO, C9-n -Alkohol mit 7 EO, Cι3-ι5-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, Cι2- is-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus Cι2-ι -Alkohol mit 3 EO und Cι2-ιg-Alkohol mit 5 EO. Die angegebenen Ethoxy- lierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykose- einheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungs- grad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und pro- poxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkyl- kette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealka- nolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
R]
R-CO-N-[Z] (I)
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuk- kers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylie- rung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
R!-O-R2
R-CO-N-[Z] (II)
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Aryl- rest mit 2 bis 8 Kohlenstoffatomen und R für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei Cι-4- Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformköφer bevorzugt, die anionische(s) und nichtionische(s) Tensid(e) enthalten, wobei anwendungstechnische Vorteile aus bestimmten Mengenverhältnissen, in denen die einzelnen Tensid- klassen eingesetzt werden, resultieren können. So sind beispielsweise Wasch- und Reinigungsmittelformköφer besonders bevorzugt, bei denen das Verhältnis von Aniontensid(en) zu Niotensid(en) zwischen 10:1 und 1 :10, vorzugsweise zwischen 7,5:1 und 1:5 und insbesondere zwischen 5:1 und 1:2 beträgt. Bevorzugt sind auch Wasch- und Reinigungsmittelformköφer, die als Tensid(e) anionische(s) und/oder nichtionische(s) Tensid(e) in Mengen von 5 bis 40 Gew.-%, vorzugsweise von 7,5 bis 35 Gew.-%, besonders bevorzugt von 10 bis 30 Gew.-% uns insbesondere von 12,5 bis 25 Gew. -%, jeweils bezogen auf das Formköφergewicht, enthalten.
Es kann aus anwendungstechnischer Sicht Vorteile haben, wenn bestimmte Tensidklassen in einigen Phasen der Wasch- und Reinigungsmittelformköφer oder im gesamten Formköφer, d.h. in allen Phasen, nicht enthalten sind. Eine weitere wichtige Ausführungsform der vorliegenden Erfindung sieht daher vor, daß mindestens eine Phase der Formköφer frei von nichtionischen Tensiden ist.
Umgekehrt kann aber auch durch den Gehalt einzelner Phasen oder des gesamten Form- köφers, d.h. aller Phasen, an bestimmten Tensiden ein positiver Effekt erzielt werden. Das Einbringen der oben beschriebenen Alkylpolyglycoside hat sich dabei als vorteilhaft erwiesen, so daß Wasch- und Reinigungsmittelformköφer bevorzugt sind, in denen mindestens eine Phase der Formköφer Alkylpolyglycoside enthält.
Ähnlich wie bei den nichtionischen Tensiden können auch aus dem Weglassen von anionischen Tensiden aus einzelnen oder allen Phasen Wasch- und Reinigungsmittelformköφer resultieren, die sich für bestimmte Anwendungsgebiete besser eignen. Es sind daher im Rahmen der vorliegenden Erfindung auch Wasch- und Reinigungsmittelformköφer denkbar, bei denen mindestens eine Phase der Formköφer frei von anionischen Tensiden ist.
Neben den genannten Bestandteilen Parfüm, Builder, Tensid und Desintegrationshilfsmittel, können die erfmdungsgemäßen Wasch- und Reinigungsmittelformköφer weiterhin einen oder mehrere Stoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Enzyme, pH-Stellmittel, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikon- öle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertra- gungsinhibitoren und Korrosionsinhibitoren enthalten.
Zur Entfaltung der gewünschten Bleichleistung können die erfindungsgemäßen Wasch- und Reinigungsmittelformköφer Bleichmittel enthalten, wobei sich insbesondere die gebräuchlichen Bleichmittel aus der Gruppe Natriumperborat-Monohydrat, Natriumperborat- Tetrahydrat und Natriumpercarbonat bewährt haben. Ein besonders bevorzugtes Bleichmittel ist das Natriumpercarbonat.
Dabei ist „Natriumpercarbonat" eine in unspezifischer Weise verwendete Bezeichnung für Natriumcarbonat-Peroxohydrate, welche streng genommen keine „Percarbonate" (also Salze der Perkohlensäure) sondern Wasserstoffperoxid-Addukte an Natriumcarbonat sind. Die Handelsware hat die durchschnittliche Zusammensetzung 2 Na2CO3-3 H2O und ist damit kein Peroxycarbonat. Natriumpercarbonat bildet ein weißes, wasserlösliches Pulver der Dichte 2,14 gern" , das leicht in Natriumcarbonat und bleichend bzw. oxidierend wirkenden Sauerstoff zerfällt.
Natriumcarbonatperoxohydrat wurde erstmals 1899 durch Fällung mit Ethanol aus einer Lösung von Natriumcarbonat in Wasserstoffperoxid erhalten, aber irrtümlich als Peroxycarbonat angesehen. Erst 1909 wurde die Verbindung als Wasserstoffperoxid- Anlagerungsverbindung erkannt, dennoch hat die historische Bezeichnung „Natriumpercarbonat" sich in der Praxis durchgesetzt.
