DE102004020009A1 - Wasch- und Reinigungsmittelformkörper mit Celluloseetherderivat - Google Patents

Wasch- und Reinigungsmittelformkörper mit Celluloseetherderivat Download PDF

Info

Publication number
DE102004020009A1
DE102004020009A1 DE200410020009 DE102004020009A DE102004020009A1 DE 102004020009 A1 DE102004020009 A1 DE 102004020009A1 DE 200410020009 DE200410020009 DE 200410020009 DE 102004020009 A DE102004020009 A DE 102004020009A DE 102004020009 A1 DE102004020009 A1 DE 102004020009A1
Authority
DE
Germany
Prior art keywords
cellulose
acid
tablets
cellulose derivative
detergent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200410020009
Other languages
English (en)
Inventor
Georg Dr. Assmann
Thorsten Dr. Scottsdale Bastigkeit
Josef Dr. Penninger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE200410020009 priority Critical patent/DE102004020009A1/de
Publication of DE102004020009A1 publication Critical patent/DE102004020009A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/225Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)

Abstract

Wasch- und Reinigungsmittelformkörper mit hoher Leistung und kurzen Zerfallszeiten auch bei hohen Härten enthalten schmutzablösevermögendes Cellulosederivat, das erhältlich ist durch Alkylierung und Hydroxyalkylierung von Cellulose.

Description

  • Die vorliegende Erfindung betrifft Wasch- und Reinigungsmittelformkörper, die als das Schmutzablösevermögen verbessernde Bestandteile bestimmte Celluloseether enthalten. Insbesondere betrifft die Erfindung solche Formkörper wie Waschmitteltabletten, Reinigungsmitteltabletten, Bleichtabletten oder Wasserenthärtertabletten mit den genannten Bleichaktivatoren.
  • Waschmittel enthalten neben den für den Waschprozess unverzichtbaren Inhaltsstoffen wie Tensiden und Buildermaterialien in der Regel weitere Bestandteile, die man unter dem Begriff Waschhilfsstoffe zusammenfassen kann und die so unterschiedliche Wirkstoffgruppen wie Schaumregulatoren, Vergrauungsinhibitoren, Bleichmittel, Bleichaktivatoren und Farbübertragungsinhibitoren umfassen. Zu derartigen Hilfsstoffen gehören auch Substanzen, welche der Wäschefaser schmutzabstoßende Eigenschaften verleihen und die, falls während des Waschvorgangs anwesend, das Schmutzablösevermögen der übrigen Waschmittelbestandteile unterstützen. Gleiches gilt sinngemäß auch für Reinigungsmittel für harte Oberflächen. Derartige schmutzablösevermögende Substanzen werden oft als "Soil-Release"-Wirkstoffe oder wegen ihres Vermögens, die behandelte Oberfläche, zum Beispiel der Faser, schmutzabstoßend auszurüsten, als "Soil-Repellents" bezeichnet. So ist beispielsweise aus dem US-amerikanischen Patent US 4 136 038 die schmutzablösevermögende Wirkung von Methylcellulose bekannt. Die europäische Patentanmeldung EP 0 213 729 offenbart die verringerte Redeposition bei Einsatz von Waschmitteln, die eine Kombination von Seife und nichtionischem Tensid mit Alkyl-Hydroxyalkyl-Cellulose enthalten. Aus der europäischen Patentanmeldung EP 0 213 730 sind Textilbehandlungsmittel bekannt, die kationische Tenside und nichtionische Celluloseether mit HLB-Werten von 3,1 bis 3,8 enthalten. Die US-amerikanische Patentschrift US 4 000 093 offenbart Waschmittel, die 0,1 Gew.-% bis 3 Gew.-% Alkyl-Cellulose, Hydroxyalkyl-Cellulose oder Alkyl-Hydroxyalkyl-Cellulose sowie 5 Gew.-% bis 50 Gew.-% Tensid enthalten, wobei die Tensidkomponente im wesentlichen aus C10- bis C13-Alkylsulfat besteht und bis zu 5 Gew.-% C14-Alkylsulfat und weniger als 5 Gew.-% Alkylsulfat mit Alkylresten von C15 und höher aufweist. Die US-amerikanische Patentschrift US 4 174 305 offenbart Waschmittel, die 0,1 Gew.-% bis 3 Gew.-% Alkyl-Cellulose, Hydroxyalkyl-Cellulose oder Alkyl-Hydroxyalkyl-Cellulose sowie 5 Gew.-% bis 50 Gew.-% Tensid enthalten, wobei die Tensidkomponente im wesentlichen aus C10- bis C12-Alkylbenzolsulfonat besteht und weniger als 5 Gew.-% Alkylbenzolsulfonat mit Alkylresten von C13 und höher aufweist. Die europäische Patentschrift EP 0 271 312 betrifft schmutzablösevermögende Wirkstoffe, unter diesen Cellulosealkylether und Cellulosehydroxyalkylether (mit DS 1,5 bis 2,7 und Molmassen von 2000 bis 100000) wie Methylcellulose und Ethylcellulose, die mit Persauerstoffbleichmittel im Gewichtsverhältnis (bezogen auf den Aktivsauerstoffgehalt des Bleichmittels) von 10:1 bis 1:10 eingesetzt werden sollen. Die europäische Patentanmeldung EP 0 634 481 betrifft ein Waschmittel, das Alkalipercarbonat und ein oder mehrere nichtionische Cellulosederivate enthält. Ausdrücklich offenbart sind unter letzteren lediglich Hydroxyethylcellulose, Hydroxypropylcellulose und Methylcellulose sowie – im Rahmen der Beispiele – die Methyl-hydroxyethylcellulose Tylose® MH50, die Hydroxypropyl-methylcellulose Methocel® F4M und Hydroxybutyl-methylcellulose. Aus der europäischen Patentschrift EP 0 948 591 B1 ist ein Waschmittel in flüssiger oder granularer Form bekannt, welches Geweben und Textilien, die damit gewaschen werden, Textilaussehensvorteile wie Pill-/Fusselverringerung, Antifarbverblassung, verbesserte Abriebbeständigkeit und/oder verstärkte Weichheit verleiht und das 1 bis 80 Gew.-% Tensid, 1 bis 80 Gew.-% organischen oder anorganischen Builder, 0,1 bis 80 Gew.-% eines hydrophob modifizierten nichtionischen Celluloseethers mit einem Molgewicht von 10 000 bis 2 000 000 enthält, wobei die Modifikation in der Anwesenheit von gegebenenfalls oligomerisierten (Oligomerisationsgrad bis zu 20) Ethylenoxy- oder 2-Propylenoxy-Ethereinheiten und von C8–24-Alkylsubstituenten besteht und die Alkylsubstituenten in Mengen von 0,1–5 Gew.-%, bezogen auf das Celluloseether-Material, vorhanden sein müssen.
  • Wegen ihrer chemischen Ähnlichkeit zu Polyesterfasern bei Textilien aus diesem Material besonders wirksame schmutzablösevermögende Wirkstoffe sind Copolyester, die Dicar bonsäureeinheiten, Alkylenglykoleinheiten und Polyalkylenglykoleinheiten enthalten. Schmutzablösevermögende Copolyester der genannten Art wie auch ihr Einsatz in Waschmitteln sind seit langer Zeit bekannt.
  • So beschreibt zum Beispiel die deutsche Offenlegungsschrift DT 16 17 141 ein Waschverfahren unter Einsatz von Polyethylenterephthalat-Polyoxyethylenglykol-Copolymeren. Die deutsche Offenlegungsschrift DT 22 00 911 betrifft Waschmittel, die nichtionisches Tensid und ein Mischpolymer aus Polyoxyethylenglykol und Polyethylenterephthalat enthalten. In der deutschen Offenlegungsschrift DT 22 53 063 sind saure Textilausrüstungsmittel genannt, die ein Copolymer aus einer dibasigen Carbonsäure und einem Alkylen- oder Cycloalkylenpolyglykol sowie gegebenenfalls einem Alkylen- oder Cycloalkylenglykol enthalten. Polymere aus Ethylenterephthalat und Polyethylenoxid-terephthalat, in denen die Polyethylenglykol-Einheiten Molgewichte von 750 bis 5000 aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxid-terephthalat 50:50 bis 90:10 beträgt, und deren Einsatz in Waschmitteln sind in der deutschen Patentschrift DE 28 57 292 beschrieben. Polymere mit Molgewicht 15 000 bis 50 000 aus Ethylenterephthalat und Polyethylenoxid-terephthalat, wobei die Polyethylenglykol-Einheiten Molgewichte von 1000 bis 10 000 aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxidterephthalat 2:1 bis 6:1 beträgt, können gemäß der deutschen Offenlegungsschrift DE 33 24 258 in Waschmitteln eingesetzt werden. Das europäische Patent EP 066 944 betrifft Textilbehandlungsmittel, die einen Copolyester aus Ethylenglykol, Polyethylenglykol, aromatischer Dicarbonsäure und sulfonierter aromatischer Dicarbonsäure in bestimmten Molverhältnissen enthalten. Aus dem europäischen Patent EP 185 427 sind Methyl- oder Ethylgruppen-endverschlossene Polyester mit Ethylen-und/oder Propylenterephthalat- und Polyethylenoxid-terephthalat-Einheiten und Waschmittel, die derartiges Soil-release-Polymer enthalten, bekannt. Das europäische Patent EP 241 984 betrifft einen Polyester, der neben Oxyethylen-Gruppen und Terephthalsäureeinheiten auch substituierte Ethyleneinheiten sowie Glycerineinheiten enthält. Aus dem europäischen Patent EP 241 985 sind Polyester bekannt, die neben Oxyethylen-Gruppen und Terephthalsäureeinheiten 1,2-Propylen-, 1,2-Butylen- und/oder 3-Methoxy-1,2-propylengruppen sowie Glycerineinheiten enthalten und mit C1- bis C4-Alkylgruppen endgruppenverschlossen sind. Die europäische Patentschrift EP 253 567 betrifft Soil-release-Polymere mit einer Molmasse von 900 bis 9000 aus Ethylenterephthalat und Polyethylenoxid-terephthalat, wobei die Polyethylenglykol-Einheiten Molgewichte von 300 bis 3000 aufweisen und das Molverhältnis von Ethylenterephthalat zu Polyethylenoxid-terephthalat 0,6 bis 0,95 beträgt. Aus der europäischen Patentanmeldung EP 272 033 sind zumindest anteilig durch C1–4-Alkyl- oder Acylreste endgruppenverschlossene Polyester mit Poly-propylenterephthalat- und Polyoxyethylenterephthalat-Einheiten bekannt. Das europäische Patent EP 274 907 beschreibt sulfoethyl-endgruppenverschlossene terephthalathaltige Soil-release-Polyester. In der europäischen Patentanmeldung EP 357 280 werden durch Sulfonierung ungesättigter Endgruppen Soil-Release-Polyester mit Terephthalat-, Alkylenglykol- und Poly-C2–4-Glykol-Einheiten hergestellt. Die deutsche Patentanmeldung DE 26 55 551 beschreibt die Umsetzung derartiger Polyester mit isocyanatgruppenhaltigen Polymeren und die Verwendung der so hergestellten Polymerisate gegen das Wiederaufziehen von Schmutz beim Waschen von synthetischen Fasern. Aus der deutschen Patentschrift DE 28 46 984 sind Waschmittel bekannt, die als schmutzablosevermögendes Polymer ein Umsetzungsprodukt eines Polyesters mit einem endständige Isocyanatgruppen enthaltenden Prepolymer, erhalten aus einem Diisocyanat und einem hydrophilen nichtionischen Macrodiol, enthalten.
  • Die aus diesem umfangreichen Stand der Technik bekannten Polymere weisen den Nachteil auf, daß sie bei Textilien, die nicht oder zumindest nicht zum überwiegenden Teil aus Polyester bestehen, keine oder nur unzureichende Wirksamkeit besitzen. Ein großer Teil der heutigen Textilien besteht aber aus Baumwolle oder Baumwoll-Polyester-Mischgeweben, so daß ein Bedarf nach bei insbesondere fettigen Anschmutzungen auf derartigen Textilien besser wirksamen schmutzablösevermögenden Wirkstoffen besteht. Darüber hinaus müssen solche schmutzablösevermögenden Wirkstoffe in Gegenwart von normalerweise in Waschmitteln enthaltenen anderen Inhaltsstoffen, wie insbesondere Bleichmitteln nicht nur stabil sein, sondern sollten gerade in solchen Mitteln eine besonders gute Wirksamkeit aufweisen und wünschenswerterweise sogar die Wirksamkeit des Bleichmittels verbessern oder zumindest nicht beeinträchtigen.
  • Wasch- und Reinigungsmittelzusammensetzungen in Form von Formkörpern, insbesondere in Form von Tabletten, sind im Stand der Technik lange bekannt und breit beschrieben. Die Angebotsform des Formkörpers hat allerdings neben einer Reihe von Vorteilen auch Nachteile, die sowohl die Herstellung und Verwendung als auch die Verbraucherakzeptanz beeinträchtigen. Die wesentlichen Vorteile von Formkörpern wie der Wegfall des Abmessens der benötigten Produktmenge durch den Verbraucher, die höhere Dichte und damit der verringerte Verpackungs- und Lageraufwand und ein nicht zu unterschätzender ästhetischer Aspekt werden dabei durch Nachteile wie die Dichotomie zwischen akzeptabler Härte und genügend schneller Desintegration und Auflösung der Formkörper sowie zahlreiche technologische Schwierigkeiten bei der Herstellung und Verpackung relativiert.
  • Insbesondere die Dichotomie zwischen einem genügen harten Formkörper und einer hinreichend schnellen Zerfallszeit ist dabei ein zentrales Problem. Da hinreichend stabile, d.h. form- und bruchbeständige Formkörper nur durch verhältnismäßig hohe Preßdrücke hergestellt werden können, kommt es zu einer starken Verdichtung der Formkörperbestandteile und zu einer daraus folgenden verzögerten Desintegration des Formkörpers in der wäßrigen Flotte und damit zu einer zu langsamen Freisetzung der Aktivsubstanzen im Wasch- bzw. Reinigungsvorgang. Die verzögerte Desintegration der Formkörper hat weiterhin den Nachteil, daß sich übliche Wasch- und Reinigungsmittelformkörper nicht über die Einspülkammer von Haushaltswaschmaschinen einspülen lassen, da die Tabletten nicht in hinreichend schneller Zeit in Sekundärpartikel zerfallen, die klein genug sind, um aus der Einspülkammer in die Waschtrommel eingespült zu werden.
  • Zur Überwindung der Dichotomie zwischen Härte, d.h. Transport- und Handhabungsstabilität, und leichtem Zerfall der Formkörper sind im Stand der Technik viele Lösungsansätze entwickelt worden. Ein insbesondere aus der Pharmazie bekannter und auf das Gebiet der Wasch- und Reinigungsmittelformkörper ausgedehnter Ansatz ist die Inkorporation bestimmter Desintegrationshilfsmittel, die den Zutritt von Wasser erleichtern oder bei Zutritt von Wasser quellen bzw. gasentwickelnd oder in anderer Form desintegrierend wirken. Andere Lösungsvorschläge aus der Patentliteratur beschreiben die Verpressung von Vorgemischen bestimmter Teilchengrößen, die Trennung einzelner Inhaltsstoffe von bestimmten anderen Inhaltsstoffen sowie die Beschichtung einzelner Inhaltsstoffe oder des gesamten Formkörpers mit Bindemitteln.
  • Die europäische Patentanmeldung EP-A-0 466 484 beansprucht Waschmitteltabletten, die durch Verpressung von teilchenförmigem Material hergestellt werden, welches Partikel größen im Bereich von 200 bis 2000 μm aufweist, wobei die Ober- und die Untergrenze der Partikelgrößen um nicht mehr als 700 μm differieren sollen. Waschmitteltabletten, in denen einzelne Inhaltsstoffe getrennt von anderen vorliegen, werden beispielsweise in der EP-A-0 481 793 beschrieben. Die in dieser Schrift offenbarten Waschmitteltabletten enthaltend Natriumpercarbonat, das von allen anderen Komponenten, die seine Stabilität beeinflussen könnten (beispielsweise Bleichaktivatoren), räumlich getrennt vorliegt.
  • Der vorliegenden Erfindung lag demnach die Aufgabe zugrunde, Wasch- und Reinigungsmittelformkörper bereitzustellen, welche das Schmutzablöservermögen verbessernde Wirkstoffe enthalten und eine hohe Härte aufweisen sowie über hervorragende Zerfallseigenschaften verfügen. Diese Wasch- und Reinigungsmittelformkörper sollen dabei auch über die Einspülkammer dosiert werden können, ohne daß dem Verbraucher hierdurch Nachteile durch Rückstände in der Einspülkammer und zu wenig Waschmittel in der Waschlauge erwachsen.
  • Gegenstand der Erfindung ist ein Wasch- oder Reinigungsmittelformkörper aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, umfassend gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile, welcher dadurch gekennzeichnet ist, daß er schmutzablösevermögendes Cellulosederivat, das erhältlich ist durch Alkylierung und Hydroxyalkylierung von Cellulose, enthält.
  • Bevorzugte Cellulosederivate sind solche, die mit C1- bis C10-Gruppen, insbesondere C1- bis C3-Gruppen alkyliert sind und zusätzlich C2- bis C10-Hydroxyalkylgruppen, insbesondere C2- bis C3-Hydroxyalkylgruppen, tragen. Diese können in bekannter Weise durch Umsetzung von Cellulose mit entsprechenden Alkylierungsmitteln, beispielsweise Alkylhalogeniden oder Alkylsulfaten, und anschließende Umsetzung mit entsprechenden Alkylenoxiden, wie beispielsweise Ethylenoxid und/oder Propylenoxid, erhalten werden. In einer bevorzugten Ausführungsform der Erfindung sind im Cellulosederivat gemittelt 0,5 bis 2,5, insbesondere 1 bis 2 Alkylgruppen und 0,02 bis 0,5, insbesondere 0,05 bis 0,3 Hydroxyalkylgruppen pro Anhydroglykosemonomereinheit enthalten. Die mittlere Molmasse der erfindungsgemäß eingesetzten Cellulosederivate liegt vorzugsweise im Bereich von 10 000 D bis 150 000 D, insbesondere von 40 000 D bis 120 000 D und besonders bevorzugt im Bereich von 80 000 D bis 110 000 D. Die Bestimmung des Polymerisationsgrads beziehungsweise des Molekulargewichts des schmutzablösevermögenden Cellulosederivats basiert auf der Bestimmung der Grenzviskositätszahl an hinreichend verdünnten wäßrigen Lösungen mittels einem Ubbelohde Kapillarviskosimeter (Kapillare 0c). Unter Verwendung einer Konstanten [H. Staudinger und F. Reinecke, "Über Molekulargewichtsbestimmung an Celluloseethern", Liebigs Annalen der Chemie 535, 47 (1938)] und eines Korrekturfaktors [F. Rodriguez und L. A.Goettler, "The Flow of Moderately Concentrated Polymer Solutions in Water", Transactions of the Society of Rheology VIII, 3 17 (1964)] läßt sich hieraus der Polymerisationsgrad sowie unter Einbezug der Substitutionsgrade (DS und MS) das korrespondierende Molekulargewicht berechnen.
  • Die erfindungsgemäß verwendeten Cellulosederivate sind wie geschildert auf einfachem Wege herstellbar und ökologisch sowie toxikologisch unbedenklich. Sie führen zu einer signifikant besseren Ablösung von insbesondere Fett- und Kosmetik-Anschmutzungen auf Baumwolle beziehungsweise baumwollhaltigen Geweben als dies bei Verwendung bisher für diesen Zweck bekannter Verbindungen der Fall ist. Alternativ können bei gleichbleibendem Fettablösevermögen bedeutende Mengen an Tensiden eingespart werden.
  • Die erfindungsgemäßen Formkörper können das schmutzablösevermögende Cellulosederivat in variierenden Mengen enthalten, wobei die Menge vom Einsatzzweck der Formkörper abhängt. Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper sind dadurch gekennzeichnet, dass sie das schmutzablösevermögende Cellulosederivat in Mengen von 0,1 Gew.-% bis 5 Gew.-%, insbesondere 0,5 Gew.-% bis 2,5 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
  • Besonders bevorzugt ist es, wenn die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper das schmutzablösevermögende Cellulosederivat in nicht zu grober Form enthalten. In bevorzugten Wasch- und Reinigungsmittelformkörpern weisen mindestens 90 Gew.-% der Teilchen des schmutzablösevermögenden Cellulosederivats eine Teilchengröße unterhalb 0,5 mm und dabei höchstens 20 Gew.-% der Teilchen eine Teilchengröße unterhalb 0,125 mm auf; bevorzugt sind in einer weiteren Ausgestaltung mindestens 90 Gew.-% der Teilchen des schmutzablösevermögenden Cellulosederivats kleiner als 0,18 mm, insbesondere sind mindestens 25 Gew.-% der Teilchen kleiner als 0,1 mm.
  • Zur Herstellung besonders bevorzugter Wasch- und Reinigungsmittelformkörper weist das schmutzablösevermögende Cellulosederivat vor der Verpressung eine Schüttdichte von etwa 400 g/l auf.
  • Neben dem schmutzablösevermögenden Cellulosederivat können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper weitere Inhaltsstoffe enthalten, deren Mengen sich nach dem Verwendungszweck der Formkörper richten. So sind insbesondere Stoffe aus den Gruppen der Tenside, der Gerüststoffe, der Bleichmittel und der Polymere für den Einsatz in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörper geeignet. Dem Fachmann wird es auch hier keine Schwierigkeiten bereiten, die einzelnen Komponenten und ihre Mengengehalte auszuwählen. So wird eine Universalwaschmitteltablette höhere Mengen an Tensid(en) enthalten, während bei einer Bleichmitteltabletten auf deren Einsatz eventuell sogar ganz verzichtet werden kann. Auch die Menge an Gerüststoff(en), die eingesetzt werden, variiert gegebenenfalls je nach beabsichtigtem Verwendungszweck.
  • Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper enthalten ein System für die „aktivierte Bleiche", d.h. sowohl Bleichmittel als auch Bleichaktivator, wobei als letzterer erfindungsgemäß kationische Nitrile eingesetzt werden, um vorteilhafte Formkörpereigenschaften zu erhalten. Zusätzlich zu den kationischen Nitrilen können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper auch Bleichaktivatoren und/oder Bleichkatalysatoren enthalten, die Bleichmittel-haltigen Wasch- und Reinigungsmitteln üblicherweise zugesetzt werden, um beim Waschen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können im Rahmen der vorliegenden Erfindung Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren oder entsprechende Perimidsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die Nitrilgruppen beziehungsweise O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind kationische Nitrile der Formel R1R2R3N(+)-(CH2)-CN X(–), in der R1 für -H, -CH3, einen C2–24-Alkyl- oder -Alkenylrest, einen substituierten C2–24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C1–24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C1–24-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1, 2, 3, 4, 5 oder 6 und X ein Anion ist, sowie mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können im Rahmen der vorliegenden Erfindung auch sogenannte Bleichkatalysatoren in die Formkörper eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar. Auch bleichverstärkende Wirkstoffkombinationen, die durch inniges Vermischen eines wasserlöslichen Salzes eines zweiwertigen Übergangsmetalles, ausgewählt aus Cobalt, Eisen, Kupfer und Ruthenium sowie deren Mischungen, eines wasserlöslichen Ammoniumsalzes und gegebenenfalls eines Oxidationsmittels auf Persauerstoffbasis sowie inerten Trägermaterials erhältlich sind, lassen sich im Rahmen der vorliegenden Erfindung als Bleichkatalysatoren einsetzen.
  • Der/die Bleichaktivator(en) dienen dazu, das oder die Bleichmittel bei niedrigeren Wasch- oder Reinigungstemperaturen zu aktivieren und so für eine hohe Bleichleistung auch bei niedrigen Temperaturen zu sorgen. Als Bleichmittel haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Auch beim Einsatz der Bleichmittel ist es möglich, auf den Einsatz von Tensiden und/oder Gerüststoffen zu verzichten, so daß reine Bleichmitteltabletten herstellbar sind. Sollen solche Bleichmitteltabletten zur Textilwäsche eingesetzt werden, ist eine Kombination von Natriumpercarbonat mit Natriumsesquicarbonat bevorzugt, unabhängig davon, welche weiteren Inhaltsstoffe in den Formkörpern enthalten sind. Werden Reinigungs- oder Bleichmitteltabletten für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesiummonoperphthalat, (b) die alipliatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
  • In Wasch- und Reinigungsmittelformkörpern für die Textilwäsche, die kurz als Waschmitteltabletten bezeichnet werden, ist Natriumpercarbonat das bevorzugt einzusetzende Bleichmittel. Dabei ist „Natriumpercarbonat" eine in unspezifischer Weise verwendete Bezeichnung für Natriumcarbonat-Peroxohydrate, welche streng genommen keine „Percarbonate" (also Salze der Perkohlensäure) sondern Wasserstoffperoxid-Addukte an Natriumcarbonat sind. Die Handelsware hat die durchschnittliche Zusammensetzung 2 Na2CO3·3 H2O2 und ist damit kein Peroxycarbonat. Natriumpercarbonat bildet ein weißes, wasserlösliches Pulver der Dichte 2,14 gcm–3, das leicht in Natriumcarbonat und bleichend bzw. oxidierend wirkenden Sauerstoff zerfällt.
  • Natriumcarbonatperoxohydrat wurde erstmals 1899 durch Fällung mit Ethanol aus einer Lösung von Natriumcarbonat in Wasserstoffperoxid erhalten, aber irrtümlich als Peroxy carbonat angesehen. Erst 1909 wurde die Verbindung als Wasserstoffperoxid-Anlagerungsverbindung erkannt, dennoch hat die historische Bezeichnung „Natriumpercarbonat" sich in der Praxis durchgesetzt.
  • Die industrielle Herstellung von Natriumpercarbonat wird überwiegend durch Fällung aus wäßriger Lösung (sogenanntes Naßverfahren) hergestellt. Hierbei werden wäßrige Lösungen von Natriumcarbonat und Wasserstoffperoxid vereinigt und das Natriumpercarbonat durch Aussalzmittel (überwiegend Natriumchlorid), Kristallisierhilfsmittel (beispielsweise Polyphosphate, Polyacrylate) und Stabilisatoren (beispielsweise Mg2+-Ionen) gefällt. Das ausgefällte Salz, das noch 5 bis 12 Gew.-% Mutterlauge enthält, wird anschließend abzentrifuigiert und in Fließbett-Trocknern bei 90°C getrocknet. Das Schüttgewicht des Fertigprodukts kann je nach Herstellungsprozeß zwischen 800 und 1200 g/l schwanken. In der Regel wird das Percarbonat durch ein zusätzliches Coating stabilisiert. Coatingverfahren und Stoffe, die zur Beschichtung eingesetzt werden, sind in der Patentliteratur breit beschrieben. Grundsätzlich können erfindungsgemäß alle handelsüblichen Percarbonattypen eingesetzt werden, wie sie beispielsweise von den Firmen Solvay Interox, Degussa, Kemira oder Akzo angeboten werden.
  • Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können einphasig sein, d.h. aus einem Vorgemisch zu einem homogenen Formkörper verpreßt worden sein. Es ist erfindungsgemäß aber auch möglich, mehrphasige Formkörper bereitzustellen, wobei Wirkstoffe in räumlich abgegrenzte Bereiche aufgeteilt werden können, wo dies sinnvoll erscheint. Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, die aus mehreren Phasen, vorzugsweise Schichten, bestehen, wobei Bleichaktivator in mindestens einer der Phasen zu mehr als 2,5 Gew.-%, vorzugsweise zu mehr als 5 Gew.-% und insbesondere zu mehr als 7,5 Gew.-%, jeweils bezogen auf das Gewicht der Phase, enthalten ist. Durch die Aufteilung der Gesamtmasse eines Formkörpers in unterschiedliche Phasen kann in einer einzelnen Phase ein erhöhter Gehalt an bestimmten Inhaltsstoffen, insbesondere Bleichaktivatoren, erreicht werden, wenn der Gehalt dieses Inhaltsstoffs in der/den anderen Phase(n) entsprechend verringert wird, ohne daß dabei der Gesamtgehalt des Formkörpers an diesem Aktivstoff variiert. Wie aus den oben genannten Mengen an Bleichaktivator(en) im Gesamt-Formkörper und aus den vorstehend genannten Mengen an Bleichaktivator(en) in einer Einzelphase hervorgeht, ist es erfin dungsgemäß bevorzugt, den/die Bleichaktivator(en) in einer Phase des Formkörpers zu konzentrieren, so daß die entsprechende Phase hohe Bleichaktivator-Gehalte aufweist.
  • Die einzelnen Phasen des Formkörpers können im Rahmen der vorliegenden Erfindung unterschiedliche Raumformen aufweisen. Die einfachste Realisierungsmöglichkeit liegt dabei in zwei- oder mehrschichtigen Tabletten, wobei jede Schicht des Formkörpers eine Phase darstellt. Es ist aber erfindungsgemäß auch möglich, mehrphasige Formkörper herzustellen, in denen einzelne Phasen die Form von Einlagerungen in (eine) andere Phase(n) aufweisen. Neben sogenannten "Ring-Kern-Tabletten" sind dabei beispielsweise Manteltabletten oder Kombinationen der genannten Ausführungsformen möglich. Beispiele für mehrphasige Formkörper finden sich in den Abbildungen der EP-A-0 055 100 (Jeyes), die Toilettenreinigungsblöcke beschreibt. Die technisch derzeit verbreitetste Raumform mehrphasiger Formkörper ist die Zwei- oder Mehrschichttablette. Im Rahmen der vorliegenden Erfindung ist es daher bevorzugt, daß die Phasen des Formkörpers die Form von Schichten aufweisen. Das vorstehend beschriebene Prinzip der Konzentrierung des/der Bleichaktivator(en) in eine Phase läßt sich im Extremfall so ausführen, daß nur eine Phase Bleichaktivator-haltig ist, während alle anderen Phasen frei von Bleichaktivator(en) sind.
  • In den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern können alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und – wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen – auch die Phosphate.
  • Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1·H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5·yH2O bevorzugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
  • Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A-44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
  • Der gegebenenfalls eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel nNa2O·(1-n)K2O·Al2O3·(2 – 2,5)SiO2·(3,5 – 5,5)H2O beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpres senden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
  • Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
  • Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-)-Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
  • Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm–3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm–3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm–3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
  • Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm–3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm–3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm–3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
  • Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm–3 und einen Schmelzpunkt von 73–76°C (Zersetzung), als Decahydrat (entsprechend 19–20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39–40% P2O5) eine Dichte von 2,536 gcm–3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm–3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
  • Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm–3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815–1,836 gcm–3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm–3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
  • Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
  • Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n = 3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.%igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert: (NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
  • Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
  • Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
  • Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
  • Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden.
  • Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
  • Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
  • Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
  • Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
  • Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
  • Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
  • Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
  • Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
  • Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A- 196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
  • Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
  • Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
  • Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z.B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
  • Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
  • Die Menge an Gerüststoff beträgt üblicherweise zwischen 10 und 70 Gew.-%, vorzugsweise zwischen 15 und 60 Gew.-% und insbesondere zwischen 20 und 50 Gew.-%. Wiederum ist die Menge an eingesetzten Buildern abhängig vom Verwendungszweck, so daß Bleichmitteltabletten höhere Mengen an Gerüststoffen aufweisen können (beispielsweise zwischen 20 und 70 Gew.-%, vorzugsweise zwischen 25 und 65 Gew.-% und insbesondere zwischen 30 und 55 Gew.-%), als beispielsweise Waschmitteltabletten (üblicherweise 10 bis 50 Gew.-%, vorzugsweise 12,5 bis 45 Gew.-% uns insbesondere zwischen 17,5 und 37,5 Gew.-%).
  • Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten weiterhin ein oder mehrere Tensid(e). In den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern können anionische, nichtionische, kationische und/oder amphotere Tenside beziehungsweise Mischungen aus diesen eingesetzt werden. Bevorzugt sind aus anwendungstechnischer Sicht Mischungen aus anionischen und nichtionischen Tensiden. Der Gesamttensidgehalt der Formkörper liegt bei 5 bis 60 Gew.-%, bezogen auf das Formkörpergewicht, wobei im Falle von Waschmitteltabletten Tensidgehalte über 15 Gew.-% bevorzugt sind.
  • Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9–13-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12–18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12–18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
  • Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevor zugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
  • Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12–C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10–C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12–C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14–C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
  • Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7–21-Alkohole, wie 2-Methyl-verzweigte C9–11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12–18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
  • Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8–18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
  • Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
  • Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
  • Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12–14-Alkohole mit 3 EO oder 4 EO, C9–11-Alkohol mit 7 EO, C13–15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12–18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12–14-Alkohol mit 3 EO und C12–18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylver zweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (II),
    Figure 00240001
    in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zukkers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylie rung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
  • Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (III),
    Figure 00250001
    in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1–4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
  • [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, die anionische(s) und/oder nichtionisches) Tenside) enthalten und Gesamt-Tensidgehalte oberhalb von 2,5 Gew.-%, vorzugsweise oberhalb von 5 Gew.-% und insbesondere oberhalb von 10 Gew.-%, jeweils bezogen auf das Formkörpergewicht, aufweisen. Hierbei können anwendungstechnische Vorteile aus bestimmten Mengenverhältnissen, in denen die einzelnen Tensidklassen eingesetzt werden, resultieren.
  • So sind beispielsweise Wasch- und Reinigungsmittelformkörper besonders bevorzugt, bei denen das Verhältnis von Aniontensid(en) zu Niotensid(en) zwischen 10:1 und 1:10, vorzugsweise zwischen 7,5:1 und 1:5 und insbesondere zwischen 5:1 und 1:2 beträgt.
  • Es kann aus anwendungstechnischer Sicht Vorteile haben, wenn bestimmte Tensidklassen in einigen Phasen der Wasch- und Reinigungsmittelformkörper oder im gesamten Formkörper, d.h. in allen Phasen, nicht enthalten sind. Eine weitere wichtige Ausführungsform der vorliegenden Erfindung sieht daher vor, daß mindestens eine Phase der Formkörper frei von nichtionischen Tensiden ist.
  • Umgekehrt kann aber auch durch den Gehalt einzelner Phasen oder des gesamten Formkörpers, d.h. aller Phasen, an bestimmten Tensiden ein positiver Effekt erzielt werden. Das Einbringen der oben beschriebenen Alkylpolyglycoside hat sich dabei als vorteilhaft erwiesen, so daß Wasch- und Reinigungsmittelformkörper bevorzugt sind, in denen mindestens eine Phase der Formkörper Alkylpolyglycoside enthält.
  • Ähnlich wie bei den nichtionischen Tensiden können auch aus dem Weglassen von anionischen Tensiden aus einzelnen oder allen Phasen Wasch- und Reinigungsmittelformkörper resultieren, die sich für bestimmte Anwendungsgebiete besser eignen. Es sind daher im Rahmen der vorliegenden Erfindung auch Wasch- und Reinigungsmittelformkörper denkbar, bei denen mindestens eine Phase der Formkörper frei von anionischen Tensiden ist.
  • Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182–184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
  • Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng" mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
  • Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desintegrationshilfsmittel, jeweils bezogen auf das Formkörpergewicht.
  • Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
  • Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformkörper, die Sprengmittel in granularer oder gegebenenfalls cogranulierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 und DE 197 10 254 sowie der internationalen Patentanmeldung PCT/EP 98/1203 beschrieben. Diesen Schriften sind auch nähere Angaben zur Herstellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entnehmen. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 μm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 μm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 μm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
  • Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind.
  • Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, die zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktier ter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
  • Neben den genannten Bestandteilen können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper auch weitere Stoffe, insbesondere aus der Gruppe der Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthalten. Diese Stoffe werden nachstehend beschrieben.
  • Als Enzyme kommen insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verfleckungen und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und -Glucosidasen, die auch Cellobiasen ge nannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
  • Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-% betragen.
  • Zusätzlich können die Wasch- und Reinigungsmittelformkörper auch zusätzlich zu dem schmutzablösevermogenden Celluloseetherderivat weitere Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten zusätzlichen öl- und fettlösenden Komponenten zählen beispielsweise die aus dem Stand der Technik bekannten eingangs zitierten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
  • Die Formkörper können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
  • Farb- und Duftstoffe werden den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern gegebenenfalls zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Leistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8–18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
  • Üblicherweise liegt der Gehalt der erfindungsgemäßen Wasch- und Reinigungsmittelformkörper an Farbstoffen unter 0,01 Gew.-%, während Duftstoffe bis zu 2 Gew.-% der gesamten Formulierung ausmachen können.
  • Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich bei spielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
  • Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
  • Die Herstellung wasch- und reinigungsaktiver Formkörper geschieht durch Anwendung von Druck auf ein zu verpressendes Gemisch, das sich im Hohlraum einer Presse befindet. Im einfachsten Fall der Formkörperherstellung, die nachfolgend vereinfacht Tablettierung genannt wird, wird die zu tablettierende Mischung direkt, d.h. ohne vorhergehende Granulation verpreßt. Die Vorteile dieser sogenannten Direkttablettierung sind ihre einfache und kostengünstige Anwendung, da keine weiteren Verfahrensschritte und demzufolge auch keine weiteren Anlagen benötigt werden. Eine Pulvermischung, die direkt tablettiert werden soll, eine ausreichende plastische Verformbarkeit besitzen und gute Fließeigenschaften aufweisen, weiterhin darf sie während der Lagerung, des Transports und der Befüllung der Matrize keinerlei Entmischungstendenzen zeigen. Diese drei Voraussetzungen sind bei vielen Substanzgemischen nur außerordentlich schwierig zu beherrschen, so daß die Direkttablettierung insbesondere bei der Herstellung von Wasch- und Reinigungsmitteltabletten nicht oft angewendet wird. Der übliche Weg zur Herstellung von Wasch- und Reinigungsmitteltabletten geht daher von pulverförmigen Komponenten ("Primärteilchen") aus, die durch geeignete Verfahren zu Sekundärpartikeln mit höherem Teilchendurchmesser agglomeriert bzw. granuliert werden. Diese Granulate oder Gemische unterschiedlicher Granulate werden dann mit einzelnen pulverförmigen Zuschlagstoffen vermischt und der Tablettierung zugeführt.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern durch formgebendes Verpressen eines teilchenförmigen Vorgemischs in an sich bekannter Weise, wobei das Vorgemisch ein schmutzablösevermögendes Cellulosederivat, das erhältlich ist durch Alkylierung und Hydroxyalkylierung von Cellulose, enthält.
  • Bezüglich bevorzugter Ausführungsformen des erfindungsgemäßen Verfahrens wird auf die vorstehenden Angaben zu den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern verwiesen. Auch hinsichtlich der Teilchengrößen des schmutzablösevermögenden Cellulosederivats gilt analog das vorstehend Gesagte.
  • Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper werden durch Verpressen eines teilchenförmigen Vorgemischs aus mindestens einem tensidhaltigen Granulat und mindestens einer nachträglich zugemischten pulverförmigen Komponente erhalten. Die Herstellung der tensidhaltigen Granulate kann dabei durch übliche technische Granulationsverfahren wie Kompaktierung, Extrusion, Mischergranulation, Pelletierung oder Wirbelschichtgranulation erfolgen. Es ist dabei für die späteren Wasch- und Reinigungsmittelformkörper von Vorteil, wenn das zu verpressende Vorgemisch ein Schüttgewicht aufweist, das dem üblicher Kompaktwaschmittel nahe kommt. Insbesondere ist es bevorzugt, daß das teilchenförmige Vorgemisch tensidhaltige(s) Granulate) enthält und/oder ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere mindestens 700 g/l aufweist, wobei Schüttgewichte in Bereichen von 500 g/l bis 750 g/l, insbesondere 550 g/l bis 700 g/l ebenfalls bevorzugt sind.
  • Das tensidhaltige Granulat genügt in bevorzugten Verfahrensvarianten ebenfalls bestimmten Teilchengrößenkriterien. So sind erfindungsgemäße Verfahren bevorzugt, bei denen das tensidhaltige Granulat Teilchengrößen zwischen 100 und 2000 μm, vorzugsweise zwischen 200 und 1800 μm, besonders bevorzugt zwischen 400 und 1600 μm und insbesondere zwischen 600 und 1400 μm, aufweist.
  • Neben den Aktivsubstanzen (anionische und/oder nichtionische und/oder kationische und/oder amphotere Tenside) enthalten die Tensidgranulate vorzugsweise noch Trägerstoffe, die besonders bevorzugt aus der Gruppe der Gerüststoffe stammen. Besonders vorteilhafte Verfahren sind daher dadurch gekennzeichnet, daß das tensidhaltige Granulat anionische und/oder nichtionische Tenside sowie Gerüststoffe enthält und Gesamt-Tensidgehalte von mindestens 10 Gew.-%, vorzugsweise mindestens 20 Gew.-% und insbesondere mindestens 25 Gew.-%, aufweist.
  • Vor der Verpressung des teilchenförmigen Vorgemischs zu Wasch- und Reinigungsmittelformkörpern kann das Vorgemisch mit feinteiligen Oberflächenbehandlungsmitteln "abgepudert" werden. Dies kann für die Beschaffenheit und physikalischen Eigenschaften sowohl des Vorgemischs (Lagerung, Verpressung) als auch der fertigen Wasch- und Reinigungsmittelformkörper von Vorteil sein. Feinteilige Abpuderungsmittel sind im Stand der Technik altbekannt, wobei zumeist Zeolithe, Silikate oder andere anorganische Salze eingesetzt werden. Bevorzugt wird das Vorgemisch jedoch mit feinteiligem Zeolith "abgepudert", wobei Zeolithe vom Faujasit-Typ bevorzugt sind. Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Neben dem Zeolith X sind also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar, wobei der reine Zeolith X bevorzugt ist.
  • Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeolithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind als Abpuderungsmittel einsetzbar, wobei es von Vorteil ist, wenn mindestens 50 Gew.-% des Abpuderungsmittels aus einem Zeolithen vom Faujasit-Typ bestehen.
  • Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, die aus einem teilchenförmigen Vorgemisch bestehen, das granulare Komponenten und nachträglich zugemischte pulverförmige Stoffe enthält, wobei die bzw. eine der nachträglich zugemischten pulverförmigen Komponenten ein Zeolith vom Faujasit-Typ mit Teilchengrößen unterhalb 100 μm, vorzugsweise unterhalb 10 μm und insbesondere unterhalb 5 μm ist und mindestens 0,2 Gew.-%, vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu verpressenden Vorgemischs ausmacht.
  • Neben den genannten Bestandteilen Tensid, Builder und Desintegrationshilfsmittel und schmutzablösevermögendes Cellulosederivat können die zu verpressenden Vorgemische zusätzlich einen oder mehrere Stoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibi toren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthält. Diese Stoffe wurden vorstehend beschrieben.
  • Die Herstellung der erfindungsgemäßen Formkörper erfolgt zunächst durch das trockene Vermischen der Bestandteile, die ganz oder teilweise vorgranuliert sein können, und anschließendes Informbringen, insbesondere Verpressen zu Tabletten, wobei auf herkömmliche Verfahren zurückgegriffen werden kann. Zur Herstellung der erfindungsgemäßen Formkörper wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
  • Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.
  • Die Tablettierung erfolgt vorzugsweise in handelsüblichen Tablettenpressen, die prinzipiell mit Einfach- oder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
  • Für größere Durchsätze wählt man üblicherweise Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
  • Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen wer den muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.
  • Bei der Tablettierung mit Rundläuferpressen hat es sich als vorteilhaft erwiesen, die Taqblettierung mit möglichst geringen Gewichtschwankungen der Tablette durchzuführen. Auf diese Weise lassen sich auch die Härteschwankungen der Tablette reduzieren. Geringe Gewichtschwankungen können auf folgende Weise erzielt werden:
    • – Verwendung von Kunststoffeinlagen mit geringen Dickentoleranzen
    • – Geringe Umdrehungszahl des Rotors
    • – Große Füllschuhe
    • – Abstimmung des Füllschuhflügeldrehzahl auf die Drehzahl des Rotors
    • – Füllschuh mit konstanter Pulverhöhe
    • – Entkopplung von Füllschuh und Pulvervorlage
  • Zur Verminderung von Stempelanbackungen bieten sich sämtliche aus der Technik bekannte Antihaftbeschichtungen an. Besonders vorteilhaft sind Kunststoffbeschichtungen, Kunststoffeinlagen oder Kunststoffstempel. Auch drehende Stempel haben sich als vorteilhaft erwiesen, wobei nach Möglichkeit Ober- und Unterstempel drehbar ausgeführt sein sollten. Bei drehenden Stempeln kann auf eine Kunststoffeinlage in der Regel verzichtet werden. Hier sollten die Stempeloberflächen elektropoliert sein.
  • Es zeigte sich weiterhin, daß lange Preßzeiten vorteilhaft sind. Diese können mit Druckschienen, mehreren Druckrollen oder geringen Rotordrehzahlen eingestellt werden. Da die Härteschwankungen der Tablette durch die Schwankungen der Preßkräfte verursacht werden, sollten Systeme angewendet werden, die die Preßkraft begrenzen. Hier können elastische Stempel, pneumatische Kompensatoren oder federnde Elemente im Kraftweg eingesetzt werden. Auch kann die Druckrolle federnd ausgeführt werden.
  • Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Horn & Noack Pharmatechnik GmbH, Worms, IMA Verpackungssysteme GmbH Viersen, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen AG, Berlin, sowie Romaco GmbH, Worms. Weitere Anbieter sind beispielsweise Dr. Herbert Pete, Wien (AU), Mapag Maschinenbau AG, Bern (CH), BWI Manesty, Liverpool (GB), I. Holand Ltd., Nottingham (GB), Courtoy N.V., Halle (BE/LU) sowie Mediopharm Kamnik (SI). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D. Tablettierwerkzeuge sind beispielsweise von den Firmen Adams Tablettierwerkzeuge, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber % Söhne GmbH, Hamburg, Hofer GmbH, Weil, Horn & Noack, Pharmatechnik GmbH, Worms, Ritter Pharamatechnik GmbH, Hamburg, Romaco, GmbH, Worms und Notter Werkzeugbau, Tamm erhältlich. Weitere Anbieter sind z.B. die Senss AG, Reinach (CH) und die Medicopharm, Kamnik (SI).
  • Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
  • Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungsmittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe-Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Exzenterpressen oder Rundläuferpressen sind geeignete Vorrichtungen insbesondere zur Herstellung derartiger Preßlinge.
  • Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmittelformkörper über eine Dosierhilfe problemlos möglich und im Rahmen der vorliegenden Erfindung bevorzugt.
  • Ein weiterer bevorzugter Formkörper, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Formkörperwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden.
  • Möglich ist es aber auch, daß die verschiedenen Komponenten nicht zu einer einheitlichen Tablette verpreßt werden, sondern daß Formkörper erhalten werden, die mehrere Schichten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, daß diese verschiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formkörper resultieren. Falls beispielsweise Komponenten in den Formkörpern enthalten sind, die sich wechselseitig nega tiv beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbeiten, so daß die erste Komponente bereits abreagiert hat, wenn die zweite in Lösung geht. Der Schichtaufbau der Formkörper kann dabei sowohl stapelartig erfolgen, wobei ein Lösungsvorgang der inneren Schichten) an den Kanten des Formkörpers bereits dann erfolgt, wenn die äußeren Schichten noch nicht vollständig gelöst sind, es kann aber auch eine vollständige Umhüllung der inneren Schichten) durch die jeweils weiter außen liegende(n) Schichten) erreicht werden, was zu einer Verhinderung der frühzeitigen Lösung von Bestandteilen der inneren Schichten) führt.
  • In einer weiter bevorzugten Ausführungsform der Erfindung besteht ein Formkörper aus mindestens drei Schichten, also zwei äußeren und mindestens einer inneren Schicht, wobei mindestens in einer der inneren Schichten ein Peroxy-Bleichmittel enthalten ist, während beim stapelförmigen Formkörper die beiden Deckschichten und beim hüllenförmigen Formkörper die äußersten Schichten jedoch frei von Peroxy-Bleichmittel sind. Weiterhin ist es auch möglich, Peroxy-Bleichmittel und gegebenenfalls vorhandene Bleichaktivatoren und/oder Enzyme räumlich in einem Formkörper voneinander zu trennen. Derartige mehrschichtige Formkörper weisen den Vorteil auf, daß sie nicht nur über eine Einspülkammer oder über eine Dosiervorrichtung, welche in die Waschflotte gegeben wird, eingesetzt werden können; vielmehr ist es in solchen Fällen auch möglich, den Formkörper im direkten Kontakt zu den Textilien in die Maschine zu geben, ohne daß Verfleckungen durch Bleichmittel und dergleichen zu befürchten wären.
  • Ähnliche Effekte lassen sich auch durch Beschichtung ("coating") einzelner Bestandteile der zu verpressenden Wasch- und Reinigungsmittelzusammensetzung oder des gesamten Formkörpers erreichen. Hierzu können die zu beschichtenden Körper beispielsweise mit wäßrigen Lösungen oder Emulsionen bedüst werden, oder aber über das Verfahren der Schmelzbeschichtung einen Überzug erhalten.
  • Nach dem Verpressen weisen die Wasch- und Reinigungsmittelformkörper eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach
    Figure 00410001
  • Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formkörper ausgeübten Druck führt, der den Bruch des Formkörpers verursacht, D ist der Formkörperdurchmesser in Meter und t ist die Höhe der Formkörper. Durch die Verwendung des schmutzablösevermögendem Cellulosederivat, das erhältlich ist durch Alkylierung und Hydroxyalkylierung von Cellulose, Wasch- oder Reinigungsmittelformkörpern wird auch die verbessert der Härte und Zerfallszeit von Wasch- oder Reinigungsmittelformkörpern verbessert. Die entsprechende Verwendung des Cellulosederivats ist ein weiterer Gegenstand der Erfindung.

Claims (14)

  1. Wasch- oder Reinigungsmittelformkörper aus verdichtetem teilchenförmigen Wasch- und Reinigungsmittel, umfassend gegebenenfalls weitere Wasch- und Reinigungsmittelbestandteile, dadurch gekennzeichnet, dass er schmutzablösevermögendes Cellulosederivat, das erhältlich ist durch Alkylierung und Hydroxyalkylierung von Cellulose, enthält.
  2. Formkörper nach Anspruch 1, dadurch gekennzeichnet, dass das Cellulosederivat mit C1- bis C10-Gruppen, insbesondere C1- bis C3-Gruppen alkyliert ist und zusätzlich C2- bis C10-Hydroxyalkylgruppen, insbesondere C2- bis C3-Hydroxyalkylgruppen, trägt.
  3. Formkörper nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass im Cellulosederivat gemittelt 0,5 bis 2,5, insbesondere 1 bis 2 Alkylgruppen und 0,02 bis 0,5, insbesondere 0,05 bis 0,3 Hydroxyalkylgruppen pro Anhydroglykosemonomereinheit enthalten sind.
  4. Formkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die mittlere Molmasse des Cellulosederivats im Bereich von 10 000 D bis 150 000 D, insbesondere von 40 000 D bis 120 000 D und besonders bevorzugt im Bereich von 80 000 D bis 110 000 D liegt.
  5. Formkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das schmutzablösevermögende Cellulosederivat in Mengen von 0,1 Gew.-% bis 5 Gew.-%, insbesondere 0,5 Gew.-% bis 2,5 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten ist.
  6. Formkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mindestens 90 Gew.-% der Teilchen des schmutzablösevermögenden Cellulosederivats eine Teilchengröße unterhalb 0,5 mm und dabei höchstens 20 Gew.-% der Teilchen eine Teilchengröße unterhalb 0,125 mm aufweisen.
  7. Formkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass mindestens 90 Gew.-% der Teilchen des schmutzablösevermögenden Cellulosederivats kleiner als 0,18 mm, insbesondere mindestens 25 Gew.-% der Teilchen kleiner als 0,1 mm sind.
  8. Formkörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie aus mehreren Phasen, vorzugsweise Schichten, bestehen.
  9. Formkörper nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
  10. Formkörper nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß sie anionische(s) und/oder nichtionisches) Tenside) enthalten und Gesamt-Tensidgehalte oberhalb von 2,5 Gew.-%, vorzugsweise oberhalb von 5 Gew.-% und insbesondere oberhalb von 10 Gew.-%, jeweils bezogen auf das Formkörpergewicht, aufweisen.
  11. Verfahren zur Herstellung von Wasch- oder Reinigungsmittelformkörpern durch formgebendes Verpressen eines teilchenförmigen Vorgemischs in an sich bekannter Weise, dadurch gekennzeichnet, dass das Vorgemisch ein schmutzablösevermögendes Cellulosederivat, das erhältlich ist durch Alkylierung und Hydroxyalkylierung von Cellulose, enthält.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, das das Vorgemisch ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere mindestens 700 g/l aufweist.
  13. Verfahren nach einem der Ansprüche 11 bis 12, dadurch gekennzeichnet, dass das teilchenförmige Vorgemisch zusätzlich einen oder mehrere Stoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosionsinhibitoren enthält.
  14. Verwendung von schmutzablösevermögendem Cellulosederivat, das erhältlich ist durch Alkylierung und Hydroxyalkylierung von Cellulose, zur Verbesserung der Härte und Zerfallszeit von Wasch- und Reinigungsmittelformkörpern.
DE200410020009 2004-04-21 2004-04-21 Wasch- und Reinigungsmittelformkörper mit Celluloseetherderivat Withdrawn DE102004020009A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200410020009 DE102004020009A1 (de) 2004-04-21 2004-04-21 Wasch- und Reinigungsmittelformkörper mit Celluloseetherderivat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410020009 DE102004020009A1 (de) 2004-04-21 2004-04-21 Wasch- und Reinigungsmittelformkörper mit Celluloseetherderivat

Publications (1)

Publication Number Publication Date
DE102004020009A1 true DE102004020009A1 (de) 2005-11-10

Family

ID=35140131

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200410020009 Withdrawn DE102004020009A1 (de) 2004-04-21 2004-04-21 Wasch- und Reinigungsmittelformkörper mit Celluloseetherderivat

Country Status (1)

Country Link
DE (1) DE102004020009A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005062648A1 (de) * 2005-12-23 2007-06-28 Henkel Kgaa Duftstofffixierung aus Wasch- und Reinigungsmitteln an harten und weichen Oberflächen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2910955A1 (de) * 1978-03-21 1979-10-04 Jeyes Group Ltd Waschraum- bzw. toilettenreinigungsmittel, ein verfahren zu dessen herstellung sowie dessen bestimmungsgemaesse verwendung
EP0508934A1 (de) * 1991-04-12 1992-10-14 Cleantabs A/S Waschmittelzusammensetzung
DE4404279A1 (de) * 1994-02-10 1995-08-17 Henkel Kgaa Tablette mit Buildersubstanzen
DE19709411A1 (de) * 1997-03-07 1998-09-10 Henkel Kgaa Waschmittelformkörper
US20020086809A1 (en) * 1999-09-24 2002-07-04 Hailan Guo Multifunctional, granulated pellet aid and process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2910955A1 (de) * 1978-03-21 1979-10-04 Jeyes Group Ltd Waschraum- bzw. toilettenreinigungsmittel, ein verfahren zu dessen herstellung sowie dessen bestimmungsgemaesse verwendung
EP0508934A1 (de) * 1991-04-12 1992-10-14 Cleantabs A/S Waschmittelzusammensetzung
DE4404279A1 (de) * 1994-02-10 1995-08-17 Henkel Kgaa Tablette mit Buildersubstanzen
DE19709411A1 (de) * 1997-03-07 1998-09-10 Henkel Kgaa Waschmittelformkörper
US20020086809A1 (en) * 1999-09-24 2002-07-04 Hailan Guo Multifunctional, granulated pellet aid and process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005062648A1 (de) * 2005-12-23 2007-06-28 Henkel Kgaa Duftstofffixierung aus Wasch- und Reinigungsmitteln an harten und weichen Oberflächen

Similar Documents

Publication Publication Date Title
DE19930771A1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
DE19920118B4 (de) Wasch- und Reinigungsmittelformkörper mit Beschichtung und Verfahren zu seiner Herstellung
EP1165742B1 (de) Ein- oder mehrphasige wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
EP1138756B1 (de) Wasch-und Reinigungsmittelformkörper mit speziellem Tensidgranulat
EP1123378B1 (de) Wasch- und reinigungsmittelformkörper mit wasserfrei granuliertem brausesystem
DE19955240A1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
EP1165741B1 (de) Wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
DE10045267B4 (de) Wasch- und Reinigungsmittelformkörper mit Polyurethan-Beschichtung
WO2000014196A1 (de) Waschmitteltabletten mit bindemitteln
EP1159392B1 (de) Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination
WO2000017307A1 (de) Wasch- und reinigungsmittelformkörper mit natriumpercarbonat
DE19919444B4 (de) Wasch- und Reinigungsmittelformkörper mit Bindemittelcompound, Verfahren zu seiner Herstellung sowie Verwendung von Bindemittelcompounds
DE102004020009A1 (de) Wasch- und Reinigungsmittelformkörper mit Celluloseetherderivat
EP1155111B1 (de) Verfahren zur herstellung schnell zerfallender wasch- und reinigungsmittelformkörper
DE10134309A1 (de) Coextrusion von Wasch- und Reinigungsmitteln
DE10026334A1 (de) Wasch- und Reinigungsmittelformkörper mit Pfropfcopolymer-Beschichtung
WO2000022087A1 (de) Wasch- und reinigungsmittelformkörper mit organischen oligocarbonsäuren
DE19908026A1 (de) Abriebstabile Wasch- und Reinigungsmittelformkörper mit festen Additiven
WO2000017305A1 (de) Wasch- und reinigungsmittelformkörper mit grobteiligen aufbereitungskomponenten
WO2001014512A1 (de) Wasch- oder reinigungsmittelformkörper
DE19959589A1 (de) Mehrphasige Reinigungsmitteltabletten
EP1173536A1 (de) Bleichmittelhaltige waschmitteltabletten
DE19915321A1 (de) Wasch- und Reinigungsmittelformkörper mit Desintegrationshilfsmittel
DE19910818A1 (de) Wasch- und Reinigungsmittelformkörper mit Tensid-Builderkombination
DE19919445A1 (de) Wasch- und Reinigungsmittelformkörper mit festen Bindemitteln

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal