GB2334528A - Hydrogen peroxide releasing detergent composition - Google Patents

Hydrogen peroxide releasing detergent composition Download PDF

Info

Publication number
GB2334528A
GB2334528A GB9803607A GB9803607A GB2334528A GB 2334528 A GB2334528 A GB 2334528A GB 9803607 A GB9803607 A GB 9803607A GB 9803607 A GB9803607 A GB 9803607A GB 2334528 A GB2334528 A GB 2334528A
Authority
GB
United Kingdom
Prior art keywords
acid
alkyl
detergent composition
preferred
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB9803607A
Other versions
GB9803607D0 (en
Inventor
Gerard Marcel Baillely
Timothy Richard Hartshorn
Sylvestre Canceil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to GB9803607A priority Critical patent/GB2334528A/en
Publication of GB9803607D0 publication Critical patent/GB9803607D0/en
Publication of GB2334528A publication Critical patent/GB2334528A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets

Abstract

The present invention relates to a detergent composition comprising a hydrogen peroxide-releasing compound which has a total theoretical available of greater than 16% and at least one additional detergent component. Preferred compounds are potassium percarbonates of the formula K 2 CO 3- xH 2 O 2 .yH 2 O wherein x=0.5 to 6 and particularly preferred when x=3 and y=0. The hydrogen peroxide releasing compound is preferably coated for improved stability.

Description

Detergent Composition Technical Field The present invention relates to a detergent composition comprising hydrogen peroxide-releasing compound.
Background to the Invention There is a continuing trend among detergent manufacturers to manufacture detergents that provide improved soil and stain removal from fabric versus previously available detergents. One way of achieving this is to formulate the detergent with an increased quantity of soil/stain removing ingredients. However, the detergent manufacturer then faces the problem of lack of space in the detergent composition.
The Applicant has found that by formulating a detergent composition with ingredients that are more highly active (i.e. have higher weight efficiency) than commonly used ingredients, the performance of the detergent composition can be improved. The consumer thus benefits from more cleaning action for the same amount of ingredient.
Generally, attempts in the past to formulate detergents with an increased concentration of ingredients have met with problems caused by the slow dissolution of ingredients and the formation of gels. Such problems can result in poor dispensing of product from the dispenser draw or in situ dosing devices or alternatively can result in incomplete dissolution resulting in the formation of residues on fabric and in machine.
It has been noted by the Applicant in the past that poor dispensing occurs, in particular, in detergents formulated with a high level of surfactant. It is believed that poor dispensing is caused by gelling of particulate ingredients of the detergent upon contact with water. The gel impedes access of water to other detergent ingredients, reducing the degree of solubilisation of the ingredients and thus the effectiveness of the detergent composition The Applicant has also found that by formulating a detergent composition according to the present invention, dispensing and dissolution problems as described above can be avoided.
Summary of the Invention According to the present invention there is provided a detergent composition comprising a hydrogen peroxide-releasing compound which has a total theoretical available oxygen, calculated as described herein, of greater than 16% and at least one additional detergent component.
In another aspect of the present invention there is provided a detergent composition comprising a hydrogen peroxide-releasing compound which is a potassium salt and at least one additional detergent component.
Detailed description of the invention Hydrogen Peroxide-Releasing compound In one aspect of the present invention the detergent composition requires the presence of a hydrogen peroxide-releasing compound which has a total theoretical available oxygen, calculated as described below, of greater than 16%. In another aspect of the present invention the hydrogen peroxide-releasing compound is a potassium salt.
Suitable hydrogen peroxide-releasing potassium salts include potassium perhydrate salts. Preferred potassium perhydrates are selected from the group consisting of potassium percarbonate, potassium perborate, potassium persulphate, potassium perphosphate and mixtures thereof. Most preferably the potassium perhydrate is potassium percarbonate, potassium perborate or mixtures thereof.
Potassium percarbonate is a particularly preferred perhydrate salt. It is an addition compound having general formula: K2CO3 . xH2O2. yH2O wherein x= 0.5 to 6 and y= 0 to 5.
A preferred potassium percarbonate has the formula wherein in the general formula described above, x is 3 and y is 0. An alternative preferred potassium percarbonate has the formula wherein in the general formula described above, x is 0.5 and y is 1.
Other preferred potassium perhydrates include potassium perborate. A potassium perborate suitable for use herein can be in the form of the monohydrate of nominal formula KBO2 H2 2 or the tetrahydrate of nominal formula KB02H202.3H20.
Other preferred potassium perhydrates include potassium persulphate and potassium perphosphate.
In a preferred aspect of the present invention, the hydrogen peroxide-releasing compound is coated with a coating material. The coating material may include any suitable coating material known in the art. Preferred coating materials include inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof. Other preferred coating materials include organic materials such as organic polymers, waxes, oils, or fatty soaps. Preferred organic polymers include polyalkylene glycols, for example polyethylene glycol, polypropylene glycol having molecular weight in the range of from 300 to 10,000, more preferably from 400 to 6,000, most preferably from 400 to 4,000 or mixtures thereof. Other preferred organic polymers include the homopolymers and/or copolymers of maleic acid, acrylic acid, methacrylic acid, having molecular weight from 10,000 to 100,000, more preferably from 15,000 to 80,000, most preferably from 20,000 to 75,000.
It is also envisaged that mixtures of hydrogen peroxide-releasing compounds may be incorporated into the detergent composition of the present invention.
Total Theoretical Available Oxygen (AvO) level The level of total theoretical available oxygen of the detergent composition measured in units of percentage total theoretical available oxygen by weight of the hydrogen peroxide-releasing compound. In one aspect of the present invention the total theoretical available oxygen of the hydrogen peroxide-releasing compound is greater than 16%. More preferably the total theoretical available oxygen of the hydrogen peroxide-releasing compound is in the range from greater than 16% to 30%, more preferably from 16.5% to 25 %, most preferably from 16.5% to 20%, calculated according to the method described hereunder.
Calculation for obtaining the Total theoretical Available Oxygen (AvO) in a hydrogen peroxide-releasing compound: number of moles of hydrogen peroxide x molecular weight of oxygen x 100 molecular weight of the hydrogen peroxide-releasing compound These salts are generally incorporated at a level of from 1% to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
Additional detergent components The detergent compositions of the invention may also contain additional detergent components. The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition, and the precise nature of the washing operation for which it is to be used.
The compositions of the invention preferably contain one or more additional detergent components selected from surfactants, additional hydrogen peroxide-releasing compound, bleach activator, bleach catalyst, builders, alkalinity system, organic polymeric compounds, enzymes, suds suppressors, lime soap dispersants, soil suspension and anti-redeposition agents and corrosion inhibitors.
Surfactant The detergent compositions of the invention preferably contain one or more surfactants selected from anionic, nonionic, non-ester cationic, ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
The surfactant is preferably present as a component of a surfactant system at a level of from 0.1 So to 50%, more preferably from 1 sus to 40% by weight, most preferably from 5% to 30% by weight of the surfactant system.
A typical listing of anionic, nonionic, ampholytic, and zwitterionic classes, and species of these surfactants, is given in U.S.P. 3,929,678 issued to Laughlin and Heuring on December 30, 1975. Further examples are given in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981.
Where present, ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
Anionic surfactant Essentially any anionic surfactants useful for detersive purposes are suitable. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate surfactants are preferred.
Other anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C12-C18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6-C14 diesters), N-acyl sarcosinates. Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
Anionic sulfate surfactant Anionic sulfate surfactants suitable for use herein include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the Cg-C17 acyl-N-(Cl-C4 alkyl) and -N-(C1-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
Alkyl sulfate surfactants are preferably selected from the linear and branched primary C10-C18 alkyl sulfates, more preferably the C1 1-C15 branched chain alkyl sulfates and the C12-C14 linear chain alkyl sulfates.
Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C10-C18 alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a Cll-C18, most preferably Cll-C15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
A particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT Patent Application No. WO 93/18124.
Anionic sulfonate surfactant Anionic sulfonate surfactants suitable for use herein include the salts of Cg-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
Anionic carboxylate surfactant Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH20)X CH2C00-M+ wherein R is a C6 to C18 alkyl group, x ranges from 0 to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation. Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR1-CHR2-O)-R3 wherein R is a C6 to C18 alkyl group, x is from 1 to 25, R1 and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-1-undecanoic acid, 2-ethyl-1-decanoic acid, 2-propyl1-nonanoic acid, 2-butyl-1-octanoic acid and 2-pentyl-1-heptanoic acid.
Certain soaps may also be included as suds suppressors.
Alkali metal sarcosinate surfactant Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (R1) CH2 COOM, wherein R is a Cg-C17 linear or branched alkyl or alkenyl group, R1 is a C1-C4 alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleoyl methyl sarcosinates in the form of their sodium salts.
Alkoxylated nonionic surfactant Essentially any alkoxylated nonionic surfactants are suitable herein. The ethoxylated and propoxylated nonionic surfactants are preferred.
Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated and/or propoxylated fatty alcohols, nonionic ethoxylate and/or propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide and/or ethylene diamine adducts.
Especially preferred alkoxylated nonionic surfactants include the condensation products of aliphatic alcohols with from 1 to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
Nonionic polyhydroxy fatty acid amide surfactant Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONR1Z wherein : R1 is H, C1-C4 hydrocarbyl, 2-hydroxy ethyl, 2hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably C1 or C2 alkyl, most preferably C1 alkyl (i.e., methyl); and R2 is a C5- C31 hydrocarbyl, preferably straight-chain Cs-Clg alkyl or alkenyl, more preferably straight-chain Cg-C17 alkyl or alkenyl, most preferably straight-chain Cl1-Cl7 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
Nonionic fatty acid amide surfactant Suitable fatty acid amide surfactants include those having the formula: R6CON(R7)2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R7 is selected from the group consisting of hydrogen, C1-C4 alkyl, C1-C4 hydroxyalkyl, and (C2H4O)xH, where x is in the range of from 1 to 3.
Nonionic alkylpolysaccharide surfactant Suitable alkylpolysaceharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
Preferred alkylpolyglycosides have the formula R2O(CnH2nO)t(glycosyl) wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and xis from 1.3 to 8. The glycosyl is preferably derived from glucose.
End-capped nonionic surfactants End-capped nonionic surfactants include essentially any nonionic surfactant comprising a branched chain alkyl or substituted alkyl group. Suitable end-capped nonionics include end-capped Butyl-polypropylene glycol ethyl ether described in GB 1,221,217and end-capped polyethylene glycol ether describes in US 5,205,959.
Preferred end-capped nonionic surfactants include the alkoxylated and alkoxylated alcohol nonionic end-capped surfactants.
Amphoteric surfactant Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
Suitable amine oxides include those compounds having the formula R3(0R4)XN0(R5)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R5 is an alkyl or hydroxyalkyl group containing from 1 to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are C10-C18 alkyl dimethylamine oxide, and C10-18 acylamido alkyl dimethylamine oxide.
A suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Conc. manufactured by Miranol, Inc., Dayton, NJ.
Zwitterionic surfactant Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
Suitable betaines are those compounds having the formula R(R')2N+R2COOwherein R is a C6-C18 hydrocarbyl group, each R1 is typically C1-C3 alkyl, and R2 is a C1-Cs hydrocarbyl group. Preferred betaines are C12-18 dimethyl-ammonio hexanoate and the C10-18 acylamidopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.
Cationic ester surfactant Cationic ester surfactants used in this invention are preferably water dispersible compound having surfactant properties comprising at least one ester (ie -COO-) linkage and at least one cationically charged group.
Suitable cationic surfactants include the quaternary ammonium surfactants selected from mono C6-C16, preferably C6-Clo N-alkyl or alkenyl ammonium surfactants wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups. Other suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents No. S 4228042, 4239660 and 4260529.
Partially soluble or insoluble builder compound The detergent compositions of the invention may optionally contain a partially watersoluble or insoluble builder compound, typically present at a level of from 1 % to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
Examples of largely water insoluble builders include the sodium aluminosilicates.
Suitable aluminosilicate zeolites have the unit cell formula Naz[(AlO2)z(SiO2)y]. xH2O wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicate material are in hydrated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
The aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS and mixtures thereof. Zeolite A has the formula Na 12 [AlO2) 12 (Si02)12]. xH2O wherein x is from 20 to 30, especially 27. Zeolite X has the formula Na86 [(AlO2)86(SiQ)1o61. 276 H2O. Zeolite MAP, as disclosed in EP-B-384,070 is a preferred zeolite builder herein.
Other preferred partially soluble builders include crystalline layered sodium silicates of general formula NaMSix02 + 1 YH20 wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20. Crystalline layered sodium silicates of this type preferably have a two dimensional 'sheet' structure, such as the so called layered structure, as described in EP 0 164514 and EP 0 293640.
Methods for preparation of crystalline layered silicates of this type are disclosed in DE-A-3417649 and DE-A-3742043. For the purpose of the present invention, x in the general formula above has a value of 2,3 or 4 and is preferably 2.
The most preferred crystalline layered sodium silicate compound has the formula 6 Na2Si2O5 , known as NaSKS-6 (trade name), available from Hoechst AG.
The crystalline layered sodium silicate material is preferably present in granular detergent compositions as a particulate in intimate admixture with a solid, watersoluble ionisable material as described in PCT Patent Application No. WO92/18594.
The solid, water-soluble ionisable material is selected from organic acids, organic and inorganic acid salts and mixtures thereof, with citric acid being preferred.
Water-soluble builder compound The detergent compositions of the present invention may contain a water-soluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% by weight of the composition.
Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, phosphates, and mixtures of any of the foregoing.
The carboxylate or polycarboxylate builder can be momomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates.
Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No.
1,387,447.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000. Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions are useful water-soluble builders herein.
Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
Additional hydrogen peroxide-releasing compound The detergent compositions of the present invention may comprise an additional hydrogen peroxide-releasing compound. Where present, the additional hydrogen peroxide-releasing compound may be incorporated at a level of from 1% to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
Preferred additional hydrogen peroxide-releasing compounds include the sodium salt of an inorganic perhydrate salt, such as perborate, percarbonate, perphosphate, persulfate, persilicate and mixtures thereof. The inorganic perhydrate salt may be included as the crystalline solid without additional protection. For certain perhydrate salts however, the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product. Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal formula NaBO2H202 or the tetrahydrate NaBQH2Q. 3H2O.
Sodium percarbonate are preferred perhydrates herein. Sodium percarbonate is an addition compound having a formula corresponding to 2Na2CO3.3H202, and is available commercially as a crystalline solid.
Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
Peroxvacid bleach precursor Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid. Generally peroxyacid bleach precursors may be represented as
where L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably from 1.5% to 10% by weight of the detergent compositions.
Suitable peroxyacid bleach precursor compounds typically contain one or more N- or Oacyl groups, which precursors can be selected from a wide range of classes.
Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789. Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386. leaving groups The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle).
However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
Preferred L groups are selected from the group consisting of:
and mixtures thereof, wherein R1 is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms, R3 is an alkyl chain containing from 1 to 8 carbon atoms, R4 is H or R3, and Y is H or a solubilizing group. Any of R1, R3 and R4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammmonium groups The preferred solubilizing groups are -SO3 M+, -CO2 M+, -SO4 M+, -N+ (R3)4X and O < --N(R3)3 and most preferably -SO3 M+ contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
Other particularly components of the present invention are alkyl percarboxylic acid precursors including sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose. Other highly preferred alkyl percarboxylic acid precursors include decanoyloxy - benzenesulphonate sodium salt (DOBS), benzoyloxy - benzenesulphonate sodium salt (BOBS), lauroyloxybenzene sulphonate (LOBS) and decyloxybenzene carboxylic acid (DOBA) Amide substituted alkyl peroxyacid precursors Preferred alkyl percarboxylic precursor compounds of the imide type include the N ,N,NlNl tetra acetylated alkylene diamines wherein the alkylene group contains at least 7 carbon atoms.
Amide substituted alkyl peroxyacid precursor compounds suitable herein, include those of the following general formulae:
wherein R1 is an aryl or alkaryl group with from about 1 to about 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from about 1 to 14 carbon atoms, and R5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. R1 preferably contains from about 6 to 12 carbon atoms. R2 preferably contains from about 4 to 8 carbon atoms. R1 may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R2. R2 can include alkyl, aryl, wherein said R2 may also contain halogen, nitrogen, sulphur and other typical substituent groups or organic compounds. R5 is preferably H or methyl. R1 and R5 should not contain more than 18 carbon atoms total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
Preferred examples of bleach precursors of this type include arnide substituted peroxyacid precursor compounds selected from (6-octanamidocaproyl)oxybenzenesulfonate, (6-decanamido-caproyl) oxybenzene- sulfonate, and the highly preferred (6-nonanamidocaproyl)oxy benzene sulfonate, and mixtures thereof as described in EP-A-0170386.
Perbenzoic acid precursor Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the Nbenzoyl substituted ureas. Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole. Other useful N-acyl groupcontaining perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine, benwyl pyroglutamie acid and N-benzoyl caprolactam and related lactam derivatives.
Cationic peroxyacid precursors Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
Typically, cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammmonium group, preferably an ethyl or methyl ammonium group. Cationic peroxyacid precursors are typically present in the solid detergent compositions as a salt with a suitable anion, such as a halide ion.
The peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore. Alternatively, the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter Cationic peroxyacid precursors are described in U.S. Patents 4,904,406; 4,751,015; 4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093,022; 5,106,528; U.K.
1,382,594; EP 475,512, 458,396 and 284,292; and in JP 87-318,332.
Examples of preferred cationic peroxyacid precursors are described in UK Patent Application No. 9407944.9 and US Patent Application Nos. 08/298903, 08/298650, 08/298904 and 08/298906.
Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, N-acylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides. Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benwyl caprolactams and the trialkyl ammonium methylene alkyl caprolactams.
Benzoxazin organic peroxyacid precursors Also suitable are precursor compounds of the benzoxazin-type, as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula:
wherein R1 is H, alkyl, alkaryl, aryl, or arylalkyl.
Other highly preferred components of the present invention include the phenol sulphonate ester of the imido acid from alkyl succinic anhydride and 6-aminocaproic acid. Suitable precursors are described in DE 3 828 172, US 5 438 147, US 5 061 807, EP 325 288 and EP 325 289. Particularly preferred examples of these compounds are prepared from the octyl, decyl or dodecyl succinic anhydrides.
Preformed organic peroxyacid The organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1 % to 15% by weight, more preferably from 1% to 10% by weight of the composition.
Preformed Organic Peroxy Acid When the preformed peroxy acid is an alternative to the precursors mentioned above, and preferably when the preformed peroxy acid is present in addition to the precursors mentioned above, the peroxy acid has the general formula: R1 -CO3M wherein R1 has at least 6 carbon atoms, and M is a counterion.
A preferred class of peroxy acid compounds are the amide substituted compounds of the following general formulae:
wherein R1 is an aryl or alkaryl group with from about 1 to about 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from about 1 to 14 carbon atoms, and R5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms. R1 preferably contains from about 6 to 12 carbon atoms. R2 preferably contains from about 4 to 8 carbon atoms. R1 may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R2. R2 can include alkyl, aryl, wherein said R2 may also contain halogen, nitrogen, sulphur and other typical substituent groups or organic compounds. R5 is preferably H or methyl. R1 and R5 should not contain more than 18 carbon atoms total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386. Suitable examples of this class of agents include (6octylamino)-6-oxo-caproic acid, (6-nonylamino)-6-oxo-caproic acid, (6-decylamino)-6oxo-caproic acid, magnesium monoperoxyphthalate hexahydrate, the salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in U.S. 4,483,781, U.S. 4,634,551, EP 0,133,354, U.S. 4,412,934 and EP 0,170,386.
A preferred preformed peroxyacid bleach compound for the purpose of the invention is monononylamido peroxycarboxylic acid.
Other suitable organic peroxyacids include diperoxyalkanedioc acids having more than 7 carbon atoms, such as diperoxydodecanedioc acid (DPDA), diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid. Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid (PAP), nonanoylamido peroxo-adipic acid (NAPAA) and hexane sulphenoyl peroxypropionic acid and are also suitable herein.
Other suitable organic peroxyacids include diamino peroxyacids, which are disclosed in WO 95/ 03275, with the following general formula:
wherein: R is selected from the group consisting of C1-C12 alkylene, Cs-C12 cycloalkylene, C6 C12 arylene and radical combinations thereof; R1 and R2 are independently selected from the group consisting of H, C1-C16 alkyl and C6-C12 aryl radicals and a radical that can form a C3-C12 ring together with R3 and both nitrogens; R3 is selected from the group consisting of C1-C12 alkylene, Cg-C12 cycloalkylene and C6-C12 arylene radicals; n and n' each are an integer chosen such that the sum thereof is 1; m and m' each are an integer chosen such that the sum thereof is 1; and M is selected from the group consisting of H, alkali metal, alkaline earth metal, ammonium, alkanolammonium cations and radicals and combinations thereof.
Other suitable organic peroxyacids are include the amido peroxyacids which are disclosed in WO 95/ 16673, with the following general structure: X-Ar-CO-NY-R(Z)-CO-OOH in which X represents hydrogen or a compatible substituent, Ar is an aryl group, R represents (CH2)n in which n = 2 or 3, and Y and Z each represent independently a substituent selected from hydrogen or an alkyl or aryl or alkaryl group or an aryl group substituted by a compatible substituent provided that at least one of Y and Z is not hydrogen if n = 3. The substituent X on the benzene nucleus is preferably a hydrogen or a meta or para substituent, selected from the group comprising halogen, typically chlorine atom, or some other non-released non-interfering species such as an alkyl group, conveniently up to C6 for example a methyl, ethyl or propyl group. Alternatively, X can represent a second amido-percarboxylic acid substituent of formula: CO-NY-R(Z)-CO OOH in which R, Y, Z and n are as defined above.
Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid and diperoxyhexadecanedioc acid. Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
Metal-containing bleach catalyst The compositions described herein may optionally include a metal containing bleach catalyst. A suitable type of bleach catalyst is a catalyst comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra (methylenephosphonic acid) and water-soluble salts thereof.
Such catalysts are disclosed in U.S. Pat. 4,430,243.
Other types of bleach catalysts include the manganese-based complexes disclosed in U.S. Pat. 5,246,621 and U.S. Pat. 5,244,594. Preferred examples of these catalysts include MnIV2(u-O)3(1,4 ,7-trimethyl- 1,4, 7-triazacyclononane)2-(PF6), Mnm2(u O)1(u-OAc)2(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(ClO4)2, Mn4IV(u 0)6(1 ,4,7-triazacyclononane)4-(C104)2, MnIIIMnIV4(u-O) 1 (u-OAc)2 (1,4,7- trimethyl-l ,4,7-triazacyclononane)2-(C104)3, and mixtures thereof. Others are described in European patent application publication no. 549,272. Other ligands suitable for use herein include 1,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl1,4,7-triazacyclononane, 2-methyl-1 ,4,7-triazacyclononane, 1,2,4,7-tetramethyl1,4,7-triazacyclononane, and mixtures thereof.
For examples of suitable bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat.
5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(1,4,7-trimethyl-1,4,7-triazacyclononane)(OCH3)3-(PF6). Still another type of bleach catalyst, as disclosed in U.S. Pat. 5,114,606, is a water-soluble complex of manganese (Ill), andlor (IV) with a ligand which is a non-carboxylate polyhydroxy compound having at least three consecutive C-OH groups. Other examples include binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands, including N4MnIII(u-0)2MnIVN4)+and [Bipy2MnIII(u-0)2MnIVbipy2]- (C104)3.
Further suitable bleach catalysts are described, for example, in European patent application No. 408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (manganese/ligand catalyst), U.S. 4,119,557 (ferric complex catalyst), German Pat. specification 2,054,019 (cobalt chelant catalyst) Canadian 866,191 (transition metal-containing salts), U.S. 4,430,243 (chelants with manganese cations and non-catalytic metal cations), and U.S. 4,728,455 (manganese gluconate catalysts).
Alkalinity system An optional component of the detergent compositions is from 1.5 % to 95 %, preferably from 5% to 60%, most preferably from 10% to 40% by weight of the composition of an alkalinity system comprising components capable of providing alkalinity species in solution. By alkalinity species it is meant for the purposes of this invention: carbonate, bicarbonate, hydroxide and the various silicate anions. Such alkalinity species can be formed for example, when alkaline salts selected from alkali metal or alkaline earth carbonate, bicarbonate, hydroxide or silicate, including crystalline layered silicate, salts and any mixtures thereof are dissolved in water.
Alkali metal percarbonate and persilicate salts are also suitable sources of alkalinity species.
Detergent compositions specifically formulated for use in automatic dishwashing preferably contains sodium metasilicate, present at a level of at least 0.4% SiO2 by weight. Sodium metasilicate has a nominal Six : Na2O ratio of 1.0. The weight ratio of said sodium silicate to said sodium metasilicate, measured as SiO2, is preferably from 50:1 to 5:4, more preferably from 15:1 to 2:1, most preferably from 10:1 to 5:2.
Heaw metal ionseauestrant The detergent compositions of the invention preferably contain as an optional component a heavy metal ion sequestrant. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20%, preferably from 0.1% to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1hydroxy disphosphonates and nitrilo trimethylene phosphonates.
Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate.
Other suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof.
Especially preferred is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133. The iminodiacetic acid-N-2hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3sulfonic acid sequestrants described in EP-A-516, 102 are also suitable herein. The - alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-Nmonoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein. EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2phosphonobutane-1,2,4-tricarboxylic acid are also suitable. Glycinamide-N,N'disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2 hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
Water-soluble bismuth compound The compositions used in this invention when used in automatic dishwashing may comprise a water-soluble bismuth compound, preferably present at a level of from 0.005 % to 20%, more preferably from 0.01 % to 5 %, most preferably from 0.1 % to 1 % by weight of the compositions.
The water-soluble bismuth compound may be essentially any salt or complex of bismuth with essentially any inorganic or organic counter anion. Preferred inorganic bismuth salts are selected from the bismuth trihalides, bismuth nitrate and bismuth phosphate. Bismuth acetate and citrate are preferred salts with an organic counter anion.
Water-soluble sulfate salt The compositions may optionally contain a water-soluble sulfate salt, preferably present at a level of from 0.1 % to 40%, more preferably from 1 % to 30%, most preferably from 5% to 25% by weight of the compositions.
The water-soluble sulfate salt may be essentially any salt of sulfate with any counter cation. Preferred salts are selected from the sulfates of the alkali and alkaline earth metals, particularly sodium sulfate.
CDorrosion inhibitor compound The compositions when used in automatic dishwashing may contain corrosion inhibitors preferably selected from organic silver coating agents, particularly paraffin, nitrogen-containing corrosion inhibitor compounds and Mn(II) compounds, particularly Mn(II) salts of organic ligands.
Organic silver coating agents are described in PCT Publication No. WO94/16047 (attorney's docket no. CM497M) and copending UK Application No. UK 9413729.6 (attorney's docket no. CM750F). Nitrogen-containing corrosion inhibitor compounds are disclosed in copending European Application no. EP 93202095.1 (attorney's docket no. CM571F). Mn(II) compounds for use in corrosion inhibition are described in copending UK Application No. 9418567.5 (attorney's docket no. CM719FM).
Organic silver coating agents Organic silver coating agent may be incorporated at a level of from 0.05% to 10%, preferably from 0. 1% to 5% by weight of the total composition.
The functional role of the silver coating agent is to form 'in use' a protective coating layer on any silverware components of the washload to which the compositions of the invention are being applied. The silver coating agent should hence have a high affinity for attachment to solid silver surfaces, particularly when present in as a component of an aqueous washing and bleaching solution with which the solid silver surfaces are being treated.
Suitable organic silver coating agents herein include fatty esters of mono- or polyhydric alcohols having from 1 to about 40 carbon atoms in the hydrocarbon chain.
The fatty acid portion of the fatty ester can be obtained from mono- or polycarboxylic acids having from 1 to about 40 carbon atoms in the hydrocarbon chain.
Suitable examples of monocarboxylic fatty acids include behenic acid, stearic acid, oleic acid, palmitic acid, myristic acid, lauric acid, acetic acid, propionic acid, butyric acid, isobutyric acid, Valerie acid, lactic acid, glycolic acid and , '- dihydroxyisobutyric acid. Examples of suitable polycarboxylic acids include: n-butylmalonic acid, isocitric acid, citric acid, maleic acid, malic acid and succinic acid.
The fatty alcohol radical in the fatty ester can be represented by mono- or polyhydric alcohols having from 1 to 40 carbon atoms in the hydrocarbon chain. Examples of suitable fatty alcohols include; behenyl, arachidyl, cocoyl, oleyl and lauryl alcohol, ethylene glycol, glycerol, ethanol, isopropanol, vinyl alcohol, diglycerol, xylitol, sucrose, erythritol, pentaerythritol, sorbitol or sorbitan.
Preferably, the fatty acid and/or fatty alcohol group of the fatty ester adjunct material have from 1 to 24 carbon atoms in the alkyl chain.
Preferred fatty esters herein are ethylene glycol, glycerol and sorbitan esters wherein the fatty acid portion of the ester normally comprises a species selected from behenic acid, stearic acid, oleic acid, palmitic acid or myristic acid.
The glycerol esters are also highly preferred. These are the mono-, di- or tri-esters of glycerol and the fatty acids as defined above.
Specific examples of fatty alcohol esters for use herein include: stearyl acetate, palmityl di-lactate, cocoyl isobutyrate, oleyl maleate, oleyl dimaleate , and tallowyl proprionate. Fatty acid esters useful herein include: xylitol monopalmitate, pentaerythritol monostearate, sucrose monostearate, glycerol monostearate, ethylene glycol monostearate, sorbitan esters. Suitable sorbitan esters include sorbitan monostearate, sorbitan palmitate, sorbitan monolaurate, sorbitan monomyristate, sorbitan monobehenate, sorbitan mono-oleate, sorbitan dilaurate, sorbitan distearate, sorbitan dibehenate, sorbitan dioleate, and also mixed tallowalkyl sorbitan mono- and di-esters.
Glycerol monostearate, glycerol mono-oleate, glycerol monopalmitate, glycerol monobehenate, and glycerol distearate are preferred glycerol esters herein.
Suitable organic silver coating agents include triglycerides, mono or diglycerides, and wholly or partially hydrogenated derivatives thereof, and any mixtures thereof.
Suitable sources of fatty acid esters include vegetable and fish oils and animal fats.
Suitable vegetable oils include soy bean oil, cotton seed oil, castor oil, olive oil, peanut oil, safflower oil, sunflower oil, rapeseed oil, grapeseed oil, palm oil and corn oil.
Waxes, including microcrystalline waxes are suitable organic silver coating agents herein. Preferred waxes have a melting point in the range from about 35"C to about 1 100C and comprise generally from 12 to 70 carbon atoms. Preferred are petroleum waxes of the paraffin and microcrystalline type which are composed of long-chain saturated hydrocarbon compounds.
Alginates and gelatin are suitable organic silver coating agents herein.
Dialkyl amine oxides such as C12-C20 methylamine oxide, and dialkyl quaternary ammonium compounds and salts, such as the C12-C20 methylammonium halides are also suitable.
Other suitable organic silver coating agents include certain polymeric materials.
Polyvinylpyrrolidones with an average molecular weight of from 12,000 to 700,000, polyethylene glycols (PEG) with an average molecular weight of from 600 to 10,000, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and Nvinylimidazole, and cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose are examples of such polymeric materials.
Certain perfume materials, particularly those demonstrating a high substantivity for metallic surfaces, are also useful as the organic silver coating agents herein.
Polymeric soil release agents can also be used as an organic silver coating agent.
Suitable polymeric soil release agents include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene units, said hydrophile segments preferably comprising at least about 25 % oxyethylene units and more preferably, especially for such components having about 20 to 30 oxypropylene units, at least about 50% oxyethylene units; or (b) one or more hydrophobe components comprising (i) C3 oxyalkylene terephthalate segments, wherein, if said hydrophobe components also comprise oxyethylene terephthalate, the ratio of oxyethylene terephthalate:C3 oxyalkylene terephthalate units is about 2:1 or lower, (ii) C4-C6 alkylene or oxy C4-C6 alkylene segments, or mixtures therein, (iii) poly (vinyl ester) segments, preferably polyvinyl acetate, having a degree of polymerization of at least 2, or (iv) C1-C4 alkyl ether or C4 hydroxyalkyl ether substituents, or mixtures therein, wherein said substituents are present in the form of C1-C4 alkyl ether or C4 hydroxyalkyl ether cellulose derivatives, or mixtures therein, or a combination of (a) and (b).
Typically, the polyoxyethylene segments of (a)(i) will have a degree of polymerization of from about 200, although higher levels can be used, preferably from 3 to about 150, more preferably from 6 to about 100. Suitable oxy C4-C6 alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric soil release agents such as MO3S(CH2)nOCH2CH2O-, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink.
Polymeric soil release agents useful herein also include cellulosic derivatives such as hydroxyether cellulosic polymers, copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C1-C4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Patent 4,000,093, issued December 28, 1976 to Nicol, et al.
Soil release agents characterized by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., C1-C6 vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones. See European Patent Application 0 219 048, published April 22, 1987 by Kud, et al.
Another suitable soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate. The molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000.
See U.S. Patent 3,959,230 to Hays, issued May 25, 1976 a and the block polyester oligomeric compounds of U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink. Other polymeric soil release agents also include the soil release agents of U.S. Patent 4,877,896, issued October 31, 1989 to Maldonado et al, which discloses anionic, especially sulfoarolyl, end-capped terephthalate esters.
Another soil release agent is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy-1,2-propylene units. The repeat units form the backbone of the oligomer and are preferably terminated with modified isethionate end-caps. A particularly preferred soil release agent of this type comprises about one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1,2propyleneoxy units in a ratio of from about 1.7 to about 1.8, and two end-cap units of sodium 2-(2-hydroxyethoxy)-ethanesulfonate.
A preferred organic silver coating agent is a paraffin oil, typically a predominantly branched aliphatic hydrocarbon having a number of carbon atoms in the range of from 20 to 50; preferred paraffin oil selected from predominantly branched C2545 species with a ratio of cyclic to noncyclic hydrocarbons of from 1:10 to 2: 1, preferably from 1:5 to 1:1. A paraffin oil meeting these characteristics, having a ratio of cyclic to noncyclic hydrocarbons of about 32:68, is sold by Wintershall, Salzbergen, Germany, under the trade name WINOG 70.
Nitrogen-containing corrosion inhibitor compounds Suitable nitrogen-containing corrosion inhibitor compounds include imidazole and derivatives thereof such as benzimidazole, 2-heptadecyl imidazole and those imidazole derivatives described in Czech Patent No. 139, 279 and British Patent GB-A1,137,741, which also discloses a method for making imidazole compounds.
Also suitable as nitrogen-containing corrosion inhibitor compounds are pyrazole compounds and their derivatives, particularly those where the pyrazole is substituted in any of the 1, 3, 4 or 5 positions by substituents R1, R3, R4 and R5 where R1 is any of H, CH20H, CONH3, or COCH3, R3 and R5 are any of C1-C20 alkyl or hydroxyl, and R4 is any of H, NH2 or N02.
Other suitable nitrogencontaining corrosion inhibitor compounds include benzotriazole, 2-mercaptobenzothiazole, 1-phenyl-5-mercapto- 1,2,3,4-tetrazole, thionalide, morpholine, melamine, distearylamine, stearoyl stearamide, cyanuric acid, aminotriazole, aminotetrazole and indazole.
Nitrogen-containing compounds such as amines, especially distearylamine and ammonium compounds such as ammonium chloride, ammonium bromide, ammonium sulphate or diammonium hydrogen citrate are also suitable.
Mn(ll) corrosion inhibitor compounds The compositions may contain an Mn(II) corrosion inhibitor compound. The Mn(II) compound is preferably incorporated at a level of from 0.005% to 5% by weight, more preferably from 0.01% to 1%, most preferably from 0.02% to 0.4% by weight of the compositions. Preferably, the Mn(II) compound is incorporated at a level to provide from 0.1 ppm to 250 ppm, more preferably from 0.5 ppm to 50 ppm, most preferably from 1 ppm to 20 ppm by weight of Mn(lI) ions in any bleaching solution.
The Mn (11) compound may be an inorganic salt in anhydrous, or any hydrated forms.
Suitable salts include manganese sulphate, manganese carbonate, manganese phosphate, manganese nitrate, manganese acetate and manganese chloride. The Mn(II) compound may be a salt or complex of an organic fatty acid such as manganese acetate or manganese stearate.
The Mn(II) compound may be a salt or complex of an organic ligand. In one preferred aspect the organic ligand is a heavy metal ion sequestrant. In another preferred aspect the organic ligand is a crystal growth inhibitor.
Other corrosion inhibitor compounds Other suitable additional corrosion inhibitor compounds include, mercaptans and diols, especially mercaptans with 4 to 20 carbon atoms including lauryl mercaptan, thiophenol, thionapthol, thionalide and thioanthranol. Also suitable are saturated or unsaturated C10-C20 fatty acids, or their salts, especially aluminium tristearate. The C12-C20 hydroxy fatty acids, or their salts, are also suitable. Phosphonated octadecane and other anti-oxidants such as betahydroxytoluene (BHT) are also suitable.
Copolymers of butadiene and maleic acid, particularly those supplied under the trade reference no. 07787 by Polysciences Inc have been found to be of particular utility as corrosion inhibitor compounds.
Enzyme Another preferred ingredient useful in the detergent compositions is one or more enzymes.
Preferred enzymatic materials include the commercially available lipases, cutinases, amylases, neutral and alkaline proteases, esterases, cellulases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
Preferred commercially available protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes. Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001% to 4% active enzyme by weight of the composition.
Preferred amylases include, for example, amylases obtained from a special strain of B licheniformis, described in more detail in GB-1,269,839 (Novo). Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl and BAN by Novo Industries A/S. Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001% to 2% active enzyme by weight of the composition.
Lipolytic enzyme may be present at levels of active lipolytic enzyme of from 0.0001% to 2% by weight, preferably 0.001% to 1% by weight, most preferably from 0.001 % to 0.5% by weight of the compositions.
The lipase may be fungal or bacterial in origin being obtained, for example, from a lipase producing strain of Humicola sp., Thermomvces sp. or Pseudomonas sp. including Pseudomonas pseudoalcalizenes or Pseudomas fluorescens. Lipase from chemically or genetically modified mutants of these strains are also useful herein. A preferred lipase is derived from Pseudomonas pseudoalcaligenes, which is described in Granted European Patent, EP-B-0218272.
Another preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene in glllY5 orvza, as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
Organic polymeric compound Organic polymeric compounds are preferred additional components of the detergent compositions in accord with the invention, and are preferably present as components of any particulate components where they may act such as to bind the particulate component together. By organic polymeric compound it is meant herein essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein.
Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0. 1% to 30%, preferably from 0.5% to 15%, most preferably from 1 % to 10% by weight of the compositions.
Examples of organic polymeric compounds include the water soluble organic homoor co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1,596,756.
Examples of such salts are polyacrylates of MWt 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 100,000, especially 40,000 to 80,000.
The polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
Terpolymers containing monomer units selected from maleic acid, acrylic acid, polyaspartic acid and vinyl alcohol, particularly those having an average molecular weight of from 5,000 to 10,000, are also suitable herein.
Other organic polymeric compounds suitable for incorporation in the detergent compositions herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose and hydroxyethylcellulose.
Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000.
Crystal growth inhibitor component The detergent compositions may contain a crystal growth inhibitor component, preferably an organodiphosphonic acid component, incorporated preferably at a level of from 0.01% to 5%, more preferably from 0. 1% to 2 % by weight of the compositions.
By organo diphosphonic acid it is meant herein an organo diphosphonic acid which does not contain nitrogen as part of its chemical structure. This definition therefore excludes the organo aminophosphonates, which however may be included in compositions of the invention as heavy metal ion sequestrant components.
The organo diphosphonic acid is preferably a C1-C4 diphosphonic acid, more preferably a C2 diphosphonic acid, such as ethylene diphosphonic acid, or most preferably ethane l-hydroxy- 1, l-diphosphonic acid (HEDP) and may be present in partially or fully ionized form, particularly as a salt or complex.
Lime soap dispersant compound The compositions of the invention may contain a lime soap dispersant compound, preferably present at a level of from 0.1 % to 40% by weight, more preferably 1 % to 20% by weight, most preferably from 2% to 10% by weight of the compositions.
A lime soap dispersant is a material that prevents the precipitation of alkali metal, ammonium or amine salts of fatty acids by calcium or magnesium ions. Preferred lime soap disperant compounds are disclosed in PCT Application No. W093/08877 (attorney's docket no. CM466M).
Suds suppressing system The detergent compositions of the invention, when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.05% to 10%, most preferably from 0.1 % to 5% by weight of the composition.
Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component.
Such silicone antifoam compounds also typically contain a silica component. The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types. Preferred silicone anti foam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C18-C40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexaalkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl dialkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
A preferred suds suppressing system comprises (a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination (i) polydimethyl siloxane, at a level of from 50% to 99%, preferably 75% to 95 % by weight of the silicone antifoam compound; and (ii) silica, at a level of from 1% to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound; wherein said silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight; (b) a dispersant compound, most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1% to 10% by weight; a particularly preferred silicone glycol rake copolymer of this type is DCO544, commercially available from DOW Corning under the tradename DCO544; (c) an inert carrier fluid compound, most preferably comprising a C16-C18 ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight; A highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone anti foam compound and an organic carrier material having a melting point in the range 50"C to 85"C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms. EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45"C to 80"C.
Clay softening system The detergent compositions may contain a clay softening system comprising a clay mineral compound and optionally a clay flocculating agent.
The clay mineral compound is preferably a smectite clay compound. Smectite clays are disclosed in the US Patents No.s 3,862,058, 3,948,790, 3,954,632 and 4,062,647. European Patents No.s EP-A-299,575 and EP-A-313,146 in the name of the Procter and Gamble Company describe suitable organic polymeric clay flocculating agents.
Polymeric dye transfer inhibiting agents The detergent compositions herein may also comprise from 0.01 % to 10 %, preferably from 0.05 % to 0.5% by weight of polymeric dye transfer inhibiting agents. The polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof. a) Polyamine N-oxide polymers Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula:
wherein P is a polymerisable unit, and
R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
The N-O group can be represented by the following general structures
wherein R1, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or 1 and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups. The N-O group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups. One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group. - Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyrridine, pyrrole, imidazole, pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
Other suitable polyamine N-oxides are the polyamine oxides whereto the N-O group is attached to the polymerisable unit. A preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (I) wherein R is an aromatic,heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group. Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyrridine, pyrrole, imidazole and derivatives thereof.
The polyamine N-oxides can be obtained in almost any degree of polymerisation. The degree of polymerisation is not critical provided the material has the desired watersolubility and dye-suspending power. Typically, the average molecular weight is within the range of 500 to 1000,000. b) Copolymers of N-vinylpyrrolidone and N-vinvlimidazole Suitable herein are coploymers of N-vinylimidazole and N-vinylpyrrolidone having an average molecular weight range of from 5,000 to 50,000. The preferred copolymers have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1 to 0.2. c! Polyvinylpyrrolidone The detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000. Suitable polyvinylpyrrolidones are commercially available from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K-15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average molecular weight of 160,000), and PVP K-90 (average molecular weight of 360,000). PVP K-15 is also available from ISP Corporation. Other suitable polyvinylpyrrolidones which are commercially available from BASF Cooperation include Sokalan HP 165 and Sokalan HP 12. d) Polyvinyloxazolidone The detergent compositions herein may also utilize polyvinyloxazolidones as polymeric dye transfer inhibiting agents. Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000. e! Polyvinylimidazole The detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent. Said polyvinylimidazoles preferably have an average molecular weight of from 2,500 to 400,000.
Optical brightener The detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
Hydrophilic optical brighteners useful herein include those having the structural formula:
wherein R1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
When in the above formula, R1 is anilino, R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)- s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal-UNPA-GX by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
When in the above formula, R1 is anilino, R2 is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2 hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Corporation.
When in the above formula, R1 is anilino, R2 is morphilino and M is a cation such as sodium, the brightener is 4,4' -bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2 , 2' - stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Corporation.
Cationic fabric softening agents Cationic fabric softening agents can also be incorporated into compositions in accordance with the present invention. Suitable cationic fabric softening agents include the water insoluble tertiary amines or dilong chain amide materials as disclosed in GB-A-1 514 276 and EP-B-0 011 340.
Cationic fabric softening agents are typically incorporated at total levels of from 0.5% to 15% by weight, normally from 1% to 5% by weight.
Other optional ingredients Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt. pH of the compositions The present compositions preferably have a pH measured as a 1 % solution in distilled water of at least 9.0, preferably from 10.0 to 12.5, most preferably from 10.5 to 12.0.
Form of the compositions The compositions in accordance with the invention can take a variety of physical forms including granular, tablet, bar and liquid forms. Preferably the compositions are the so-called concentrated granular detergent compositions adapted to be added to a washing machine by means of a dispensing device placed in the machine drum with the soiled fabric load.
*The mean particle size of the components of granular compositions in accordance with the invention should preferably be such that no more that 5 % of particles are greater than 1.7mm in diameter and not more than 5% of particles are less than 0.15mm in diameter.
The term mean particle size as defined herein is calculated by sieving a sample of the composition into a number of fractions (typically 5 fractions) on a series of Tyler sieves. The weight fractions thereby obtained are plotted against the aperture size of the sieves. The mean particle size is taken to be the aperture size through which 50% by weight of the sample would pass.
The bulk density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 600 g/litre, more preferably from 650 g/litre to 1200 g/litre. Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrical cup disposed below the funnel. The funnel is 130 mm high and has internal diameters of 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base. The cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
To carry out a measurement, the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup. The filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement eg; a knife, across its upper edge. The filled cup is then weighed and the value obtained for the weight of powder doubled to provide a bulk density in g/litre. Replicate measurements are made as required.
In a particularly preferred aspect of the present invention the detergent composition is in tablet form. Preferred tablet weigh in the range of from 20g to 80g, more preferably from 40g to 60g. The tablets are prepared by forming a granular detergent composition into a tablet using any suitable commonly available equipment. More preferably the tablets are prepared by compression of a granular detergent composition in a tablet press. According to another aspect the tablet may be coated with a coating material as described in co-pending applications Laundry washing method Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention. By an effective amount of the detergent composition it is meant from 40g to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods.
In a preferred use aspect a dispensing device is employed in the washing method. The dispensing device is charged with the detergent product, and is used to introduce the product directly into the drum of the washing machine before the commencement of the wash cycle. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
Once the washing machine has been loaded with laundry the dispensing device containing the detergent product is placed inside the drum. At the commencement of the wash cycle of the washing machine water is introduced into the drum and the drum periodically rotates. The design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its contact with the wash water.
To allow for release of the detergent product during the wash the device may possess a number of openings through which the product may pass. Alternatively, the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product. Preferably, the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle.
Especially preferred dispensing devices for use with the composition of the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A-0288346. An article by J.Bland published in Manufacturing Chemist, November 1989, pag with a masking arrangemnt to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
Alternatively, the dispensing device may be a flexible container, such as a bag or pouch. The bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678. Alternatively it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 0011500, 0011501, 0011502, and 0011968. A convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
Machine dishwashing method Any suitable methods for machine washing or cleaning soiled tableware, particularly soiled silverware are envisaged.
A preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, hollowware, silverware and cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a machine dishwashing composition in accord with the invention. By an effective amount of the machine dishwashing composition it is meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to 10 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods.
Packaging for the compositions Commercially marketed executions of the bleaching compositions can be packaged in any suitable container including those constructed from paper, cardboard, plastic materials and any suitable laminates. A preferred packaging execution is described in European Application No. 94921505.7.
Abbreviations used in Examples In the detergent compositions, the abbreviated component identifications have the following meanings: sodium LAS : Sodium linear Cll-13 alkyl benzene sulfonate potassium LAS : Potassium linear Cll-13 alkyl benzene sulfonate TAS Sodium tallow alkyl sulfate CxyAS Sodium Clx - Cly alkyl sulfate CxyEzS Sodium ClX-Cly alkyl sulfate condensed with z moles of ethylene oxide CxyEz C1x-C1y predominantly linear primary alcohol condensed with an average of z moles of ethylene oxide QAS R2.N+(CH3)2(C2H4OH) with R2 = C12- C14 QAS 1 R2.N+(CH3)2(C2H4oH) with R2 = C8 - C11 Soap Sodium linear alkyl carboxylate derived from an 80/20 mixture of tallow and coconut fatty acids STS Sodium toluene sulphonate STPP Anhydrous sodium tripolyphosphate Zeolite A Hydrated sodium aluminosilicate of formula Na 12(A 1 O2SiO2)12 .27H2O having a primary particle size in the range from 0.1 to 10 micrometers (weight expressed on an anhydrous basis) NaSKS-6 Crystalline layered silicate of formula 6 Na2Si205 Citric acid . Anhydrous citric acid Sodium Carbonate : Anhydrous sodium carbonate with a particle size between 200ym and 900ym Potassium carbonate : Anhydrous potassium carbonate with a particle size between 200cm and 900pm Bicarbonate : Anhydrous sodium bicarbonate with a particle size distribution between 400 m and 1200ym Silicate Amorphous sodium silicate (SiO2:Na20 = 2.0:1) Sulfate : Anhydrous sodium sulfate Mg sulfate Anhydrous magnesium sulfate Citrate : Tri-sodium citrate dihydrate of activity 86.4% with a particle size distribution between 425C1m and 850ym MA/AA Copolymer of 1:4 maleic/acrylic acid, average molecular weight about 70,000 MA/AA (1) Copolymer of 4:6 maleic/acrylic acid, average molecular weight about 10,000 AA : Sodium polyacrylate polymer of average molecular weight 4,500 CMC : Sodium carboxymethyl cellulose Cellulose ether : Methyl cellulose ether with a degree of polymerization of 650 available from Shin Etsu Chemicals Protease Proteolytic enzyme, having 3.3% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Savinase Protease I : Proteolytic enzyme, having 4% by weight of active enzyme, as described in WO 95/10591, sold by Genencor Int. Inc.
Cellulase : Cellulytic enzyme, having 0.23% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Carezyme Amylase Amylolytic enzyme, having 1.6% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Termamyl 120T Lipase : Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Lipase (1) : Lipolytic enzyme, having 2.0% by weight of active enzyme, sold by NOVO Industries A/S under the tradename Lipolase Ultra Potassium PB1 Anhydrous potassium perborate bleach of nominal formula KBo2.H2o2 Sodium percarbonate : Sodium percarbonate of nominal formula 2Na2C03.3H202 Potassium percarbonate: Potassium percarbonate of nominal formula K2CO3 . 3H2O2 NOBS Nonanoyloxybenzene sulfonate in the form of the sodium salt NAC-OBS : (6-nonamidocaproyl) oxybenzene sulfonate SAPA : Phenol sulphonate ester of the imido acid from octyl succinic anhydride and 6-aminocaproic acid DOBA Decanoyl oxybenzoic acid LOBS : Lauryl oxybenzenesulphonate TAED Tetraacetylethylenediamine MnTACN : Manganese methyl triazacyclononane bleach catalyst DTPMP : Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Tradename Dequest 2060 EDDS Ethylenediamine-N,N'-disuccinic acid, (S ,S) isomer in the form of its sodium salt.
Photoactivated Sulfonated zinc phthlocyanine encapsulated in bleach (I) dextrin soluble polymer Photoactivated Sulfonated alumino phthlocyanine encapsulated in bleach (2) dextrin soluble polymer Brightener 1 Disodium 4,4'-bis(2-sulphostyryl)biphenyl Brightener 2 : Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5- triazin-2-yl)amino) stilbene-2:2'-disulfonate HEDP : 1,1-hydroxyethane diphosphonic acid PEGx : Polyethylene glycol, with a molecular weight of x (typically 4,000) PEO Polyethylene oxide, with an average molecular weight of 50,000 TEPAE Tetraethylenepentaamine ethoxylate PVP : Polyvinylpyrolidone polymer, with an average molecular weight of 60,000 PVNO Polyvinylpyridine N-oxide polymer, with an average molecular weight of 50,000 PVPVI : Copolymer of polyvinylpyrolidone and vinylimidazole, with an average molecular weight of 20,000 QEA bis((C2Hf o)(C2H4o)n)(CH3) -N + -C6H12-N+ (CH3) bis((C2HsO)-(C2H4O))n, wherein n = from 20 to 30 SRP Anionically end capped poly esters Silicone antifoam : Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to 100:1 In the following examples all levels are quoted as % by weight of the composition: Example 1 The following granular laundry detergent compositions A to F of particular utility under European machine wash conditions were prepared in accord with the invention:
A B C D E F sodium LAS 5.5 7.5 5.0 5.0 6.0 potassium LAS 7.0 TAS 1.25 1.86 - 0.8 0.4 0.3 C24AS/C25AS - 2.24 5.0 5.0 5.0 2.2 C25E3S - 0.76 1.0 1.5 3.0 1.0 C45E7 3.25 - - - - 3.0 TFAA - - 2.0 - - - C25E5 - 5.5 - - - - QAS 0.8 - - - - QAS II - 0.7 1.0 0.5 1.0 0.7 STPP 19.7 - - - - Zeolite A 19.5 25.0 19.5 20.0 17.0 NaSKS-6/citric acid (79:21) - 10.6 - 10.6 - NaSKS-6 - - 9.0 - 10.0 10.0 Sodium carbonate 6.1 21.4 9.0 10.0 - 18.0 Potassium carbonate 10.0 Bicarbonate - 2.0 7.0 5.0 - 2.0 Silicate 6.8 - - 0.3 0.5 Citrate - - 4.0 4.0 - Sulfate 39.8 - - 5.0 - 12.0 Mg sulfate - - 0.1 0.2 0.2 MA/AA 0.5 1.6 3.0 4.0 1.0 1.0 CMC 0.2 0.4 1.0 1.0 0.4 0.4 Potassium perborate - - - 8.0 -
Potassium percarbonate 5.0 10.0 6.0 - 18.0 15.0 TAED 0.5 3.1 - - 5.0 NAC-OBS 1.0 3.5 - - - 2.5 MnTACN - - - 50pp m DTPMP 0.25 0.2 0.3 0.4 - 0.2 HEDP P - 0.3 - 0.3 0.3 0.3 QEA - - 1.0 1.0 1.0 Protease I - - 0.5 1.2 Protease 0.26 0.85 0.9 1.0 - 0.7 Lipase (1) 0.15 0.15 0.3 0.3 0.3 0.2 Cellulase 0.28 0.28 0.2 0.2 0.3 0.3 Amylase 0.1 0.1 0.4 0.4 0.6 0.2 PVNO/PVPV1 - - 0.2 0.2 PVP 0.9 1.3 - - - 0.9 SRP 1 1 - - 0.2 0.2 0.2 Photoactivated bleach (1) (ppm) 15 ppm 27 ppm - - 20 ppm 20 ppm Photoactivated bleach (2) (ppm) 15 ppm - - - - Brightener 1 0.08 0.19 9 - - 0.09 0.15 Brightener 2 0.04 - - - - Perfume 0.3 0.3 0.4 0.3 0.4 0.3 Silicone antifoam 0.5 2.4 0.3 0.5 0.3 2.0 Minors/misc to 100% Density in g/litre 750 750 750 750 750 750 Example 2 The following detergent formulations of particular utility under European machine wash conditions were prepared in accord with the invention.
G II I J Blown powder sodium LAS 6.0 5.0 11.0 6.0 TAS 2.0 - - 2.0 Zeolite A 24.0 - - 20.0 STPP - 27.0 24.0 Sulfate 4.0 6.0 13.0 MA/AA 1.0 4.0 6.0 2.0 Silicate 1.0 7.0 3.0 3.0 CMC 1.0 1.0 0.5 0.6 Brightener 1 0.2 0.2 0.2 0.2 Silicone antifoam 1.0 1.0 1.0 0.3 DTPMP 0.4 0.4 0.2 0.4 Spray on Brightener 0.02 - - 0.02 C45E7 - - - 5.0 C45E2 2.5 2.5 2.0 C45E3 2.6 2.5 2.0 Perfume 0.5 0.3 0.5 0.2 Silicone antifoam 0.3 0.3 0.3 Dry additives QEA - - - 1.0 EDDS 0.3 - Sulfate 2.0 3.0 5.0 10.0 Sodium carbonate 6.0 13.0 15.0 14.0
Citric acid 2.5 - - 2.0 QAS II 0.5 - - 0.5 SKS-6 10.0 - - Potassium percarbonate 18.5 18.0 10.0 21.5 TAED 2.0 2.0 - 2.0 SAPA 3.0 - 4.0 DOBA - 2.0 - Protease 1.0 1.0 1.0 1.0 Lipase - 0.4 - 0.2 Lipase (1) 0.4 - 0.4 Amylase 0.2 0.2 0.2 0.4 Brightener 1 0.05 - - 0.05 Misc/minor to 100% Example 3 The following granular detergent formulations were prepared in accord with the invention.
K L M N O P Blown powder sodium LAS 23.0 8.0 - 9.0 7.0 potassium LAS - - 7.0 - - 7.0 TAS - - - - 1.0 C45AS 6.0 6.0 5.0 8.0 - C45AES - 1.0 1.0 1.0 - C45E35 - - - - 2.0 4.0 Zeolite A 10.0 18.0 14.0 12.0 10.0 10.0 MA/AA - 0.5 - - - 2.0 MA/AA (1) 7.0- - - - - AA - 3.0 3.0 2.0 3.0 3.0 Sulfate 5.0 6.3 14.3 11.0 15.0 19.3 Silicate 10.0 1.0 1.0 1.0 1.0 1.0 sodium carbonate 15.0 20.0 10.0 20.7 8.0 6.0 PEG 4000 0.4 1.5 1.5 1.0 1.0 1.0 DTPA - 0.9 0.5 - - 0.5 Brightener 2 0.3 0.2 0.3 - 0.1 0.3 Spray on C45E7 - 2.0 - - 2.0 2.0 C25E9 3.0 - - - - C23E9 - - 1.5 2.0 - 2.0 Perfume 0.3 0.3 0.3 2.0 0.3 0.3 Agglomerates C45AS - 5.0 5.0 2.0 - 5.0
LAS - 2.0 2.0 - - 2.0 Zeolite A - 7.5 7.5 8.0 - 7.5 sodium carbonate - 4.0 - 5.0 - potassium carbonate - - 4.0 - - 4.0 PEG 4000 - 0.5 0.5 - - 0.5 Misc (water etc) - 2.0 2.0 2.0 - 2.0 Dry additives QAS (I) - - - - 1.0 Citric acid - - - - 2.0 PB4 - - - - 12.0 1.0 PB1 4.0 1.0 3.0 2.0 - Potassium percarbonate 4.0 1.0 3.0 2.0 2.0 10.0 sodium carbonate - 5.3 - - 4.0 potassium carbonate - - 1.8 - - 4.0 LOBS 4.0 - 6.0 - - 0.6 NOBS - - - - 4.0 Methyl cellulose 0.2 - - - - - SKS-6 8.0 - - - - STS - - 2.0 - 1.0 Cumene sulfonic acid - 1.0 - - - 2.0 Lipase 0.2 - 0.2 - 0.2 0.4 Cellulase 0.2 0.2 0.2 0.3 0.2 0.2 Amylase 0.2 - 0.1 - 0.2 Protease 0.5 0.5 0.5 0.3 0.5 0.5 PVPVI - - - - 0.5 0.1 PVP - - - - 0.5 PVNO - - 0.5 0.3 - QEA - - - - 1.0 SRP1 0.2 0.5 0.3 - 0.2 Silicone antifoam 0.2 0.4 0.2 0.4 0.1
Mg sulfate - 0.2 0.2 Misc/minors to 100% Example 4 The following granular detergent formulations were prepared in accord with the invention.
Q Q R S T Base granule Zeolite A 30.0 22.0 24.0 10.0 Sulfate 10.0 5.0 10.0 7.0 MA/AA 3.0 - - AA - 1.6 2.0 MA/AA (1) - 12.0 - 6.0 Sodium LAS 14.0 10.0 9.0 20.0 C45AS 8.0 7.0 9.0 7.0 C45AES - 1.0 1.0 Silicate - 1.0 0.5 10.0 Soap - 2.0 - Brightener 1 0.2 0.2 0.2 0.2 Sodium carbonate 6.0 9.0 10.0 10.0 PEG 4000 - 1.0 1.5 DTPA - 0.4 - Spray on C25E9 - - - 5.0 C45E7 1.0 1.0 - C23E9 - 1.0 2.5 Perfume 0.2 0.3 0.3 - Dry additives Sodium carbonate 5.0 10.0 18.0 8.0 PVPI/PVNO 0.5 - 0.3 Protease 1.0 1.0 1.0 0.5
Lipase 0.4 - - 0.4 Amylase 0.1 - - 0.1 Cellulase 0.1 0.2 0.2 0.1 NOBS - 4.0 - LOBS - - - 4.5 Potassium percarbonate 1.0 5.0 1.5 6.0 Sulfate 4.0 5.0 5.0 SRPI - 0.4 - Sud supressor - 0.5 0.5 Misc/minor to 100% Example 5 The following granular detergent compositions were prepared in accord with the invention.
U V X Blown powder Zeolite A 20.0 - 15.0 STPP - 20.0 Sulphate - - 5.0 Carbonate - - 5.0 TAS - - 1.0 sodium LAS 6.0 6.0 6.0 C68AS 2.0 2.0 Silicate 3.0 8.0 MA/AA 4.0 2.0 2.0 CMC 0.6 0.6 0.2 Brightener 1 0.2 0.2 0.1 DTPMP 0.4 0.4 0.1 STS - - 1.0 Spray on C45E7 5.0 5.0 4.0 Silicone antifoam 0.3 0.3 0.1 Perfume 0.2 0.2 0.3 Dry additives QEA - - 1.0 sodium carbonate 14.0 9.0 10.0 potassium perborate 18.5 13.0 13.0 TAED 2.0 2.0 2.0 SAPA 3.0 3.5 4.0
Photoactivated bleach 15 ppm 15 ppm 15ppm SKS-6 - - 3.0 Protease 1.0 1.0 0.2 Lipase 0.2 0.2 0.2 Amylase 0.4 0.4 0.2 Cellulase 0.1 0.1 0.2 Sulfate 10.0 20.0 5.0 Misc/minors to 100% Density (litre) 700 700 700 Example 6 The following detergent compositions, according to the present invention were prepared:
Y z l zz Blown Powder Zeolite A 15.0 15.0 15.0 Sulfate 0.0 5.0 0.0 sodium LAS 3.0 3.0 3.0 QAS - 1.5 1.5 DTPMP 0.4 0.2 0.4 EDDS - 0.4 0.2 CMC G.4 0.4 0.4 MA/AA 4.0 2.0 2.0 Agglomerates sodium LAS 5.0 5.0 5.0 TAS 2.0 2.0 1.0 Silicate 3.0 3.0 4.0 Zeolite A 8.0 8.0 8.0 Sodium carbonate 8.0 8.0 4.0 Spray On Perfume 0.3 0.3 0.3 C45E7 2.0 2.0 2.0 C25E3 2.0 - Dry additives Citrate 5.0 - 2.0 Bicarbonate - 3.0 Sodium carbonate 8.0 15.0 10.0 TAED 6.0 2.0 5.0
Potassium percarbonate 14.0 7.0 10.0 PEO - - 0.2 Bentonite clay - - 10.0 Protease 1.0 1.0 1.0 Lipase 0.4 0.4 0.4 Amylase 0.6 0.6 0.6 Cellulase 0.6 0.6 0.6 Silicone antifoam 5.0 5.0 5.0 Dry additives Sodium sulfate 0.0 3.0 0.0 Misc/minors to 100% 100.0 100.0 100.0 Density (g/litre) 850 850 850

Claims (11)

  1. Claims 1. A detergent composition comprising a hydrogen peroxide-releasing compound which has a total theoretical available oxygen, calculated as described herein, of greater than 16% and at least one additional detergent component.
  2. 2. A detergent composition comprising a hydrogen peroxide-releasing compound which is a potassium salt and at least one additional detergent component.
  3. 3. A detergent composition according to either of the preceding claims wherein the hydrogen-peroxide-releasing compound is potassium percarbonate, potassium perborate and/or mixtures thereof.
  4. 4. A detergent composition according to any preceding claim wherein the hydrogen peroxide-releasing compound is coated with a coating material.
  5. 5. A detergent composition according to claim 4 wherein the coating material is selected from the group consisting of an inorganic salt of silicate, carbonate, sulphate, chloride or borate, organic polymer, such as polyalkylene glycols, waxes, oils, fatty soaps or mixtures thereof.
  6. 6. A detergent composition according to any of the preceding claims wherein the hydrogen peroxide-releasing compound is potassium percarbonate.
  7. 7. A detergent composition according to claim 6 wherein the potassium percarbonate has general formula K2CO3.xH2O2.yH2O wherein x= 0.5 to 6 and y= 0 to 5.
  8. 8. A detergent composition according to claim 7 wherein x=3 and y=0
  9. 9. A detergent composition according to any of the preceding claims wherein the hydrogen peroxide-releasing compound is potassium percarbonate having a total theoretical available oxygen, calculated as described herein, is 16.5% to 20%.
  10. 10. A detergent composition according to any preceding claim wherein the additional detergent component is an additional hydrogen peroxide releasing compound, a bleach activator, a bleach catalyst, a preformed peracid or mixtures thereof.
  11. 11. A detergent composition according to any of the preceding claims wherein the composition is in tablet form.
GB9803607A 1998-02-21 1998-02-21 Hydrogen peroxide releasing detergent composition Withdrawn GB2334528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB9803607A GB2334528A (en) 1998-02-21 1998-02-21 Hydrogen peroxide releasing detergent composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9803607A GB2334528A (en) 1998-02-21 1998-02-21 Hydrogen peroxide releasing detergent composition

Publications (2)

Publication Number Publication Date
GB9803607D0 GB9803607D0 (en) 1998-04-15
GB2334528A true GB2334528A (en) 1999-08-25

Family

ID=10827325

Family Applications (1)

Application Number Title Priority Date Filing Date
GB9803607A Withdrawn GB2334528A (en) 1998-02-21 1998-02-21 Hydrogen peroxide releasing detergent composition

Country Status (1)

Country Link
GB (1) GB2334528A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1159392B2 (en) 1999-03-11 2007-12-12 Henkel Kommanditgesellschaft auf Aktien Moulded washing and cleaning agents with a surfactant/bleaching agent/builder combination

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2013139A1 (en) * 1968-07-17 1970-03-27 Henkel & Cie Gmbh Hydroxylamine deriv as per-compound - activators
DE1951556A1 (en) * 1969-10-13 1971-04-22 Henkel & Cie Gmbh Washing powders
DE1963897A1 (en) * 1969-12-20 1971-07-15 Henkel & Cie Gmbh Detergent contng perborate
EP0098108A1 (en) * 1982-06-25 1984-01-11 Unilever Plc Detergent composition
EP0120659A2 (en) * 1983-03-28 1984-10-03 Imperial Chemical Industries Plc Detergent compositions
JPH01146998A (en) * 1987-12-04 1989-06-08 Matsushita Electric Ind Co Ltd Detergent for dishwasher
DE4109953A1 (en) * 1991-03-26 1992-10-01 Henkel Kgaa STABILIZED PARTICULATE SODIUM PERCARBATE AND METHOD FOR THE PRODUCTION THEREOF
WO1995018064A1 (en) * 1993-12-29 1995-07-06 Solvay Interox Gmbh Coated alkali metal peroxo salts and process for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2013139A1 (en) * 1968-07-17 1970-03-27 Henkel & Cie Gmbh Hydroxylamine deriv as per-compound - activators
DE1951556A1 (en) * 1969-10-13 1971-04-22 Henkel & Cie Gmbh Washing powders
DE1963897A1 (en) * 1969-12-20 1971-07-15 Henkel & Cie Gmbh Detergent contng perborate
EP0098108A1 (en) * 1982-06-25 1984-01-11 Unilever Plc Detergent composition
EP0120659A2 (en) * 1983-03-28 1984-10-03 Imperial Chemical Industries Plc Detergent compositions
JPH01146998A (en) * 1987-12-04 1989-06-08 Matsushita Electric Ind Co Ltd Detergent for dishwasher
DE4109953A1 (en) * 1991-03-26 1992-10-01 Henkel Kgaa STABILIZED PARTICULATE SODIUM PERCARBATE AND METHOD FOR THE PRODUCTION THEREOF
WO1995018064A1 (en) * 1993-12-29 1995-07-06 Solvay Interox Gmbh Coated alkali metal peroxo salts and process for producing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CAPLUS Abstract No. 1970:532259 & FR 2013139 *
CAPLUS Abstract No. 1971:478449 & DE 1951556 *
CAPLUS Abstract No. 1971:519418 & DE 1963897 *
CAPLUS Abstract No. 1992:654351 & DE 4109953 *
WPI Abstract Acc. No. 89-210121/29 & JP010146998 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1159392B2 (en) 1999-03-11 2007-12-12 Henkel Kommanditgesellschaft auf Aktien Moulded washing and cleaning agents with a surfactant/bleaching agent/builder combination

Also Published As

Publication number Publication date
GB9803607D0 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
CA2255594C (en) Detergent composition
GB2303150A (en) Laundry washing method
US6207632B1 (en) Detergent composition comprising a cationic surfactant and a hydrophobic peroxyacid bleaching system
WO1997003162A1 (en) Detergent compositions
EP1023422A1 (en) A detergent composition
EP0883600B1 (en) Cationic detergent compounds
US6313086B1 (en) Detergent compositions containing and effervescent
GB2303145A (en) Detergent compositions
EP0906386B1 (en) Detergent composition
WO1998004672A1 (en) A process and composition for detergents
CA2232205A1 (en) Detergent particle
GB2311536A (en) Dishwashing and laundry detergents
GB2303144A (en) Detergent compositions
GB2311538A (en) Detergent compositions
GB2313603A (en) Detergent compositions
EP0915956A1 (en) A detergent composition
US5981460A (en) Detergent compositions comprising a cationic ester surfactant and a grease dispensing agent
CA2261904A1 (en) Detergent compositions
WO1998004667A1 (en) A detergent composition
GB2334528A (en) Hydrogen peroxide releasing detergent composition
WO1998017760A1 (en) A detergent composition
GB2315764A (en) Detergent comprising surfactant, acid source and alkaline source
WO1998000491A1 (en) Detergent composition
GB2303143A (en) Detergent compositions
CA2268671C (en) A detergent composition

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)