Die industrielle Herstellung von Natriumpercarbonat wird überwiegend durch Fällung aus wäßriger Lösung (sogenanntes Naßverfahren) hergestellt. Hierbei werden wäßrige Lösungen von Natriumcarbonat und Wasserstoffperoxid vereinigt und das Natriumpercarbonat durch Aussalzmittel (überwiegend Natriumchlorid), Kristallisierhilfsmittel (beispielsweise Polyphosphate, Polyacrylate) und Stabilisatoren (beispielsweise Mg2+-Ionen) gefällt. Das ausgefällte Salz, das noch 5 bis 12 Gew.-% Mutterlauge enthält, wird anschließend abzen- trifuigiert und in Fließbett- Trocknern bei 90°C getrocknet. Das Schüttgewicht des Fertigprodukts kann je nach Herstellungsprozeß zwischen 800 und 1200 g/1 schwanken. In der Regel wird das Percarbonat durch ein zusätzliches Coating stabilisiert. Coatingverfahren und Stoffe, die zur Beschichtung eingesetzt werden, sind in der Patentliteratur breit beschrieben. Grundsätzlich können erfmdungsgemäß alle handelsüblichen Percarbonattypen eingesetzt werden, wie sie beispielsweise von den Firmen Solvay Interox, Degussa, Kemi- ra oder Akzo angeboten werden. Es ist im Rahmen der vorliegenden Erfindung bevorzugt, das oder die Bleichmittel in die parfümärmere Phase zu inkoφorieren. Insbesondere ist es bevorzugt, eine Bleichmittel-haltige Phase in den Formköφern vorzusehen, die frei von Parfüm ist.
Zusätzlich zu den optional eingesetzten Bleichmitteln können die erfmdungsgemäßen Wasch- und Reinigungsmittelformköφer Bleichaktivator(en) enthalten, was im Rahmen der vorliegenden Erfindung bevorzugt ist. Bleichaktivatoren werden in Wasch- und Reinigungsmittel eingearbeitet, um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N- Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoyl- gruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraa- cetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere l,5-Diacetyl-2,4- dioxohexahydro-l,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetyl- glykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5- dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Formköφer eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder - carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N- haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Wenn die erfindungsgemäßen Formköφer Bleichaktivatoren enthalten, enthalten sie, jeweils bezogen auf den gesamten Formköφer, zwischen 0,5 und 30 Gew.-%, vorzugsweise zwischen 1 und 20 Gew.-% und insbesondere zwischen 2 und 15 Gew.-% eines oder mehrerer Bleichaktivatoren oder Bleichkatalysatoren. Je nach Verwendungszweck der hergestellten Formköφer können diese Mengen variieren. So sind in typischen Universal- waschmitteltabletten Bleichaktivator-Gehalte zwischen 0,5 und 10 Gew.-%, vorzugsweise zwischen 2 und 8 Gew.-% und insbesondere zwischen 4 und 6 Gew.-% üblich, während Bleichmitteltabletten durchaus höhere Gehalte, beispielsweise zwischen 5 und 30 Gew.-%, vorzugsweise zwischen 7,5 und 25 Gew.-% und insbesondere zwischen 10 und 20 Gew.-% aufweisen können. Der Fachmann ist dabei in seiner Formulierungsfreiheit nicht eingeschränkt und kann auf diese Weise stärker oder schwächer bleichende Waschmitteltabletten, Reinigungsmitteltabletten oder Bleichmitteltabletten herstellen, indem er die Gehalte an Bleichaktivator und Bleichmittel variiert.
Ein besonders bevorzugt verwendeter Bleichaktivator ist das N,N,N',N'- Tetraacetylethylendiamin, das in Wasch- und Reinigungsmitteln breite Verwendung findet. Dementsprechend sind bevorzugte Wasch- und Reinigungsmittelformköφer dadurch gekennzeichnet, daß als Bleichaktivator Tetraacetylethylendiamin in den oben genannten Mengen eingesetzt wird.
Um den ästhetischen Eindruck der erfindungsgemäßen Wasch- und Reinigungsmittelformköφer zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfmdlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Bevorzugt für den Einsatz in den erfindungsgemäßen Wasch- und Reinigungsmittelform- köφern sind alle Färbemittel, die im Waschprozeß oxidativ zerstört werden können sowie Mischungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönern. Es hat sich als vorteilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z.B. anionische Nitrosofarbstoffe. Ein mögliches Färbemittel ist beispielsweise Naphfholgrün (Colour Index (CI) Teil 1: Acid Green 1; Teil 2: 10020), das als Handelsprodukt beispielsweise als Basacid Grün 970 von der Fa. BASF, Ludwigshafen, erhältlich ist, sowie Mischungen dieser mit geeigneten blauen Farbstoffen. Als weitere Färbemittel kommen Pigmosol® Blau 6900 (CI 74160), Pigmosol® Grün 8730 (CI 74260), Basonyl® Rot 545 FL (CI 45170), Sandolan® Rhodamin EB400 (CI 45100), Basacid® Gelb 094 (CI 47005), Sicovit® Patentblau 85 E 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol® Blau GLW (CAS 12219-32-8, CI Acidblue 221)), Nylosan® Gelb N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) und/oder Sandolan® Blau (CI Acid Blue 182, CAS 12219-26-0) zum Einsatz.
Bei der Wahl des Färbemittels muß beachtet werden, daß die Färbemittel keine zu starke Affinität gegenüber den textilen Oberflächen und hier insbesondere gegenüber Kunstfasern aufweisen. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, daß Färbemittel unterschiedliche Stabilitäten gegenüber der Oxidation aufweisen. Im allgemeinen gilt, daß wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasserlösliche Färbemittel. Abhängig von der Löslichkeit und damit auch von der Oxidati- onsempfmdlichkeit variiert die Konzentration des Färbemittels in den Wasch- oder Reinigungsmitteln. Bei gut wasserlöslichen Färbemitteln, z.B. dem oben genannten Basacid
Grün oder dem gleichfalls oben genannten Sandolan Blau, werden typischerweise Fär- bemittel-Konzentrationen im Bereich von einigen 10" bis 10" Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen
Pigmentfarbstoffen, z.B. den oben genannten Pigmosol -Farbstoffen, liegt die geeignete Konzentration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10-"3 bis 10" Gew.-%. Es ist im Rahmen der vorliegenden Erfindung bevorzugt, daß die parfümreichere Phase zusätzlich Farbstoff enthält. Besonders bevorzugt ist eine Phase, vorzugsweise Schicht, frei von Farbstoffen und Parfüm, während eine andere Phase sowohl Parfüm als auch Farbstoff enthält. Diese Trennung hat den Vorteil, daß die zumeist gelb gefärbten Parfümöle den Farbeindruck der farbstofffreien „weißen" Schicht nicht beeinträchtigen. Zusätzlich wird der Farbeindruck der eingefärbten Schicht durch die Anfeuchtung mit hydrophobem Parfüm intensiver, so daß Farbstoff eingespart werden kann.
Die Formköφer können optische Aufheller vom Typ der Derivate der Diaminostilbendi- sulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'- Bis(2-anilino-4-moφholino-l ,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Moφholino-Gruppe eine Diefhanolamino- gruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Mefhoxyefhylamino- gruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3- sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Die optischen Aufheller werden in den erfindungsgemäßen Wasch- und Reinigungsmittelformköφer in Konzentrationen zwischen 0,01 und 1 Gew.-%, vorzugsweise zwischen 0,05 und 0,5 Gew.-% und insbesondere zwischen 0,1 und 0,25 Gew.-%, jeweils bezogen auf den gesamten Formköφer, eingesetzt.
Als Enzyme kommen insbesondere solche aus der Klassen der Hydrolasen wie der Protea- sen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verfleckungen und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha- Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und -Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase- Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-% betragen.
Zusätzlich können die Wasch- und Reinigungsmittelformköφer auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repell ents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methyl- cellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbe- sondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäu- re-Polymere.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung mehφhasiger Wasch- und Reinigungsmittelformköφer durch an sich bekanntes Veφres- sen unterschiedlicher teilchenförmiger Vorgemische, bei dem der Parfümgehalt der einzelnen Vorgemische, jeweils bezogen auf das Gewicht der Vorgemische, um mehr als 0,75 Gew.-%, vorzugsweise um mehr als 1 Gew.-% und insbesondere um mehr als 1,5 Gew.-%, variiert, sind demnach ebenso bevorzugt wie Verfahren, bei denen zwei Vorgemische zu einem zweischichtigen Formköφer veφreßt werden, deren eines bezogen auf sein Gewicht mehr als 0,75 Gew.-%, vorzugsweise mehr als 1 Gew.-% und insbesondere mehr als 2 Gew.-% Parfüm enthält, während das andere bezogen auf sein Gewicht weniger als 1 Gew.-%, vorzugsweise weniger als 0,5 Gew.-%, besonders bevorzugt weniger als 0,1 Gew.-% und insbesondere kein Parfüm enthält.
Das Parfüm kann auf unterschiedliche Weise in die erfindungsgemäßen Formköφer eingebracht werden. Der einfachste Weg besteht darin, daß das Parfüm durch Aufsprühen auf das bzw. die Vorgemisch(e) in die parfümhaltige(n) Phase(n) eingebracht wird. Da die zu den jeweiligen Phasen zu veφressenden Vorgemische üblicherweise Gemische unterschiedlicher teilchenförmiger und gegebenenfalls flüssiger oder pastöser Stoffe sind, kann das Parfüm im Mischschritt einfach zudosiert werden. Hierbei ist eine feine Verteilung, beispielsweise ein Verdüsen, dem einfachen Zugießen vorzuziehen.
Es ist aber auch möglich, die Duftstoffe vor der Zugabe zum jeweiligen Vorgemisch auf Trägersubstanzen aufzubringen oder auf geeignete Weise in ihrer Haftung zu verlängern. Hierzu bieten sich beispielsweise Cyclodextrin-Parfüm-Komplexe oder verkapselte Parfüme an. Verfahren, in denen das Parfüm durch Zugabe von solchen festen Duftstoff- Zubereitungsformen zu dem bzw. den Vorgemisch(en) in die parfümhaltige(n) Phase(n) eingebracht wird, sind ebenfalls bevorzugt. Analog zu den vorstehend beschriebenen Ausführungsformen ist auch der Einsatz weiterer Inhaltsstoffe auf das erfindungsgemäße Verfahren zu übertragen. In bevorzugten Verfahren enthält das teilchenförmige Vorgemisch zusätzlich tensidhaltige(s) Granulat(e) und weist ein Schüttgewicht von mindestens 500 g/1, vorzugsweise mindestens 600 g/1 und insbesondere mindestens 700 g/1 auf.
In bevorzugten erfindungsgemäßen Verfahren weist das tensidhaltige Granulat Teilchengrößen zwischen 100 und 2000 μm, vorzugsweise zwischen 200 und 1800 μm, besonders bevorzugt zwischen 400 und 1600 μm und insbesondere zwischen 600 und 1400μm, auf.
Auch die weiteren Inhaltsstoffe der erfindungsgemäßen Wasch- und Reinigungsmittelformköφer können in das erfindungsgemäße Verfahren eingebracht werden, wozu auf die obenstehenden Ausführungen verwiesen wird. Bevorzugte Verfahren sind dadurch gekennzeichnet, daß das teilchenförmige Vorgemisch zusätzlich einen oder mehrere Stoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Desintegrationshilfsmittel, Enzyme, pH-Stellmittel, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepo- sitionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthält.
Die Herstellung der erfindungsgemäßen Formköφer erfolgt zunächst durch das trockene Vermischen der Bestandteile der einzelnen Phasen, die ganz oder teilweise vorgranuliert sein können, und anschließendes Informbringen, insbesondere Veφressen zu Tabletten, wobei auf herkömmliche Verfahren zur Herstellung mehφhasiger Formköφer zurückgegriffen werden kann. Zur Herstellung der erfindungsgemäßen mehφhasigen Formköφer werden die Vorgemische in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfachoder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Ver- pressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenteφressen variieren je nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Be- füllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befül- lung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formköφer werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Wei- se auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Veφressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formköφer pro Stunde.
Bei der Tablettierung mit Rundläufeφressen hat es sich als vorteilhaft erwiesen, die Tablettierung mit möglichst geringen Härteschwankungen der Tablette durchzuführen. Dies wird erreicht durch eine Tablettierung mit konstanten Preßkräften. Die Nachregelung der Preßkräfte erfolgt über die Füllmenge oder die Tablettenhöhe. Geringe Gewichtschwankungen können auf folgende Weise erzielt werden:
- Verwendung von Kunststoffeinlagen mit geringen Dickentoleranzen
- Arbeitsweise ohne Einlagen mit minimalen Werkzeugtoleranzen und drehenden Stempeln
- Geringe Umdrehungszahl des Rotors
- Große Füllschuhe
- Abstimmung des Füllschuhflügeldrehzahl auf die Drehzahl des Rotors
- Füllschuh mit konstanter Pulverhöhe
- Entkopplung von Füllschuh und Pulvervorlage
Zur Verminderung von Stempelanbackungen bieten sich sämtliche aus der Technik bekannte Antihaftbeschichtungen an. Besonders vorteilhaft sind Kunststoffbeschichtungen, Kunststoffeinlagen oder Kunststoffstempel. Auch drehende Stempel haben sich als vorteilhaft erwiesen, wobei nach Möglichkeit Ober- und Unterstempel drehbar ausgeführt sein sollten. Bei drehenden Stempeln kann auf eine Kunststoffeinlage in der Regel verzichtet werden. Hier sollten die Stempeloberflächen elektropoliert sein.
Es zeigte sich weiterhin, daß lange Preßzeiten vorteilhaft sind. Diese können mit Druckschienen, mehreren Druckrollen oder geringen Rotordrehzahlen eingestellt werden. Da die Härteschwankungen der Tablette durch die Schwankungen der Preßkräfte verursacht werden, sollten Systeme angewendet werden, die die Preßkraft begrenzen. Hier können elastische Stempel, pneumatische Kompensatoren oder federnde Elemente im Kraftweg eingesetzt werden. Auch kann die Druckrolle federnd ausgeführt werden.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Hörn & Noack Pharmatechnik GmbH, Worms, IMA Veφackungssysteme GmbH Viersen, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen AG, Berlin, sowie Romaco GmbH, Worms. Weitere Anbieter sind beispielsweise Dr. Herbert Pete, Wien (AU), Mapag Maschinenbau AG, Bern (CH), BWI Manesty, Liverpool (GB), I. Holand Ltd., Nottingham (GB), Courtoy N.V., Halle (BE/LU) sowie Me- diopharm Kamnik (SI). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D. Tablettierwerkzeuge sind beispielsweise von den Firmen Adams Tablettierwerkzeuge, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber % Söhne GmbH, Hamburg, Hofer GmbH, Weil, Hörn & Noack, Pharmatechnik GmbH, Worms, Ritter Pharamatechnik GmbH, Hamburg, Romaco, GmbH, Worms und Notter Werkzeugbau, Tamm erhältlich. Weitere Anbieter sind z.B. die Senss AG, Reinach (CH) und die Medicopharm, Kamnik (SI).
Die Formköφer können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden, wobei sie immer aus mehreren Phasen, d.h. Schichten, Einschlüssen oder Kernen und Ringen bestehen. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stabbzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungs- mittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe- Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Exzenteφressen oder Rundläufeφressen sind geeignete Vorrichtungen insbesondere zur Herstellung derartiger Preßlinge.
Die Raumform einer anderen Ausführungsform der Formköφer ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formköφer ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmittelformköφer über eine Dosierhilfe problemlos möglich.
Ein weiterer bevorzugter mehφhasiger Formköφer, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Mehφhasen-Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegeiförmigen" Formköφerwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiek- ken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden. Hier bietet es sich aus optischen Gründen an, die Dreiecksbasis, die die einzelnen Segmente miteinander verbindet, als eine Phase auszubilden, während die Dreiecksspitze die zweite Phase bildet. Eine unterschiedliche Anfärbung beider Phasen ist in dieser Ausführungsform besonders reizvoll.
Nach dem Veφressen weisen die Wasch- und Reinigungsmittelformköφer eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formköφer kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach 2 σ = πDt
Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formköφer ausgeübten Druck führt, der den Bruch des Formköφers verursacht, D ist der Formköφerdurchmesser in Meter und t ist die Höhe der Formköφer.
Beispiele:
Durch Abmischung eines tensidhaltigen Granulats mit pulverförmigen Aufbereitungskomponenten wurden Vorgemische hergestellt, die in einer Korsch-Tablettenpresse zu zweiphasigen Waschmitteltabletten veφreßt wurden. Das Tensidgranulat wurde in einem 130-Liter-Pflugscharmischer (Gebrüder Lödige, Paderborn) hergestellt und anschließend in einem Wirbelschichttrockner getrocknet. Nach dem Absieben der Grobanteile (> 1 ,6 mm) und der Feinanteile (< 0,4 mm) wurden die Tensidgranulate mit den Aufbereitungskomponenten vermischt. Die Zusammensetzung der Tensidgranulate zeigt Tabelle 1.
Tabelle 1: Tensidgranulate [Gew.-%]
Figure imgf000043_0001
Aus den zwei Vorgemischen (Tensidgranulat + Aufbereitungskomponenten) wurden auf einer Korsch-Rundläufeφresse zweischichtige Waschmitteltabletten hergestellt, wobei der Anteil der ersten Schicht 75 Gew.-% der Gesamtmasse und der Anteil der zweiten Schicht 25 Gew.-% der Gesamtmasse der Tablette betrug. Der Durchmesser der Tabletten betrug 44 mm, das Gewicht 37,5 g. In der nachfolgenden Tabellen 2 sind die Zusammensetzungen der Waschmitteltabletten nach Phasen gegliedert angegeben. Die Werte in den Spalten der Tabelle geben dabei die Menge des betreffenden Stoffes in der jeweiligen Phase der Tablette an, d.h. die Werte in eine Spalte addieren sich auf 100 %. Die Menge des betreffenden Stoffes in der gesamten Tablette läßt sich aus dem Anteil der einzelnen Phasen daraus mühelos errechnen. Entsprechend der unterschiedlichen Tablettengewichte (37,5 g ± 1%, bedingt durch geringe Schwankungen bei der Zuführung des Vorgemischs in die Matrize der Presse) schwankten die Tablettenhärten um ca. ± 10%, die Zerfallszeiten um ca. 5 Sekunden.
Die Härte der Tabletten wurde durch Verformung der Tablette bis zum Bruch gemessen, wobei die Kraft auf die Seitenflächen der Tablette einwirkte und die maximale Kraft, der die Tablette standhielt, ermittelt wurde.
Zur Bestimmung des Tablettenzerfalls wurde die Tablette in ein Becherglas mit Wasser gelegt (600ml Wasser, Temperatur 30°C) und die Zeit bis zum vollständigen Tablettenzerfall gemessen. Die experimentellen Daten der einzelnen Tabletten sind ebenfalls in Tabelle 2 gezeigt.
Tabelle 2: Waschmitteltabletten: Zusammensetzung [Gew.-%], phys. Daten
Figure imgf000044_0001
Figure imgf000045_0001
* Enzymgranulat aus Protease, Cellulase, Amylase, Lipase auf Träger (Stärke), ge- coatet
** Repelotex-SRP-4 ist ein Terephthalsäure-Ethylenglycol-Polyethylenglycol-Ester der Firma Rhöne-Poulenc. *** Arbocel® TF 30 HG der Firma Rettenmaier, Teilchengröße: 2% < 200 μm, 2% >
200 μm, 11% > 400 μm, 23% > 600 μm, 62% > 800 μm, 0% > 1,2 mm
Tabelle 2 zeigt, daß durch die erfindungsgemäße Aufteilung des Parfüms bei gleichem Parfümgehalt der Anteil an Desintegrationshilfsmittel in der Gesamt-Tablette verringert werden kann, ohne daß Leistungseinbußen in Kauf genommen werden müssen. Vielmehr werden im Vergleich der erfindungsgemäßen Formköφer mit dem Vergleichsbeispiel mit nur knapp 80 % des Desintegrationshilfsmittels deutlich bessere Zerfallszeiten erreicht.
Weitere Vorteile, die aus der Tabelle 2 nicht hervorgehen, liegen in einer deutlichen optischen Differenzierung der Tabletten: Die erfindungsgemäße Tablette weist in der ungefärbten Schicht einen höheren Weißgrad auf als das Vergleichsbeispiel. Ebenso hat die gefärbte Schicht eine höhere Brillanz und einen stärkeren Farbeindruck. Interessant ist fer- ner die Tatsache, daß der Dufteindruck der erfindungsgemäßen Tabletten trotz der im Vergleich zu dem Vergleichsbeispiel identischen Menge an Parfüm von Testpersonen durchweg besser bewertet wird.

Claims

Patentansprüche :
1. Zwei- oder mehφhasige Wasch- und Reinigungsmittelformköφer aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, umfassend mehr als 2 Gew.-% Ten- sid(e), Gerüststoff(e), Parfüm sowie gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile, dadurch gekennzeichnet, daß der Parfümgehalt der einzelnen Phasen des Formköφers, bezogen auf das Gewicht der einzelnen Phase, um mehr als 0,75 Gew.-%, vorzugsweise um mehr als 1 Gew.-% und insbesondere um mehr als 1,5 Gew.-%, variiert.
2. Wasch- und Reinigungsmittelformköφer nach Anspruch 1, dadurch gekennzeichnet, daß die Phasen des Formköφers die Form von Schichten aufweisen.
3. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Formköφer zwei Schichten aufweisen, die das gleiche Parfüm in unterschiedlichen Mengen enthalten.
4. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Formköφer zwei Schichten aufweisen, von denen eine frei von Parfüm ist.
5. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, daß die beiden Schichten des Formköφers im Gewichtsverhältnis von 5 zu 95 bis 50 zu 50, vorzugsweise von 10 zu 90 bis 60 zu 40 und insbesondere von 15 zu 85 bis 65 zu 35 stehen, wobei das Parfüm vorzugsweise in der anteilsmäßig geringeren Schicht höher konzentriert ist.
6. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Formköφer Gesamt-Parfümgehalte von 0,05 bis 10 Gew.-%, vorzugsweise von 0,1 bis 5 Gew.-% und insbesondere von 0,25 bis 1,5 Gew.-%, jeweils bezogen auf das Formköφergewicht, aufweisen.
7. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granulärer, cogranulier- ter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Form- köφergewicht, enthalten, wobei es bevorzugt ist, daß in der/den Phase(n) mit dem höheren Parfümgehalt das Desintegrationshilfsmittel in höheren Mengen enthalten ist als in der/den Phase(n) mit niedrigerem Parfümgehalt.
8. Wasch- und Reinigungsmittelformköφer nach Anspruch 7, dadurch gekennzeichnet, daß der Gehalt der parfümreicheren Phase(n) an Desintegrationshilfsmittel um mindestens 0,25 Gew.-%, vorzugsweise um mindestens 0,5 Gew.-% und insbesondere um mindestens 1 Gew.-%, bezogen auf das Gewicht der einzelnen Phase, höher ist als in der/den parfümärmeren Phase(n).
9. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß die Tablette aus zwei Phasen besteht und der Quotient aus der Differenz der Parfümgehalte und der Differenz der Desintegrationshilfsmittelgehalte kleiner als 2, vorzugsweise kleiner als 1 und insbesondere kleiner als 0,5 ist.
10. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß sie als Tensid(e) anionische(s) und/oder nichtionische(s) Tensid(e) in Mengen von 5 bis 40 Gew.-%, vorzugsweise von 7,5 bis 35 Gew.-%, besonders bevorzugt von 10 bis 30 Gew.-% uns insbesondere von 12,5 bis 25 Gew.-%, jeweils bezogen auf das Formköφergewicht, enthalten.
11. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß sie weiterhin einen oder mehrere Stoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Enzyme, pH-Stellmittel, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhi- bitoren enthalten.
12. Verfahren zur Herstellung mehφhasiger Wasch- und Reinigungsmittelformköφer durch an sich bekanntes Veφressen unterschiedlicher teilchenförmiger Vorgemische, dadurch gekennzeichnet, daß der Parfümgehalt der einzelnen Vorgemische, jeweils bezogen auf das Gewicht der Vorgemische, um mehr als 0,75 Gew.-%, vorzugsweise um mehr als 1 Gew.-% und insbesondere um mehr als 1,5 Gew.-%, variiert.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß zwei Vorgemische zu einem zweischichtigen Formköφer veφreßt werden, deren eines bezogen auf sein Gewicht mehr als 0,75 Gew.-%, vorzugsweise mehr als 1 Gew.-% und insbesondere mehr als 2 Gew.-% Parfüm enthält, während das andere bezogen auf sein Gewicht weniger als 1 Gew.-%, vorzugsweise weniger als 0,5 Gew.-%, besonders bevorzugt weniger als 0,1 Gew.-% und insbesondere kein Parfüm enthält.
14. Verfahren nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, daß das Parfüm durch Aufsprühen auf das bzw. die Vorgemisch(e) in die parfümhaltige(n) Pha- se(n) eingebracht wird.
15. Verfahren nach einem der Ansprüche 12 oder 13, dadurch gekennzeichnet, daß das Parfüm durch Zugabe von festen Duftstoff-Zubereitungsformen zu dem bzw. den Vor- gemisch(en) in die parfümhaltige(n) Phase(n) eingebracht wird.
16. Verfahren nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, daß mindestens ein, vorzugsweise alle teilchenförmige(s/n) Vorgemisch(e) zusätzlich tensidhalti- ge(s) Granulat(e) enthält/enthalten und ein Schüttgewicht von mindestens 500 g/1, vorzugsweise mindestens 600 g/1 und insbesondere mindestens 700 g/1 aufweist/aufweisen.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß das tensidhaltige Granulat Teilchengrößen zwischen 100 und 2000 μm, vorzugsweise zwischen 200 und 1800 μm, besonders bevorzugt zwischen 400 und 1600 μm und insbesondere zwischen 600 und 1400μm, aufweist.
PCT/EP2000/004725 1999-06-04 2000-05-24 Mehrphasige wasch- und reinigungsmittelformkörper mit parfüm WO2000075273A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU50712/00A AU5071200A (en) 1999-06-04 2000-05-24 Multiphase washing and cleaning agent shaped bodies containing perfume
CA002335039A CA2335039A1 (en) 1999-06-04 2000-05-24 Multiphase washing and cleaning agent shaped bodies containing perfume

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19925518.0A DE19925518B4 (de) 1999-06-04 1999-06-04 Mehrphasige Wasch- und Reinigungsmittelformkörper mit Parfüm sowie Verfahren zu ihrer Herstellung
DE19925518.0 1999-06-04

Publications (1)

Publication Number Publication Date
WO2000075273A1 true WO2000075273A1 (de) 2000-12-14

Family

ID=7910174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004725 WO2000075273A1 (de) 1999-06-04 2000-05-24 Mehrphasige wasch- und reinigungsmittelformkörper mit parfüm

Country Status (4)

Country Link
AU (1) AU5071200A (de)
CA (1) CA2335039A1 (de)
DE (1) DE19925518B4 (de)
WO (1) WO2000075273A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1705241A1 (de) * 2005-03-23 2006-09-27 Unilever N.V. Körperförmige Wasch- oder Reinigungsmittelzusammensetzungen

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011256B4 (de) * 2004-03-09 2007-11-15 Henkel Kgaa Mehrphasentabletten mit verbesserter Duftwahrnehmung
EP1574561A1 (de) * 2004-03-11 2005-09-14 The Procter & Gamble Company Parfümierte Waschmitteltablette
DE102005043189A1 (de) * 2005-09-09 2007-03-15 Henkel Kgaa Verbrauchsprodukte mit Duftvielfalt
WO2013172844A1 (en) 2012-05-17 2013-11-21 Colgate-Palmolive Company Multiphase surfactant fragrance composition
CN105431282B (zh) * 2013-08-01 2019-04-19 横滨橡胶株式会社 凝固剂以及轮胎刺破修理套件
DE102015215135A1 (de) * 2015-08-07 2017-02-09 Henkel Ag & Co. Kgaa WC-Stein und WC-Körbchen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055100A1 (de) * 1980-12-18 1982-06-30 Jeyes Group Limited Toilettenreinigungsmittelblöcke
JPS6236500A (ja) * 1985-08-12 1987-02-17 花王株式会社 固形洗浄剤
EP0851023A2 (de) * 1996-12-23 1998-07-01 Unilever N.V. Peracid enthaltende automatische Geschirrspülmitteltabletten
WO1999027069A1 (en) * 1997-11-26 1999-06-03 The Procter & Gamble Company Detergent tablet
DE19758171A1 (de) * 1997-12-30 1999-07-01 Henkel Kgaa Geschirrspülmittelformkörper mit spezifischem Volumenverhältnis
WO1999041350A1 (de) * 1998-02-16 1999-08-19 Henkel Kommanditgesellschaft Auf Aktien Mehrphasen-formkörper mit optimiertem phasensplit
DE19838127A1 (de) * 1998-08-21 2000-02-24 Henkel Kgaa Reinigungsmittelformkörper
DE19903288A1 (de) * 1999-01-28 2000-08-03 Henkel Kgaa Mehrphasige Waschmitteltabletten

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4439677A1 (de) * 1994-11-07 1996-05-09 Henkel Kgaa Reinigungsmittelstück für Spültoiletten
US6194368B1 (en) * 1995-07-13 2001-02-27 Joh A. Benckiser, Gmbh Dishwasher product in tablet form
DE19739383A1 (de) * 1997-09-09 1999-03-11 Henkel Kgaa Wasch- und Reinigungsmittelformkörper mit verbesserter Löslichkeit
DE19834181B4 (de) * 1998-07-29 2006-06-01 Reckitt Benckiser N.V. Zusammensetzung zur Verwendung in einer Waschmaschine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055100A1 (de) * 1980-12-18 1982-06-30 Jeyes Group Limited Toilettenreinigungsmittelblöcke
JPS6236500A (ja) * 1985-08-12 1987-02-17 花王株式会社 固形洗浄剤
EP0851023A2 (de) * 1996-12-23 1998-07-01 Unilever N.V. Peracid enthaltende automatische Geschirrspülmitteltabletten
WO1999027069A1 (en) * 1997-11-26 1999-06-03 The Procter & Gamble Company Detergent tablet
DE19758171A1 (de) * 1997-12-30 1999-07-01 Henkel Kgaa Geschirrspülmittelformkörper mit spezifischem Volumenverhältnis
WO1999041350A1 (de) * 1998-02-16 1999-08-19 Henkel Kommanditgesellschaft Auf Aktien Mehrphasen-formkörper mit optimiertem phasensplit
DE19838127A1 (de) * 1998-08-21 2000-02-24 Henkel Kgaa Reinigungsmittelformkörper
DE19903288A1 (de) * 1999-01-28 2000-08-03 Henkel Kgaa Mehrphasige Waschmitteltabletten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198712, Derwent World Patents Index; Class D25, AN 1987-084278, XP002000048 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1705241A1 (de) * 2005-03-23 2006-09-27 Unilever N.V. Körperförmige Wasch- oder Reinigungsmittelzusammensetzungen

Also Published As

Publication number Publication date
DE19925518B4 (de) 2016-06-30
DE19925518A1 (de) 2000-12-07
CA2335039A1 (en) 2000-12-14
AU5071200A (en) 2000-12-28

Similar Documents

Publication Publication Date Title
DE19920118B4 (de) Wasch- und Reinigungsmittelformkörper mit Beschichtung und Verfahren zu seiner Herstellung
DE19925518B4 (de) Mehrphasige Wasch- und Reinigungsmittelformkörper mit Parfüm sowie Verfahren zu ihrer Herstellung
DE19955240A1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
DE19934704A1 (de) Wasch- und Reinigungsmittelformkörper mit Dispersionsmitteln
EP1123378B1 (de) Wasch- und reinigungsmittelformkörper mit wasserfrei granuliertem brausesystem
EP1165742B1 (de) Ein- oder mehrphasige wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
EP1188820B1 (de) Wasch- und Reinigungsmittelformkörper mit Polyurethan-Beschichtung
EP1165741B1 (de) Wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
WO2000014196A1 (de) Waschmitteltabletten mit bindemitteln
WO2000017307A1 (de) Wasch- und reinigungsmittelformkörper mit natriumpercarbonat
EP1123380A1 (de) Wasch- und reinigungsmittelformkörper/verpackung-kombination
DE19925503A1 (de) Mehrphasige Wasch- und Reinigungsmittelformkörper mit optischen Aufhellern
EP1159392B1 (de) Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination
DE10026334A1 (de) Wasch- und Reinigungsmittelformkörper mit Pfropfcopolymer-Beschichtung
DE10044073A1 (de) Beschichtete Tabletten und Verfahren zur Tablettenbeschichtung
EP1173536A1 (de) Bleichmittelhaltige waschmitteltabletten
WO2001014512A1 (de) Wasch- oder reinigungsmittelformkörper
WO2000022087A1 (de) Wasch- und reinigungsmittelformkörper mit organischen oligocarbonsäuren
WO2000022086A1 (de) Bleichaktivator-haltige wasch- und reiningungsmittelformkörper
WO2000017305A1 (de) Wasch- und reinigungsmittelformkörper mit grobteiligen aufbereitungskomponenten
DE19919444A1 (de) Wasch- und Reinigungsmittelformkörper mit Bindemittelcompound
DE19919445A1 (de) Wasch- und Reinigungsmittelformkörper mit festen Bindemitteln
DE102004020009A1 (de) Wasch- und Reinigungsmittelformkörper mit Celluloseetherderivat
WO2000017306A1 (de) Wasch- und reinigungsmittelformkörper mit feinteiligen aufbereitungskomponenten
WO2000004114A2 (de) Verfahren zur herstellung fettalkoholsulfathaltiger wasch- und reinigungsmittelformkörper

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2335039

Country of ref document: CA

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ HU ID IL IN JP KR MX PL RO RU SG SI SK TR UA ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP