WO2000053716A1 - Wasch- und reinigungsmittelformkörper mit tensid-builderkombination - Google Patents

Wasch- und reinigungsmittelformkörper mit tensid-builderkombination Download PDF

Info

Publication number
WO2000053716A1
WO2000053716A1 PCT/EP2000/001811 EP0001811W WO0053716A1 WO 2000053716 A1 WO2000053716 A1 WO 2000053716A1 EP 0001811 W EP0001811 W EP 0001811W WO 0053716 A1 WO0053716 A1 WO 0053716A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
surfactant
zeolite
detergent
acid
Prior art date
Application number
PCT/EP2000/001811
Other languages
English (en)
French (fr)
Inventor
Andreas Lietzmann
Monika Böcker
Heinke Jebens
Fred Schambil
Markus Semrau
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to AU41038/00A priority Critical patent/AU4103800A/en
Publication of WO2000053716A1 publication Critical patent/WO2000053716A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/128Aluminium silicates, e.g. zeolites

Definitions

  • the present invention relates to moldings which have washing and cleaning properties.
  • the invention relates to detergent tablets for textile washing in a household washing machine, which are briefly referred to as detergent tablets.
  • European patent application EP 711 828 claims a method for producing detergent tablets by compressing a particulate composition that contains a binder.
  • the melting point of the binder should be between 35 and 90 ° C and the compression at temperatures below of the melting point, but above 28 ° C. This document therefore combines a "chemical” with a “physical” procedure.
  • phosphate-based and nonionic surfactant detergent tablets with excellent application properties can be formulated if they contain a zeolite of the faujasite type, which is used in a certain weight ratio to the nonionic surfactant.
  • the present invention relates to detergent tablets made from compressed, particulate detergent and detergent, containing surfactant (s), builders and optionally further ingredients of detergents and cleaning agents which contain nonionic surfactants, phosphate builders and zeolite of the faujasite type, the The ratio of nonionic surfactants to zeolite of the faujasite type is between 1:20 and 1: 1.
  • the moldings according to the invention contain nonionic surfactants, phosphate builders and zeolite of the faujasite type.
  • the zeolite of the faujasite type and the phosphate fulfill builder tasks, while nonionic surfactants are contained as washing-active substances.
  • the majority of the builder substance is usually made up of the phosphates.
  • alkali metal phosphates Of the large number of commercially available phosphates, the alkali metal phosphates, with particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), are of the greatest importance in the detergent and cleaning agent industry.
  • Alkali metal phosphates is the general term for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish between metaphosphoric acids (HPO 3 ) n and orthophosphoric acid H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: They act as alkali carriers, prevent limescale deposits on machine parts and lime incrustations in tissues and also contribute to cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 PO 4 exists as a dihydrate (density 1.91 like “3 , melting point 60 °) and as a monohydrate (density 2.04 like “ 3 ). Both salts are white, water-soluble powders, which lose water of crystallization when heated and at 200 ° C into the weakly acidic diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 O 7 ), at higher temperature in sodium trimetaphosphate (Na 3 P 3 O 9 ) and Maddrell's salt (see below).
  • NaH 2 PO 4 is acidic; it occurs when phosphoric acid is adjusted to pH 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate (primary or monobasic potassium phosphate, potassium biphosphate, KDP), KH 2 PO 4 , is a white salt with a density of 2.33 "3 , has a melting point of 253 ° [decomposition to form potassium polyphosphate (KPO 3 ) and is light soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na ⁇ PO ⁇ is a colorless, very easily water-soluble crystalline salt. It exists anhydrous and with 2 mol. (Density 2.066 gladly “3 , water loss at 95 °), 7 mol. (Density 1.68 gladly “ 3 , melting point 48 ° with loss of 5 H 2 O) and 12 mol. Water ( Density 1.52 "3 , melting point 35 ° with loss of 5 H 2 O), becomes anhydrous at 100 ° and changes to diphosphate Na 4 P 2 O 7 when heated more.
  • Disodium hydrogenphosphate is lost by neutralizing phosphoric acid with soda solution Using phenolphthalein as an indicator Dipotassium hydrogen phosphate (secondary or dibasic potassium phosphate), K 2 HPO 4 , is an amorphous, white salt that is easily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 PO 4 are colorless crystals, which like dodecahydrate have a density of 1.62 "3 and a melting point of 73-76 ° C (decomposition tongue), as decahydrate (corresponding to 19-20% P 2 O 5 ) has a melting point of 100 ° C and in anhydrous form (corresponding to 39-40% P 2 O 5 ) a density of 2.536 "3.
  • Trisodium phosphate is in water slightly alkaline reaction soluble a solution of exactly 1 mole of disodium phosphate and 1 mole of NaOH and is produced by evaporation.
  • tripotassium phosphate (tertiary or tribasic potassium phosphate), K 3 PO 4
  • K 3 PO 4 is a white, zerf adoptedhches granular powder with a density of 2.56 gcm " 3 , has a melting point of 1340 ° and is easily soluble in water with an alkaline reaction. It arises, for example, when heating Thomas slag with coal and potassium sulfate. Despite the higher price, the more soluble, therefore highly effective, potassium phosphates are often preferred over corresponding sodium compounds in the cleaning agent industry.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534 like “3 , melting point 988 °, also given 880 °) and as decahydrate (density 1.815-1.836 like " 3 , melting point 94 ° with loss of water) .
  • Substances are colorless crystals that are soluble in water with an alkaline reaction.
  • Na 4 P 2 O 7 is formed by heating disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying. The decahydrate complexes heavy metal salts and hardness formers and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K 4 P 2 O 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33, which is soluble in water, with the pH of the 1% solution 25 ° is 10.4.
  • Sodium and potassium phosphates in which one can differentiate cyclic representatives, the sodium or potassium metaphosphates and chain-like types, the sodium or potassium polyphosphates. A large number of terms are used in particular for the latter: melt or glow phosphates, Graham's salt, Kurrol's and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • pentasodium triphosphate Na 5 P 3 O 10 (sodium tripolyphosphate)
  • Approx. 17 g of the salt free from water of crystallization dissolve in 100 g of water at room temperature, approx. 20 g at 60 ° and 32 g at 100 °; After heating the solution at 100 ° for two hours, hydrolysis produces about 8% orthophosphate and 15% diphosphate.
  • pentasodium triphosphate In the production of pentasodium triphosphate, phosphoric acid is reacted with sodium carbonate solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dewatered by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.). Pentapotassium triphosphate, K 5 P 3 O 10 (potassium tripolyphosphate), is commercially available, for example, in the form of a 50% strength by weight solution (> 23% P 2 O 5 , 25% K 2 O). The potassium polyphosphates are widely used in the detergent and cleaning agent industry. There are also sodium potassium tripolyphosphates which can also be used in the context of the present invention. These occur, for example, when hydrolyzing sodium trimetaphosphate with KOH:
  • these can be used just like sodium tripolyphosphate, potassium tripolyphosphate or mixtures of these two; Mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can also be used according to the invention.
  • Preferred detergent tablets within the scope of the present invention contain, as phosphates, alkali metal phosphates, preferably pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), in amounts of 1 to 60% by weight, preferably 5 to 50% by weight, particularly preferably from 10 to 40% by weight and in particular from 15 to 35% by weight, in each case based on the weight of the shaped body.
  • alkali metal phosphates preferably pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate)
  • 1 to 60% by weight preferably 5 to 50% by weight, particularly preferably from 10 to 40% by weight and in particular from 15 to 35% by weight, in each case based on the weight of the shaped body.
  • the zeolite also contained in the moldings according to the invention has the general formula M 2 / n O 'Al 2 O 3 "x SiO 2 " y H 2 O, in which M is a cation of valence n, x for Values that are greater than or equal to 2 and y can take values between 0 and 20.
  • the zeolite structures are formed by linking AlO 4 tetrahedra with SiO 4 tetrahedra, this network being occupied by cations and water molecules.
  • the cations in these structures are relatively mobile and can be exchanged for other cations in different degrees.
  • the intercrystalline "zeolitic" water can be released continuously and reversibly, while in some types of zeolite structural changes are also associated with the water release or uptake.
  • the "primary binding units” AlO 4 tetrahedra and SiO 4 tetrahedra
  • secondary binding units which have the form of one or more rings.
  • 4-, 6- and 8-membered rings appear in various zeolites (referred to as S4R, S6R and S8R), other types are connected via four- and six-membered double ring prisms (most common types: D4R as a square prism or D6R as a hexagonal prism ).
  • S4R, S6R and S8R zeolites
  • D4R most common types: D4R as a square prism or D6R as a hexagonal prism
  • These "secondary subunits" connect different polyhedra, which are denoted by Greek letters.
  • the best known zeolite, zeolite 4 A is a cubic combination of ß-cages that are linked by D4R subunits. It belongs to the zeolite structure group 3 and its three-dimensional network has pores of 2.2 ⁇ and 4.2 ⁇ size, the formula unit in the unit cell can be with Na, 2 [(AlO 2 ) 12 (SiO 2 ) 12 ] 'Describe 27 H 2 O.
  • Zeolites of the faujasite type are used according to the invention in the detergent tablets according to the invention.
  • the mineral faujasite belongs to the faujasite types within the zeolite structure group 4, which is due to the double six-ring subunit D6R (compare Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, page 92).
  • the zeolite structure group 4 also includes the minerals chabazite and gmelinite as well as the synthetic zeolites R (chabazite type), S (gmelinite type), L and ZK-5. The latter two synthetic zeolites have no mineral analogues.
  • Zeolites of the faujasite type are made up of ß-cages which are tetrahedral linked by D6R subunits, the ß-cages being arranged similar to the carbon atoms in the diamond.
  • the three-dimensional network of the zeolites of the faujasite type used in the process according to the invention has pores of 2.2 and 7.4 ⁇ , the unit cell also contains 8 cavities with a diameter of approximately 13 ⁇ and can be determined using the formula Na 86 [(AlO 2 ) 86 (SiO 2 ) 106 ] '264 H 2 O describe.
  • the network of zeolite X contains a void volume of approximately 50%, based on the dehydrated crystal, which represents the largest empty space of all known zeolites (zeolite Y: approx. 48% o void volume, faujasite: approx. 47% void volume). (All data from: Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, pages 145, 176, 177).
  • zeolite of the faujasite type denotes all three zeolites which form the faujasite subgroup of the zeolite structure group 4.
  • zeolite X zeolite Y and faujasite and mixtures of these compounds can also be used according to the invention, pure zeolite X being preferred.
  • Mixtures or cocrystallizates of zeolites of the faujasite type with other zeolites which do not necessarily have to belong to the zeolite structure group 4 can also be used according to the invention.
  • the aluminum silicates used in the process according to the invention are commercially available and the methods for their preparation are described in standard monographs.
  • Examples of commercially available X-type zeolites can be described by the following formulas: Na 86 [(AlO 2 ) 86 (SiO 2 ) 106 ] x H 2 O,
  • x can have values between 0 and 276 and the pore sizes range from 8.0 to 8.4 ⁇ .
  • zeolite X and zeolite A (ca. 80 wt .-% zeolite X) which is marketed by CONDEA Augusta SpA under the trade name VEGOBOND AX ® and through the formula
  • Y-type zeolites are also commercially available and can be expressed, for example, by the formulas
  • Preferred detergent tablets in the context of the present invention are characterized in that the ratio of nonionic surfactants to faujasite-type zeolite is between 1:15 and 1: 1.25, preferably between 1:10 and 1: 1, 5 and in particular between 1: 5 and 1: 2.
  • the faujasite-type zeolite is preferably used in amounts of 0.5 to 20% by weight, preferably 1 to 15% by weight, particularly preferably 2 to 10% by weight and in particular 2.5 to 5 % By weight, based in each case on the body weight, with zeolite X being preferred.
  • the detergent tablets according to the invention contain nonionic surfactants as a third mandatory component. These are described below:
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical has a linear or preferably 2-methyl branching may be or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 .
  • fatty alcohols with more than 12 EO can also be used. Examples of this are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • Another class of preferably used nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and pro- poxylated fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters, as described, for example, in Japanese patent application JP 58/217598 or which are preferably prepared by the process described in international patent application WO-A-90/13533 become.
  • alkyl polyglycosides Another class of nonionic surfactants that can be used advantageously are the alkyl polyglycosides (APG).
  • Alkypolyglycosides that can be used satisfy the general formula RO (G) z , in which R denotes a linear or branched, in particular methyl-branched, saturated or unsaturated, aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G is Is a symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of glycosidation z is between 1.0 and 4.0, preferably between 1.0 and 2.0 and in particular between 1.1 and 1.4.
  • Linear alkyl polyglucosides ie alkyl polyglycosides, in which the polyglycosyl radical is a glucose radical and the alkyl radical is an n-alkyl radical are preferably used.
  • the surfactant granules can preferably contain alkyl polyglycosides, with APG contents of more than 0.2% by weight, based on the entire molded body, being preferred.
  • Particularly preferred detergent tablets contain APG in amounts of 0.2 to 10% by weight, preferably 0.2 to 5% by weight and in particular 0.5 to 3% by weight.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula (I), Rl
  • RCO stands for an aliphatic acyl radical with 6 to 22 carbon atoms
  • R for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms
  • [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II)
  • R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 represents a linear, branched or cyclic alkyl radical or is an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, C 1 -C 4 -alkyl or phenyl radicals being preferred
  • [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this rest.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be converted, for example according to the teaching of international application WO-A-95/07331, into the desired polyhydroxyfatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • detergent and cleaning agent bodies are preferred which contain nonionic surfactants in amounts of from 0.5 to 20% by weight, preferably from 1 to 10% by weight and in particular from 1.5 to 5% by weight, each based on the weight of the molded article.
  • nonionic surfactants from all of the above-mentioned groups can be used. Regardless of the chemical nature of the nonionic surfactants used, it is preferred that the nonionic surfactants contained in the detergent tablets have a melting point below 40 ° C.
  • alcohol alkoxylates are used as particularly preferred nonionic surfactants.
  • alkylene oxide units denotes the statistical mean value of AO groups in a molecule of the nonionic surfactant or, in other words, the statistical mean value of the moles of alkylene oxide which are present per mole of alcohol.
  • ethylene oxide (EO) and propylene oxide (PO) units are of technical interest as alkylene oxide units.
  • the alkoxylates in question can be obtained in a known manner from the alcohols and ethylene or propylene oxide.
  • EO / PO mixtures can also be used in the context of the present invention.
  • alkoxylated nonionic surfactants can be varied within wide limits.
  • the alkyl radical is determined by the selection of the long-chain alcohol.
  • the industrially accessible alcohols with 8 to 24 carbon atoms are, in particular, native alcohols from the hydrogenation of carboxylic acids or carboxylic acid derivatives, preferred.
  • the alcohols obtainable from technical alcohol syntheses, such as oxo alcohols and Ziegleral alcohols, can also be used.
  • fatty alcohols The alcohols accessible from the hydrogenation of carboxylic acids are referred to as fatty alcohols because the acids are derived from native fats and oils. These are not chemical substances, but mixtures of substances, the composition of which can vary.
  • Fatty alcohols which can be used as the alkyl radical of the alkoxylated nonionic surfactants in the context of the present invention are, for example, hexanol (capro alcohol), heptanol (enant alcohol), octanol (capry alcohol), nonanol (pelargon alcohol), decanol (capric alcohol), undecanol, etc.
  • fatty alcohols such as dodecaol (laurinyl alcohol), tetradecanol (myristinyl alcohol), hexadecanol (palmitinyl alcohol), octadecanol (stearinyl alcohol), eicosanol (arachinyl alcohol), docosanol (behenyl alcohol), tetracosanol (ligno alcohol), rinyl Hexacosanol (cerotinyl alcohol), triacotanol (melissinyl alcohol) as well as the unsaturated species 9c-hexadecenol (palmitoleyl alcohol), 6c-octadecenol (petroseline linyl alcohol), 6t-octadecenol (petroselaidinyl alcohol), 9c-octadecenol (oleyl alcohol), 9-octadecenol (oleyl alcohol), 9-
  • Such mixtures are, for example, Koskosölalkohol (approx. 6 wt .-% C 8 , 6 wt .-% C 10 , 48 wt .-% C 12 , 18 wt .-% C 14 , 10 wt .-% C 16 , 2 wt .-% C18, 8 wt .-% C lg, 1 wt .-% C lg), palm kernel oil alcohol (about 4 wt .-% C 8, 5 wt .-% C 10, 50 wt .-% C 12 , 15% by weight C 14 , 7% by weight C 16 , 2% by weight C 18 , 15% by weight C 18 , 1% by weight C 18 ..), tallow alcohol (approx.
  • fatty alcohol ethoxylates are particularly preferred as alkoxylated nonionic surfactants.
  • Preferred detergent tablets contain alcohol ethoxylates of the general formula as nonionic surfactants
  • the detergent tablets according to the invention can also contain other detergent substances, in particular from the groups of anionic, cationic and zwitterionic surfactants, anionic surfactants preferably being contained in the tablets for cost reasons and on account of their performance spectrum.
  • Anionic surfactants used are, for example, those of the sulfonate and sulfate type.
  • the surfactants of the sulfonate type are preferably C 9 . 13 - alkyl benzene sulfonates, olefin sulfonates, ie mixtures of alkene sulfonates and hydroxyalkane, and the disulfonates obtained, for example obtained from C 12 _ 18 monoolefins with terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation into consideration.
  • alkanesulfonates which are obtained from C 12 _ 18 alkanes, for example by sulfochlorination or sulfoxidation and subsequent hydrolysis or neutralization.
  • the esters of ⁇ -sulfofatty acids (ester sulfonates), for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, are also suitable.
  • Other suitable anionic surfactants are sulfonated fatty acid glycerol esters.
  • Fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and their mixtures as obtained in the production by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol become.
  • Preferred sulfonated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • the alk (en) yl sulfates are the alkali and in particular the sodium salts of the sulfuric acid half esters of C 12 -C 18 fatty alcohols, for example from coconut oil alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 0 -C 20 -oxoalcohols and those half-esters of secondary alcohols of this chain length are preferred. Also preferred are alk (en) yl sulfates of the chain length mentioned which contain a synthetic, straight-chain alkyl radical which is produced on a petrochemical basis and which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials.
  • 21 - alcohols such as 2-methyl-branched C 9 . n -Alcohols with an average of 3.5 moles of ethylene oxide (EO) or C 12.18 -fatty alcohols with 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in cleaning agents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 . 18 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Soaps are particularly suitable as further anionic surfactants.
  • Saturated fatty acid soaps are suitable, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular from natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or triefhanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • detergent tablets which contain 5 to 50% by weight, preferably 7.5 to 40% by weight and in particular 10 to 20% by weight of anionic surfactant (s), based in each case on the Molded body weight included.
  • anionic surfactants that are used in the detergent tablets according to the invention, there are no general conditions to be observed that prevent freedom of formulation.
  • preferred detergent tablets have a soap content which exceeds 0.2% by weight, based on the total weight of the tablet.
  • the preferred anionic surfactants are the alkylbenzenesulfonates and fatty alcohol sulfates, with preferred detergent tablets additionally containing anionic surfactant (s), preferably fatty alcohol sulfate (s).
  • s anionic surfactant
  • Quantities are from 2 to 20% by weight, preferably 2.5 to 15 % By weight and in particular 5 to 10% by weight of fatty alcohol sulfate, in each case based on the weight of the shaped body, are preferred.
  • Phosphate (s), zeolite (s) of the faujasite type and nonionic (s) surfactant (s) can be introduced into the laundry detergent tablets according to the invention in any manner. It has proven to be advantageous if the premix to be molded into moldings contains phosphate (s) and zeolite (s) of the faujasite type in the form of a surfactant granulate. For this purpose, a surfactant granulate is first produced, which preferably contains the total amount of the phosphates and zeolites of the faujasite type contained in the shaped bodies, and subsequently mixed with further processing components, after which the premix is fed to a tableting.
  • the above-mentioned surfactant granules contain the total amount of the nonionic surfactants contained in the shaped bodies, preferably even the total amount of the total surfactants contained in the shaped bodies.
  • detergent tablets are preferred which are characterized in that they contain the total amount of phosphates and zeolites of the faujasite type in the form of a surfactant granulate, which preferably also contains the total amount of the surfactants contained in the tablets.
  • Such preferred surfactant granules naturally have higher phosphate contents than the overall molded article.
  • detergent tablets are preferred in which the surfactant granules 5 to 70% by weight, preferably 10 to 65% by weight, particularly preferably 20 to 60% by weight and in particular 25 to 50% by weight of phosphate, in each case based on the weight of the surfactant granules.
  • ingredients of detergents and cleaning agents in particular so-called small components such as optical brighteners, polymers, defoamers, phosphonates, colors and fragrances, can also be part of the surfactant granules. These substances are described below.
  • the premix to be pressed can also contain one or more substances from the groups of bleaching agents, bleach activators, disintegration aids, etc. The substances mentioned, which are described below, can be The specific embodiments of the present invention also be part of the surfactant granules.
  • Another object of the present invention is a process for the production of detergent tablets by mixing a surfactant-containing granulate with pulverulent preparation components and subsequent molding, in which the premix to be pressed contains nonionic surfactants, phosphate builders and zeolite of the faujasite type, where the ratio of non-ionic surfactants to zeolite of the faujasite type is between 1:20 and 1: 1.
  • the surfactant-containing granules contain the total amount of the phosphates and zeolites of the faujasite type contained in the moldings, granules which additionally contain the total amount of the nonionic surfactants, preferably the total amount of all surfactants, being preferred.
  • the premix to be pressed contains surfactant-containing granulate (s) and further preparation components, with phosphate (s), zeolite (s) of the faujasite type and the surfactants being part of the granulate
  • surfactant-containing granulate s
  • further preparation components with phosphate (s), zeolite (s) of the faujasite type and the surfactants being part of the granulate
  • the usual technical granulation processes such as compacting, extrusion, mixer granulation, pelleting or fluidized bed granulation are carried out It is advantageous for the later detergent tablets if the premix to be pressed has a bulk density which is close to that of the conventional compact detergent the premix to be pressed has a bulk density of at least 500 g / 1, preferably at least 600 g / 1 and in particular at least 700 g / 1.
  • the surfactant-containing granulate satisfies certain particle size criteria.
  • Methods according to the invention are preferred in which the ten- granules containing particles have particle sizes between 100 and 2000 ⁇ m, preferably between 200 and 1800 ⁇ m, particularly preferably between 400 and 1600 ⁇ m and in particular between 600 and 1400 ⁇ m.
  • the surfactant granules preferably also contain carriers which particularly preferably come from the group of builders.
  • the premix to be compressed contains a surfactant-containing granulate which contains anionic and or nonionic surfactants and builders and whose total surfactant content is 5 to 60% by weight, preferably 10 to 50% by weight and in particular 15 up to 40% by weight, based in each case on the surfactant granules.
  • the premix contains a surfactant-containing granulate which contains from 5 to 60% by weight, preferably from 10 to 50% by weight and in particular from 15 to 40% by weight, based in each case on the weight of the surfactant granules (see above).
  • detergent tablets in which the anionic surfactant content of the surfactant granules is 5 to 45% by weight, preferably 10 to 40% by weight and in particular 15 to 35% by weight, in each case based on the weight of the surfactant granules as well as detergent tablets, in which the content of the surfactant granules of nonionic surfactants is 1 to 30% by weight, preferably 5 to 25% by weight and in particular 7.5 to 20% by weight, in each case based on the weight of the surfactant granules are preferred according to the invention.
  • Particularly preferred variants of the process according to the invention are characterized in that the proportion of the surfactant-containing granules in the premix to be treated and thus in the detergent tablets is 40 to 95% by weight, preferably 45 to 85% by weight and in particular 55 to 75% by weight .-%, based in each case on the weight of the detergent and shaped body.
  • the proportion of the surfactant-containing granules in the premix to be treated and thus in the detergent tablets is 40 to 95% by weight, preferably 45 to 85% by weight and in particular 55 to 75% by weight .-%, based in each case on the weight of the detergent and shaped body.
  • builders are important ingredients of detergents and cleaning agents. In addition to the wash-active substances, builders are the most important ingredients in detergents and cleaning agents.
  • the finely crystalline, synthetic and bound water-containing zeolite used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 up to 22% by weight of bound water.
  • Crystalline, layered sodium silicates suitable as builders have the general formula NaMSi x O 2x + 1 ⁇ 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x is 2, 3 or 4.
  • M sodium or hydrogen
  • x is a number from 1.9 to 4
  • y is a number from 0 to 20
  • preferred values for x is 2, 3 or 4.
  • Such crystalline layered silicates are described, for example, in European patent application EP-A-0 164 514.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicate Na ⁇ Si ⁇ 'yH 2 O are preferred, wherein ⁇ -sodium disilicate can be obtained, for example, by the method described in international patent application WO-A-91/08171.
  • the dissolving delay compared to conventional amorphous sodium silicates can be done in various ways, for example by surface treatment, compounding, compacting / compression or caused by overdrying.
  • the term “amo ⁇ h” is also understood to mean “roentgenamo ⁇ h”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good building properties if the silicate particles deliver washed-out or even sharp diffraction maxima in electron diffraction experiments.
  • This is to be integrated in such a way that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which also have a delay in dissolution compared to conventional water glasses, are described, for example, in German patent application DE-A-44 00 024. Particularly preferred are compressed / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray silicates.
  • Organic cobuilders that can be used in the detergent tablets according to the invention are, in particular, polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates. These classes of substances are described below.
  • Usable organic builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids being understood to mean those carboxylic acids which carry more than one acid function.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), as long as such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaning agents.
  • Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures thereof can be mentioned in particular.
  • Polymeric polycarboxylates are also suitable as builders, for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 500 to 70,000 g / mol.
  • the molecular weights given for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used.
  • the measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the investigated polymers. This information differs significantly from the molecular weight information for which polystyrene sulfonic acids are used as standard.
  • the molecular weights measured against polystyrene sulfonic acids are generally significantly higher than the molecular weights given in this document.
  • Suitable polymers are, in particular, polyacrylates, which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates which have molar masses from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, can in turn be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids, is generally 2,000 to 70,000 g / mol, preferably 20,000 to 50,000 g / mol and in particular 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of (co) polymeric polycarboxylates in the agents is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • the polymers can also contain allylsulfonic acids, such as, for example, allyloxybenzenesulfonic acid and methallylsulfonic acid, as monomers.
  • allylsulfonic acids such as, for example, allyloxybenzenesulfonic acid and methallylsulfonic acid, as monomers.
  • biodegradable polymers composed of more than two different monomer units, for example those which contain salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives as monomers or those which contain salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives as monomers .
  • copolymers are those which are described in German patent applications DE-A-43 03 320 and DE-A-44 17 734 and which preferably contain acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids their salts or their precursor substances.
  • Particularly preferred are polyaspartic acids or their salts and derivatives, of which it is disclosed in German patent application DE-A-195 40 086 that, in addition to cobuilder properties, they also have a bleach-stabilizing effect.
  • Suitable builder substances are polyacetals, which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 carbon atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and their mixtures and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • Other suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches. The hydrolysis can be carried out by customary, for example acid or enzyme-catalyzed, methods.
  • DE dextrose equivalent
  • Both maltodextrins with a DE between 3 and 20 and dry glucose sirape with a DE between 20 and 37 as well as so-called yellow dextrins and white dextrins with higher molar masses in the range from 2000 to 30000 g / mol can be used.
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • oxidizing agents capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and processes for their preparation are known, for example, from European patent applications EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 and EP-A-0 542 496 as well as international patent applications WO 92 / 18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 and WO 95/20608.
  • An oxidized oligosaccharide according to German patent application DE-A-196 00 018 is also suitable.
  • a product oxidized at C 6 of the saccharide ring can be
  • Ethylene diamine N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • Glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are 3 to 15% by weight in formulations containing zeolite and / or silicate.
  • Further usable organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups. Such cobuilders are described, for example, in international patent application WO 95/20029.
  • phosphonates are, in particular, hydroxyalkane or aminoalkane phosphonates.
  • hydroxyalkane phosphonates l-hydroxyethane-l, l-diphosphonate (HEDP) is of particular importance as a cobuilder. It is preferably used as the sodium salt, the disodium salt reacting neutrally and the tetrasodium salt in an alkaline manner (pH 9).
  • Preferred aminoalkane phosphonates are ethylenediaminetetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs.
  • HEDP is preferably used as the builder from the class of the phosphonates.
  • the aminoalkanephosphonates also have a pronounced ability to bind heavy metals. Accordingly, it may be preferred, particularly if the agents also contain bleach, to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • press agglomeration processes can also be used, for example. Methods in which the surfactant-containing granules are produced by granulation, agglomeration, press agglomeration or a combination of these methods are therefore preferred.
  • the granulation can be carried out in a large number of apparatuses customarily used in the detergent and cleaning agent industry. For example, it is possible to use the rounding agents commonly used in pharmacy. In such turntable devices, the residence time of the granules is usually less than 20 seconds.
  • Conventional mixers and mixing granulators are also suitable for granulation. Both high-intensity mixers (“high-shear mixers”) and normal mixers with lower circulation speeds can be used as mixers.
  • Suitable mixers are, for example Eirich ® mixer Series R or RV (trademark of Maschinenfabrik Gustav Eirich, Hardheim), the Schugi ® Flexomix, the Fukae ® FS-G mixers (trade marks of Fukae Powtech, Kogyo Co., Japan), the Lödige ® FM, KM and CB mixers (trademark of Lödige Maschinenbau GmbH, Paderborn) or the Drais ® series T or KT (trademark of Drais-Werke GmbH, Mannheim).
  • the residence times of the granules in the mixers are in the range of less than 60 seconds, the residence time also being dependent on the circulation speed of the mixer. The dwell times are reduced accordingly the faster the mixer runs.
  • the residence times of the granules in the mixer / rounder are preferably less than one minute, preferably less than 15 seconds. Dwell times of up to 20 minutes are set in slow-running mixers, for example a Lödige KM, dwell times below 10 minutes being preferred because of the process economy.
  • the surfactant-containing granules are compressed under pressure and under the action of shear forces, homogenized in the process and then discharged from the apparatus in a shaping manner.
  • press agglomera The extrusion, roller compaction, pelleting and tableting processes.
  • preferred press agglomeration processes used to produce the surfactant-containing granules are extrusion, roller compaction and pelletization.
  • tablet disintegrants In order to facilitate the disintegration of highly compressed moldings, it is possible to incorporate disintegration aids, so-called tablet disintegrants, in order to shorten the disintegration times.
  • tablet disintegrants or accelerators of decay are understood as auxiliary substances which are necessary for rapid disintegration of tablets in water or gastric juice and ensure the release of the pharmaceuticals in absorbable form.
  • Preferred detergent tablets contain 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 to 6% by weight of one or more disintegration auxiliaries, in each case based on the molded article weight.
  • Disintegrants based on cellulose are used as preferred disintegrants in the context of the present invention, so that preferred washing and cleaning agent shaped bodies such a disintegrant based on cellulose in amounts of 0.5 to 10% by weight, preferably 3 to 7% by weight and in particular 4 up to 6% by weight contain.
  • Pure cellulose has the formal gross composition (C 6 H, 0 O 5 ) n and, viewed formally, is a ß-1,4-polyacetal of cellobiose, which in turn is made up of two molecules of glucose.
  • Suitable celluloses consist of approximately 500 to 5000 glucose units and consequently have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions.
  • Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxyl hydrogen atoms have been substituted.
  • celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as a cellulose-based disintegrant, but are used in a mixture with cellulose.
  • the content of cellulose derivatives in these mixtures is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegrant. Pure cellulose which is free of cellulose derivatives is particularly preferably used as the disintegrant based on cellulose.
  • the cellulose used as disintegration aid is preferably not used in finely divided form, but is converted into a coarser form, for example granulated or compacted, before being added to the premixes to be treated.
  • Detergent tablets which contain disintegrants in granular or optionally granulated form, are described in German patent applications DE 197 09 991 (Stefan Herzog) and DE 197 10 254 (Henkel) and in international patent application WO98 / 40463 (Henkel). These documents can also be found in more detail on the production of granulated, compacted or cogranulated cellulose disintegrants.
  • the particle sizes of such disintegrants are usually above 200 ⁇ m, preferably at least 90% by weight between 300 and 1600 ⁇ m and in particular at least 90% by weight between 400 and 1200 ⁇ m.
  • the above and in the documents cited in more detail above coarser disintegration aids, are preferred in the present invention as the disintegration aid use and are commercially available, for example under the name of Arbocel ® TF-30-HG from Rettenmaier.
  • Microcrystalline cellulose can be used as a further cellulose-based disintegrant or as a component of this component.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which only attack and completely dissolve the amorphous areas (approx. 30% of the total cellulose mass) of the celluloses, but leave the crystalline areas (approx. 70%) undamaged.
  • a subsequent disaggregation of the microfine celluloses resulting from the hydrolysis provides the microcrystalline celluloses, which have primary particle sizes of approximately 5 ⁇ m and can be compacted, for example, to granules with an average particle size of 200 ⁇ m.
  • the premix to be treated additionally contains a disintegration aid, preferably a cellulose-based disintegration aid, preferably in granular, cogranulated or compacted form, in amounts of 0.5 to 10% by weight, preferably of 3 to 7 wt .-% and in particular from 4 to 6 wt .-%, each based on the weight of the premix.
  • a disintegration aid preferably a cellulose-based disintegration aid, preferably in granular, cogranulated or compacted form, in amounts of 0.5 to 10% by weight, preferably of 3 to 7 wt .-% and in particular from 4 to 6 wt .-%, each based on the weight of the premix.
  • the premix additionally contains one or more substances from the group of bleaching agents, bleach activators, enzymes, pH regulators, fragrances, perfume carriers, fluorescent agents, dyes, foam inhibitors, silicone oils, anti-redeposition agents, optical brighteners, graying inhibitors, color transfer inhibitors and corrosion inhibitors. These substances are described below.
  • bleaches that can be used include sodium percarbonate, peroxypyro- phosphates, citrate perhydrates and H 2 O 2 providing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid. Even when using the bleaching agents, it is possible to dispense with the use of surfactants and / or builders, so that pure bleach tablets can be produced.
  • bleaching agents from the group of organic bleaching agents can also be used.
  • Typical organic bleaching agents are the diacyl peroxides, such as dibenzoyl peroxide.
  • Other typical organic bleaching agents are peroxy acids, examples of which include alkyl peroxy acids and aryl peroxy acids.
  • Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monophosphate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearonic acid, ⁇ -phthalonic acid phthalimidoxyhexanoic acid (PAP)], o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1,12-diperoxycarboxylic acid, 1, 9-diperoxyazelaic acid, diperocyseboxydiacid acid, diperoxyacyl diperoxyacid, Decyldiperoxybutane-1,4-diacid,
  • Chlorine or bromine-releasing substances can also be used as bleaching agents in molded articles for automatic dishwashing.
  • Suitable materials which release chlorine or bromine include, for example, heterocyclic N-bromo- and N-chloramides, for example trichloroisocyanuric acid, tribromoisocyanuric acid,
  • Dibromo isocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium are considered.
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydanthoin are also suitable.
  • bleach activators can be incorporated into the premix.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular l, 5-diacetyl-2,4-dioxohexahydro-l, 3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic acid anhydrides, in particular phthalic anhydride, acylated polyhydric
  • bleach catalysts can also be incorporated into the moldings.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands as well as Co, Fe, Cu and Ru amine complexes can also be used as bleaching catalysts.
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof. Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus are particularly suitable. Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example from protease and amylase or protease and lipase or protease and cellulase or from cellulase and lipase or from protease, amylase and lipase or protease, lipase and cellulase, but in particular cellulase-containing mi of particular interest.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of enzymes, enzyme mixtures or enzyme granules in the shaped bodies according to the invention can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the detergent tablets can also contain components that positively influence the oil and fat washability from textiles (so-called soil repellents). This effect becomes particularly clear if a textile is soiled that has already been washed several times beforehand with a detergent according to the invention which contains this oil and fat-dissolving component.
  • the preferred oil and fat-dissolving components include, for example, nonionic cellulose ethers such as methyl cellulose and methyl hydroxypropyl cellulose with a proportion of methoxyl groups from 15 to 30% by weight and of hydroxypropoxyl groups from 1 to 15% by weight, based in each case the nonionic cellulose ether, as well as the polymers of phthalic acid and or terephthalic acid or their derivatives known from the prior art, in particular polymers of ethylene terephthalates and or polyethylene glycol terephthalates or anionically and / or nonionically modified derivatives thereof. Of these, the sulfonated derivatives of phthalic acid and terephthalic acid polymers are particularly preferred.
  • the shaped bodies can contain derivatives of diaminostilbenedisulfonic acid or their alkali metal salts as optical brighteners. Suitable are, for example, salts of 4,4'-bis (2-anilino-4-mo ⁇ holino-l, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar structure which instead of the Mo ⁇ holino- Group carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • Brighteners of the substituted diphenylstyryl type may also be present, for example the alkali salts of 4,4'-bis (2-sulfostyryl) diphenyl, 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) diphenyl. Mixtures of the aforementioned brighteners can also be used. Dyes and fragrances are added to the detergent tablets according to the invention in order to improve the aesthetic impression of the products and, in addition to the washing or cleaning performance, to provide the consumer with a visually and sensorially "typical and unmistakable" product.
  • fragrance compounds for example the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type, can be used as perfume oils or fragrances.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutylate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allyl cyclohexyl benzyl propylate, propylateionate.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the jonones, oc-isomethyl ionone and methyl cedryl ketone the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and te ⁇ ineol
  • the hydrocarbons mainly include te ⁇ enes such as limonene and pinene.
  • Perfume oils of this type can also contain natural fragrance mixtures such as are obtainable from plant sources, for example pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, lentil flower oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • the colorant content of the detergent tablets according to the invention is usually less than 0.01% by weight, while fragrances can make up up to 2% by weight of the total formulation.
  • the fragrances can be incorporated directly into the agents according to the invention, but it can also be advantageous to apply the fragrances to carriers which increase the adhesion of the perfume to the laundry and ensure a long-lasting fragrance of the textiles by slower fragrance release.
  • Such carrier materials have, for example, se cyclodextrins have proven themselves, whereby the cyclodextrin-perfume complexes can additionally be coated with further auxiliaries.
  • the detergent tablets can be colored with suitable dyes.
  • Preferred dyes the selection of which is not difficult for the person skilled in the art, have a high storage stability and insensitivity to the other ingredients of the compositions and to light, and no pronounced substantivity to textile fibers in order not to dye them.
  • the premix Before the particle-shaped premix is molded into detergent tablets, the premix can be "powdered” with finely divided surface treatment agents. This can be of advantage for the quality and physical properties of both the premix (storage, pressing) and the finished detergent tablets.
  • Fine particle size reducing agents are well known in the art, mostly zeolites, silicates or other inorganic salts being used.
  • the premix is preferably “powdered” with finely divided zeolite, zeolites of the faujasite type being preferred.
  • the term “faujasite-type zeolite” denotes all three zeolites which form the faujasite subgroup of the zeolite structure group 4 (compare Donald W.
  • the or one of the admixed processing components is a faujasite-type zeolite with particle sizes below 100 ⁇ m, preferably below 100 ⁇ m and in particular below 5 ⁇ m and at least 0 , 2 wt .-%, preferably at least 0.5 wt .-% and in particular more than 1 wt .-% of the premix to be ve ⁇ resses.
  • the molded articles according to the invention are first produced by dry mixing the constituents, which can be wholly or partially pregranulated, and then providing information, in particular feeding them into tablets, whereby conventional methods can be used.
  • the premix is compacted in a so-called die between two punches to form a solid compact.
  • This process which is briefly referred to below as tabletting, is divided into four sections: metering, compression (elastic deformation), plastic deformation and ejection.
  • the premix is introduced into the die, the filling quantity and thus the weight and the shape of the molded body being formed being determined by the position of the lower punch and the shape of the pressing tool.
  • the constant dosing, even at high mold throughputs, is preferably achieved by volumetric dosing of the premix.
  • the upper punch touches the premix and lowers further in the direction of the lower punch.
  • the particles of the premix are pressed closer together, the void volume within the filling between the punches continuously decreasing. From a certain position of the upper punch (and thus from a certain pressure on the premix), the plastic deformation begins, in which the particles flow together and the molded body is formed.
  • the premix particles are also crushed and sintering of the premix occurs at even higher pressures.
  • the phase of elastic deformation is shortened further and further, so that the resulting shaped bodies can have more or less large cavities.
  • the finished molded body is pressed out of the die by the lower punch and transported away by subsequent transport devices.
  • the weight of the molded body is finally determined, since the compacts can still change their shape and size due to physical processes (stretching, crystallographic effects, cooling, etc.). Tableting takes place in commercially available tablet presses, which can in principle be equipped with single or double punches.
  • eccentric tablet presses are preferably used, in which the punch or stamps are fastened to an eccentric disc, which in turn is mounted on an axis with a certain rotational speed.
  • the movement of these rams is comparable to that of a conventional four-stroke engine.
  • the pressing can take place with one upper and one lower punch, but several punches can also be attached to one eccentric disk, the number of die holes being increased accordingly.
  • the throughputs of eccentric presses vary depending on the type from a few hundred to a maximum of 3000 tablets per hour.
  • rotary tablet presses are selected in which a larger number of dies is arranged in a circle on a so-called die table.
  • the number of matrices varies between 6 and 55 depending on the model, although larger matrices are also commercially available.
  • Each die on the die table is assigned an upper and lower punch, and again the pressure can be built up actively only by the upper or lower punch, but also by both stamps.
  • the die table and the stamps move about a common vertical axis, the stamps being brought into the positions for filling, compaction, plastic deformation and ejection by means of rail-like cam tracks during the rotation.
  • these cam tracks are supported by additional low-pressure pieces, low-tension rails and lifting tracks.
  • the die is filled via a rigidly arranged feed device, the so-called filling shoe, which is connected to a storage container for the premix.
  • the pressing pressure on the premix can be individually adjusted via the pressing paths for the upper and lower punches, the pressure being built up by rolling the punch shaft heads past adjustable pressure rollers.
  • Rotary presses can also be provided with two filling shoes to increase the throughput, with only a semicircle having to be run through to produce a tablet.
  • All non-stick coatings known from the art are suitable for reducing stamp caking.
  • Plastic coatings, plastic inserts or plastic stamps are particularly advantageous.
  • Rotating punches have also proven to be advantageous, with the upper and lower punches being designed to be rotatable if possible.
  • a plastic insert can generally be dispensed with.
  • the stamp surfaces should be electropolished here. It was also shown that long pressing times are advantageous. These can be set with pressure rails, several pressure rollers or low rotor speeds. Since the fluctuations in the hardness of the tablet are caused by the fluctuations in the pressing forces, systems should be used which limit the pressing force.
  • elastic stamps, pneumatic compensators or resilient elements can be used in the force path.
  • the pressure roller can also be designed to be resilient.
  • Tableting machines suitable within the scope of the present invention are available, for example, from the companies Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Cologne, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) and Courtoy NV, Halle (BE / LU).
  • the hydraulic double pressure press HPF 630 from LAEIS, D. is particularly suitable.
  • the molded body can be manufactured in a pre-determined spatial shape and a predetermined size. Practically all practical configurations can be considered as the spatial shape, for example, the design as a board, the bar or bar shape, cubes, cuboids and corresponding spatial elements with flat side surfaces, and in particular cylindrical configurations with a circular or oval cross section. This last embodiment covers the presentation form from the tablet to compact cylinder pieces with a ratio of height to diameter above 1.
  • the portioned compacts can each be designed as separate individual elements that correspond to the predetermined dosage of the detergents and / or cleaning agents. It is also possible, however, to form compacts which connect a plurality of such mass units in one compact, the portioned smaller units being easy to separate, in particular by predetermined predetermined breaking points.
  • the portioned compacts can be designed as Tablets, in cylindrical or cuboid form, are expedient, a diameter / height ratio in the range from about 0.5: 2 to 2: 0.5 being preferred.
  • Commercial hydraulic presses, eccentric presses or rotary presses are suitable devices, in particular for the production of such pressed articles.
  • the spatial shape of another embodiment of the molded body is adapted in its dimensions to the detergent dispenser of commercially available household washing machines, so that the molded body can be metered directly into the dispenser without metering aid, where it dissolves during the dispensing process.
  • the detergent tablets without problems using a metering aid and is preferred in the context of the present invention.
  • Another preferred molded body that can be produced has a plate-like or plate-like structure with alternating thick long and thin short segments, so that individual segments of this "bolt" at the predetermined breaking points, which represent the short thin segments, broken off and into the Machine can be entered.
  • This principle of the "bar-shaped" foam detergent can also be implemented in other geometric shapes, for example vertically standing triangles, which are connected to one another only on one of their sides along the side.
  • the various components are not pressed into a uniform tablet, but that shaped bodies are obtained which have several layers, that is to say at least two layers. It is also possible that these different layers have different dissolving speeds. This can result in advantageous application properties of the molded body. If, for example, components are contained in the moldings that mutually influence one another negatively, it is possible to integrate one component in the more rapidly soluble layer and to incorporate the other component in a more slowly soluble layer, so that the first component has already reacted. when the second goes into solution.
  • the layer structure of the molded body can take place in a stack-like manner, with the inner layer (s) already loosening at the edges of the molded body, if the outer layers have not yet been completely dissolved, a complete covering of the inner layer (s) can also be achieved by the respectively outer layer (s), which prevents the premature dissolving of components of the inner one Layer (s) leads.
  • a molded body consists of at least three layers, that is to say two outer and at least one inner layer, at least one of the inner layers containing a peroxy bleaching agent, while in the case of the stacked molded body the two outer layers and in the case of the molded body the outermost layers, however, are free of peroxy bleach. Furthermore, it is also possible to spatially separate peroxy bleaching agents and any bleach activators and / or enzymes that may be present in a molded body.
  • Such multilayer molded bodies have the advantage that they can be used not only via a dispensing chamber or via a metering device which is added to the washing liquor; rather, in such cases it is also possible to put the molded body into direct contact with the textiles in the machine without the risk of bleaching from bleaching agents and the like.
  • the bodies to be coated can, for example, be sprayed with aqueous solutions or emulsions, or else they can be coated using the melt coating method.
  • the breaking strength of cylindrical shaped bodies can be determined via the measured variable of the diametrical breaking load. This can be determined according to
  • diametral fracture stress (DFS) in Pa
  • P is the force in N that leads to the pressure exerted on the molded body that causes the molded body to break
  • D is the molded body diameter in meters
  • t the height of the molded body
  • Another object of the present invention is the use of surfactant granules, which contain phosphate and zeolite of the faujasite type, to improve the hardness and disintegration time of detergent tablets.
  • This use according to the invention of the surfactant granules mentioned in the premix leads to shaped bodies with advantageous properties, as the examples below show.
  • preferred embodiments of the use according to the invention quantitative parts of the phosphates and zeolites of the faujasite type, further ingredients, composition of the premix, etc.
  • surfactant granules which contain phosphate and nonionic surfactants, to improve the hardness and disintegration time of detergent tablets is not described in the prior art. This use is a further object of the present invention. Preferred quantities etc. can also be found here from the above text.
  • the surfactant granules already meet the criteria which the detergent tablets according to the invention meet, ie that the ratio of nonionic surfactants to faujasite-type zeolite in the ten- Sidgranulate between 1:20 and 1: 1, preferably between 1:15 and 1: 1.25, particularly preferably between 1:10 and 1: 1.5 and in particular between 1: 5 and 1: 2.
  • surfactant granules the composition of which is given in Table 1, were prepared by wet granulation in a 20 liter ploughshare mixer from Lödige. Following the granulation, the granules were dried in an Aeromatic fluidized bed apparatus at a supply air temperature of 60 ° C. for 30 minutes. After drying, the granules were sieved to remove the fine particles ⁇ 0.6 mm and coarse particles> 1.6 mm.
  • the surfactant granules were then processed with further components to form compressible premixes, the composition of which is given in Table 2.
  • the premixes El and E2 according to the invention contained nonionic surfactant and zeolite X in a weight ratio of 1: 2.25, while the premix of comparative example V had a niotene / Zeoltih X ratio of 1.14: 1.
  • the premixes were pressed into tablets in a Korsch eccentric press (diameter: 44 mm, height: 22 mm, weight: 37.5 g).
  • the measured values of the tablet hardness and disintegration times are in each case the mean values of a double determination, the individual values per molded body type varying by a maximum of 2 N or 2 s.
  • the hardness of the tablets was measured by deforming the tablet until it broke, the force acting on the side surfaces of the tablet and the maximum force which the tablet withstood being determined.
  • Table 3 shows that the disintegration times of phosphate-containing detergents and cleaning agents are significantly reduced in a certain ratio by the use of nonionic surfactant and faujasite zeolite according to the invention, which results in significant improvements, particularly at higher hardness levels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Wasch- und Reinigungsmittelformkörper, die sich sowohl durch eine hohe Härte und damit Transport- und Handhabungsstabilität auszeichnen, als auch ausgezeichnete Zerfallseigenschaften besitzen, lassen sich erhalten, wenn die Formkörper nichtionische Tenside, Phosphatbuilder und Zeolith vom Faujasit-Typ enthalten, wobei das Verhältnis von nichtionischen Tensiden zu Zeolith vom Faujasit-Typ zwischen 1:20 und 1:1 liegt.

Description

'Wasch- und Reinigungsmittelformkörper mit Tensid-Builderkombination"
Die vorliegende Erfindung betrifft Formkörper, die wasch- und reinigungsaktive Eigenschaften besitzen. Insbesondere betrifft die Erfindung Wasch- und Reinigungsmittelformkörper für die Textilwäsche in einer Haushaltswaschmaschine, die kurz als Waschmitteltabletten bezeichnet werden.
Handelsübliche Wasch- und Reinigungsmittel werden heutzutage in Form von Flüssigprodukten oder Feststoffen angeboten. Bei der letzteren Angebotsform unterscheidet man herkömmliche Pulver oder Konzentrate, die beispielsweise durch Granulation oder Extrusion erhältlich sind. Gegenüber den herkömmlichen Pulvern weisen konzentrierte Wasch- und Reinigungsmittel den Vorteil auf, daß ein verringerter Verpackungsaufwand betrieben werden muß und pro Waschgang mengenmäßig weniger dosiert werden muß. Auch werden durch die verringerten Packungsgrößen die Transport- und Lagerkosten reduziert. Die höchstkonzentrierte Form, in der Wasch- und Reinigungsmittel gegenwärtig in einigen Ländern im Markt angeboten werden, sind verpreßte Wasch- und Reinigungsmittel- formkörper. Während Wasserenthärter und maschinelle Geschirrspülmittel in dieser Angebotsform weit verbreitet sind, tauchen bei Textilwaschmitteln vielfältige Probleme auf, die einer weiten Verbreitung und Verbraucherakzeptanz bislang entgegenstehen. Aufgrund der deutlich höheren Tensidgehalte werden die üblicherweise bei der Angebotsform des Formkörpers auftretenden Probleme noch potenziert. Besonders problematisch sind Waschmitteltabletten, welche alkoxylierte nichtionische Tenside enthalten, da diese Tensidklasse sich neagtiv auf die Löslichkeit der Tabletten auswirkt - andererseits sind gerade diese Tenside wegen ihres hohen Waschvermögen ausdrücklich erwünscht. Insbesondere die Dichotomie zwischen einem genügen harten Formkörper und einer hinreichend schnellen Zerfallszeit ist dabei ein zentrales Problem. Da hinreichend stabile, d.h. form- und bruchbeständige Formkörper nur durch verhältnismäßig hohe Preßdrücke hergestellt werden können, kommt es zu einer starken Verdichtung der Formkörperbestandteile und zu einer daraus folgenden verzögerten Desintegration des Formkörpers in der wäßrigen Flotte und damit zu einer zu langsamen Freisetzung der Aktivsubstanzen im Wasch- bzw. Reinigungsvorgang. Die verzögerte Desintegration der Foraikörper hat weiterhin den Nachteil, daß sich übliche Wasch- und Reinigungsmittelformkörper nicht über die Einspülkammer von Haushaltswaschmaschinen einspülen lassen, da die Tabletten nicht in hinreichend schneller Zeit in Sekundärpartikel zerfallen, die klein genug sind, um aus Einspülkammer in die Waschtrommel eingespült zu werden.
Zur Lösung dieses Problems existieren im Stand der Technik vielfältige Ansätze. Neben dem Einsatz spezieller Inhaltsstoffe, die die Desintegration fördern sollen, wird auch die Beschichtung einzelner Inhaltsstoffe oder der gesamten Tablette vorgeschlagen. Diese Lösungsvorschläge gehen das Problem gewissermaßen "von der Rezepturseite" her an, d.h. es werden bestimmte Inhaltsstoffe eingesetzt oder die Tablette bzw. Teile von ihr durch Zuschlagstoffe veredelt. Neben diesen "chemischen" Lösungsansätzen existieren auch Lösungsvorschläge für das genannte Problem, die unabhängig von der Rezeptur durchgeführt werden können. Diese "physikalischen" Lösungsansätze betreffen zumeist bestimmte Ausführungsformen von Tablettiermaschinen oder andere Verfahrensparameter, wobei der Preßdruck im Zentrum des Interesses steht. Vorgeschlagen wird auch das Absieben der zu verpressenden Vorgemische auf bestimmte Kornfraktionen, woraus unabhängig von der Zusammensetzung des Vorgemischs vorteilhafte Eigenschaften der Formkörper resultieren sollen.
Beispielsweise beansprucht die europäische Patentanmeldung EP 711 828 (Unilever) ein Verfahren zur Herstellung von Waschmitteltabletten durch Verpressen einer teilchenförmi- gen Zusammensetzung, die ein Bindemittel enthält. Der Schmelzpunkt des Bindemittels soll dabei zwischen 35 und 90°C liegen und die Verpressung bei Temperaturen unterhalb des Schmelzpunktes, aber oberhalb von 28 °C erfolgen. Diese Schrift kombiniert also eine "chemische" mit einer "physikalischen" Vorgehensweise.
Von besonderem Interesse ist es, auf den Zusatz von Stoffen, welche keine Aktivstoffe für den Wasch- oder Reinigungsprozeß sind, weitgehend verzichten zu können, um die Aktivstoffe weitgehend zu konzentrieren. Die Überwindung der vorstehend beschriebenen Di- chotomie durch gezielte Kombinationen von Inhaltsstoffen, welche zusätzlich Aufgaben im Wasch- oder Reinigungsgang übernehmen, ist daher immer besonders wünschenswert.
Es wurde nun gefunden, daß phosphatbasierte und niotensidhaltige Wasch- und Reini- gimgsmittelformkörper mit hervorragenden anwendungstechnischen Eigenschaften formuliert werden können, wenn diese einen Zeolith vom Faujasit-Typ enthalten, welcher in einem bestimmten Gewichtsverhältnis zum Niotensid eingesetzt wird.
Gegenstand der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper aus verdichtetem, teilchenförmigen Wasch- und Reinigungsmittel, enthaltend Tensid(e), Gerüststoffe sowie optional weitere Inhaltsstoffe von Wasch- und Reinigungsmitteln, die nichtionische Tenside, Phosphatbuilder und Zeolith vom Faujasit-Typ enthalten, wobei das Verhältnis von nichtionischen Tensiden zu Zeolith vom Faujasit-Typ zwischen 1:20 und 1:1 liegt.
Die erfmdungsgemäßen Formkörper enthalten nichtionische Tenside, Phosphatbuilder und Zeolith vom Faujasit-Typ. Hierbei erfüllen der Zeolith vom Faujasit-Typ und die Phosphate Builderaufgaben, während nichtionische Tenside als waschaktive Substanzen enthalten sind. Üblicherweise wird hierbei die Hauptmenge an Gerüststoffsubstanz von den Phosphaten ausgemacht.
Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung. Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gern"3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gern"3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH- Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihy- drogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gern"3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3) und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na^PO^ ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gern"3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gern"3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gern"3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gern"3 und einen Schmelzpunkt von 73-76°C (Zerset- zung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gern"3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließhches, körniges Pulver der Dichte 2,56 gern"3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliumphosphate gegenüber entsprechenden Natrium- Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gern"3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gern"3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gern dar, das in Wasser löslich ist, wobei der pH-Wert der l%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH,PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlös- liches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%- igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH -_ Na3K2P3O10 + H2O
Diese sind erfmdungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfmdungsgemäß einsetzbar.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper enthalten als Phosphate Alkalimetallphosphate, vorzugsweise Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 1 bis 60 Gew.-%, vorzugsweise von 5 bis 50 Gew.-%, besonders bevorzugt von 10 bis 40 Gew.-% und insbesondere von 15 bis 35 Gew. -%, jeweils bezogen auf das Formkörpergewicht.
Der erfindungsgemäß ebenfalls in den Formkörpern enthaltene Zeolith weist die allgemeine Formel M2/nO ' Al2O3 " x SiO2 " y H2O auf, in der M ein Kation der Wertigkeit n ist, x für Werte steht, die größer oder gleich 2 sind und y Werte zwischen 0 und 20 annehmen kann. Die Zeolithstrukturen bilden sich durch Verknüpfung von AlO4-Tetraedern mit SiO4- Tetraedern, wobei dieses Netzwerk von Kationen und Wassermolekülen besetzt ist. Die Kationen in diesen Strukturen sind relativ mobil und können in unterschiedlichen Graden durch andere Kationen ausgetauscht sein. Das interkristalline "zeolithische" Wasser kann je nach Zeolithtyp kontinuierlich und reversibel abgegeben werden, während bei einigen Zeolithtypen auch strukturelle Änderungen mit der Wasserabgabe bzw. -aufnähme einhergehen.
In den strukturellen Untereinheiten bilden die "primären Bindungseinheiten" (AlO4- Tetraeder und SiO4-Tetraeder) sogenannte "sekundäre Bindungseinheiten", die die Form ein- oder mehrfacher Ringe besitzen. So treten in verschiedenen Zeolithen beispielsweise 4-, 6- und 8-gliedrige Ringe auf (als S4R, S6R und S8R bezeichnet), andere Typen werden über vier- und sechsgliedrige Doppelringprismen verbunden (häufigste Typen: D4R als viereckiges bzw. D6R als sechseckiges Prisma). Diese "sekundären Untereinheiten" verbinden unterschiedliche Polyhedra, die mit griechischen Buchstaben bezeichnet werden. Am verbreitetsten ist hierbei ein Vielflächner, der aus sechs Quadraten und acht gleichseitigen Sechsecken aufgebaut ist und der als "ß" bezeichnet wird. Mit diesen Baueinheiten lassen sich mannigfaltige unterschiedliche Zeolithe realisieren. Bislang sind 34 natürliche Zeolith-Mineralien sowie ungefähr 100 synthetische Zeolithe bekannt.
Der bekannteste Zeolith, Zeolith 4 A, stellt eine kubische Zusammenstelling von ß-Käfigen dar, die durch D4R-Untereinheiten verknüpft sind. Er gehört der Zeolith-Strukturgruppe 3 an und sein dreidimensionales Netzwerk weist Poren von 2,2 Ä und 4,2 Ä Größe auf, die Formeleinheit in der Elementarzelle läßt sich mit Na,2[(AlO2)12(SiO2)12] ' 27 H2O beschreiben.
Erfindungsgemäß eingesetzt werden in den erfmdungsgemäßen Wasch- und Reinigungsmittelformkörpern Zeolithe vom Faujasit-Typ.
Zusammen mit den Zeolithen X und Y gehört das Mineral Faujasit zu den Faujasit-Typen innerhalb der Zeolith-Strukturgruppe 4, die durch die Doppelsechsring-Untereinheit D6R gekennzeichnet ist (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Zur Zeolith-Strukturgruppe 4 zählen neben den genannten Faujasit-Typen noch die Mineralien Chabazit und Gmelinit sowie die synthetischen Zeolithe R (Chabazit-Typ), S (Gmelinit-Typ), L und ZK-5. Die beiden letztgenannten synthetischen Zeolithe haben keine mineralischen Analoga.
Zeolithe vom Faujasit-Typ sind aus ß-Käfϊgen aufgebaut, die tetrahedral über D6R- Untereinheiten verknüpft sind, wobei die ß-Käfige ähnlich den Kohlenstoffatomen im Diamanten angeordnet sind. Das dreidimensionale Netzwerk der im erfindungsgemäßen Verfahren eingesetzten Zeolithe vom Faujasit-Typ weist Poren von 2,2 und 7,4 Ä auf, die Elementarzelle enthält darüber hinaus 8 Kavitäten mit ca. 13 Ä Durchmesser und läßt sich durch die Formel Na86[(AlO2)86(SiO2)106] ' 264 H2O beschreiben. Das Netzwerk des Zeolith X enthält dabei ein Hohlraumvolumen von ungefähr 50%, bezogen auf den dehydratisier- ten Kristall, was den größten Leerraum aller bekannten Zeolithe darstellt (Zeolith Y: ca. 48%o Hohlraumvolumen, Faujasit: ca. 47% Hohlraumvolumen). (Alle Daten aus: Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seiten 145, 176, 177).
Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit- Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden. Neben dem Zeolith X sind erfmdungsgemäß also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar, wobei der reine Zeolith X bevorzugt ist. Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeolithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind erfindungsgemäß einsetzbar.
Die Aluminiumsilikate, die im erfindungsgemäßen Verfahren eingesetzt werden, sind kommerziell erhältlich, und die Methoden zu ihrer Darstellung sind in Standardmonographien beschrieben.
Beispiele für kommerziell erhältliche Zeolithe vom X-Typ können durch die folgenden Formeln beschrieben werden: Na86[(AlO2)86(SiO2)106] x H2O,
86[(AlO2)86(SiO2)106] - χ H2O,
Ca40Na6[(AlO2)86(SiO2)106] x H2O,
Sr21Ba22[(AlO2)86(SiO2)106] x H2O,
in denen x Werte zwischen 0 und 276 annehmen kann und die Porengrößen von 8,0 bis 8,4 Ä aufweisen.
Kommerziell erhältlich und im Rahmen des erfindungsgemäßen Verfahrens bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa.O (l-n)K2O Al2O3 ' (2 - 2,5)SiO2 (3,5 - 5,5) H2O
beschrieben werden kann.
Auch Zeolithe vom Y-Typ sind kommerziell erhältlich uns lassen sich beispielsweise durch die Formeln
Na56[(AlO2)56(SiO2)136] - χ H2O,
K56[(AlO2)56(SiO2)136] x H2O,
in denen x für Zahlen zwischen 0 und 276 steht und die Porengrößen von 8,0 Ä aufweisen, beschreiben. Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Rei gungsmittelformkör- per sind dadurch gekennzeichnet, daß das Verhältnis von nichtionischen Tensiden zum Zeolith vom Faujasit-Typ zwischen 1:15 und 1:1,25, vorzugsweise zwischen 1:10 und 1:1,5 und insbesondere zwischen 1:5 und 1:2 liegt. Vorzugsweise wird hierbei der Zeolith vom Faujasit-Typ in Mengen von 0,5 bis 20 Gew.-%, vorzugsweise von 1 bis 15 Gew.-%, besonders bevorzugt von 2 bis 10 Gew.-% und insbesondere von 2,5 bis 5 Gew.-%, jeweils bezogen auf das Foirnkörpergewicht, eingesetzt, wobei Zeolith X bevorzugt ist.
Als dritten zwingenden Bestandteil enthalten die erfindungsgemäßen Wasch- und Reini- gungsmittelformkörper nichtionische Tenside. Diese werden nachstehend beschrieben:
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxy- lierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C- Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalko- holresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfettoder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12.14-Alkohole mit 3 EO oder 4 EO, C9.n-Alkohol mit 7 EO, C13_15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12. I8- Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12.14-Alkohol mit 3 EO und C12.18-Alkohol mit 5 EO. Die angegebenen Ethoxy- lierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und pro- poxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkyl- kette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt werden.
Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO(G)z, in der R für einen linearen oder verzweigten, insbesondere in 2- Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glyko- seeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungs- grad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbesondere zwischen 1,1 und 1,4.
Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in denen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n-Alkylrest ist.
Die Tensidgranulate können bevorzugt Alkylpolyglycoside enthalten, wobei Gehalte an APG über 0,2 Gew.-%, bezogen auf den gesamten Formkörper, bevorzugt sind. Besonders bevorzugte Wasch- und Reinigungsmittelformkörper enthalten APG in Mengen von 0,2 bis 10 Gew.-%, vorzugsweise 0,2 bis 5 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealka- nolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I), Rl
R-CO-N-[Z] (I)
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuk- kers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylie- rung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
RX-O-R2
R-CO-N-[Z] (II)
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Aryl- rest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C^-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhy- droxyfettsäureamide überführt werden.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelfoirnkörper bevorzugt, die nichtionische Tenside in Mengen von 0,5 bis 20 Gew.-%, vorzugsweise von 1 bis 10 Gew.-% und insbesondere von 1,5 bis 5 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
Im Rahmen der vorliegenden Erfindung können nichtionische Tenside aus sämtlichen vorstehend genannten Gruppen eingesetzt werden. Unabhängig von der chemischen Natur der eingesetzten nichtionischen Tenside ist es bevorzugt, daß die in den Wasch- und Reini- gungsmittelforrnkörpern enthaltenen nichtionischen Tenside einen Schmelzpunkt unterhalb von 40°C aufweisen.
Als besonders bevorzugte nichtionische Tenside werden erfmdungsgemäß Alkoholal- koxylate eingesetzt. Der Begriff "Alkylenoxideinheiten" kennzeichnet im Rahmen der vorliegenden Erfindung den statistischen Mittelwert an AO-Gruppen in einem Molekül des nichtionischen Tensids oder anders ausgedrückt den statistischen Mittelwert der Mole Al- kylenoxid, die pro Mol Alkohol vorliegen. Als Alkylenoxideinheiten sind insbesondere Ethylenoxid- (EO) und Propylenoxid- (PO) Einheiten technisch interessant. Die betreffenden Alkoxylate können in bekannter Weise aus den Alkoholen und Ethylen- bzw. Propylenoxid gewonnen werden. Selbstverständlich sind im Rahmen der vorliegenden Erfindung auch EO/PO-Gemische einsetzbar.
Die Struktur von alkoxylierten nichtionischen Tenside ist in weiten Grenzen variierbar. Der Alkylrest wird dabei durch die Auswahl des langkettigen Alkohols festgelegt. Aus wirtschaftlichen Gründen sind dabei die großtechnisch zugänglichen Alkohole mit 8 bis 24 Kohlenstoffatomen, insbesondere native Alkohole aus der Hydrierung von Carbonsäuren bzw. Carbonsäurederivaten, bevorzugt. Auch die aus technischen Alkoholsynthesen zugänglichen Alkohole wie Oxoalkohole und Ziegleralkohole sind verwendbar.
Die aus der Hydrierung von Carbonsäuren zugänglichen Alkohole werden dabei als Fettalkohole bezeichnet, da die Säuren ihrerseits aus nativen Fetten und Ölen gewonnen werden. Es handelt sich hierbei nicht um Remsubstanzen, sondern um Substanzgemische, deren Zusammensetzung variieren kann. Im Rahmen der vorliegenden Erfindung als Alkylrest der alkoxylierten Niotenside einsetzbare Fettalkohole sind beispielsweise Hexanol (Capro- nalkohol), Heptanol (Önanthalkohol), Octanol (Caprylalkohol), Nonanol (Pelargonalko- hol), Decanol (Caprinalkohol), Undecanol usw.. Bevorzugt ist im Rahmen der vorliegenden Verbindung der Einsatz von Fettalkoholen wie Dodecaol (Laurinylalkohol), Tetrade- canol (Myristinylalkohol), Hexadecanol (Palmitinylalkohol), Octadecanol (Stearinylalko- hol), Eicosanol (Arachinylalkohol), Docosanol (Behenylalkohol), Tetracosanol (Lignoce- rinylalkohol), Hexacosanol (Cerotinylalkohol), Triacotanol (Melissinylalkohol) sowie der ungesättigten Spezies 9c-Hexadecenol (Palmitoleylalkohol), 6c-Octadecenol (Petrose- linylalkohol), 6t-Octadecenol (Petroselaidinylalkohol), 9c-Octadecenol (Oleylalkohol), 9t- Octadecenol (Elaidineylalkohol), 9c,12c-Octadecadienol (Linoleylalkohol), 9t, 12t- Octadecadienol (Linolaidineylalkohol) und 9c,12c,15c-Octadecatreinol (Linolenylalkohol). Aus Kostengründen ist es bevorzugt, nicht die reinen Spezies einzusetzen, sondern technische Gemische der einzelnen Säuren, wie sie aus der Fettspaltung und anschließenden Hydrierung zugänglich sind. Solche Gemische sind beispielsweise Koskosölalkohol (ca. 6 Gew.-% C8, 6 Gew.-% C10, 48 Gew.-% C12, 18 Gew.-% C14, 10 Gew.-% C16, 2 Gew.-% C18, 8 Gew.-% Clg , 1 Gew.-% Clg ), Palmkernölalkohol (ca. 4 Gew.-% C8, 5 Gew.-% C10, 50 Gew.-% C12, 15 Gew.-% C14, 7 Gew.-% C16, 2 Gew.-% C18, 15 Gew.-% C18 , 1 Gew.-% C18..), Talgalkohol (ca. 3 Gew.-% C14, 26 Gew.-% C16, 2 Gew.-% C16 , 2 Gew.-% CI7, 17 Gew.-% C18, 44 Gew.-% C,g , 3 Gew.-% C,g , 1 Gew.-% C18 ), gehärteter Talgalkohol (ca. 2 Gew.-% C14, 28 Gew.-% C16, 2 Gew.-% C,7, 63 Gew.-% C18, 1 Gew.-% C18 ), hydrierte technische Ölsäure (ca. 1 Gew.-% C12, 3 Gew.-% C14, 5 Gew.-% C16, 6 Gew.-% C16 , 1 Gew.-% C17, 2 Gew.-% C18, 70 Gew.-% C18 , 10 Gew.-% C]8 , 0,5 Gew.-% C18 ), technischer Palmityl/Stearylalkohol (ca. 1 Gew.-% C12, 2 Gew.-% C14, 45 Gew.-% C16, 2 Gew.-% C17, 47 Gew.-% C18, 1 Gew.-% C18 ) sowie hydrierte Sojabohnenölfettsäure (ca. 2 Gew.-% C14, 15 Gew.-% C16, 5 Gew.-% C18, 25 Gew.-% C!8-, 45 Gew.-% C18.., 7 Gew.-% C,„...).
Als alkoxylierte Niotenside sind im Rahmen der vorliegenden Erfindung insbesondere Fettalkoholethoxylate bevorzugt. Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten dabei als nichtionische Tenside Alkoholethoxylate der allgemeinen Formel
CnH2n+1O-(CH2CH2O)mH
in der n Werte von 8 bis 24, vorzugsweise von 10 bis 22, besonders bevorzugt von 12 bis 20 und insbesondere von 12 bis 18 und m Werte von 1 bis 20, vorzugsweise von 2 bis 15, besonders bevorzugt von 4 bis 10 und insbesondere von 6 bis 8, annehmen.
Neben nichtionischen Tensiden können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper auch andere waschaktive Substanzen, insbesondere aus den Gruppen der anionischen, kationischen und zwitterionischen Tenside enthalten, wobei anionische Tenside aus Kostengründen und aufgrund ihres Leistungsspektrums bevorzugt in den Formkörpern enthalten sind.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9.13- Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansul- fonaten sowie Disulfonaten, wie man sie beispielsweise aus C12_18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12_18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren geeignet. Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglyce- rinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Ca- prinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalko- hol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C,0-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf pe- trochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und CI2-C15- Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7.21- Alkohole, wie 2-Methyl-verzweigte C9.n -Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12.18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8.18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Taigfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kaliumoder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triefhanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, die 5 bis 50 Gew.-%, vorzugsweise 7,5 bis 40 Gew.-% uns insbesondere 10 bis 20 Gew.-% anionische Tensid(e), jeweils bezogen auf das Formkörpergewicht, enthalten.
Bei der Auswahl der anionischen Tenside, die in den erfindungsgemäßen Wasch- und Rei- nigungsmittelformköφern zum Einsatz kommen, stehen der Formulierungsfreiheit keine einzuhaltenden Rahmenbedingungen im Weg. Bevorzugte Wasch- und Reinigungsmittelformkörper weisen jedoch einen Gehalt an Seife auf, der 0,2 Gew.-%, bezogen auf das Gesamtgewicht des Formkörpers, übersteigt. Bevorzugt einzusetzende anionische Tenside sind dabei die Alkylbenzolsulfonate und Fettalkoholsulfate, wobei bevorzugte Wasch- und Reinigungsmittelformkörper zusätzlich anionische(s) Tensid(e), vorzugsweise Fettalkohol- sulfat(e) enthalten. Hierbei sind Mengen von 2 bis 20 Gew.-%, vorzugsweise 2,5 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% Fettalkoholsulfat, jeweils bezogen auf das Formkörpergewicht, bevorzugt.
Phosphat(e), Zeolith(e) vom Faujasit-Typ und nichtionische(s) Tensid(e) können auf beliebige Weise in die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper eingebracht werden. Es hat sich als vorteilhaft erwiesen, wenn das zu Formkörpern zu verpressende Vorgemisch Phosphat(e) und Zeolith(e) vom Faujasit-Typ in Form eines Tensidgranulats enthält. Hierzu wird zuerst ein Tensidgranulat hergestellt, das vorzugsweise die Gesamtmenge der in den Formkörpern enthaltenen Phosphate und Zeolithe vom Faujasit-Typ enthält, und nachfolgend mit weiteren Aufbereitungskomponenten abgemischt, wonach das Vorgemisch einer Tablettierung zugeführt wird. Es ist weiterhin bevorzugt, daß das vorstehend genannte Tensidgranulat die Gesamtmenge der in den Formkörpern enthaltenen nichtionischen Tenside, vorzugsweise sogar die Gesamtmenge der insgesamt in den Formkörpern enthaltenen Tenside, enthält. Zusammengefaßt sind also Wasch- und Reinigungsmittelformkörper bevorzugt, die dadurch gekennzeichnet sind, daß sie die Gesamtmenge an Phosphaten und Zeolithen vom Faujasit-Typ in Form eines Tensidgranulats enthalten, das vorzugsweise, auch die Gesamtmenge der in den Formkörpern enthaltenen Tenside enthält.
Solche erfindungsgemäß bevorzugten Tensidgranulate haben naturgemäß höhere Phosphatgehalte als der Gesamtformkörper. Erfindungsgemäß sind Wasch- und Reinigungsmittelformkörper bevorzugt, bei denen das Tensidgranulat 5 bis 70 Gew.-%, vorzugsweise 10 bis 65 Gew.-%, besonders bevorzugt 20 bis 60 Gew.-% und insbesondere 25 bis 50 Gew.-% Phosphat, jeweils bezogen auf das Gewicht des Tensidgranulats, enthält.
Auch andere Inhaltsstoffe von Wasch- und Reinigungsmitteln, insbesondere sogenannten Kleinkomponenten wie optische Aufheller, Polymere, Entschäumer, Phosphonate, Farb- und Duftstoffe, können Bestandteil des Tensidgranulats sein. Diese Stoffe werden weiter unten beschrieben. Das zu verpressende Vorgemisch kann weiterhin einen oder mehrere Stoffe aus den Gruppen der Bleichmittel, Bleichaktivatoren, Desintegrationshilfsmittel usw. enthalten. Die genannten Stoffe, die weiter unten beschrieben werden, können in spe- ziellen Ausfuhrungsformen der vorliegenden Erfindung auch Bestandteil des Tensidgranulats sein.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern durch Abmischen eines tensidhaltigen Granulats mit pulverformigen Aufbereitungskomponenten und nachfolgendes formgebendes Ver- pressen, bei dem das zu verpressende Vorgemisch nichtionische Tenside, Phosphatbuilder und Zeolith vom Faujasit-Typ enthält, wobei das Verhältnis von nichtionischen Tensiden zu Zeolith vom Faujasit-Typ zwischen 1:20 und 1:1 liegt.
Hinsichtlich bevorzugter Ausführungsformen und Mengenanteile einzelner Komponenten gilt für das erfindungsgemäße Verfahren sinngemäß das vorstehend für die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper Gesagte. Bevorzugte Verfahren sind daher beispielsweise dadurch gekennzeichnet, daß das tensidhaltige Granulat die Gesamtmenge der in den Formkörpern enthaltenen Phosphate und Zeolithe vom Faujasit-Typ enthält, wobei Granulate, welche zusätzlich die Gesamtmenge der nichtionischen Tenside, vorzugsweise die Gesamtmenge aller Tenside, enthalten, bevorzugt sind.
In bevorzugten erfindungsgemäßen Verfahrensvarianten enthält das zu verpressende Vorgemisch tensidhaltige(s) Granulat(e) sowie weitere Aufbereitungskomponenten, wobei Phosphat(e), Zeolith(e vom Faujasit-Typ und die Tenside Bestandteil des Granulats sind. Die Herstellung der tensidhaltigen Granulate kann dabei durch übliche technische Granulationsverfahren wie Kompaktierung, Extrusion, Mischergranulation, Pelletierung oder Wirbelschichtgranulation erfolgen. Es ist dabei für die späteren Wasch- und Reinigungsmittelformkörper von Vorteil, wenn das zu verpressende Vorgemisch ein Schüttgewicht aufweist, das dem üblicher Kompaktwaschmittel nahe kommt. Insbesondere ist es bevorzugt, daß das zu verpressende Vorgemisch ein Schüttgewicht von mindestens 500 g/1, vorzugsweise mindestens 600 g/1 und insbesondere mindestens 700 g/1 aufweist.
Das tensidhaltige Granulat genügt in bevorzugten Verfahrensvarianten bestimmten Teilchengrößenkriterien. So sind erfindungsgemäße Verfahren bevorzugt, bei denen das ten- sidhaltige Granulat Teilchengrößen zwischen 100 und 2000 μm, vorzugsweise zwischen 200 und 1800 μm, besonders bevorzugt zwischen 400 und 1600 μm und insbesondere zwischen 600 und 1400μm, aufweist.
Neben den Aktivsubstanzen (anionische und/oder nichtionische und/oder kationische und/oder amphotere Tenside) enthalten die Tensidgranulate vorzugsweise noch Trägerstoffe, die besonders bevorzugt aus der Gruppe der Gerüststoffe stammen. Besonders vorteilhafte Verfahren sind dadurch gekennzeichnet, daß das zu verpressende Vorgemisch ein tensidhaltiges Granulat enthält, welches anionische und oder nichtionische Tenside sowie Gerüststoffe enthält und dessen Gesamt-Tensidgehalt 5 bis 60 Gew.-%, vorzugsweise 10 bis 50 Gew.-% und insbesondere 15 bis 40 Gew.-%, jeweils bezogen auf das Tensidgranulat, beträgt.
Um die gewünschte Menge an waschaktiver Substanz in die Wasch- und Reinigungsmittelformkörper einzuarbeiten, sind Verfahrensvarianten bevorzugt, in denen das Vorgemisch ein tensidhaltiges Granulat enthält, das Tensidgehalte von 5 bis 60 Gew.-%, vorzugsweise von 10 bis 50 Gew.-% und insbesondere von 15 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des Tensidgranulats, aufweist (siehe oben). Insbesondere Wasch- und Reinigungsmittelformkörper, bei denen der Gehalt des Tensidgranulats an anionischen Tensiden 5 bis 45 Gew.-%, vorzugsweise 10 bis 40 Gew.-% und insbesondere 15 bis 35 Gew.-%, jeweils bezogen auf das Gewicht des Tensidgranulats, beträgt sowie Wasch- und Reini- gungsmittelformköφer, bei denen der Gehalt des Tensidgranulats an nichtionischen Tensiden 1 bis 30 Gew.-%, vorzugsweise 5 bis 25 Gew.-% und insbesondere 7,5 bis 20 Gew.-%, jeweils bezogen auf das Gewicht des Tensidgranulats, beträgt, sind erfindungsgemäß bevorzugt. Besonders bevorzugte Varianten des erfindungsgemäßen Verfahrens sind dadurch gekennzeichnet, daß der Anteil des tensidhaltigen Granulats am zu veφressenden Vorgemisch und damit an den Wasch- und Reinigungsmittelformköφern 40 bis 95 Gew.-%, vorzugsweise 45 bis 85 Gew.-% und insbesondere 55 bis 75 Gew.-%, jeweils bezogen auf das Gewicht der Wasch- und Reinigungsmittelformköφer, beträgt. Als Bestandteil des Tensidgranulats aber auch als optionale zusätzlich dem Vorgemisch zugegebene Aufbereitungskomponente sind Gerüststoffe wichtige Inhaltsstoffe von Wasch- und Reinigungsmitteln. Neben den waschaktiven Substanzen sind Gerüststoffe die wichtigsten Inhaltsstoffe von Wasch- und Reinigungsmitteln. In den erfindungsgemäßen Wasch- und Reinigungsmittelformköφern können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate und organische Cobuilder; erfindungsgemäß bevorzugt ist der Einsatz der Phosphate als Hauptbuilder (siehe oben).
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Als Gerüststoffe geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 Η2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na^Si^ ' yH2O bevorzugt, wobei ß-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amoφhe Natriumsilikate mit einem Modul Na^ : SiO2 von 1 :2 bis 1:3,3, vorzugsweise von 1:2 bis 1 :2,8 und insbesondere von 1 :2 bis 1 :2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amoφhen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amoφh" auch "röntgenamoφh" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Builderei genschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu inteφretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamor- phe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amoφhe Silikate, compoundierte amoφhe Silikate und übertrocknete röntgenamoφhe Silikate.
Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmit- telformköφer insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxy- late, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citro- nensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Buil- derwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH- Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV- Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäu- re-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol. Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE- A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/ Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyas- paraginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Ei genschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dial- dehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialde- hyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten. Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkata- lysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Poly- saccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglu- cosesirape mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A- 196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendia- mindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'- disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Gly- cerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathalti- gen Formulierungen bei 3 bis 15 Gew.-%. Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbon- säuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das l-Hydroxyethan-l,l-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbin- devermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Die Herstellung tensidhaltiger Granulate ist im Stand der Technik breit beschreiben, wobei neben umfangreicher Patentliteratur auch auf zahlreiche Übersichtsartikel und Monographien zurückgegriffen werden kann. So beschreibt W.Hermann de Groot, I. Adami, G.F. Moretti "The Manufacture of Modern Detergent Powders ", Hermann de Groot Academic Publisher, Wassenaar, 1995 verschiedene Sprühtrocknungs-, Misch- und Granulierverfahren zur Herstellung von Wasch- und Reinigungsmitteln. Aus energetischen Gründen ist es im Rahmen der vorliegenden Erfindung bevorzugt, wenn das tensidhaltige Granulat nicht durch Sprühtrocknung, sondern über ein Granulierverfahren hergestellt wird. Neben den herkömmlichen Granulier- und Agglomerationsverfahren, die in den unterschiedlichsten Mischgranulatoren und Mischagglomeratoren durchgeführt werden können, sind beispielsweise auch Preßagglomerationsverfahren einsetzbar. Verfahren, bei denen das tensidhaltige Granulat durch Granulation, Agglomeration, Preßagglomeration oder eine Kombination dieser Verfahren hergestellt wird, sind daher bevorzugt.
Die Granulierung kann in einer Vielzahl von in der Wasch- und Reinigungsmittelindustrie üblicherweise eingesetzten Apparaten durchgeführt werden. So ist es beispielsweise möglich, die in der Pharmazie gängigen Verrunder zu verwenden. In solchen Drehtellerapparaturen beträgt die Verweilzeit der Granulate üblichrweise weniger als 20 Sekunden. Auch herkömmliche Mischer und Mischgranulatoren sind zur Granulierung geeignet. Als Mischer können dabei sowohl Hochintensitätsmischer ("high-shear mixer") als auch normale Mischer mit geringeren Umlaufgeschwindigkeiten verwendet werden. Geeignete Mischer sind beispielsweise Eirich®-Mischer der Serien R oder RV (Warenzeichen der Maschinenfabrik Gustav Eirich, Hardheim), der Schugi® Flexomix, die Fukae® FS-G-Mischer (Warenzeichen der Fukae Powtech, Kogyo Co., Japan), die Lödige® FM-, KM- und CB- Mischer (Warenzeichen der Lödige Maschinenbau GmbH, Paderborn) oder die Drais®- Serien T oder K-T (Warenzeichen der Drais-Werke GmbH, Mannheim). Die Verweilzeiten der Granulate in den Mischern liegen im Bereich von weniger als 60 Sekunden, wobei die Verweilzeit auch von der Umlaufgeschwindigkeit des Mischers abhängt. Hierbei verkürzen sich die Verweilzeiten entsprechend, je schneller der Mischer läuft. Bevorzugt betragen die Verweilzeiten der Granulate im Mischer/Verrunder unter einer Minute, vorzugsweise unter 15 Sekunden. In langsam laufenden Mischern, z.B. einem Lödige KM, werden Verweilzeiten von bis zu 20 Minuten eingestellt, wobei Verweilzeiten unter 10 Minuten wegen der Verfahrensökonomie bevorzugt sind.
Bei dem Verfahren der Preßagglomeration wird das tensidhaltige Granulat unter Druck und unter Einwirkung von Scherkräften verdichtet und dabei homogenisiert und anschließend formgebend aus den Apparaten ausgetragen. Die technisch bedeutsamsten Preßagglomera- tionsverfahren sind die Extrusion, die Walzenkompaktierung, die Pelletierung und das Tablettieren. Im Rahmen der vorliegenden Erfindung bevorzugt zur Herstellung des tensidhaltige Granulats eingesetzte Preßagglomerationsverfahren sind die Extrusion, die Walzenkompaktierung und die Pelletierung.
Um den Zerfall hochverdichteter Formköφer zu erleichtern, ist es möglich, Desintegrati- onshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfs- mittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein- Derivate.
Bevorzugte Wasch- und Reinigungsmittelformköφer enthalten 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desintegrationshilfsmittel, jeweils bezogen auf das Formköφergewicht.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittelformköφer ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H,0O5)n auf und stellt formal betrachtet ein ß-l,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy- Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose- Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Cellulo- seester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feintei- liger Form eingesetzt, sondern vor dem Zumischen zu den zu veφressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformköφer, die Sprengmittel in granulärer oder gegebenenfalls cogranu- lierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Stefan Herzog) und DE 197 10 254 (Henkel) sowie der internationalen Patentanmeldung WO98/40463 (Henkel) beschrieben. Diesen Schriften sind auch nähere Angaben zur Herstellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entnehmen. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 μm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 μm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 μm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amoφhen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kom- paktierbar sind.
Somit sind im Rahmen der vorliegenden Erfindung Verfahren bevorzugt, bei denen das zu veφressende Vorgemisch zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granulärer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Gewicht des Vor- gemischs, enthält.
In weiter bevorzugten Verfahren enthält das Vorgemisch zusätzlich einen oder mehrere Stoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antire- depositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibito- ren und Korrosionsinhibitoren. Diese Stoffe werden nachfolgend beschrieben.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyro- phosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Per- benzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandi- säure. Auch beim Einsatz der Bleichmittel ist es möglich, auf den Einsatz von Tensiden und/oder Gerüststoffen zu verzichten, so daß reine Bleichmitteltabletten herstellbar sind. Sollen solche Bleichmitteltabletten zur Textilwäsche eingesetzt werden, ist eine Kombination von Natriumpercarbonat mit Natriumsesquicarbonat bevorzugt, unabhängig davon, welche weiteren Inhaltsstoffe in den Formköφern enthalten sind. Werden Reinigungsoder Bleichmitteltabletten für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxy- benzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesiummonopeφhthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxy- stearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o- Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N- nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1 ,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diper- oxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-l,4-disäure, N,N- Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
Als Bleichmittel in Formköφern für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N- Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure,
Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor- 5,5-dimethylhydanthoin sind ebenfalls geeignet. Um beim Waschen oder Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in das Vorgemisch eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedin- gungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere l,5-Diacetyl-2,4-dioxohexahydro-l,3,5- triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N- Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Formköφer eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder - Carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N- haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mi- schungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate in den erfindungsgemäßen Formköφern kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich können die Wasch- und Reinigungsmittelformköφer auch Komponenten enthalten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfmdungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methyl- cellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäu- re-Polymere.
Die Formköφer können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4- moφholino-l,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Moφholino-Gruppe eine Diethanolaminogruppe, eine Me- thylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)- diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Färb- und Duftstoffe werden den erfindungsgemäßen Wasch- und Reinigungsmittelform- köφern zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Wasch- bzw. Reinigungsleistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobuty- rat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenyle- thylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexyl- propionat, Styrallylpropionat und Benzylsahcylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Teφineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Teφene wie Limo- nen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lin- denblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt der erfmdungsgemäßen Wasch- und Reinigungsmittelform- köφer an Farbstoffen unter 0,01 Gew.-%, während Duftstoffe bis zu 2 Gew.-% der gesamten Formulierung ausmachen können.
Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielswei- se Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Um den ästhetischen Eindruck der erfindungsgemäßen Wasch- und Reinigungsmittelform- köφer zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindhchkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasem, um diese nicht anzufärben.
Vor der Veφressung des teilchenförrnigen Vorgemischs zu Wasch- und Reinigungsmittel- formköφern kann das Vorgemisch mit feinteiligen Oberflächenbehandlungsmitteln "abgepudert" werden. Dies kann für die Beschaffenheit und physikalischen Eigenschaften sowohl des Vorgemischs (Lagerung, Veφressung) als auch der fertigen Wasch- und Reini- gungsmittelformköφer von Vorteil sein. Feinteilige Abpudemngsmittel sind im Stand der Technik altbekannt, wobei zumeist Zeolithe, Silikate oder andere anorganische Salze eingesetzt werden. Bevorzugt wird das Vorgemisch jedoch mit feinteiligem Zeolith "abgepudert", wobei Zeolithe vom Faujasit-Typ bevorzugt sind. Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Neben dem Zeolith X sind also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Im Rahmen der vorliegenden Erfindung sind Verfahren zur Herstellung von Wasch- und Reimgi gsmittelforrnköφern bevorzugt, bei denen die bzw. eine der zugemischten Aufbe- reitungskomponenten ein Zeolith vom Faujasit-Typ mit Teilchengrößen unterhalb lOOμm, vorzugsweise unterhalb lOμm und insbesondere unterhalb 5μm ist und mindestens 0,2 Gew.-%, vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu veφressenden Vorgemischs ausmacht. Die Herstellung der erfindungsgemäßen Formköφer erfolgt zunächst durch das trockene Vermischen der Bestandteile, die ganz oder teilweise vorgranuliert sein können, und anschließendes Informbringen, insbesondere Veφressen zu Tabletten, wobei auf herkömmliche Verfahren zurückgegriffen werden kann. Zur Herstellung der erfindungsgemäßen Formköφer wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen.
Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formköφers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formköφerdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formköφers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formköφer mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formköφer durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formköφers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können. Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfachoder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Ver- pressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenteφressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Be- füllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befül- lung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht. Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formköφer werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kemschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Veφressen benutzt werden. Die Durchsätze modemer Rundlauftablettenpressen betragen über eine Million Formköφer pro Stunde.
Bei der Tablettiemng mit Rundläufeφressen hat es sich als vorteilhaft erwiesen, die Tablettierung mit möglichst geringen Gewichtschwankungen der Tablette durchzuführen. Auf diese Weise lassen sich auch die Härteschwankungen der Tablette reduzieren. Geringe Gewichtschwankungen können auf folgende Weise erzielt werden:
- Verwendung von Kunststoffeinlagen mit geringen Dickentoleranzen
- Geringe Umdrehungszahl des Rotors
- Große Füllschuhe
- Abstimmung des Füllschuhflügeldrehzahl auf die Drehzahl des Rotors
- Füllschuh mit konstanter Pulverhöhe
- Entkopplung von Füllschuh und Pulvervorlage
Zur Verminderung von Stempelanbackungen bieten sich sämtliche aus der Technik bekannte Antihaftbeschichtungen an. Besonders vorteilhaft sind Kunststoffbeschichtungen, Kunststoffeinlagen oder Kunststoffstempel. Auch drehende Stempel haben sich als vorteilhaft erwiesen, wobei nach Möglichkeit Ober- und Unterstempel drehbar ausgeführt sein sollten. Bei drehenden Stempeln kann auf eine Kunststoffeinlage in der Regel verzichtet werden. Hier sollten die Stempeloberflächen elektropoliert sein. Es zeigte sich weiterhin, daß lange Preßzeiten vorteilhaft sind. Diese können mit Druckschienen, mehreren Druckrollen oder geringen Rotordrehzahlen eingestellt werden. Da die Härteschwankungen der Tablette durch die Schwankungen der Preßkräfte vemrsacht werden, sollten Systeme angewendet werden, die die Preßkraft begrenzen. Hier können elastische Stempel, pneumatische Kompensatoren oder federnde Elemente im Kraftweg eingesetzt werden. Auch kann die Druckrolle federnd ausgeführt werden.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) sowie Courtoy N.V., Halle (BE/LU). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D.
Die Formköφer können dabei in vorbestirnmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungsmittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe- Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydraulikpressen, Exzenteφressen oder Rundläufeφressen sind geeignete Vorrichtungen insbesondere zur Herstellung derartiger Preßlinge.
Die Raumform einer anderen Ausfuhrungsform der Formköφer ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formköφer ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmittelformköφer über eine Dosierhilfe problemlos möglich und im Rahmen der vorliegenden Erfindung bevorzugt.
Ein weiterer bevorzugter Formköφer, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegeiförmigen" Foirnköφerwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden.
Möglich ist es aber auch, daß die verschiedenen Komponenten nicht zu einer einheitlichen Tablette veφreßt werden, sondern daß Formköφer erhalten werden, die mehrere Schichten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, daß diese verschiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formköφer resultieren. Falls beispielsweise Komponenten in den Formköφern enthalten sind, die sich wechselseitig negativ beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbeiten, so daß die erste Komponente bereits abreagiert hat, wenn die zweite in Lösung geht. Der Schichtaufbau der Forrnköφer kann dabei sowohl stapelartig erfolgen, wobei ein Lösungsvorgang der inneren Schicht(en) an den Kanten des Formköφers bereits dann erfolgt, wenn die äußeren Schichten noch nicht vollständig gelöst sind, es kann aber auch eine vollständige Umhüllung der inneren Schicht(en) durch die jeweils weiter außen liegende(n) Schicht(en) erreicht werden, was zu einer Verhinderung der frühzeitigen Lösung von Bestandteilen der inneren Schicht(en) führt.
In einer weiter bevorzugten Ausführungsform der Erfindung besteht ein Formköφer aus mindestens drei Schichten, also zwei äußeren und mindestens einer inneren Schicht, wobei mindestens in einer der inneren Schichten ein Peroxy-Bleichmittel enthalten ist, während beim stapelförmigen Formköφer die beiden Deckschichten und beim hüUenförmigen Formköφer die äußersten Schichten jedoch frei von Peroxy-Bleichmittel sind. Weiterhin ist es auch möglich, Peroxy-Bleichmittel und gegebenenfalls vorhandene Bleichaktivatoren und/oder Enzyme räumlich in einem Formköφer voneinander zu trennen. Derartige mehrschichtige Formköφer weisen den Vorteil auf, daß sie nicht nur über eine Einspülkammer oder über eine Dosiervorrichtung, welche in die Waschflotte gegeben wird, eingesetzt werden können; vielmehr ist es in solchen Fällen auch möglich, den Formköφer im direkten Kontakt zu den Textilien in die Maschine zu geben, ohne daß Verfleckungen durch Bleichmittel und dergleichen zu befürchten wären.
Ähnliche Effekte lassen sich auch durch Beschichtung ("coating") einzelner Bestandteile der zu veφressenden Wasch- und Reinigungsmittelzusammensetzung oder des gesamten Formköφers erreichen. Hierzu können die zu beschichtenden Köφer beispielsweise mit wäßrigen Lösungen oder Emulsionen bedüst werden, oder aber über das Verfahren der Schmelzbeschichtung einen Überzug erhalten.
Nach dem Veφressen weisen die Wasch- und Reinigungsmittelformköφer eine hohe Stabilität auf. Die Bruchfestigkeit zyhnderformiger Formköφer kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach
2R σ = πDt Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formköφer ausgeübten Druck führt, der den Bruch des Formköφers verursacht, D ist der Formköφerdurchmesser in Meter und t ist die Höhe der Formköφer.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von Tensidgra- nulaten, welche Phosphat und Zeolith vom Faujasit-Typ enthalten, zur Verbesserung der Härte und Zerfallszeit von Wasch- und Reinigungsmittelformköφem. Dieser erfmdungs- gemäße Einsatz der genannten Tensidgranulate im Vorgemisch führt zu Formköφern mit vorteilhaften Eigenschaften, wie die nachstehenden Beispiele zeigen. Hinsichtlich bevorzugter Ausführungsformen der erfindungsgemäßen Verwendung (Mengenateile der Phosphate und Zeolithe vom Faujasit-Typ, weitere Inhaltsstoffe, Zusammensetzung des Vorgemischs etc.) gilt analog das vorstehend für das erfindungsgemäße Verfahren Gesagte.
Auch die Verwendung von Tensidgranulaten, welche Phosphat und nichtionische Tenside enthalten, zur Verbesserung der Härte und Zerfallszeit von Wasch- und Reinigungsmittel- formköφern ist im Stand der Technik nicht beschrieben. Diese Verwendung ist ein weiterer Gegenstand der vorliegenden Erfindung. Auch hier lassen sich bevorzugte Mengen usw. dem vorstehenden Text entnehmen.
Die Inkoφoration aller drei Bestandteile (Phosphat, Zeolith vom Faujasit-Typ und Nioten- sid) in ein Tensidgranulat führt ebenfalls zu Wasch- und Reinigungsmittelformköφern mit vorteilhaften Eigenschaften, so daß die Verwendung von Tensidgranulaten, welche Phosphat, Zeolith vom Faujasit-Typ und nichtionische Tenside enthalten, zur Verbessemng der Härte und Zerfallszeit von Wasch- und Reinigungsmittelformköφem, einen weiteren Gegenstand der vorliegenden Erfindung darstellt.
Bei der letztgenannten Verwendung ist es bevorzugt, wenn das Tensidgranulat bereits die Kriterien erfüllt, die erfmdungsgemäße Wasch- und Reinigungsmittelformköφer erfüllen, d.h., daß das Verhältnis von nichtionischen Tensiden zu Zeolith vom Faujasit-Typ im Ten- sidgranulat zwischen 1:20 und 1:1, vorzugsweise zwischen 1:15 und 1:1,25, besonders bevorzugt zwischen 1:10 und 1 :1,5 und insbesondere zwischen 1:5 und 1:2 liegt.
Beispiele:
Durch Naßgranulation in einem 20-Liter-Pflugscharmischer der Firma Lödige wurden vier Tensidgranulate hergestellt, deren Zusammensetzung in Tabelle 1 angegeben ist. Im Anschluß an die Granulation wurden die Granulate in einer Aeromatic-Wirbelschichtapparatur bei einer Zulufttemperatur von 60°C 30 Minuten getrocknet. Nach der Trocknng wurden die Granulate zur Entfernung der Feinanteile < 0,6 mm und Grobkornanteile > 1,6 mm abgesiebt.
Die Tensidgranulate wurden dann mit weiteren Komponenten zu preßfähigen Vorgemischen aufbereitet, deren Zusammensetzung in Tabelle 2 angegeben ist. Die erfindungsgemäßen Vorgemische El bzw. E2 enthielten dabei Niotensid und Zeolith X im Gewichtsverhältnis von 1 :2,25, während das Vorgemisch des Vergleichsbeispiels V ein Nioten- sid/Zeoltih X- Verhältnis von 1,14:1 aufwies. Die Vorgemische wurden in einer Korsch- Exzenteφresse zu Tabletten (Durchmesser: 44 mm, Höhe: 22 mm, Gewicht: 37,5 g) verpreßt. Die Meßwerte der Tablettenhärten und -zerfallszeiten sind jeweils die Mittelwerte einer Doppelbestimmung, wobei die Einzelwerte je Formköφertyp um maximal 2 N bzw. 2 s variierten.
Tabelle 1: Zusammensetzung der Tensidgranulate [Gew.-%]
Figure imgf000046_0001
Tabelle 2: Zusammensetzung der Vorgemische [Gew.-%]:
Figure imgf000047_0001
Terephthalsäure-Ethylenglycol-Poylethylenglycol-Ester (Rhodia, Rhöne-Poulenc)
Die Härte der Tabletten wurde nach zwei Tagen Lagerung durch Verformung der Tablette bis zum Bruch gemessen, wobei die Kraft auf die Seitenflächen der Tablette einwirkte und die maximale Kraft, der die Tablette standhielt, ermittelt wurde.
Zur Bestimmung des Tablettenzerfalls wurde die Tablette in ein Becherglas mit Wasser gelegt (600ml Wasser, Temperatur 30°C) und die Zeit bis zum vollständigen Tablettenzerfall gemessen. Die experimentellen Daten zeigt die Tabelle 3 : Tabelle 3: Waschmitteltabletten [physikalische Daten]
Figure imgf000048_0001
Tabelle 3 zeigt, daß die Zerfallszeiten von phosphathaltigen Wasch- und Reinigungsmittelformköφem durch den erfindungsgemäßen Einsatz von Niotensid und Faujasit-Zeolith im bestimmten Verhältnis deutlich verringert werden, was insbesondere bei höheren Härten deutliche Verbesserungen ergibt.

Claims

Patentansprüche:
1. Wasch- und Reinigungsmittelformköφer aus verdichtetem, teilchenförmigen Wasch- und Reinigungsmittel, enthaltend Tensid(e), Gerüststoffe sowie optional weitere Inhaltsstoffe von Wasch- und Reinigungsmitteln, dadurch gekennzeichnet, daß die Formköφer nichtionische Tenside, Phosphatbuilder und Zeolith vom Faujasit-Typ enthalten, wobei das Verhältnis von nichtionischen Tensiden zu Zeolith vom Faujasit-Typ zwischen 1 :20 und 1 : 1 liegt.
2. Wasch- und Remigungsmittelformköφer nach Anspruch 1, dadurch gekennzeichnet, daß das Verhältnis von nichtionischen Tensiden zum Zeolith vom Faujasit-Typ zwischen 1:15 und 1 :1,25, vorzugsweise zwischen 1 :10 und 1:1,5 und insbesondere zwischen 1:5 und 1:2 liegt.
3. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Zeolith vom Faujasit-Typ in Mengen von 0,5 bis 20 Gew.-%, vorzugsweise von 1 bis 15 Gew.-%, besonders bevorzugt von 2 bis 10 Gew.-% und insbesondere von 2,5 bis 5 Gew.-%, jeweils bezogen auf das Formköφergewicht, eingesetzt wird, wobei Zeolith X bevorzugt ist.
4. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 3, dadurch gekerrnzeichnet, daß sie als Phosphate Alkalimetallphosphate, vorzugsweise Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 1 bis 60 Gew.-%, vorzugsweise von 5 bis 50 Gew.-%, besonders bevorzugt von 10 bis 40 Gew.-% und insbesondere von 15 bis 35 Gew.-%, jeweils bezogen auf das Formköφergewicht, enthalten.
5. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 4, dadurch gekeirnzeichnet, daß sie als nichtionische Tenside solche mit einem Schmelzpunkt unter 40°C in Mengen von 0,5 bis 20 Gew.-%, vorzugsweise von 1 bis 10 Gew.-% und insbesondere von 1,5 bis 5 Gew.-%, jeweils bezogen auf das Formköφergewicht, enthalten.
6. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als nichtionische Tenside Alkoholethoxylate der allgemeinen Formel
CnH2n+1O-(CH2CH2O)mH
eingesetzt werden, in der n Werte von 8 bis 24, vorzugsweise von 10 bis 22, besonders bevorzugt von 12 bis 20 und insbesondere von 12 bis 18 und m Werte von 1 bis 20, vorzugsweise von 2 bis 15, besonders bevorzugt von 4 bis 10 und insbesondere von 6 bis 8, annehmen.
7. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die sie Gesamtmenge an Phosphaten und Zeolithen vom Faujasit- Typ in Form eines Tensidgranulats enthalten, das vorzugsweise, auch die Gesamtmenge der in den Forrnköφern enthaltenen Tenside enthält.
8. Wasch- und Reinigungsmittelformköφer nach Anspruch 7, dadurch gekennzeichnet, daß das Tensidgranulat 5 bis 70 Gew.-%, vorzugsweise 10 bis 65 Gew.-%, besonders bevorzugt 20 bis 60 Gew.-% und insbesondere 25 bis 50 Gew.-% Phosphat, jeweils bezogen auf das Gewicht des Tensidgranulats, enthält.
9. Wasch- und Reinigungsmittelformköφer nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie zusätzlich anionische(s) Tensid(e), vorzugsweise Fettalkohol- sulfat(e), enthalten.
10. Verfahren zur Herstellung von Wasch- und Reinigungsmittelformköφem durch Abmischen eines tensidhaltigen Granulats mit pulverförmigen Aufbereitungskomponenten und nachfolgendes formgebendes Veφressen, dadurch gekennzeichnet, daß das zu veφressende Vorgemisch nichtionische Tenside, Phosphatbuilder und Zeolith vom Faujasit-Typ enthält, wobei das Verhältnis von nichtionischen Tensiden zu Zeolith vom Faujasit-Typ zwischen 1:20 und 1:1 liegt.
11. Verfahren nach Ansprach 10, dadurch gekennzeichnet, daß das tensidhaltige Granulat die Gesamtmenge der in den Formköφern enthaltenen Phosphate und Zeolithe vom Faujasit-Typ enthält, wobei Granulate, welche zusätzlich die Gesamtmenge der nichtionischen Tenside, vorzugsweise die Gesamtmenge aller Tenside, enthalten, bevorzugt sind.
12. Verfahren nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, daß das tensidhaltige Granulat anionische und/oder nichtionische Tenside sowie Gerüststoffe enthält und einen Gesamt-Tensidgehalt von 5 bis 60 Gew.-%, vorzugsweise von 10 bis 50 Gew.-% und insbesondere von 15 bis 40 Gew.-%, jeweils bezogen auf das Tensidgranulat, aufweist.
13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß das tensidhaltige Granulat Teilchengrößen zwischen 100 und 2000 μm, vorzugsweise zwischen 200 und 1800 μm, besonders bevorzugt zwischen 400 und 1600 μm und insbesondere zwischen 600 und 1400μm, aufweist.
14. Verfahren nach einem der Ansprüche 10 bis 13, dadurch gekeririzeichnet, daß der Anteil des tensidhaltigen Granulats an den Wasch- und Reinigungsmittelformköφem 40 bis 95 Gew.-%, vorzugsweise 45 bis 85 Gew.-% und insbesondere 55 bis 75 Gew.-%, jeweils bezogen auf das Gewicht der Wasch- und Reinigungsmittelformköφer, beträgt.
15. Verfahren nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß das zu veφressende Vorgemisch zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granulärer, cogranulier- ter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Gewicht des Vorgemischs, enthält.
16. Verfahren nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, daß das zu veφressende Vorgemisch weiterhin einen oder mehrere Stoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbüberfragungsinhibitoren und Korrosionsinhibitoren enthält.
17. Verwendung von Tensidgranulaten, welche Phosphat und Zeolith vom Faujasit-Typ enthalten, zur Verbesserung der Härte und Zerfallszeit von Wasch- und Reinigungs- mittelformköφem.
18. Verwendung von Tensidgranulaten, welche Phosphat und nichtionische Tenside enthalten, zur Verbesserung der Härte und Zerfallszeit von Wasch- und Reinigungsmittel- formköφern.
19. Verwendung von Tensidgranulaten, welche Phosphat, Zeolith vom Faujasit-Typ und nichtionische Tenside enthalten, zur Verbesserung der Härte und Zerfallszeit von Wasch- und Reinigungsmittelformköφem.
20. Verwendung nach Anspruch 19, dadurch gekennzeichnet, daß das Verhältnis von nich- tionischen Tensiden zu Zeolith vom Faujasit-Typ zwischen 1:20 und 1 :1, vorzugsweise zwischen 1:15 und 1:1,25, besonders bevorzugt zwischen 1:10 und 1:1,5 und insbesondere zwischen 1 :5 und 1 :2 liegt.
PCT/EP2000/001811 1999-03-11 2000-03-02 Wasch- und reinigungsmittelformkörper mit tensid-builderkombination WO2000053716A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU41038/00A AU4103800A (en) 1999-03-11 2000-03-02 Moulded washing and cleaning agents with a surfactant/builder combination

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19910818.8 1999-03-11
DE1999110818 DE19910818A1 (de) 1999-03-11 1999-03-11 Wasch- und Reinigungsmittelformkörper mit Tensid-Builderkombination

Publications (1)

Publication Number Publication Date
WO2000053716A1 true WO2000053716A1 (de) 2000-09-14

Family

ID=7900580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/001811 WO2000053716A1 (de) 1999-03-11 2000-03-02 Wasch- und reinigungsmittelformkörper mit tensid-builderkombination

Country Status (4)

Country Link
AU (1) AU4103800A (de)
CA (1) CA2300604A1 (de)
DE (1) DE19910818A1 (de)
WO (1) WO2000053716A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1412468A1 (de) * 2001-08-01 2004-04-28 Unilever N.V. Waschmittelzusammensetzungen
EP1418226B1 (de) * 2002-11-07 2006-10-04 Unilever N.V. Waschmittelzusammensetzung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355626A1 (de) * 1988-08-17 1990-02-28 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung phosphatreduzierter Waschmitteltabletten
JPH04306299A (ja) * 1991-04-03 1992-10-29 Kao Corp 錠剤型洗浄剤組成物
WO1998003064A1 (en) * 1996-07-23 1998-01-29 Fmc Corporation Disintegrant composition for dispersible solids
DE19743837A1 (de) * 1997-10-04 1999-04-08 Henkel Kgaa Verfahren zur Herstellung von stabilen und schnellöslichen Waschmitteltabletten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355626A1 (de) * 1988-08-17 1990-02-28 Henkel Kommanditgesellschaft auf Aktien Verfahren zur Herstellung phosphatreduzierter Waschmitteltabletten
JPH04306299A (ja) * 1991-04-03 1992-10-29 Kao Corp 錠剤型洗浄剤組成物
WO1998003064A1 (en) * 1996-07-23 1998-01-29 Fmc Corporation Disintegrant composition for dispersible solids
DE19743837A1 (de) * 1997-10-04 1999-04-08 Henkel Kgaa Verfahren zur Herstellung von stabilen und schnellöslichen Waschmitteltabletten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199250, Derwent World Patents Index; Class A97, AN 1992-410479, XP002084192 *

Also Published As

Publication number Publication date
DE19910818A1 (de) 2000-09-14
CA2300604A1 (en) 2000-09-11
AU4103800A (en) 2000-09-28

Similar Documents

Publication Publication Date Title
EP1123378B1 (de) Wasch- und reinigungsmittelformkörper mit wasserfrei granuliertem brausesystem
EP1138756A2 (de) Wasch-und Reinigungsmittelformkörper mit speziellem Tensidgranulat
WO2000014196A1 (de) Waschmitteltabletten mit bindemitteln
EP1165741B1 (de) Wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
DE19914812A1 (de) Ein- oder mehrphasige Wasch- und Reinigungsmittelformkörper mit speziellen Bleichaktivatoren
EP1159392B1 (de) Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination
WO2001029162A1 (de) Abriebverbesserte wasch- oder reinigungsmittelformkörper
WO2000053716A1 (de) Wasch- und reinigungsmittelformkörper mit tensid-builderkombination
WO2000050559A1 (de) Abriebstabile wasch- und reinigungsmittelformkörper mit festen additiven
EP1155111B1 (de) Verfahren zur herstellung schnell zerfallender wasch- und reinigungsmittelformkörper
WO2000017307A1 (de) Wasch- und reinigungsmittelformkörper mit natriumpercarbonat
WO2000022087A1 (de) Wasch- und reinigungsmittelformkörper mit organischen oligocarbonsäuren
WO2000017305A1 (de) Wasch- und reinigungsmittelformkörper mit grobteiligen aufbereitungskomponenten
WO2000029541A1 (de) Parfümfreie wasch- und reinigungsmittelformkörper
WO1999055812A1 (de) Wasch- und reinigungsmittelformkörper mit verbesserten zerfallseigenschaften
DE19915321A1 (de) Wasch- und Reinigungsmittelformkörper mit Desintegrationshilfsmittel
WO2000027985A1 (de) Wasch- und reinigungsmittelformkörper mit feinteiligen lösungsvermittlern
WO2000015753A1 (de) Abs-haltige wasch- und reinigungsmittelformkörper
WO2000060048A1 (de) Wasch- und reinigungsmittelformkörper mit speziellen tensidgranulaten
WO2000015754A1 (de) Wasch- und reinigungsmittelformkörper mit speziellem tensidgranulat
EP1090103A1 (de) Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
WO2000022086A1 (de) Bleichaktivator-haltige wasch- und reiningungsmittelformkörper
WO2000066700A1 (de) Wasch- und reinigungsmittelformkörper mit bindemittelcompound
WO2000024862A1 (de) Fas-haltige wasch- und reinigungsmittelformkörper
WO2000017306A1 (de) Wasch- und reinigungsmittelformkörper mit feinteiligen aufbereitungskomponenten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AU AZ BA BB BG BR BY CN CR CU CZ DM EE GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MA MD MG MK MN MW MX NO NZ PL RO RU SD SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase