EP1159392B1 - Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination - Google Patents

Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination Download PDF

Info

Publication number
EP1159392B1
EP1159392B1 EP00912538A EP00912538A EP1159392B1 EP 1159392 B1 EP1159392 B1 EP 1159392B1 EP 00912538 A EP00912538 A EP 00912538A EP 00912538 A EP00912538 A EP 00912538A EP 1159392 B1 EP1159392 B1 EP 1159392B1
Authority
EP
European Patent Office
Prior art keywords
weight
tablets
acid
surfactant
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00912538A
Other languages
English (en)
French (fr)
Other versions
EP1159392B2 (de
EP1159392A1 (de
Inventor
Andreas Lietzmann
Gerhard Blasey
Markus Semrau
Birgit Burg
Hans-Friedrich Kruse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7900581&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1159392(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1159392A1 publication Critical patent/EP1159392A1/de
Publication of EP1159392B1 publication Critical patent/EP1159392B1/de
Application granted granted Critical
Publication of EP1159392B2 publication Critical patent/EP1159392B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds

Definitions

  • the present invention relates to moldings which have washing and cleaning properties have such as detergent tablets, detergent tablets for machine dishwashing, bleach tablets, water softening tablets, etc.
  • the invention relates to detergent tablets for textile laundry in a household washing machine, called detergent tablets for short become.
  • tablette offer special advantages include simple and clean Dosing and the high degree of compaction, which reduces packaging and Transport effort required. It is precisely because of these advantages that detergents and cleaning agents have in tablet form a high level of consumer acceptance. These advantages stand but also disadvantages. So the tablets have to be sufficiently stable to To survive transport and handling, but on the other hand they should be quick disintegrate and be readily soluble in order to quickly release the active substances and residues or to avoid stains on the treated substrates. Ideally, they should Detergent tablets detach into their secondary particles so quickly, that, for example, a dosage via the induction chamber of household washing machines is easily possible.
  • Moldings that are not suitable for this must dosed over the drum where the direct contact of the agent with the laundry too so-called spotting problems.
  • a mitigation of this problem is admittedly through the use of dosing aids or sachets, into which the tablets are added before can be inserted for washing, but on the one hand the problem is not complete solved, on the other hand, this cumbersome procedure leads to significantly reduced Consumer acceptance because of the advantages of easy dosing and the possibility the dosage without skin contact with the agent are thereby nullified.
  • humectants are added to solve this problem Tableting speeds slowed down to prevent air pockets or additives added, which leads to a too high expansion of the molded body after pressing prevent. Microcrystalline cellulose has proven itself here.
  • Detergent tablets which contain phosphates and bleaches are described in the prior art.
  • international patent application WO98 / 42816 discloses detergent tablets which have a density of more than 1040 g / cm 3 and contain 5 to 50% by weight of surfactant and 8 to 30% by weight of bleach.
  • sodium percarbonate or sodium perborate tetrahydrate are used as bleaching agents, which should have been found to be preferred over sodium perborate monohydrate in manual tests. Neither the use of fatty alcohol sulfates nor the problem of capping are mentioned in this document.
  • Detergent tablets with sodium percarbonate and tripolyphosphate are also described in WO98 / 24817 (Unilever).
  • the use of fatty alcohol sulfates is also not described in this document, nor is the problem of capping recognized.
  • the present invention was based on the task of detergent tablets to provide, which have a recipe composition which have the tendency the molded body minimized for capping. On the one hand, this should be independent of the used tableting machine and on the other hand without loss of other quality parameters of the tablets can be reached. In particular, high hardness with short disintegration times and thus the possibility of using the resulting molded article via the induction bowl To be able to dose are further properties that the molded articles according to the invention should have.
  • the present invention relates to laundry detergent and cleaning product tablets compressed, particulate detergent and cleaning agent containing surfactant (s), Bleach, builders and optionally other ingredients of detergents and cleaning agents, characterized in that the moldings fatty alcohol sulfate (s), percarbonate and contain phosphate builders.
  • the moldings according to the invention contain surfactants, phosphate builders and bleaches.
  • the phosphates fulfill builder tasks, while fatty alcohol sulfates act as washing agents Substances are included. Usually the main amount of builder substance made out of the phosphates.
  • phosphates are the alkali metal phosphates with particular preference for pentasodium or pentapotassium triphosphate (Sodium or potassium tripolyphosphate) in the detergent industry greatest importance.
  • pentasodium or pentapotassium triphosphate Sodium or potassium tripolyphosphate
  • Alkali metal phosphates is the general term for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can differentiate between metaphosphoric acids (HPO 3 ) n and orthophosphoric acid H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: They act as alkali carriers, prevent limescale deposits on machine parts and lime incrustations in fabrics and also contribute to cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 PO 4 exists as a dihydrate (density 1.91 gcm -3 , melting point 60 °) and as a monohydrate (density 2.04 gcm -3 ). Both salts are white, water-soluble powders that lose water of crystallization when heated and at 200 ° C into the weakly acidic diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 O 7 ), at higher temperature in sodium trimetaphosphate (Na 3 P 3 O 9 ) and Maddrell's salt (see below).
  • NaH 2 PO 4 is acidic; it arises when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate (primary or monobasic potassium phosphate, potassium biphosphate, KDP), KH 2 PO 4 , is a white salt with a density of 2.33 gcm -3 , has a melting point of 253 ° [decomposition to form potassium polyphosphate (KPO 3 ) x ] and is light soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 , is a colorless, very easily water-soluble crystalline salt. It exists anhydrous and with 2 mol. (Density 2.066 gcm -3 , water loss at 95 °), 7 mol. (Density 1.68 gcm -3 , melting point 48 ° with loss of 5 H 2 O) and 12 mol. Water ( Density 1.52 gcm -3 , melting point 35 ° with loss of 5 H 2 O), becomes anhydrous at 100 ° and changes to diphosphate Na 4 P 2 O 7 when heated more strongly. Disodium hydrogen phosphate is prepared by neutralizing phosphoric acid with soda solution using phenolphthalein as an indicator. Dipotassium hydrogen phosphate (secondary or dibasic potassium phosphate), K 2 HPO 4 , is an amorphous, white salt that is easily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 PO 4 are colorless crystals which, as dodecahydrate, have a density of 1.62 gcm -3 and a melting point of 73-76 ° C (decomposition), as decahydrate (corresponding to 19-20% P 2 O 5 ) a melting point of 100 ° C and in anhydrous form (corresponding to 39-40% P 2 O 5 ) have a density of 2.536 gcm -3 .
  • Trisodium phosphate is readily soluble in water with an alkaline reaction and is produced by evaporating a solution of exactly 1 mol of disodium phosphate and 1 mol of NaOH.
  • Tripotassium phosphate (tertiary or triphase potassium phosphate), K 3 PO 4 , is a white, deliquescent, granular powder with a density of 2.56 gcm -3 , has a melting point of 1340 ° and is easily soluble in water with an alkaline reaction. It arises, for example, when Thomas slag is heated with coal and potassium sulfate. Despite the higher price, the more soluble, therefore highly effective, potassium phosphates are often preferred over corresponding sodium compounds in the cleaning agent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534 gcm -3 , melting point 988 °, also stated 880 °) and as decahydrate (density 1.815-1.836 gcm -3 , melting point 94 ° with loss of water) , Substances are colorless crystals that are soluble in water with an alkaline reaction.
  • Na 4 P 2 O 7 is formed by heating disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying.
  • the decahydrate complexes heavy metal salts and hardness formers and therefore reduces the hardness of the water.
  • Potassium diphosphate potassium pyrophosphate
  • K 4 P 2 O 7 exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33 gcm -3 , which is soluble in water, the pH value being 1% Solution at 25 ° is 10.4.
  • Sodium and potassium phosphates in which one can differentiate cyclic representatives, the sodium or potassium metaphosphates and chain-like types, the sodium or potassium polyphosphates. A large number of terms are used in particular for the latter: melt or glow phosphates, Graham's salt, Kurrol's and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • pentasodium triphosphate Na 5 P 3 O 10 (sodium tripolyphosphate)
  • sodium tripolyphosphate sodium tripolyphosphate
  • n 3
  • Approx. 17 g of the salt free from water of crystallization dissolve in 100 g of water at room temperature, approx. 20 g at 60 ° and around 32 g at 100 °; After heating the solution at 100 ° for two hours, hydrolysis produces about 8% orthophosphate and 15% diphosphate.
  • pentasodium triphosphate In the production of pentasodium triphosphate, phosphoric acid is reacted with sodium carbonate solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dewatered by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.). Pentapotassium triphosphate, K 5 P 3 O 10 (potassium tripolyphosphate), is commercially available, for example, in the form of a 50% strength by weight solution (> 23% P 2 O 5 , 25% K 2 O). The potassium polyphosphates are widely used in the detergent and cleaning agent industry.
  • sodium potassium tripolyphosphates which can also be used in the context of the present invention. These occur, for example, when hydrolyzing sodium trimetaphosphate with KOH: (NaPO 3 ) 3 + 2 KOH ⁇ Na 3 K 2 P 3 O 10 + H 2 O
  • these are exactly like sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two can be used; also mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and Sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can be used according to the invention.
  • Preferred detergent tablets in the context of the present invention contain as phosphates alkali metal phosphates, preferably pentasodium or Pentapotassium triphosphate (sodium or potassium tripolyphosphate), in quantities of 1 to 60 % By weight, preferably from 5 to 50% by weight, particularly preferably from 10 to 40% by weight and in particular from 15 to 35% by weight, in each case based on the weight of the shaped body.
  • alkali metal phosphates preferably pentasodium or Pentapotassium triphosphate (sodium or potassium tripolyphosphate)
  • pentasodium or Pentapotassium triphosphate sodium or potassium tripolyphosphate
  • the detergent tablets according to the invention can contain other common builders that are both water-soluble and water-insoluble could be.
  • the detergent tablets according to the invention can all builders commonly used in detergents and cleaning agents be included, especially so zeolites, silicates, carbonates and organic Co-builders. These builders can be added to the mixtures to be tabletted, however, they can also be wholly or partly a component of surfactant granules.
  • layered sodium silicates have the general formula NaMSi x O 2x + 1 ⁇ H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20, preferred values for x are 2, 3 or 4.
  • M sodium or hydrogen
  • x is a number from 1.9 to 4
  • y is a number from 0 to 20
  • preferred values for x are 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514 .
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 ⁇ yH 2 O are preferred, with ⁇ -sodium disilicate being obtainable for example by the method / described in the international patent application WO-A-91 08,171th
  • Amorphous sodium silicates with a modulus Na 2 O: SiO 2 of 1: 2 to 1: 3.3, preferably 1: 2 to 1: 2.8 and in particular 1: 2 to 1: 2.6, can also be used are delayed in dissolving and have secondary washing properties.
  • the delay in dissolution compared to conventional amorphous sodium silicates can be caused in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying.
  • amorphous is also understood to mean “X-ray amorphous”. This means that the silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle. However, it can very well lead to particularly good builder properties if the silicate particles provide washed-out or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE-A-44 00 024 .
  • Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • zeolite X and zeolite A (about 80% by weight of zeolite X)
  • VEGOBOND AX® sold by CONDEA Augusta SpA under the brand name VEGOBOND AX® and by the formula nNa 2 O ⁇ (1-n) K 2 O ⁇ Al 2 O 3 ⁇ (2 - 2.5) SiO 2 ⁇ (3.5 - 5.5) H 2 O
  • the zeolite can be used both as a builder in a granular compound and can also be used for a kind of "powdering" of the entire mixture to be compressed, usually using both ways of incorporating the zeolite into the premix.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • Preferred detergent tablets in the context of the present invention additionally contain a zeolite of the faujasite type in amounts of 0.5 to 20% by weight, preferably from 1 to 15% by weight, particularly preferably from 2 to 10% by weight and in particular from 2.5 to 5% by weight, in each case based on the weight of the shaped body, where Zeolite X is preferred.
  • the amount of builder is usually between 10 and 70 wt .-%, preferably between 15 and 60% by weight and in particular between 20 and 50% by weight.
  • the amount of builders used depends on the intended use, so that Bleach tablets can have higher amounts of builders (for example between 20 and 70% by weight, preferably between 25 and 65% by weight and in particular between 30 and 55% by weight), for example detergent tablets (usually 10 to 50% by weight, preferably 12.5 to 45% by weight and in particular between 17.5 and 37.5% by weight).
  • Organic cobuilders that can be used in the detergent tablets according to the invention in particular polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, Aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates are used. These classes of substances are described below.
  • Useful organic builders are, for example, those in the form of their sodium salts usable polycarboxylic acids, such polycarboxylic acids being among polycarboxylic acids can be understood that carry more than one acid function.
  • these are citric acid, Adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, Fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if one such use is not objectionable for ecological reasons, as well as mixtures from these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, Succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • the acids themselves can also be used.
  • the acids have a builder effect typically also the property of an acidifying component and serve thus also for setting a lower and milder pH value of washing or Detergents.
  • citric acid succinic acid, glutaric acid, Adipic acid, gluconic acid and any mixtures of these.
  • Polymeric polycarboxylates are also suitable as builders, for example those Alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular mass of 500 to 70,000 g / mol.
  • the molecular weights given for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used.
  • GPC gel permeation chromatography
  • the measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship to the polymers investigated. This information differs significantly from the molecular weight information for which polystyrene sulfonic acids are used as standard.
  • the molecular weights measured against polystyrene sulfonic acids are generally significantly higher than the molecular weights given in this document.
  • Suitable polymers are in particular polyacrylates, which preferably have a molecular weight of Have 2000 to 20,000 g / mol. Because of their superior solubility, this can Group in turn the short-chain polyacrylates, the poppy seeds from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, preferably his.
  • copolymeric polycarboxylates especially those of acrylic acid with methacrylic acid and acrylic acid or methacrylic acid with maleic acid.
  • the 50 to Contain 90 wt .-% acrylic acid and 50 to 10 wt .-% maleic acid As special copolymers of acrylic acid with maleic acid have proven suitable, the 50 to Contain 90 wt .-% acrylic acid and 50 to 10 wt .-% maleic acid.
  • Your relative molecular mass, based on free acids is generally from 2000 to 70,000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can either be as a powder or as an aqueous solution be used.
  • the content of (co) polymeric polycarboxylates in the agents is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • the polymers can also allylsulfonic acids, such as for example, allyloxybenzenesulfonic acid and methallylsulfonic acid, as a monomer.
  • allylsulfonic acids such as for example, allyloxybenzenesulfonic acid and methallylsulfonic acid
  • biodegradable polymers made from more than two different ones Monomer units, for example those which are salts of acrylic acid as monomers and the maleic acid and vinyl alcohol or vinyl alcohol derivatives or as Monomeric salts of acrylic acid and 2-alkylallylsulfonic acid as well as sugar derivatives contain.
  • copolymers are those which are described in German patent applications DE-A-43 03 320 and DE-A-44 17 734 and which preferably contain acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids their salts or their precursor substances.
  • Particularly preferred are polyaspartic acids or their salts and derivatives, of which it is disclosed in German patent application DE-A-195 40 086 that, in addition to cobuilder properties, they also have a bleach-stabilizing effect.
  • polyacetals which are obtained by reacting dialdehydes with polyol carboxylic acids, which have 5 to 7 carbon atoms and at least 3 hydroxyl groups can be obtained.
  • Preferred polyacetals are made from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from Obtained polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • Suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates obtained by partial hydrolysis of starches can be.
  • the hydrolysis can be carried out according to customary methods, for example acid-catalyzed or enzyme-catalyzed Procedures are carried out. They are preferably hydrolysis products with average molecular weights in the range of 400 to 500000 g / mol.
  • DE dextrose equivalent
  • Both maltodextrins with a DE between 3 and 20 and dry glucose syrups can be used with a DE between 20 and 37 as well as so-called yellow dextrins and White dextrins with higher molar masses in the range from 2000 to 30000 g / mol.
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • oxidizing agents capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 and EP-A-0 542 496 and international patent applications WO 92 / 18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 and WO 95/20608 .
  • An oxidized oligosaccharide according to German patent application DE-A-196 00 018 is also suitable.
  • a product oxidized at C 6 of the saccharide ring can be
  • oxydisuccinates and other derivatives of disuccinates are other suitable cobuilders.
  • ethylenediamine-N, N'disuccinate (EDDS) preferably used in the form of its sodium or magnesium salts.
  • Glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are those containing zeolite and / or silicate Formulations at 3 to 15% by weight.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such cobuilders are described, for example, in international patent application WO 95/20029 .
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Aminoalkane phosphonates preferably come from ethylenediaminetetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologues in question. They are preferably in the form of neutral sodium salts, z. B.
  • HEDP is preferably used as the builder from the class of the phosphonates.
  • the aminoalkanephosphonates also have a pronounced ability to bind heavy metals. Accordingly, especially if the agents also contain bleach, be preferred to use aminoalkanephosphonates, in particular DTPMP, or To use mixtures of the phosphonates mentioned.
  • the moldings according to the invention contain to develop the washing or cleaning performance Surfactants.
  • Surfactants According to the invention, fatty alcohol sulfates are in the moldings included, while other surfactants can optionally be used in addition.
  • Fatty alcohol sulfates the alkali metal, in particular sodium salts of the sulfuric acid half-esters of longer-chain alcohols, are commercially available from fatty alcohols which are reacted with sulfuric acid, chlorosulfonic acid, amidosulfonic acid or sulfur trioxide to give the alkyl sulfuric acids concerned and are subsequently neutralized.
  • the fatty alcohols are obtained from the fatty acids or fatty acid mixtures concerned by high-pressure hydrogenation of the fatty acid methyl esters.
  • the most important industrial process for the production of fatty alkyl sulfuric acids is the sulfonation of the alcohols with SO 3 / air mixtures in special cascade, falling film or tube bundle reactors.
  • the fatty acids are technically largely obtained from native fats and oils by hydrolysis. While the alkaline saponification that was carried out in the past century led directly to the alkali salts (soaps), today only water is used on an industrial scale that splits the fats into glycerol and the free fatty acids.
  • the cleavage can be carried out with methanol, the methyl esters and glycerol being obtained directly. Large-scale processes are, for example, cleavage in an autoclave or continuous high pressure cleavage.
  • Carboxylic acids which can be used as the basis for the fatty alcohol sulfates in the context of the present invention are, for example, hexanoic acid (caproic acid), heptanoic acid (enanthic acid), octanoic acid (caprylic acid), nonanoic acid (pelargonic acid), decanoic acid (capric acid), undecanoic acid, etc.
  • fatty acids such as dodecanoic acid (lauric acid), tetradecanoic acid (myristic acid), hexadecanoic acid (palmitic acid), octadecanoic acid (stearic acid), eicosanoic acid (arachic acid), docosanoic acid (behenic acid), tetracosanoic acid (lignoceric acid), triacotonic acid (melotonic acid), triacotonic acid (cerotonic acid) of the unsaturated species 9c-hexadecenoic acid (palmitoleic acid), 6c-octadecenoic acid (petroselinic acid), 6t-octadecenoic acid (petroselaidic acid), 9c-octadecenoic acid (oleic acid), 9t-octadecenoic acid ((elaidinic acid), 9c, 12c-linadoleic acid
  • Such mixtures are for example, coconut oil fatty acid (about 6 wt .-% C 8, 6 wt .-% C 10 48 wt .-% C 12 18 wt .-% C14, 10 wt .-% C 16, 2 wt .-% C18, 8 wt .-% C 18: 1 wt .-% C 18 ''), palm kernel oil fatty acid (about 4 wt .-% C 8, 5 wt .-% C 10, 50 wt .-% C 12 , 15% by weight C 14 , 7% by weight C 16 , 2% by weight C 18 , 15% by weight C 18 ' , 1% by weight C 18'' ), tallow fatty acid (approx 3 wt% C 14 , 26 wt% C 16 , 2 wt% C 16 ' , 2 wt% C 17 , 17 wt% C 18 , 44 wt% C 18' , 3 wt%
  • the alk (en) yl sulfates are preferably the alkali and in particular the sodium salts of the sulfuric acid half esters of C 12 -C 18 fatty alcohols, for example from coconut oil alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 - Oxo alcohols and those half esters of secondary alcohols of this chain length are preferred.
  • alk (en) yl sulfates of the chain length mentioned which contain a synthetic, petrochemical-based straight-chain alkyl radical which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
  • the C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates as well as C 14 -C 15 alkyl sulfates are preferred from the point of view of washing technology.
  • Preferred detergent tablets in the context of the present invention contain the alkali metal, preferably sodium, salts of C 8-22 , preferably C 10-20 and in particular C 12-18 fatty alkyl sulfuric acids.
  • detergent tablets which contain the alkali metal, preferably sodium salts of C 8-22 , preferably C 10-20 , and in particular C 12-18 fatty alkyl sulfuric acids, preferably in amounts of 0. 5 to 30 wt .-%, particularly preferably from 1 to 20 wt .-% and in particular from 2 to 10 wt .-%, each based on the weight of the moldings.
  • alkali metal preferably sodium salts of C 8-22 , preferably C 10-20 , and in particular C 12-18 fatty alkyl sulfuric acids, preferably in amounts of 0. 5 to 30 wt .-%, particularly preferably from 1 to 20 wt .-% and in particular from 2 to 10 wt .-%, each based on the weight of the moldings.
  • surfactants that can be used in addition to the fatty alcohol sulfates can from the groups of anionic, nonionic, cationic or amphoteric surfactants come. Due to their range of services and their availability, are here anionic and nonionic surfactants preferred.
  • anionic surfactants used are those of the sulfonate and sulfate type.
  • the surfactants of the sulfonate type include, for example, alkylbenzenesulfonates (ABS), olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates such as are obtained, for example, from C 12-18 monoolefins with an end or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent ones receives alkaline or acidic hydrolysis of the sulfonation products.
  • ABS alkylbenzenesulfonates
  • olefin sulfonates ie mixtures of alkene and hydroxyalkanesulfonates
  • disulfonates such as are obtained, for example, from C 12-18 monoolefins with an end or internal double bond by sulfonation with gaseous sulfur trioxide
  • alkanesulfonates obtained from C 12-18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • the esters of ⁇ -sulfofatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, are also suitable.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters.
  • fatty acid glycerol esters the mono-, di- and triesters and their mixtures are to be understood as they are the production by esterification of a monoglycerin with 1 to 3 moles of fatty acid or obtained in the transesterification of triglycerides with 0.3 to 2 mol of glycerol.
  • preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids with 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, Myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • 2,3-Alkyl sulfates which are produced, for example, according to US Pat . Nos . 3,234,258 or 5,075,041 and can be obtained as commercial products from the Shell Oil Company under the name DAN®, are also suitable anionic surfactants.
  • the sulfuric acid monoesters of the straight-chain or branched C 7-21 alcohols ethoxylated with 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9-11 alcohols with an average of 3.5 mol of ethylene oxide (EO) or C 12-18 - Fatty alcohols with 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in cleaning agents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8-18 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue, which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • sulfosuccinates the fatty alcohol residues of which are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are particularly preferred. It is also possible to use alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Soaps are particularly suitable as further anionic surfactants.
  • saturated fatty acid soaps such as the salts of lauric acid, myristic acid, palmitic acid, Stearic acid, hydrogenated erucic acid and behenic acid and in particular from natural Fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants including the soaps can be in the form of their sodium, potassium or Ammonium salts and as soluble salts of organic bases, such as mono-, di- or Triethanolamine.
  • the anionic surfactants are preferably in the form of their Sodium or potassium salts, especially in the form of the sodium salts.
  • detergent tablets are shaped preferred, the total content of anionic surfactants above 5 wt .-%, preferably above 7.5% by weight and in particular above 10% by weight, in each case based on the weight of the molded body.
  • detergent tablets When selecting the anionic surfactants in the detergent tablets according to the invention are used, there is no freedom of formulation in the way.
  • Preferred detergent tablets however, have a soap content of 0.2% by weight, based on the total weight of the molded body.
  • the optionally used nonionic surfactants are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols with preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical has a linear or preferably 2-methyl branching may be or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow fat or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohol with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures thereof, such as mixtures of C 12-14 alcohol with 3 EO and C 12-18 alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters, such as them are described, for example, in Japanese patent application JP 58/217598 or which are preferably produced by the process described in international patent application WO-A-90/13533 .
  • alkyl polyglycosides Another class of nonionic surfactants that can be used advantageously are the alkyl polyglycosides (APG).
  • Alkypolyglycosides that can be used satisfy the general formula RO (G) z , in which R denotes a linear or branched, in particular methyl-branched, saturated or unsaturated, aliphatic radical having 8 to 22, preferably 12 to 18, carbon atoms and G is the Is symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of glycosidation z is between 1.0 and 4.0, preferably between 1.0 and 2.0 and in particular between 1.1 and 1.4.
  • Linear alkyl polyglucosides ie alkyl polyglycosides, are preferably used in which the polyglycosyl radical is a glucose radical and the alkyl radical is an n-alkyl radical.
  • the detergent tablets according to the invention can preferably alkyl polyglycosides included, with APG contents of the molded articles being above 0.2% by weight on the entire molded body, are preferred.
  • Particularly preferred washing and Detergent tablets contain APG in amounts of 0.2 to 10% by weight, preferably 0.2 to 5 wt .-% and in particular from 0.5 to 3 wt .-%.
  • nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half of it.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula (II), in which RCO stands for an aliphatic acyl radical with 6 to 22 carbon atoms, R 1 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms and [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (III) in which R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 2 represents a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, C 1-4 -alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this remainder.
  • R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then, for example according to the teaching of international application WO-A-95/ 07331, be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • detergent tablets are shaped preferred, which additionally contain nonionic surfactant (s) and in which the content of Shaped bodies of nonionic surfactants above 2% by weight, preferably above of 5% by weight and in particular above 7.5% by weight, in each case based on the weight of the shaped body, lies.
  • nonionic surfactants from all of the above mentioned groups are used. Regardless of the chemical nature of the nonionic surfactants used are preferred detergent tablets, the additional nonionic surfactants with a melting point below 40 ° C, preferably below 30 ° C and especially below 25 ° C, in amounts of 0.5 to 20 wt .-%, preferably from 1 to 10% by weight and in particular from 1.5 to 5% by weight, in each case based on the molded body weight.
  • the detergent tablets of the present invention contain sodium percarbonate to develop the desired bleaching performance.
  • Sodium percarbonate is a non-specific term for sodium carbonate peroxohydrates which, strictly speaking, are not “percarbonates” (that is, salts of percarbonic acid) but hydrogen peroxide adducts with sodium carbonate.
  • the merchandise has the average composition 2 Na 2 CO 3 .3 H 2 O 2 and is therefore not peroxycarbonate.
  • Sodium percarbonate forms a white, water-soluble powder with a density of 2.14 gcm -3 , which easily breaks down into sodium carbonate and bleaching or oxidizing oxygen.
  • the industrial production of sodium percarbonate is predominantly produced by precipitation from an aqueous solution (so-called wet process).
  • aqueous solutions of sodium carbonate and hydrogen peroxide are combined and the sodium percarbonate is precipitated by salting-out agents (predominantly sodium chloride), crystallization aids (for example polyphosphates, polyacrylates) and stabilizers (for example Mg 2+ ions).
  • the precipitated salt which still contains 5 to 12% by weight of mother liquor, is then centrifuged off and dried in fluidized bed dryers at 90.degree.
  • the bulk density of the finished product can vary between 800 and 1200 g / l depending on the manufacturing process.
  • the percarbonate is stabilized by an additional coating.
  • the sodium percarbonate bleach is in depending on the desired product varying amounts in the detergent tablets according to the invention used. Usual contents are between 5 and 50% by weight, preferably between 10 and 40 wt .-% and in particular between 15 and 35 wt .-%, each based on the entire molded body.
  • the content of the shaped bodies in this substance is also of the intended use the shaped body depends. While common universal detergent in tablet form between 5 and 30% by weight, preferably between 7.5 and 25% by weight and in particular contain between 12.5 and 22.5 wt .-% sodium percarbonate, the contents are for bleach or bleach booster tablets between 15 and 50 wt .-%, preferably between 22.5 and 45% by weight and in particular between 30 and 40% by weight.
  • a preferred embodiment of the present invention provides detergent tablets ready for washing textiles in a household washing machine.
  • These preferred Detergent tablets are characterized in that they are the only ones Bleaching agent sodium percarbonate in amounts of 1 to 40% by weight, preferably of 2.5 to 35% by weight, particularly preferably from 5 to 30% by weight and in particular from 7.5 up to 25 wt .-%, each based on the weight of the molded body.
  • the detergent tablets according to the invention can Bleach activator (s) contain what is within the scope of the present Invention is preferred. Bleach activators are incorporated into detergents and cleaning agents, to improve when washing at temperatures of 60 ° C and below To achieve bleaching effect.
  • bleach activators can be compounds that are under perhydrolysis conditions aliphatic peroxocarboxylic acids with preferably 1 to 10 carbon atoms, in particular 2 to 4 carbon atoms, and / or optionally substituted perbenzoic acid result, are used. Substances containing O- and / or N-acyl groups are suitable the number of carbon atoms mentioned and / or optionally substituted benzoyl groups wear.
  • Multi-acylated alkylenediamines are preferred (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, especially tetraacetylglycoluril (TAGU), N-acylimides, especially N-nonanoylsuccinimide (NOSI), acylated Phenol sulfonates, especially n-nonanoyl or isononanoyloxybenzene sulfonate (n- or iso-NOBS), carboxylic anhydrides, especially phthalic anhydride, acylated polyvalent Alcohols, especially triacetin, ethylene glycol diacetate and 2,5-diacetoxy-2,5-dihydrofuran.
  • TAED acylated triazine derivatives
  • bleaching catalysts can be incorporated into the moldings.
  • these fabrics are bleach-enhancing transition metal salts or transition metal complexes such as Mn, Fe, Co, Ru or Mo salt complexes or Carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing ones Tripod ligands as well as Co, Fe, Cu and Ru amine complexes are used as bleaching catalysts usable.
  • the moldings according to the invention contain, based in each case on the entire moldings, between 0.5 and 30% by weight, preferably between 1 and 20% by weight and in particular between 2 and 15% by weight of one or more bleach activators or bleach catalysts. Depending on the intended use of the moldings produced, these amounts can vary.
  • bleach activator contents in typical universal detergent tablets between 0.5 and 10% by weight, preferably between 2 and 8% by weight and in particular between 4 and 6% by weight usual, while bleach tablets definitely have higher contents, for example between 5 and 30% by weight, preferably between 7.5 and 25% by weight and in particular can have between 10 and 20% by weight.
  • the specialist is there not restricted in its freedom of formulation and can be stronger or weaker bleaching detergent tablets, detergent tablets or bleach tablets by varying the bleach activator and bleach content.
  • a particularly preferred bleach activator is N, N, N ', N'-tetraacetylethylenediamine, which is widely used in detergents and cleaning agents. Accordingly, preferred detergent tablets are characterized in that that as a bleach activator tetraacetylethylenediamine in the above Amounts are used.
  • Phosphate (s) and fatty alcohol sulfate (s) can be used in any way in the invention Detergent tablets are introduced. It has proven to be beneficial proven when the premix to be molded to form phosphate (s) and Contains fatty alcohol sulfate (s) in the form of a surfactant granulate. First of all, a surfactant granulate prepared, which preferably the total amount contained in the moldings Contains phosphates and fatty alcohol sulfates, and subsequently with other processing components mixed, after which the premix is fed to a tableting becomes.
  • the above-mentioned surfactant granules have the total amount of the nonionic surfactants contained in the moldings, preferably even those Total amount of surfactants contained in the moldings.
  • Summarized detergent tablets are preferred, which are characterized by are that they total amount of phosphates in the form of a surfactant granulate included that preferably. also the total amount contained in the moldings Contains surfactants.
  • Such preferred surfactant granules naturally have higher phosphate contents than the overall molded body.
  • Detergent and cleaning product tablets are in accordance with the invention preferred, in which the surfactant granules 5 to 70 wt .-%, preferably 10 to 65% by weight, particularly preferably 20 to 60% by weight and in particular 25 to 50 % By weight of phosphate, based in each case on the weight of the surfactant granules.
  • ingredients of detergents and cleaning agents especially so-called Small components such as optical brighteners, polymers, defoamers, phosphonates, color and Fragrances can be part of the surfactant granulate. These substances continue to grow described below.
  • the premix to be pressed can also be one or more Substances from the groups of bleaching agents, bleach activators, disintegration aids etc. included.
  • the substances mentioned, which are described below, can be specified in special Embodiments of the present invention also form part of the surfactant granules his.
  • Another object of the present invention is a method for producing Detergent tablets by mixing granules containing surfactants with pulverulent preparation components and subsequent shaping pressing, the premix to be pressed containing fatty alcohol sulfate (s), percarbonate and Contains phosphate builder.
  • s fatty alcohol sulfate
  • Preferred methods are therefore characterized, for example, in that the surfactant-containing granules contain the total amount contains the phosphate contained in the moldings, with granules, which additionally the total amount of nonionic surfactants, preferably the total amount of all surfactants, included, are preferred.
  • the premix to be pressed contains Granulate (s) containing surfactant as well as further processing components, whereby Phosphate (s) and preferably the surfactants are part of the granules.
  • the production the surfactant-containing granules can be produced using customary industrial granulation processes such as compacting, extrusion, mixer granulation, pelleting or fluidized bed granulation respectively. It is for the later detergent tablets of advantage if the premix to be compressed has a bulk density which corresponds to the usual compact detergent comes close.
  • the material to be pressed Premix a bulk density of at least 500 g / l, preferably at least 600 g / l and in particular at least 700 g / l.
  • the surfactant-containing granulate satisfies certain particle size criteria.
  • Methods according to the invention are preferred in which the surfactant-containing Granules particle sizes between 100 and 2000 microns, preferably between 200 and 1800 ⁇ m, particularly preferably between 400 and 1600 ⁇ m and in particular between 600 and 1400 ⁇ m.
  • the surfactant granules preferably also contain carriers, which particularly preferably come from the group of builders.
  • the premix to be compressed is a Contains surfactant-containing granules which contain anionic and / or nonionic surfactants as well Contains builders and their total surfactant content 5 to 60 wt .-%, preferably 10 up to 50% by weight and in particular 15 to 40% by weight, in each case based on the surfactant granules, is.
  • the premix contains a surfactant-containing granulate, the surfactant contents of 5 to 60 wt .-%, preferably from 10 to 50% by weight and in particular from 15 to 40% by weight, in each case based on the Weight of the surfactant granules, has (see above).
  • detergent tablets in which the content of the surfactant granules of anionic surfactants 5 to 45% by weight, preferably 10 to 40% by weight and in particular 15 to 35% by weight, in each case based on the weight of the surfactant granules
  • detergent tablets in which the content of the surfactant granules of nonionic surfactants 1 to 30% by weight, preferably 5 to 25% by weight and in particular 7.5 to 20% by weight, each based on the weight of the surfactant granules are preferred according to the invention.
  • the surfactant-containing granules not by spray drying, but by a granulation process will be produced.
  • a granulation process carried out in a wide variety of mixing granulators and mixing agglomerators press agglomeration processes can also be used, for example. Method, in which the surfactant-containing granules by granulation, agglomeration, press agglomeration or a combination of these methods is preferred.
  • Granulation can be found in a wide variety of industries in the laundry and home care industries usually used apparatus are carried out. For example, it is possible to use the rounders commonly used in pharmacy. In such turntable devices the residence time of the granules is usually less than 20 seconds. Also conventional mixers and mixing granulators are suitable for granulation. As a mixer can both high-intensity mixers (“high-shear mixer”) and normal Mixers with lower circulation speeds can be used.
  • high-shear mixer high-intensity mixers
  • normal Mixers with lower circulation speeds can be used.
  • Suitable mixers are, for example, Eirich® mixers of the R or RV series (trademark of the machine factory Gustav Eirich, Hardheim), the Schugi® Flexomix, the Fukae® FS-G mixer (trademark the Fukae Powtech, Kogyo Co., Japan), the Lödige® FM, KM and CB mixers (Trademark of Lödige Maschinenbau GmbH, Paderborn) or the Drais® series T or K-T (trademark of Drais-Werke GmbH, Mannheim).
  • the dwell times the granules in the mixers are in the range of less than 60 seconds, the Dwell time also depends on the speed of rotation of the mixer. Shorten here the faster the mixer runs, the dwell times accordingly.
  • Residence times of the granules in the mixer / rounder are less than one minute, preferably less than 15 seconds.
  • dwell times of up to 20 minutes, with dwell times of less than 10 minutes due to the Process economics are preferred.
  • the surfactant-containing granules are under pressure and compressed under the influence of shear forces and homogenized and then discharged form-giving from the apparatus.
  • the most technically significant press agglomeration processes are extrusion, roller compaction, pelleting and tableting.
  • Press agglomeration processes used in granules are extrusion, roller compaction and pelleting.
  • disintegration aids so-called tablet disintegrants
  • tablet disintegrants or disintegration accelerators are understood as auxiliary substances which are necessary for the rapid disintegration of Tablets in water or gastric juice and ensure the release of the pharmaceuticals in an absorbable form.
  • Swelling enlarge their volume when water enters, whereby on the one hand the volume increases (Swelling), on the other hand, a pressure can be generated via the release of gases which can break the tablet into smaller particles.
  • disintegration tools are, for example, carbonate / citric acid systems, with other organic ones Acids can be used.
  • Swelling disintegration aids are, for example synthetic polymers such as polyvinylpyrrolidone (PVP) or natural polymers or modified Natural substances such as cellulose and starch and their derivatives, alginates or casein derivatives.
  • Preferred detergent tablets contain 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 to 6% by weight of one or more disintegration aids, each based on the weight of the molded article.
  • Disintegrants based on cellulose are used as preferred disintegrants in the context of the present invention, so that preferred detergent tablets have such a disintegrant based on cellulose in amounts of 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 contain up to 6 wt .-%.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and, viewed formally, is a ⁇ -1,4-polyacetal of cellobiose, which in turn is made up of two molecules of glucose.
  • Suitable celluloses consist of approximately 500 to 5000 glucose units and consequently have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions.
  • Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound by an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as a cellulose-based disintegrant, but are used in a mixture with cellulose.
  • the content of cellulose derivatives in these mixtures is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrant. Pure cellulose which is free of cellulose derivatives is particularly preferably used as the cellulose-based disintegrant.
  • the cellulose used as disintegration aid is preferably not used in finely divided form, but is converted into a coarser form, for example granulated or compacted, before being added to the premixes to be pressed.
  • Detergent tablets which contain disintegrants in granular or, if appropriate, cogranulated form are described in German patent applications DE 197 09 991 (Stefan Herzog) and DE 197 10 254 (Henkel) and in international patent application WO98 / 40463 (Henkel). These documents can also be found in more detail on the production of granulated, compacted or cogranulated cellulose disintegrants.
  • the particle sizes of such disintegrants are usually above 200 ⁇ m, preferably at least 90% by weight between 300 and 1600 ⁇ m and in particular at least 90% by weight between 400 and 1200 ⁇ m.
  • the above-mentioned coarser disintegration aids based on cellulose and described in more detail in the cited documents are preferably to be used as disintegration aids in the context of the present invention and are commercially available, for example, under the name Arbocel® TF-30-HG from Rettenmaier.
  • microcrystalline cellulose As another disintegrant based on cellulose or as a component of this component microcrystalline cellulose can be used.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions that only attack the amorphous areas (approx. 30% of the total cellulose mass) of the celluloses and dissolve completely, but leave the crystalline areas (approx. 70%) undamaged.
  • a subsequent disaggregation of the microfine celluloses resulting from the hydrolysis delivers the microcrystalline celluloses, which have primary particle sizes of approx. 5 ⁇ m and compactible, for example, into granules with an average particle size of 200 ⁇ m are.
  • a disintegration aid preferably a Disintegration aid based on cellulose, preferably in granular, cogranulated or compacted form, in amounts of 0.5 to 10 wt .-%, preferably from 3 to 7 % By weight and in particular from 4 to 6% by weight, in each case based on the weight of the premix, contains.
  • the premix additionally contains one or more substances from the group of builders, bleach activators, enzymes, pH regulators, fragrances, perfume carriers, fluorescent agents, dyes, foam inhibitors, silicone oils, anti-redeposition agents, optical brighteners, graying inhibitors, color transfer inhibitors and corrosion inhibitors.
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof. Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus are particularly suitable.
  • proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example of protease and amylase or protease and lipase or protease and cellulase or of cellulase and lipase or of protease, amylase and lipase or protease, lipase and cellulase, but in particular mixtures containing cellulase, are of particular interest.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of enzymes, enzyme mixtures or enzyme granules in the shaped bodies according to the invention can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the detergent tablets can also contain components which positively influence the oil and fat washability from textiles (so-called soil repellents). This effect is particularly evident when a textile is dirty is already several times with a detergent according to the invention, this contains oil and fat-dissolving component, was washed.
  • nonionic cellulose ethers such as methyl cellulose and methylhydroxypropyl cellulose containing methoxyl groups of 15 to 30 wt .-% and of hydroxypropoxyl groups of 1 to 15 wt .-%, each based on the nonionic cellulose ether, as well as those known from the prior art Polymers of phthalic acid and / or terephthalic acid or their derivatives, in particular Polymers made from ethylene terephthalates and / or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives of these. Particularly preferred of these are the sulfonated derivatives of phthalic acid and terephthalic acid polymers.
  • the moldings can, as optical brighteners, derivatives of diaminostilbenedisulfonic acid or their alkali metal salts. Suitable are e.g. Salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or similarly constructed Compounds which, instead of the morpholino group, have a diethanolamino group, a methylamino group, carry an anilino group or a 2-methoxyethylamino group.
  • Farther brighteners of the substituted diphenylstyryl type may be present, e.g.
  • Dyes and fragrances are the detergent tablets according to the invention added to improve the aesthetic impression of the products and the consumer in addition to the washing or cleaning performance, a visually and sensory "typical and distinctive "product.
  • perfume oils or fragrances individual fragrance compounds, e.g. synthetic products of the type Esters, ethers, aldehydes, ketones, alcohols and hydrocarbons can be used. Fragrance compounds of the ester type are e.g.
  • the ethers include, for example Benzyl ethyl ether, to the aldehydes e.g.
  • the linear alkanals with 8-18 C atoms citral, Citronellal, Citronellyloxyacetaldehyde, Cyclamenaldehyde, Hydroxycitronellal, Lilial and Bourgeonal
  • the ketones e.g. the Jonone, ⁇ -isomethyl ionone and methyl cedryl ketone
  • the hydrocarbons mainly include terpenes such as limonene and pinene.
  • mixtures of different fragrances are preferably used, which together create an appealing fragrance.
  • perfume oils can also contain natural fragrance mixtures as they are accessible from plant sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • plant sources e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • the content of the detergent tablets according to the invention is usually in the range of dyes below 0.01% by weight, while fragrances up to 2% by weight of the total Can make up wording.
  • the fragrances can be incorporated directly into the agents according to the invention but it can also be advantageous to apply the fragrances to the carrier, which the liability of the Reinforcing perfumes on the laundry and by a slower fragrance release for long-lasting Ensure the fragrance of the textiles.
  • Such carrier materials have, for example Cyclodextrins have proven themselves, with the cyclodextrin-perfume complexes additionally other auxiliaries can be coated.
  • the detergent tablets according to the invention can be colored with suitable dyes.
  • suitable dyes preferred Dyes, the selection of which is not difficult for the person skilled in the art a high storage stability and insensitivity to the other ingredients of the Medium and against light and no pronounced substantivity towards textile fibers in order not to stain them.
  • the premix with finely divided surface treatment agents be "powdered". This can affect the nature and physical properties of the premix (storage, pressing) as well as the finished detergent tablets be an advantage.
  • Finely divided powdering agents are known in the art Well-known technology, mostly using zeolites, silicates or other inorganic salts become.
  • the premix is preferred with finely divided zeolite "powdered", with zeolites of the faujasite type being preferred.
  • zeolites of the faujasite type As part of the present Invention characterizes the term "faujasite type zeolite” all three zeolites that form the faujasite subgroup of zeolite structure group 4 (compare Donald W.
  • a zeolite of the faujasite type with particle sizes below 100 ⁇ m is preferably below 10 ⁇ m and in particular below 5 ⁇ m and at least 0.2 % By weight, preferably at least 0.5% by weight and in particular more than 1% by weight of the pre-mix to be compressed.
  • the moldings according to the invention are first produced by dry Mixing the components, which can be partially or completely pre-granulated, and then Inform, in particular pressing into tablets, whereby conventional Procedure can be used.
  • the premix is molded in a so-called die between two stamps compacted into a solid compressed. This process, hereinafter briefly referred to as tableting is divided into four sections: dosage, compression (elastic Deformation), plastic deformation and ejection.
  • the premix is introduced into the die, the filling quantity and thus the weight and shape of the resulting molded body by the position of the lower one Stamp and the shape of the press tool can be determined.
  • the constant dosage even with high throughputs of shaped bodies, a volumetric flow rate is preferably used Dosage of the premix reached.
  • the Upper stamp the premix and continues to lower towards the lower stamp. at this compression, the particles of the premix are pressed closer together, whereby the void volume within the filling between the punches is continuous decreases. From a certain position of the upper stamp (and thus from a certain Pressure on the premix) begins the plastic deformation at which the particles flow together and the molded body is formed.
  • the phase of elastic Deformation is shortened further and further, so that the resulting shaped body more or may have smaller cavities.
  • the Finished moldings are pressed out of the die by the lower punch and through subsequent transport devices transported away. At this point, it's just that Weight of the molded body finally determined, because the compacts due to physical Processes (stretching, crystallographic effects, cooling etc.) their shape and size can still change.
  • Tableting takes place in commercially available tablet presses, which are basically single or Double stamps can be equipped. In the latter case, it is not only the upper stamp used to build up pressure, also the lower stamp moves during the Pressing process towards the upper punch, while the upper punch presses down.
  • eccentric tablet presses which the stamp or stamps are attached to an eccentric disc, which in turn on one Axis is mounted with a certain rotational speed. The movement of this Press ram is comparable to the way a conventional four-stroke engine works.
  • the pressing can be done with one upper and one lower stamp, but several can also be used Stamp be attached to an eccentric disc, the number of die holes is expanded accordingly.
  • the throughputs of eccentric presses vary depending on the type from a few hundred to a maximum of 3000 tablets per hour.
  • Matrix table For larger throughputs, rotary tablet presses are selected, on which a so-called Matrix table a larger number of matrices is arranged in a circle.
  • the number of matrices varies between 6 and 55, depending on the model, with larger matrices also are commercially available.
  • Each die on the die table is an upper and lower stamp assigned, with the pressure again being active only through the upper or lower stamp, but can also be built using both stamps.
  • the matrix table and the Stamps move around a common vertical axis, the stamp with the help of rail-like cam tracks during the circulation in the positions for filling, Compression, plastic deformation and discharge are brought.
  • Rotary presses can also be equipped with two filling shoes to increase the throughput be, whereby only a semicircle is run through to produce a tablet got to.
  • Several filling shoes are used to produce two- and multi-layer molded articles arranged one behind the other without the slightly pressed first layer in front of the further filling is ejected.
  • By appropriate process control are in this way also coated and dot tablets can be produced, which have an onion-shell-like structure, where in the case of the point tablets the top of the core or core layers is not covered and therefore remains visible.
  • Rotary tablet presses are also included Single or multiple tools can be equipped so that, for example, an outer circle with 50 and an inner circle with 35 holes can be used simultaneously for pressing.
  • the throughputs of modern rotary tablet presses are over a million tablets per hour.
  • Tableting machines suitable for the purposes of the present invention are, for example available from the companies Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Cologne, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) and Courtoy N.V., Halle (BE / LU).
  • the hydraulic double-pressure press HPF for example, is particularly suitable 630 from LAEIS, D.
  • the moldings can be made in a predetermined spatial shape and size become. Practically all useful configurations come as a spatial form into consideration, for example the formation as a board, the shape of bars or bars, Cubes, cuboids and corresponding room elements with flat side surfaces as well in particular cylindrical configurations with a circular or oval cross section. This last embodiment covers the form of presentation from the tablet to to compact cylinder pieces with a ratio of height to diameter above 1.
  • the portioned compacts can each be separate individual elements be formed, the predetermined dosage of detergents and / or cleaning agents equivalent. However, it is also possible to form compacts that have a plurality connect such mass units in a compact, in particular by predetermined The easy separation of portioned smaller units is provided for predetermined breaking points is.
  • the formation of the portioned compacts as Tablets, in the shape of a cylinder or cuboid, are appropriate, with a diameter / height ratio in the range of about 0.5: 2 to 2: 0.5 is preferred.
  • Commercial hydraulic presses, Eccentric presses or rotary presses are suitable devices in particular for the production of such compacts.
  • the spatial shape of another embodiment of the shaped body is in its dimensions the induction chamber of commercial household washing machines adapted so that the Shaped bodies can be metered directly into the induction chamber without a metering aid, where it dissolves during the induction process.
  • a metering aid where it dissolves during the induction process.
  • the detergent tablets are easily possible via a dosing aid and within the present invention preferred.
  • Another preferred molded body that can be produced has a plate or panel-like structure with alternating thick long and thin short segments, so that individual segments of this "bar" at the predetermined breaking points, the short thin Display segments, can be canceled and entered into the machine.
  • This The principle of the "bar-shaped" shaped body detergent can also be used in other geometric Shapes, for example vertical triangles, only on one of their sides are connected alongside each other, can be realized.
  • the layer structure of the moldings can be done in a stack-like manner, with one dissolution process the inner layer (s) on the edges of the molded body already takes place, if the outer layers are not yet completely detached, it can also be one complete covering of the inner layer (s) by the outer layer (s) Layer (s) can be achieved, which prevents the premature dissolution of components the inner layer (s).
  • a molded body consists of at least three layers, ie two outer and at least one inner layer, wherein at least one of the inner layers contains a peroxy bleach, while in the case of the stacked shaped body, the two outer layers and in the case of the shell-shaped one Moldings, the outermost layers, however, are free of peroxy bleach.
  • peroxy bleaching agents and any bleach activators present and / or spatially separate enzymes from each other in a molded body.
  • Such multilayer Shaped bodies have the advantage that they do not have only one induction chamber or via a metering device which is added to the wash liquor can; rather, in such cases it is also possible to direct the molded body To give contact to the textiles in the machine without staining Bleach and the like would be feared.
  • the bodies to be coated can be coated with, for example aqueous solutions or emulsions are sprayed, or via the process of Get a coating on the melt coating.
  • stands for diametral fracture stress (DFS) in Pa
  • P is the force in N which leads to the pressure exerted on the molded body, which is the Breakage of the molded body causes
  • D is the molded body diameter in meters
  • t is the Height of the molded body.
  • the present invention can also be used in low-phosphate detergent tablets Realizing approach so that the use of particulate premixes, which contain fatty alcohol sulfate (s) and percarbonate for the production of hardness and Disintegration time-improved detergent tablets with reduced Cover inclination is another object of the present invention. Leave here too preferred quantities etc. can be found in the above text.
  • premixes were then processed with further components to form compressible premixes, the composition of which is given in Table 2.
  • Premix E according to the invention contained sodium percarbonate, while the premixes of comparative examples V1 and V2 contained sodium perborate.
  • the premixes were pressed into tablets in a Korsch eccentric press (diameter: 44 mm, height: 22 mm, weight: 37.5 g).
  • the measured values of the tablet hardness are in each case the mean values of a double determination, the individual values varying by a maximum of 2 N for each molded body type.
  • the hardness of the tablets became after two days of storage by deforming the tablet measured to break, the force acting on the side surfaces of the tablet and the maximum force that the tablet withstood was determined.
  • Table 3 shows that the moldings V1 and V2 already at tablet hardness above 40N tend to cover, while the moldings E according to the invention also without problems can be pressed to a hardness of 60 N without tearing the layers in layers Shaped body occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

Die vorliegende Erfindung betrifft Formkörper, die wasch- und reinigungsaktive Eigenschaften besitzen wie beispielsweise Waschmitteltabletten, Reinigungsmitteltabletten für das maschinelle Geschirrspülen, Bleichmitteltabletten, Wasserenthärtetabletten usw.. Insbesondere betrifft die Erfindung Wasch- und Reinigungsmittelformkörper für die Textilwäsche in einer Haushaltswaschmaschine, die kurz als Waschmitteltabletten bezeichnet werden.
Zu den besonderen Vorteilen der Angebotsform "Tablette" zählen das einfache und saubere Dosieren und der hohe Verdichtungsgrad, welcher einen verringerten Verpackungs- und Transportaufwand erfordert. Gerade aufgrund dieser Vorteile besitzen Wasch- und Reinigungsmittel in Tablettenform eine hohe Verbraucherakzeptanz. Diesen Vorteilen stehen aber auch Nachteile gegenüber. So müssen die Tabletten hinreichend stabil sein, um Verpackung, Transport und Handhabung zu überstehen, andererseits sollen sie aber schnell zerfallen und gut löslich sein, um die Aktivsubstanzen schnell freizusetzen und Rückstände oder Verfleckungen auf den behandelten Substraten zu vermeiden. Im Idealfall sollen die Wasch- und Reinigungsmittelformkörper dabei so schnell in ihre Sekundärpartikel zerfallen, daß beispielsweise eine Dosierung über die Einspülkammer haushaltsüblicher Waschmaschinen problemlos möglich ist. Formkörper, die hierzu nicht geeignet sind, müssen über die Trommel dosiert werden, wo der direkte Kontakt des Mittels mit der Wäsche zu sogenannten spotting-Problemen führen kann. Ein Abmildern dieser Problematik ist zwar durch die Verwendung von Dosierhilfen bzw. Säckchen, in die die Tabletten vor der Zugabe zur Wäsche eingelegt werden, möglich, doch wird einerseits das Problem nicht vollständig gelöst, andererseits führt diese umständliche Vorgehensweise zu deutlich verringerter Verbraucherakzeptanz, da die Vorteile der leichten Dosierung und der Möglichkeit der Dosierung ohne Hautkontakt mit dem Mittel hierdurch zunichte gemacht werden.
In der Patentliteratur findet sich demnach ein breiter Stand der Technik, der Lösungsvorschläge zur Überwindung der Dichotomie zwischen Härte und Zerfallszeit bereithält. Ein weiteres Problem existiert aber auch bei der Herstellung wasch- und reinigungsaktiver Formkörper. Insbesondere bei härterer Verpressung (um zu stabilen Tabletten zu gelangen) kann die Haftung des zu tablettierenden Vorgemischs an den Preßwerkzeugen die interpartikuläre Haftung überwiegen. Dies führt entweder zu Stempelanbackungen von Vorgemischpartikeln an den Oberflächen der Preßwerkzeuge oder im schlimmsten Fall zum sogenannten "Deckeln", d.h. einem schichtenweisen Aufreißen der Tablette bzw. dem Anhaften einer durchgehenden und dicken Parttikelschicht an einem Preßwerkzeug, zumeist dem Oberstempel. Hierdurch wird der Formkörper selbst unbrauchbar, er quasi horizontal "durchgerissen" wird. Die am Stempel anhaftende Schicht führt aber beim nächsten Preßvorgang ebenfalls zu Problemen, so daß für die Säuberung der Stempel Standzeiten der Maschinen in Kauf genommen werden müssen.
In der Pharmazie werden zur Lösung dieser Problematik Feuchthaltemittel zugesetzt, die Tablettiergeschwindigkeiten verlangsamt, um Lufteinschlüssen vorzubeugen oder Hilfsstoffe zugegeben, welche eine zu hohe Rückdehnung der Formkörper nach dem Verpressen verhindern. Hier hat sich mikrokristalline Cellulose bewährt.
Im Stand der Technik zu Wasch- und Reinigungsmittelformkörpern existieren zum Problem des Deckelns bislang kaum Lösungsansätze. Zur Vermeidung von Stempelanbackungen werden die Beschichtung von Stempelwerkzeugen mit Elastomeren oder Stempel mit Elastomereinlagen beschrieben. Lösungsansätze, die das Problem nicht von der maschinentechnischen Seite, sondern von der Rezepturseite her angehen, sind bislang nicht beschrieben.
Wasch- und Reinigungsmittelformkörper, welche Phosphate und Bleichmittel enthalten, sind im Stand der Technik beschrieben. So offenbart beispielsweise die internationale Patentanmeldung WO98/42816 (Unilever) Waschmitteltabletten, welche eine Dichte von mehr als 1040 g/cm3 aufweisen und 5 bis 50 Gew.-% Tensid sowie 8 bis 30 Gew.-% Bleichmittel enthalten. Als Bleichmittel werden in dieser Schrift Natriumpercabonat oder Natriumperborat-Tetrahydrrat eingesetzt, welche sich in Handversuchen als bevorzugt gegenüber Natriumperborat-Monohydrat herausgestellt haben sollen. Weder der Einsatz von Fettalkoholsulfaten noch das Problem des Deckelns werden in dieser Schrift erwähnt.
Waschmitteltabletten mit Natriumpercarbonat und Tripolyphosphat werden auch in der WO98/24817 (Unilever) beschrieben. Auch in dieser Schrift wird der Einsatz von Fettalkoholsulfaten nicht beschrieben und auch das Problem des Deckelns nicht gewürdigt.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, Wasch- und Reinigungsmittelformkörper bereitzustellen, die ein Rezepturzusammensetzung aufweisen, welche die Tendenz der Formkörper zum Deckeln minimiert. Dies sollte einerseits unabhängig von der eingesetzten Tablettiermaschine und andererseits ohne Einbußen in anderen Qualitätsparametem der Tabletten erreicht werden. Insbesondere hohe Härten bei kurzen Zerfallszeiten und damit die Möglichkeit, die resultierenden Formkörper über die Einspülkammer dosieren zu können, sind weitere Eigenschaften, die die erfindungsgemäßen Formkörper aufweisen sollen.
Es wurde nun gefunden, daß phosphatbasierte und Percarbonat-haltige Wasch- und Reinigungsmittelformkörper mit hervorragenden anwendungstechnischen Eigenschaften und deutlich verringerter Deckelneigung formuliert werden können, wenn diese Fettalkoholsulfat(e) enthalten.
Gegenstand der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper aus verdichtetem, teilchenförmigen Wasch- und Reinigungsmittel, enthaltend Tensid(e), Bleichmittel, Gerüststoffe sowie optional weitere Inhaltsstoffe von Wasch- und Reinigungsmitteln, dadurch gekennzeichnet, daß die Formkörper Fettalkoholsulfat(e), Percarbonat und Phosphatbuilder enthalten.
Die erfindungsgemäßen Formkörper enthalten Tenside, Phosphatbuilder und Bleichmittel. Hierbei erfüllen die Phosphate Builderaufgaben, während Fettalkoholsulfate als waschaktive Substanzen enthalten sind. Üblicherweise wird hierbei die Hauptmenge an Gerüststoffsubstanz von den Phosphaten ausgemacht.
Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert: (NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper enthalten als Phosphate Alkalimetallphosphate, vorzugsweise Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 1 bis 60 Gew.-%, vorzugsweise von 5 bis 50 Gew.-%, besonders bevorzugt von 10 bis 40 Gew.-% und insbesondere von 15 bis 35 Gew.-%, jeweils bezogen auf das Formkörpergewicht.
Neben den Phosphaten können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper weitere übliche Gerüststoffe enthalten, die sowohl wasserlöslich als auch wasserunlöslich sein können. In den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate und organische Cobuilder. Diese Gerüststoffe können den zu tablettierenden Mischungen zugesetzt werden, sie können aber auch ganz oder teilweise Bestandteil von Tensidgranulaten sein.
Als Gerüststoffe geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 ·H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5 · yH2O bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel nNa2O · (1-n)K2O · Al2O3 · (2 - 2,5)SiO2 · (3,5 - 5,5) H2O beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper enthalten zusätzlich einen Zeolith vom Faujasit-Typ in Mengen von 0,5 bis 20 Gew.-%, vorzugsweise von 1 bis 15 Gew.-%, besonders bevorzugt von 2 bis 10 Gew.-% und insbesondere von 2,5 bis 5 Gew.-%, jeweils bezogen auf das Formkörpergewicht, wobei Zeolith X bevorzugt ist.
Die Menge an Gerüststoff beträgt üblicherweise zwischen 10 und 70 Gew.-%, vorzugsweise zwischen 15 und 60 Gew.-% und insbesondere zwischen 20 und 50 Gew.-%. Wiederum ist die Menge an eingesetzten Buildern abhängig vom Verwendungszweck, so daß Bleichmitteltabletten höhere Mengen an Gerüststoffen aufweisen können (beispielsweise zwischen 20 und 70 Gew.-%, vorzugsweise zwischen 25 und 65 Gew.-% und insbesondere zwischen 30 und 55 Gew.-%), als beispielsweise Waschmitteltabletten (üblicherweise 10 bis 50 Gew.-%, vorzugsweise 12,5 bis 45 Gew.-% uns insbesondere zwischen17,5 und 37,5 Gew.-%).
Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörper insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Mohnassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A-196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Die erfindungsgemäßen Formkörper enthalten zur Entfaltung der Wasch- bzw. Reinigungsleistung Tenside. Erfindungsgemäß sind dabei Fettalkoholsulfate in den Formkörpern enthalten, während andere Tenside optional zusätzlich eingesetzt werden können.
Fettalkoholsulfate, die Alkalimetall-, insbesondere Natriumsalze der Schwefelsäurehalbester längerkettiger Alkohole, sind großtechnisch aus Fettalkoholen zugänglich, welche mit Schwefelsäure, Chlorsulfonsäure, Amidosulfonsäure oder Schwefeltrioxid zu den betreffenden Alkylschwefelsäuren umgesetzt und nachfolgend neutralisiert werden. Die Fettalkohole werden dabei aus den betreffenden Fettsäuren bzw. Fettsäuregemischen durch Hochdruckhydrierung der Fettsäuremethylester gewonnen. Der mengenmäßig bedeutendste industrielle Prozeß zur Herstellung von Fettalkylschwefelsäuren ist die Sulfierung der Alkohole mit SO3/Luft-Gemischen in speziellen Kaskaden-, Fallfilm- oder Rohrbündelreaktoren.
Die Fettsäuren, deren Methylester zu den Fettalkoholen hochdruckhydriert werden, werden technisch größtenteils aus nativen Fetten und Ölen durch Hydrolyse gewonnen. Während die bereits im vergangenen Jahrhundert durchgeführte alkalische Verseifung direkt zu den Alkalisalzen (Seifen) führte, wird heute großtechnisch zur Spaltung nur Wasser eingesetzt, das die Fette in Glycerin und die freien Fettsäuren spaltet. Alternativ kann die Spaltung mit Methanol durchgeführt werden, wobei direkt die Methylester und Glycerin gewonnen werden. Großtechnisch angewendete Verfahren sind beispielsweise die Spaltung im Autoklaven oder die kontinuierliche Hochdruckspaltung. Im Rahmen der vorliegenden Erfindung als Basis für die Fettalkoholsulfate einsetzbare Carbonsäuren sind beispielsweise Hexansäure (Capronsäure), Heptansäure (Önanthsäure), Octansäure (Caprylsäure), Nonansäure (Pelargonsäure), Decansäure (Caprinsäure), Undecansäure usw.. Bevorzugt ist im Rahmen der vorliegenden Verbindung der Einsatz von Fettsäuren wie Dodecansäure (Laurinsäure), Tetradecansäure (Myristinsäure), Hexadecansäure (Palmitinsäure), Octadecansäure (Stearinsäure), Eicosansäure (Arachinsäure), Docosansäure (Behensäure), Tetracosansäure (Lignocerinsäure), Hexacosansäure (Cerotinsäure), Triacotansäure (Melissinsäure) sowie der ungesättigten Sezies 9c-Hexadecensäure (Palmitoleinsäure), 6c-Octadecensäure (Petroselinsäure), 6t-Octadecensäure (Petroselaidinsäure), 9c-Octadecensäure (Ölsäure), 9t-Octadecensäure ((Elaidinsäure), 9c,12c-Octadecadiensäure (Linolsäure), 9t,12t-Octadecadiensäure (Linolaidinsäure) und 9c,12c,15c-Octadecatreinsäure (Linolensäure). Aus Kostengründen ist es bevorzugt, nicht die reinen Spezies einzusetzen, sondern technische Gemische der einzelnen Säuren, wie sie aus der Fettspaltung zugänglich sind. Solche Gemische sind beispielsweise Koskosölfettsäure (ca. 6 Gew.-% C8, 6 Gew.-% C10, 48 Gew.-% C12, 18 Gew.-% C14, 10 Gew.-% C16, 2 Gew.-% C18, 8 Gew.-% C18, 1 Gew.-% C18''), Palmkernölfettsäure (ca. 4 Gew.-% C8, 5 Gew.-% C10, 50 Gew.-% C12, 15 Gew.-% C14, 7 Gew.-% C16, 2 Gew.-% C18, 15 Gew.-% C18', 1 Gew.-% C18''), Talgfettsäure (ca. 3 Gew.-% C14, 26 Gew.-% C16, 2 Gew.-% C16', 2 Gew.-% C17, 17 Gew.-% C18, 44 Gew.-% C18', 3 Gew.-% C18'', 1 Gew.-% C18'''), gehärtete Talgfettsäure (ca. 2 Gew.-% C14, 28 Gew.-% C16, 2 Gew.-% C17, 63 Gew.-% C18, 1 Gew.-% C18'), technische Ölsäure (ca. 1 Gew.-% C12, 3 Gew.-% C14, 5 Gew.-% C16, 6 Gew.-% C16', 1 Gew.-% C17, 2 Gew.-% C18, 70 Gew.-% C18', 10 Gew.-% C18'', 0,5 Gew.-% C18'''), technische Palmitin/Stearinsäure (ca. 1 Gew.-% C12, 2 Gew.-% C14, 45 Gew.-% C16, 2 Gew.-% C17, 47 Gew.-% C18, 1 Gew.-% C18') sowie Sojabohnenölfettsäure (ca. 2 Gew.-% C14, 15 Gew.-% C16, 5 Gew.-% C18, 25 Gew.-% C18', 45 Gew.-% C18'', 7 Gew.-% C18'''). Als Alk(en)ylsulfate werden vorzugsweise die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Einsetzbar sind auch Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt.
Wie vorstehend beschrieben, werden zur Produktion der Fettalkoholsulfate vorzugsweise technische Gemische der Fettsäuren eingesetzt. Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper enthalten die Alkalimetall-, vorzugsweise Natriumsalze, von C8-22-, vorzugsweise C10-20- und insbesondere C12-18-Fettalkylschwefelsäuren.
Unabhängig von der Einarbeitungsform der Fettalkoholsulfate sind dabei Wasch- und Reinigungsmittelformkörper bevorzugt, die die Alkalimetall-, vorzugsweise Natriumsalze, von C8-22-, vorzugsweise C10-20- und insbesondere C12-18-Fettalkylschwefelsäuren, vorzugsweise in Mengen von 0,5 bis 30 Gew.-%, besonders bevorzugt von 1 bis 20 Gew.-% uns insbesondere von 2 bis 10 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
Andere Tenside, die zusätzlich zu den Fettalkoholsulfaten eingesetzt werden könne, können aus den Gruppen der anionischen, nichtionischen, kationischen oder amphoteren Tenside stammen. Aufgrund ihres Leistungsspektrums und ihrer Verfügbarkeit sind hierbei anionische und nichtionische Tenside bevorzugt.
Als weitere anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei z.B. Alkylbenzolsulfonate (ABS), Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkem- oder Talgfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kaliumoder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, deren Gesamtgehalt an anionischen Tensiden oberhalb von 5 Gew.-%, vorzugsweise oberhalb von 7,5 Gew.-% und insbesondere oberhalb von 10 Gew.-%, jeweils bezogen auf das Formkörpergewicht, liegt.
Bei der Auswahl der anionischen Tenside, die in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern zum Einsatz kommen, stehen der Formulierungsfreiheit keine einzuhaltenden Rahmenbedingungen im Weg. Bevorzugte Wasch- und Reinigungsmittelformkörper weisen jedoch einen Gehalt an Seife auf, der 0,2 Gew.-%, bezogen auf das Gesamtgewicht des Formkörpers, übersteigt.
Als optional einzusetzende nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO(G)z, in der R für einen linearen oder verzweigten, insbesondere in 2-Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungsgrad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbesondere zwischen 1,1 und 1,4.
Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in denen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n-Alkylrest ist.
Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können bevorzugt Alkylpolyglycoside enthalten, wobei Gehalte der Formkörper an APG über 0,2 Gew.-%, bezogen auf den gesamten Formkörper, bevorzugt sind. Besonders bevorzugte Wasch- und Reinigungsmittelformkörper enthalten APG in Mengen von 0,2 bis 10 Gew.-%, vorzugsweise 0,2 bis 5 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (II),
Figure 00200001
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zukkers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (III),
Figure 00200002
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder Propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestem in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, die zusätzlich nichtionische(s) Tensid(e) enthalten und bei denen der Gehalt der Formkörper an nichtionischen Tensiden oberhalb von 2 Gew.-%, vorzugsweise oberhalb von 5 Gew.-% und insbesondere oberhalb von 7,5 Gew.-%, jeweils bezogen auf das Formkörpergewicht, liegt.
Im Rahmen der vorliegenden Erfindung können nichtionische Tenside aus sämtlichen vorstehend genannten Gruppen eingesetzt werden. Unabhängig von der chemischen Natur der eingesetzten nichtionischen Tenside sind Wasch- und Reinigungsmittelformkörper bevorzugt, die zusätzlich nichtionische Tenside mit einem Schmelzpunkt unter 40°C, vorzugsweise unter 30°C und insbesondere unter 25°C, in Mengen von 0,5 bis 20 Gew.-%, vorzugsweise von 1 bis 10 Gew.-% und insbesondere von 1,5 bis 5 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
Zur Entfaltung der gewünschten Bleichleistung enthalten die Wasch- und Reinigungsmittelformkörper der vorliegenden Erfindung Natriumpercarbonat. Dabei ist "Natriumpercarbonat" eine in unspezifischer Weise verwendete Bezeichnung für Natriumcarbonat-Peroxohydrate, welche streng genommen keine "Percarbonate" (also Salze der Perkohlensäure) sondern Wasserstoffperoxid-Addukte an Natriumcarbonat sind. Die Handelsware hat die durchschnittliche Zusammensetzung 2 Na2CO3·3 H2O2 und ist damit kein Peroxycarbonat. Natriumpercarbonat bildet ein weißes, wasserlösliches Pulver der Dichte 2,14 gcm-3, das leicht in Natriumcarbonat und bleichend bzw. oxidierend wirkenden Sauerstoff zerfällt.
Natriumcarbonatperoxohydrat wurde erstmals 1899 durch Fällung mit Ethanol aus einer Lösung von Natriumcarbonat in Wasserstoffperoxid erhalten, aber irrtümlich als Peroxycarbonat angesehen. Erst 1909 wurde die Verbindung als Wasserstoffperoxid-Anlagerungsverbindung erkannt, dennoch hat die historische Bezeichnung "Natriumpercarbonat" sich in der Praxis durchgesetzt, weshalb sie auch im Rahmen der vorliegenden Anmeldung Verwendung findet.
Die industrielle Herstellung von Natriumpercarbonat wird überwiegend durch Fällung aus wäßriger Lösung (sogenanntes Naßverfahren) hergestellt. Hierbei werden wäßrige Lösungen von Natriumcarbonat und Wasserstoffperoxid vereinigt und das Natriumpercarbonat durch Aussalzmittel (überwiegend Natriumchlorid), Kristallisierhilfsmittel (beispielsweise Polyphosphate, Polyacrylate) und Stabilisatoren (beispielsweise Mg2+-Ionen) gefällt. Das ausgefällte Salz, das noch 5 bis 12 Gew.-% Mutterlauge enthält, wird anschließend abzentrifuigiert und in Fließbett-Trocknern bei 90°C getrocknet. Das Schüttgewicht des Fertigprodukts kann je nach Herstellungsprozeß zwischen 800 und 1200 g/l schwanken. In der Regel wird das Percarbonat durch ein zusätzliches Coating stabilisiert. Coatingverfahren und Stoffe, die zur Beschichtung eingesetzt werden, sind in der Patentliteratur breit beschrieben. Grundsätzlich können erfindungsgemäß alle handelsüblichen Percarbonattypen eingesetzt werden, wie sie beispielsweise von den Firmen Solvay Interox, Degussa, Kemira oder Akzo angeboten werden. Die Vorteilhaftigkeit des schnellen Formkörperzerfalls resultiert erfindungsgemäß aus der definierten Partikelgröße des Percarbonats.
Das Natriumpercarbonat Bleichmittel wird in Abhängigkeit vom gewünschten Produkt in variierenden Mengen in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern eingesetzt. Übliche Gehalte liegen dabei zwischen 5 und 50 Gew.-%, vorzugsweise zwischen 10 und 40 Gew.-% und insbesondere zwischen 15 und 35 Gew.-%, jeweils bezogen auf den gesamten Formkörper.
Auch ist beim Natriumpercarbonat der Gehalt der Formkörper an diesem Stoff vom Einsatzzweck der Formkörper abhängig. Während übliche Universalwaschmittel in Tablettenform zwischen 5 und 30 Gew.-%, vorzugsweise zwischen 7,5 und 25 Gew.-% und insbesondere zwischen 12,5 und 22,5 Gew.-% Natriumpercarbonat enthalten, liegen die Gehalte bei Bleichmittel- oder Bleichboostertabletten zwischen 15 und 50 Gew.-%, vorzugsweise zwischen 22,5 und 45 Gew.-% uns insbesondere zwischen 30 und 40 Gew.-%.
Eine bevorzugte Ausführungsform der vorliegenden Erfindung stellt Waschmitteltabletten für das Waschen von Textilien in einer Hauhaltswaschmaschine bereit. Diese bevorzugten Wasch- und Reinigungsmittelformkörper sind dadurch gekennzeichnet, daß sie als alleiniges Bleichmittel Natriumpercarbonat in Mengen von 1 bis 40 Gew.-%, vorzugsweise von 2,5 bis 35 Gew.-%, besonders bevorzugt von 5 bis 30 Gew.-% und insbesondere von 7,5 bis 25 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
Zusätzlich zum Natriumpercarbonat können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper Bleichaktivator(en) enthalten, was im Rahmen der vorliegenden Erfindung bevorzugt ist. Bleichaktivatoren werden in Wasch- und Reinigungsmittel eingearbeitet, um beim Waschen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Formkörper eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -Carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Die erfindungsgemäßen Formkörper enthalten, jeweils bezogen auf den gesamten Formkörper, zwischen 0,5 und 30 Gew.-%, vorzugsweise zwischen 1 und 20 Gew.-% und insbesondere zwischen 2 und 15 Gew.-% eines oder mehrerer Bleichaktivatoren oder Bleichkatalysatoren. Je nach Verwendungszweck der hergestellten Formkörper können diese Mengen variieren. So sind in typischen Universalwaschmitteltabletten Bleichaktivator-Gehalte zwischen 0,5 und 10 Gew.-%, vorzugsweise zwischen 2 und 8 Gew.-% und insbesondere zwischen 4 und 6 Gew.-% üblich, während Bleichmitteltabletten durchaus höhere Gehalte, beispielsweise zwischen 5 und 30 Gew.-%, vorzugsweise zwischen 7,5 und 25 Gew.-% und insbesondere zwischen 10 und 20 Gew.-% aufweisen können. Der Fachmann ist dabei in seiner Formulierungsfreiheit nicht eingeschränkt und kann auf diese Weise stärker oder schwächer bleichende Waschmitteltabletten, Reinigungsmitteltabletten oder Bleichmitteltabletten herstellen, indem er die Gehalte an Bleichaktivator und Bleichmittel variiert.
Ein besonders bevorzugt verwendeter Bleichaktivator ist das N,N,N',N'-Tetraacetylethylendiamin, das in Wasch- und Reinigungsmitteln breite Verwendung findet. Dementsprechend sind bevorzugte Wasch- und Reinigungsmittelformkörper dadurch gekennzeichnet, daß als Bleichaktivator Tetraacetylethylendiamin in den oben genannten Mengen eingesetzt wird.
Phosphat(e) und Fettalkoholsulfat(e) können auf beliebige Weise in die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper eingebracht werden. Es hat sich als vorteilhaft erwiesen, wenn das zu Formkörpern zu verpressende Vorgemisch Phosphat(e) und Fettalkoholsulfat(e) in Form eines Tensidgranulats enthält. Hierzu wird zuerst ein Tensidgranulat hergestellt, das vorzugsweise die Gesamtmenge der in den Formkörpern enthaltenen Phosphate und Fettalkoholsulfate enthält, und nachfolgend mit weiteren Aufbereitungskomponenten abgemischt, wonach das Vorgemisch einer Tablettierung zugeführt wird. Es ist weiterhin bevorzugt, daß das vorstehend genannte Tensidgranulat die Gesamtmenge der in den Formkörpern enthaltenen nichtionischen Tenside, vorzugsweise sogar die Gesamtmenge der insgesamt in den Formkörpern enthaltenen Tenside, enthält. Zusammengefaßt sind also Wasch- und Reinigungsmittelformkörper bevorzugt, die dadurch gekennzeichnet sind, daß die sie Gesamtmenge an Phosphaten in Form eines Tensidgranulats enthalten, das vorzugsweise. auch die Gesamtmenge der in den Formkörpern enthaltenen Tenside enthält.
Solche erfindungsgemäß bevorzugten Tensidgranulate haben naturgemäß höhere Phosphatgehalte als der Gesamtformkörper. Erfindungsgemäß sind Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen das Tensidgranulat 5 bis 70 Gew.-%, vorzugsweise 10 bis 65 Gew.-%, besonders bevorzugt 20 bis 60 Gew.-% und insbesondere 25 bis 50 Gew.-% Phosphat, jeweils bezogen auf das Gewicht des Tensidgranulats, enthält.
Auch andere Inhaltsstoffe von Wasch- und Reinigungsmitteln, insbesondere sogenannten Kleinkomponenten wie optische Aufheller, Polymere, Entschäumer, Phosphonate, Farbund Duftstoffe, können Bestandteil des Tensidgranulats sein. Diese Stoffe werden weiter unten beschrieben. Das zu verpressende Vorgemisch kann weiterhin einen oder mehrere Stoffe aus den Gruppen der Bleichmittel, Bleichaktivatoren, Desintegrationshilfsmittel usw. enthalten. Die genannten Stoffe, die weiter unten beschrieben werden, können in speziellen Ausführungsformen der vorliegenden Erfindung auch Bestandteil des Tensidgranulats sein.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern durch Abmischen eines tensidhaltigen Granulats mit pulverförmigen Aufbereitungs-komponenten und nachfolgendes formgebendes Verpressen, wobei das zu verpressende Vorgemisch Fettalkoholsulfat(e), Percarbonat und Phosphatbuilder enthält.
Hinsichtlich bevorzugter Ausführungsformen und Mengenanteile einzelner Komponenten gilt für das erfindungsgemäße Verfahren sinngemäß das vorstehend für die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper Gesagte. Bevorzugte Verfahren sind daher beispielsweise dadurch gekennzeichnet, daß das tensidhaltige Granulat die Gesamtmenge der in den Formkörpern enthaltenen Phosphats enthält, wobei Granulate, welche zusätzlich die Gesamtmenge der nichtionischen Tenside, vorzugsweise die Gesamtmenge aller Tenside, enthalten, bevorzugt sind.
In bevorzugten erfindungsgemäßen Verfahrensvarianten enthält das zu verpressende Vorgemisch tensidhaltige(s) Granulat(e) sowie weitere Aufbereitungskomponenten, wobei Phosphat(e) und vorzugsweise die Tenside Bestandteil des Granulats sind. Die Herstellung der tensidhaltigen Granulate kann dabei durch übliche technische Granulationsverfahren wie Kompaktierung, Extrusion, Mischergranulation, Pelletierung oder Wirbelschichtgranulation erfolgen. Es ist dabei für die späteren Wasch- und Reinigungsmittelformkörper von Vorteil, wenn das zu verpressende Vorgemisch ein Schüttgewicht aufweist, das dem üblicher Kompaktwaschmittel nahe kommt. Insbesondere ist es bevorzugt, daß das zu verpressende Vorgemisch ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere mindestens 700 g/l aufweist.
Das tensidhaltige Granulat genügt in bevorzugten Verfahrensvarianten bestimmten Teilchengrößenkriterien. So sind erfindungsgemäße Verfahren bevorzugt, bei denen das tensidhaltige Granulat Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwischen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbesondere zwischen 600 und 1400µm, aufweist.
Neben den Aktivsubstanzen (anionische und/oder nichtionische und/oder kationische und/oder amphotere Tenside) enthalten die Tensidgranulate vorzugsweise noch Trägerstoffe, die besonders bevorzugt aus der Gruppe der Gerüststoffe stammen. Besonders vorteilhafte Verfahren sind dadurch gekennzeichnet, daß das zu verpressende Vorgemisch ein tensidhaltiges Granulat enthält, welches anionische und/oder nichtionische Tenside sowie Gerüststoffe enthält und dessen Gesamt-Tensidgehalt 5 bis 60 Gew.-%, vorzugsweise 10 bis 50 Gew.-% und insbesondere 15 bis 40 Gew.-%, jeweils bezogen auf das Tensidgranulat, beträgt.
Um die gewünschte Menge an waschaktiver Substanz in die Wasch- und Reinigungsmittelformkörper einzuarbeiten, sind Verfahrensvarianten bevorzugt, in denen das Vorgemisch ein tensidhaltiges Granulat enthält, das Tensidgehalte von 5 bis 60 Gew.-%, vorzugsweise von 10 bis 50 Gew.-% und insbesondere von 15 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des Tensidgranulats, aufweist (siehe oben). Insbesondere Wasch- und Reinigungsmittelformkörper, bei denen der Gehalt des Tensidgranulats an anionischen Tensiden 5 bis 45 Gew.-%, vorzugsweise 10 bis 40 Gew.-% und insbesondere 15 bis 35 Gew.-%, jeweils bezogen auf das Gewicht des Tensidgranulats, beträgt sowie Wasch- und Reinigungsmittelformkörper, bei denen der Gehalt des Tensidgranulats an nichtionischen Tensiden 1 bis 30 Gew.-%, vorzugsweise 5 bis 25 Gew.-% und insbesondere 7,5 bis 20 Gew.-%, jeweils bezogen auf das Gewicht des Tensidgranulats, beträgt, sind erfindungsgemäß bevorzugt. Besonders bevorzugte Varianten des erfindungsgemäßen Verfahrens sind dadurch gekennzeichnet, daß der Anteil des tensidhaltigen Granulats am zu verpressenden Vorgemisch und damit an den Wasch- und Reinigungsmittelformkörpern 40 bis 95 Gew.-%, vorzugsweise 45 bis 85 Gew.-% und insbesondere 55 bis 75 Gew.-%, jeweils bezogen auf das Gewicht der Wasch- und Reinigungsmittelformkörper, beträgt.
Die Herstellung tensidhaltiger Granulate ist im Stand der Technik breit beschreiben, wobei neben umfangreicher Patentliteratur auch auf zahlreiche Übersichtsartikel und Monographien zurückgegriffen werden kann. So beschreibt W.Hermann de Groot, I. Adami, G.F. Moretti "The Manufacture of Modern Detergent Powders ", Hermann de Groot Academic Publisher, Wassenaar, 1995 verschiedene Sprühtrocknungs-, Misch- und Granulierverfahren zur Herstellung von Wasch- und Reinigungsmitteln.
Aus energetischen Gründen ist es im Rahmen der vorliegenden Erfindung bevorzugt, wenn das tensidhaltige Granulat nicht durch Sprühtrocknung, sondern über ein Granulierverfahren hergestellt wird. Neben den herkömmlichen Granulier- und Agglomerationsverfahren, die in den unterschiedlichsten Mischgranulatoren und Mischagglomeratoren durchgeführt werden können, sind beispielsweise auch Preßagglomerationsverfahren einsetzbar. Verfahren, bei denen das tensidhaltige Granulat durch Granulation, Agglomeration, Preßagglomeration oder eine Kombination dieser Verfahren hergestellt wird, sind daher bevorzugt.
Die Granulierung kann in einer Vielzahl von in der Wasch- und Reinigungsmittelindustrie üblicherweise eingesetzten Apparaten durchgeführt werden. So ist es beispielsweise möglich, die in der Pharmazie gängigen Verrunder zu verwenden. In solchen Drehtellerapparaturen beträgt die Verweilzeit der Granulate üblichrweise weniger als 20 Sekunden. Auch herkömmliche Mischer und Mischgranulatoren sind zur Granulierung geeignet. Als Mischer können dabei sowohl Hochintensitätsmischer ("high-shear mixer") als auch normale Mischer mit geringeren Umlaufgeschwindigkeiten verwendet werden. Geeignete Mischer sind beispielsweise Eirich®-Mischer der Serien R oder RV (Warenzeichen der Maschinenfabrik Gustav Eirich, Hardheim), der Schugi® Flexomix, die Fukae® FS-G-Mischer (Warenzeichen der Fukae Powtech, Kogyo Co., Japan), die Lödige® FM-, KM- und CB-Mischer (Warenzeichen der Lödige Maschinenbau GmbH, Paderborn) oder die Drais®-Serien T oder K-T (Warenzeichen der Drais-Werke GmbH, Mannheim). Die Verweilzeiten der Granulate in den Mischern liegen im Bereich von weniger als 60 Sekunden, wobei die Verwei zeit auch von der Umlaufgeschwindigkeit des Mischers abhängt. Hierbei verkürzen sich die Verweilzeiten entsprechend, je schneller der Mischer läuft. Bevorzugt betragen die Verweilzeiten der Granulate im Mischer/Verrunder unter einer Minute, vorzugsweise unter 15 Sekunden. In langsam laufenden Mischern, z.B. einem Lödige KM, werden Verweilzeiten von bis zu 20 Minuten eingestellt, wobei Verweilzeiten unter 10 Minuten wegen der Verfahrensökonomie bevorzugt sind.
Bei dem Verfahren der Preßagglomeration wird das tensidhaltige Granulat unter Druck und unter Einwirkung von Scherkräften verdichtet und dabei homogenisiert und anschließend formgebend aus den Apparaten ausgetragen. Die technisch bedeutsamsten Preßagglomerationsverfahren sind die Extrusion, die Walzenkompaktierung, die Pelletierung und das Tablettieren. Im Rahmen der vorliegenden Erfindung bevorzugt zur Herstellung des tensidhaltige Granulats eingesetzte Preßagglomerationsverfahren sind die Extrusion, die Walzenkompaktierung und die Pelletierung.
Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6 Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desintegrationshilfsmittel, jeweils bezogen auf das Formkörpergewicht.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die HydroxyGruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformkörper, die Sprengmittel in granularer oder gegebenenfalls cogranulierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Stefan Herzog) und DE 197 10 254 (Henkel) sowie der internationalen Patentanmeldung WO98/40463 (Henkel) beschrieben. Diesen Schriften sind auch nähere Angaben zur Herstellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entnehmen. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 µm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 µm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 µm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kompaktierbar sind.
Somit sind im Rahmen der vorliegenden Erfindung Verfahren bevorzugt, bei denen das zu verpressende Vorgemisch zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Gewicht des Vorgemischs, enthält.
In weiter bevorzugten Verfahren enthält das Vorgemisch zusätzlich einen oder mehrere Stoffe aus der Gruppe der Gerüststoffe, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren. Diese Stoffe werden nachfolgend beschrieben.
Die wichtigsten Vertreter aus den Gruppen der Gerüststoffe und Bleichaktivatoren wurden weiter oben beschrieben. es folgen Angaben zu den weiteren Inhaltsstoffen. Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mischungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate in den erfindungsgemäßen Formkörpern kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich können die Wasch- und Reinigungsmittelformkörper auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
Die Formkörper können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
Farb- und Duftstoffe werden den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Wasch- bzw. Reinigungsleistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalcol, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt der erfindungsgemäßen Wasch- und Reinigungsmittelformkörper an Farbstoffen unter 0,01 Gew.-%, während Duftstoffe bis zu 2 Gew.-% der gesamten Formulierung ausmachen können.
Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Um den ästhetischen Eindruck der erfindungsgemäßen Wasch- und Reinigungsmittelformkörper zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Vor der Verpressung des teilchenförmigen Vorgemischs zu Wasch- und Reinigungsmittelformkörpern kann das Vorgemisch mit feinteiligen Oberflächenbehandlungsmitteln "abgepudert" werden. Dies kann für die Beschaffenheit und physikalischen Eigenschaften sowohl des Vorgemischs (Lagerung, Verpressung) als auch der fertigen Wasch- und Reinigungsmittelformkörper von Vorteil sein. Feinteilige Abpuderungsmittel sind im Stand der Technik altbekannt, wobei zumeist Zeolithe, Silikate oder andere anorganische Salze eingesetzt werden. Bevorzugt wird das Vorgemisch jedoch mit feinteiligem Zeolith "abgepudert", wobei Zeolithe vom Faujasit-Typ bevorzugt sind. Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Neben dem Zeolith X sind also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Im Rahmen der vorliegenden Erfindung sind Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern bevorzugt, bei denen die bzw. eine der zugemischten Aufbereitungskomponenten ein Zeolith vom Faujasit-Typ mit Teilchengrößen unterhalb 100µm, vorzugsweise unterhalb 10µm und insbesondere unterhalb 5µm ist und mindestens 0,2 Gew.-%, vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu verpressenden Vorgemischs ausmacht.
Die Herstellung der erfindungsgemäßen Formkörper erfolgt zunächst durch das trockene Vermischen der Bestandteile, die ganz oder teilweise vorgranuliert sein können, und anschließendes Informbringen, insbesondere Verpressen zu Tabletten, wobei auf herkömmliche Verfahren zurückgegriffen werden kann. Zur Herstellung der erfindungsgemäßen Formkörper wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfachoder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.
Bei der Tablettierung mit Rundläuferpressen hat es sich als vorteilhaft erwiesen, die Tablettierung mit möglichst geringen Gewichtschwankungen der Tablette durchzuführen. Auf diese Weise lassen sich auch die Härteschwankungen der Tablette reduzieren. Geringe Gewichtschwankungen können auf folgende Weise erzielt werden:
  • Verwendung von Kunststoffeinlagen mit geringen Dickentoleranzen
  • Geringe Umdrehungszahl des Rotors
  • Große Füllschuhe
  • Abstimmung des Füllschuhflügeldrehzahl auf die Drehzahl des Rotors
  • Füllschuh mit konstanter Pulverhöhe
  • Entkopplung von Füllschuh und Pulvervorlage
Zur Verminderung von Stempelanbackungen bieten sich sämtliche aus der Technik bekannte Antihaftbeschichtungen an. Besonders vorteilhaft sind Kunststoffbeschichtungen, Kunststoffeinlagen oder Kunststoffstempel. Auch drehende Stempel haben sich als vorteilhaft erwiesen, wobei nach Möglichkeit Ober- und Unterstempel drehbar ausgeführt sein sollten. Bei drehenden Stempeln kann auf eine Kunststoffeinlage in der Regel verzichtet werden. Hier sollten die Stempeloberflächen elektropoliert sein.
Es zeigte sich weiterhin, daß lange Preßzeiten vorteilhaft sind. Diese können mit Druckschienen, mehreren Druckrollen oder geringen Rotordrehzahlen eingestellt werden. Da die Härteschwankungen der Tablette durch die Schwankungen der Preßkräfte verursacht werden, sollten Systeme angewendet werden, die die Preßkraft begrenzen. Hier können elastische Stempel, pneumatische Kompensatoren oder federnde Elemente im Kraftweg eingesetzt werden. Auch kann die Druckrolle federnd ausgeführt werden.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) sowie Courtoy N.V., Halle (BE/LU). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D.
Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungsmittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe-Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Exzenterpressen oder Rundläuferpressen sind geeignete Vorrichtungen insbesondere zur Herstellung derartiger Preßlinge.
Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmittelformkörper über eine Dosierhilfe problemlos möglich und im Rahmen der vorliegenden Erfindung bevorzugt.
Ein weiterer bevorzugter Formkörper, der hergestellt werden kann, hat eine platten oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Formkörperwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden.
Möglich ist es aber auch, daß die verschiedenen Komponenten nicht zu einer einheitlichen Tablette verpreßt werden, sondern daß Formkörper erhalten werden, die mehrere Schichten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, daß diese verschiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formkörper resultieren. Falls beispielsweise Komponenten in den Formkörpern enthalten sind, die sich wechselseitig negativ beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbeiten, so daß die erste Komponente bereits abreagiert hat, wenn die zweite in Lösung geht. Der Schichtaufbau der Formkörper kann dabei sowohl stapelartig erfolgen, wobei ein Lösungsvorgang der inneren Schicht(en) an den Kanten des Formkörpers bereits dann erfolgt, wenn die äußeren Schichten noch nicht vollständig gelöst sind, es kann aber auch eine vollständige Umhüllung der inneren Schicht(en) durch die jeweils weiter außen liegende(n) Schicht(en) erreicht werden, was zu einer Verhinderung der frühzeitigen Lösung von Bestandteilen der inneren Schicht(en) führt.
In einer weiter bevorzugten Ausführungsform der Erfindung besteht ein Formkörper aus mindestens drei Schichten, also zwei äußeren und mindestens einer inneren Schicht, wobei mindestens in einer der inneren Schichten ein Peroxy-Bleichmittel enthalten ist, während beim stapelförmigen Formkörper die beiden Deckschichten und beim hüllenförmigen Formkörper die äußersten Schichten jedoch frei von Peroxy-Bleichmittel sind. Weiterhin ist es auch möglich, Peroxy-Bleichmittel und gegebenenfalls vorhandene Bleichaktivatoren und/oder Enzyme räumlich in einem Formkörper voneinander zu trennen. Derartige mehrschichtige Formkörper weisen den Vorteil auf, daß sie nicht nur über eine Einspülkammer oder über eine Dosiervorrichtung, welche in die Waschflotte gegeben wird, eingesetzt werden können; vielmehr ist es in solchen Fällen auch möglich, den Formkörper im direkten Kontakt zu den Textilien in die Maschine zu geben, ohne daß Verfleckungen durch Bleichmittel und dergleichen zu befürchten wären.
Ähnliche Effekte lassen sich auch durch Beschichtung ("coating") einzelner Bestandteile der zu verpressenden Wasch- und Reinigungsmittelzusammensetzung oder des gesamten Formkörpers erreichen. Hierzu können die zu beschichtenden Körper beispielsweise mit wäßrigen Lösungen oder Emulsionen bedüst werden, oder aber über das Verfahren der Schmelzbeschichtung einen Überzug erhalten.
Nach dem Verpressen weisen die Wasch- und Reinigungsmittelformkörper eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach σ = 2P πDt
Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formkörper ausgeübten Druck führt, der den Bruch des Formkörpers verursacht, D ist der Formkörperdurchmesser in Meter und t ist die Höhe der Formkörper.
Auch in phosphatarmen Wasch- und Reinigungsmittelformkörpern läßt sich der erfindungsgemäße Ansatz verwirklichen, so daß die Verwendung von teilchenförmigen Vorgemischen, welche Fettalkoholsulfat(e) und Percarbonat enthalten, zur Herstellung Härteund Zerfallszeit-verbesserter Wasch- und Reinigungsmittelformkörper mit verringerter Deckelneigung ein weiterer Gegenstand der vorliegenden Erfindung ist. Auch hier lassen sich bevorzugte Mengen usw. dem vorstehenden Text entnehmen.
Die Inkorporation aller drei Bestandteile (Phosphat, Fettalkoholsulfat und Percarbonat) in ein Vorgemisch führt zu Wasch- und Reinigungsmittelformkörpern mit vorteilhaften Eigenschaften, so daß die Verwendung von teilchenförmigen Vorgemischen, welche Phosphat(e), Fettalkoholsulfat(e) und Percarbonat enthalten, zur Herstellung Härte- und Zerfallszeit-verbesserter Wasch- und Reinigungsmittelformkörper mit verringerter Deckelneigung ein weiterer Gegenstand der vorliegenden Erfindung ist.
Beispiele:
Durch Naßgranulation in einem 20-Liter-Pflugscharmischer der Firma Lödige wurde ein Tensidgranulat hergestellt, dessen Zusammensetzung in Tabelle 1 angegeben ist. Im Anschluß an die Granulation wurde das Granulat in einer Aeromatic-Wirbelschichtapparatur bei einer Zulufttemperatur von 60°C 30 Minuten getrocknet. Nach der Trocknung wurde das Granulat zur Entfernung der Feinanteile < 0,6 mm und Grobkornanteile > 1,6 mm abgesiebt.
Das Tensidgranulat wurde dann mit weiteren Komponenten zu preßfähigen Vorgemischen aufbereitet, deren Zusammensetzung in Tabelle 2 angegeben ist. Das erfindungsgemäße Vorgemisch E enthielt dabei Natriumpercarbonat, während die Vorgemische der Vergleichsbeispiele V1 bzw. V2 Natriumperborat enthielten. Die Vorgemische wurden in einer Korsch-Exzenterpresse zu Tabletten (Durchmesser: 44 mm, Höhe: 22 mm, Gewicht: 37,5 g) verpreßt. Die Meßwerte der Tablettenhärten sind jeweils die Mittelwerte einer Doppelbestimmung, wobei die Einzelwerte je Formkörpertyp um maximal 2 N variierten.
Zusammensetzung des Tensidgranulats [Gew.-%]
Granulat
C9-13-Alkylbenzolsulfonat 11,0
C12-18-Fettalkoholsulfat 8,0
C12-18-Fettalkohol mit 7 EO 4,0
Seife 1,5
Zeolith X 7,0
Natriumtripolyphosphat 48,0
Na-Hydroxyethan-1,1-diphosphonat 1,2
Acrylsäure-Maleinsäure-Copolymer 3,1
NaOH 0,2
Wasser, Salze Rest
Zusammensetzung der Vorgemische [Gew.-%]:
E V1 V2
Tensidgranulat (Tabelle 1) 66,0 66,0 66,0
Natriumpercarbonat 17,0 - -
Natriumperborat- Tetrahydrat - 17,0 -
Natriumperborat- Monohydrat - - 17,0
TAED 5,0 5,0 5,0
Schauminhibitor 2,0 2,0 2,0
Enzyme 2,0 2,0 2,0
Repel-O-Tex® SRP 4 1,0 1,0 1,0
Parfüm 0,5 0,5 0,5
Wessalith® P (Zeolith A) 2,0 2,0 2,0
Desintegrationshilfsmittel (Cellulose) 5,5 5,5 5,5
Die Härte der Tabletten wurde nach zwei Tagen Lagerung durch Verformung der Tablette bis zum Bruch gemessen, wobei die Kraft auf die Seitenflächen der Tablette einwirkte und die maximale Kraft, der die Tablette standhielt, ermittelt wurde.
Zur Bestimmung der Deckelneigung wurden Serien von mehreren Hundert Formkörpern bei unterschiedlichen Preßkräften verpreßt. Sofern ein schichtweises Aufreißen der Formkörper beobachtet wurde, wurde dies in Tabelle 3 vermerkt. Die experimentellen Daten zeigt die Tabelle 3:
Waschmitteltabletten [physikalische Daten]
Tablette E1 V1 V2
Tablettenhärte [N] 39 37 42
Deckeln nein nein ja
Tablettenhärte [N] 52 . 47 54
Deckeln nein ja ja
Tablettenhärte [N] 58 59 65
Deckeln nein ja ja
Tabelle 3 zeigt, daß die Formkörper V1 und V2 bereits bei Tablettenhärten oberhalb von 40N zum Deckeln neigen, während die erfindungsgemäßen Formkörper E problemlos auch auf Härten von 60 N verpreßt werden können, ohne daß ein schichtweises Aufreißen der Formkörper auftritt.

Claims (16)

  1. Wasch- und Reinigungsmittelformkörper aus verdichtetem, teilchenförmigen Wasch- und Reinigungsmittel, enthaltend Tensid(e), Bleichmittel, Gerüststoffe sowie optional weitere Inhaltsstoffe von Wasch- und Reinigungsmitteln, dadurch gekennzeichnet, daß die Formkörper Fettalkoholsulfat(e), Percarbonat und Phosphatbuilder enthalten.
  2. Wasch- und Reinigungsmittelformkörper nach Anspruch 1, dadurch gekennzeichnet, daß sie als Phosphate Alkalimetallphosphate, vorzugsweise Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 1 bis 60 Gew.-%, vorzugsweise von 5 bis 50 Gew.-%, besonders bevorzugt von 10 bis 40 Gew.-% und insbesondere von 15 bis 35 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
  3. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß sie die Alkalimetall-, vorzugsweise Natriumsalze, von C8-22", vorzugsweise C10-20- und insbesondere C12-18-Fettalkylschwefelsäuren, vorzugsweise in Mengen von 0,5 bis 30 Gew.-%, besonders bevorzugt von 1 bis 20 Gew.-% uns insbesondere von 2 bis 10 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
  4. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als alleiniges Bleichmittel Natriumpercarbonat in Mengen von 1 bis 40 Gew.-%, vorzugsweise von 2,5 bis 35 Gew.-%, besonders bevorzugt von 5 bis 30 Gew.-% und insbesondere von 7,5 bis 25 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
  5. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie zusätzlich einen Zeolith vom Faujasit-Typ in Mengen von 0,5 bis 20 Gew.-%, vorzugsweise von 1 bis 15 Gew.-%, besonders bevorzugt von 2 bis 10 Gew.-% und insbesondere von 2,5 bis 5 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten, wobei Zeolith X bevorzugt ist.
  6. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie zusätzlich nichtionische Tenside mit einem Schmelzpunkt unter 40°C, vorzugsweise unter 30°C und insbesondere unter 25°C, in Mengen von 0,5 bis 20 Gew.-%, vorzugsweise von 1 bis 10 Gew.-% und insbesondere von 1,5 bis 5 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
  7. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die sie Gesamtmenge an Phosphaten in Form eines Tensidgranulats enthalten, das vorzugsweise auch die Gesamtmenge der in den Formkörpern enthaltenen Tenside enthält.
  8. Wasch- und Reinigungsmittelformkörper nach Anspruch 7, dadurch gekennzeichnet, daß das Tensidgranulat 5 bis 70 Gew.-%, vorzugsweise 10 bis 65 Gew.-%, besonders bevorzugt 20 bis 60 Gew.-% und insbesondere 25 bis 50 Gew.-% Phosphat, jeweils bezogen auf das Gewicht des Tensidgranulats, enthält.
  9. Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern durch Abmischen eines tensidhaltigen Granulats mit pulverförmigen Aufbereitungskomponenten und nachfolgendes formgebendes Verpressen, dadurch gekennzeichnet, daß das zu verpressende Vorgemisch Fettalkoholsulfat(e), Percarbonat und Phosphatbuilder enthält.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das tensidhaltige Granulat die Gesamtmenge des in den Formkörpern enthaltenen Phosphats enthält, wobei Granulate, welche zusätzlich die Gesamtmenge der nichtionischen Tenside, vorzugsweise die Gesamtmenge aller Tenside, enthalten, bevorzugt sind.
  11. Verfahren nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß das tensidhaltige Granulat anionische und/oder nichtionische Tenside sowie Gerüststoffe enthält und einen Gesamt-Tensidgehalt von 5 bis 60 Gew.-%, vorzugsweise von 10 bis 50 Gew.-% und insbesondere von 15 bis 40 Gew.-%, jeweils bezogen auf das Tensidgranulat, aufweist.
  12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß das tensidhaltige Granulat Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwischen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbesondere zwischen 600 und 1400µm, aufweist.
  13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß der Anteil des tensidhaltigen Granulats an den Wasch- und Reinigungsmittelformkörpern 40 bis 95 Gew.-%, vorzugsweise 45 bis 85 Gew.-% und insbesondere 55 bis 75 Gew.-%, jeweils bezogen auf das Gewicht der Wasch- und Reinigungsmittelformkörper, beträgt.
  14. Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß das zu verpressende Vorgemisch zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Gewicht des Vorgemischs, enthält.
  15. Verfahren nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, daß das zu verpressende Vorgemisch weiterhin einen oder mehrere Stoffe aus der Gruppe der Gerüststoffe, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthält.
  16. Verwendung von teilchenförmigen Vorgemischen, welche Phosphat(e), Fettalkoholsulfat(e) und Percarbonat enthalten, zur Herstellung Härte- und Zerfallszeit-verbesserter Wasch- und Reinigungsmittelformkörper mit verringerter Deckelneigung.
EP00912538A 1999-03-11 2000-03-02 Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination Expired - Lifetime EP1159392B2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19910819 1999-03-11
DE19910819A DE19910819A1 (de) 1999-03-11 1999-03-11 Wasch- und Reinigungsmittelformkörper mit Tensid-Bleichmittel-Builderkombination
PCT/EP2000/001812 WO2000053717A1 (de) 1999-03-11 2000-03-02 Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination

Publications (3)

Publication Number Publication Date
EP1159392A1 EP1159392A1 (de) 2001-12-05
EP1159392B1 true EP1159392B1 (de) 2004-06-16
EP1159392B2 EP1159392B2 (de) 2007-12-12

Family

ID=7900581

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00912538A Expired - Lifetime EP1159392B2 (de) 1999-03-11 2000-03-02 Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination

Country Status (7)

Country Link
EP (1) EP1159392B2 (de)
AT (1) ATE269395T1 (de)
AU (1) AU3426600A (de)
CA (1) CA2300616A1 (de)
DE (2) DE19910819A1 (de)
ES (1) ES2223479T5 (de)
WO (1) WO2000053717A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19932569A1 (de) * 1999-07-13 2001-01-18 Henkel Kgaa Wasch- und Reinigungsmittelformkörper, insbesondere für das maschinelle Geschirrspülen
US6541441B2 (en) * 1999-12-01 2003-04-01 Jose Alejandro Mumoli Single-dose soap unit and method
JP4875280B2 (ja) * 2000-09-29 2012-02-15 ニューコア・コーポレーション 薄鋼ストリップの製造

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070286A (de) * 1973-10-25 1975-06-11
GB8311865D0 (en) 1983-04-29 1983-06-02 Procter & Gamble Ltd Bleach compositions
GB2276345A (en) 1993-03-24 1994-09-28 Unilever Plc Process for making shaped articles
GB9422925D0 (en) 1994-11-14 1995-01-04 Unilever Plc Detergent compositions
DE19601840A1 (de) * 1996-01-19 1997-07-24 Henkel Kgaa Verfahren zur Herstellung von Wasch- oder Reinigungsmittelformkörpern
DE19709411A1 (de) * 1997-03-07 1998-09-10 Henkel Kgaa Waschmittelformkörper
GB9706083D0 (en) * 1997-03-24 1997-05-14 Unilever Plc Detergent compositions
GB9707582D0 (en) 1997-04-15 1997-06-04 Unilever Plc Detergent compositions
DE19749749A1 (de) * 1997-11-11 1999-05-12 Henkel Kgaa Verfahren zur Herstellung stabiler und schnell zerfallender Waschmittelformkörper
TR200002330T2 (tr) 1998-02-10 2000-12-21 Unilever N.V Tablet deterjan bileşimleri
GB2334528A (en) 1998-02-21 1999-08-25 Procter & Gamble Hydrogen peroxide releasing detergent composition
DE19808758A1 (de) * 1998-03-02 1999-09-09 Henkel Kgaa Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern

Also Published As

Publication number Publication date
CA2300616A1 (en) 2000-09-11
ES2223479T5 (es) 2008-05-16
ES2223479T3 (es) 2005-03-01
ATE269395T1 (de) 2004-07-15
DE19910819A1 (de) 2000-09-14
DE50006819D1 (de) 2004-07-22
EP1159392B2 (de) 2007-12-12
EP1159392A1 (de) 2001-12-05
AU3426600A (en) 2000-09-28
WO2000053717A1 (de) 2000-09-14

Similar Documents

Publication Publication Date Title
EP1123378B1 (de) Wasch- und reinigungsmittelformkörper mit wasserfrei granuliertem brausesystem
EP1165742B1 (de) Ein- oder mehrphasige wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
EP1159392B1 (de) Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination
EP1138756A2 (de) Wasch-und Reinigungsmittelformkörper mit speziellem Tensidgranulat
EP1165741B1 (de) Wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
WO2000014196A1 (de) Waschmitteltabletten mit bindemitteln
EP1155111B1 (de) Verfahren zur herstellung schnell zerfallender wasch- und reinigungsmittelformkörper
WO2000017307A1 (de) Wasch- und reinigungsmittelformkörper mit natriumpercarbonat
WO2001029162A1 (de) Abriebverbesserte wasch- oder reinigungsmittelformkörper
WO2000050559A1 (de) Abriebstabile wasch- und reinigungsmittelformkörper mit festen additiven
WO2000022087A1 (de) Wasch- und reinigungsmittelformkörper mit organischen oligocarbonsäuren
DE19919444B4 (de) Wasch- und Reinigungsmittelformkörper mit Bindemittelcompound, Verfahren zu seiner Herstellung sowie Verwendung von Bindemittelcompounds
WO2000053716A1 (de) Wasch- und reinigungsmittelformkörper mit tensid-builderkombination
WO2000017305A1 (de) Wasch- und reinigungsmittelformkörper mit grobteiligen aufbereitungskomponenten
WO2000065017A1 (de) Bleichmittelhaltige waschmitteltabletten
WO2000024862A1 (de) Fas-haltige wasch- und reinigungsmittelformkörper
WO2000015753A1 (de) Abs-haltige wasch- und reinigungsmittelformkörper
WO2000022086A1 (de) Bleichaktivator-haltige wasch- und reiningungsmittelformkörper
WO2001014512A1 (de) Wasch- oder reinigungsmittelformkörper
WO2000004114A2 (de) Verfahren zur herstellung fettalkoholsulfathaltiger wasch- und reinigungsmittelformkörper
DE102004020009A1 (de) Wasch- und Reinigungsmittelformkörper mit Celluloseetherderivat
WO2000060048A1 (de) Wasch- und reinigungsmittelformkörper mit speziellen tensidgranulaten
WO2000015754A1 (de) Wasch- und reinigungsmittelformkörper mit speziellem tensidgranulat
WO2000017306A1 (de) Wasch- und reinigungsmittelformkörper mit feinteiligen aufbereitungskomponenten
WO2000050557A1 (de) Lagerstabile wasch- und reinigungsmittelformkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010903

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040616

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50006819

Country of ref document: DE

Date of ref document: 20040722

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040916

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040916

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040616

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2223479

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050302

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050302

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050302

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAQ Examination of admissibility of opposition: information related to despatch of communication + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE2

PLAR Examination of admissibility of opposition: information related to receipt of reply deleted

Free format text: ORIGINAL CODE: EPIDOSDOPE4

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: UNILEVER N.V.

Effective date: 20050316

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: *HENKEL K.G.A.A.

Effective date: 20050331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20071212

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

BERE Be: lapsed

Owner name: *HENKEL K.G.A.A.

Effective date: 20050331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041116

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 20080312

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Date of ref document: 20080307

Kind code of ref document: T5

ET3 Fr: translation filed ** decision concerning opposition
PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160309

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160321

Year of fee payment: 17

Ref country code: FR

Payment date: 20160321

Year of fee payment: 17

Ref country code: SE

Payment date: 20160321

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160330

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160324

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50006819

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170302

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170303