DE19910819A1 - Wasch- und Reinigungsmittelformkörper mit Tensid-Bleichmittel-Builderkombination - Google Patents

Wasch- und Reinigungsmittelformkörper mit Tensid-Bleichmittel-Builderkombination

Info

Publication number
DE19910819A1
DE19910819A1 DE19910819A DE19910819A DE19910819A1 DE 19910819 A1 DE19910819 A1 DE 19910819A1 DE 19910819 A DE19910819 A DE 19910819A DE 19910819 A DE19910819 A DE 19910819A DE 19910819 A1 DE19910819 A1 DE 19910819A1
Authority
DE
Germany
Prior art keywords
weight
acid
detergent tablets
surfactant
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19910819A
Other languages
English (en)
Inventor
Gerhard Blasey
Birgit Burg
Hans-Friedrich Kruse
Andreas Lietzmann
Markus Semrau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7900581&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE19910819(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE19910819A priority Critical patent/DE19910819A1/de
Priority to PCT/EP2000/001812 priority patent/WO2000053717A1/de
Priority to AT00912538T priority patent/ATE269395T1/de
Priority to AU34266/00A priority patent/AU3426600A/en
Priority to EP00912538A priority patent/EP1159392B2/de
Priority to DE50006819T priority patent/DE50006819D1/de
Priority to ES00912538T priority patent/ES2223479T5/es
Priority to CA002300616A priority patent/CA2300616A1/en
Publication of DE19910819A1 publication Critical patent/DE19910819A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Wasch- und Reinigungsmittelformkörper aus verdichtetem, teilchenförmigen Wasch- und Reinigungsmittel, die sich durch hohe Härten, kurze Zerfallszeiten, Einspülbarkeit über die Einspülkammer von Haushaltswaschmaschinen und deutlich verringerte Tendenz zum Deckeln auszeichnen, enthalten Fettalkoholsulfat(e), Percarbonat und Phosphatbuilder.

Description

Die vorliegende Erfindung betrifft Formkörper, die wasch- und reinigungsaktive Eigen­ schaften besitzen wie beispielsweise Waschmitteltabletten, Reinigungsmitteltabletten für das maschinelle Geschirrspülen, Bleichmitteltabletten, Wasserenthärtetabletten usw. Ins­ besondere betrifft die Erfindung Wasch- und Reinigungsmittelformkörper für die Textil­ wäsche in einer Haushaltswaschmaschine, die kurz als Waschmitteltabletten bezeichnet werden.
Zu den besonderen Vorteilen der Angebotsform "Tablette" zählen das einfache und saube­ re Dosieren und der hohe Verdichtungsgrad, welcher einen verringerten Verpackungs- und Transportaufwand erfordert. Gerade aufgrund dieser Vorteile besitzen Wasch- und Reini­ gungsmittel in Tablettenform eine hohe Verbraucherakzeptanz. Diesen Vorteilen stehen aber auch Nachteile gegenüber. So müssen die Tabletten hinreichend stabil sein, um Ver­ packung, Transport und Handhabung zu überstehen, andererseits sollen sie aber schnell zerfallen und gut löslich sein, um die Aktivsubstanzen schnell freizusetzen und Rückstände oder Verfleckungen auf den behandelten Substraten zu vermeiden. Im Idealfall sollen die Wasch- und Reinigungsmittelformkörper dabei so schnell in ihre Sekundärpartikel zerfal­ len, daß beispielsweise eine Dosierung über die Einspülkammer haushaltsüblicher Wasch­ maschinen problemlos möglich ist. Formkörper, die hierzu nicht geeignet sind, müssen über die Trommel dosiert werden, wo der direkte Kontakt des Mittels mit der Wäsche zu sogenannten spotting-Problemen führen kann. Ein Abmildern dieser Problematik ist zwar durch die Verwendung von Dosierhilfen bzw. Säckchen, in die die Tabletten vor der Zuga­ be zur Wäsche eingelegt werden, möglich, doch wird einerseits das Problem nicht voll­ ständig gelöst, andererseits führt diese umständliche Vorgehensweise zu deutlich verrin­ gerter Verbraucherakzeptanz, da die Vorteile der leichten Dosierung und der Möglichkeit der Dosierung ohne Hautkontakt mit dem Mittel hierdurch zunichte gemacht werden.
In der Patentliteratur findet sich demnach ein breiter Stand der Technik, der Lösungsvor­ schläge zur Überwindung der Dichotomie zwischen Härte und Zerfallszeit bereithält. Ein weiteres Problem existiert aber auch bei der Herstellung wasch- und reinigungsaktiver Formkörper. Insbesondere bei härterer Verpressung (um zu stabilen Tabletten zu gelangen) kann die Haftung des zu tablettierenden Vorgemischs an den Preßwerkzeugen die interpar­ tikuläre Haftung überwiegen. Dies führt entweder zu Stempelanbackungen von Vorge­ mischpartikeln an den Oberflächen der Preßwerkzeuge oder im schlimmsten Fall zum so­ genannten "Deckeln", d. h. einem schichtenweisen Aufreißen der Tablette bzw. dem An­ haften einer durchgehenden und dicken Partikelschicht an einem Preßwerkzeug, zumeist dem Oberstempel. Hierdurch wird der Formkörper selbst unbrauchbar, er quasi horizontal "durchgerissen" wird. Die am Stempel anhaftende Schicht führt aber beim nächsten Preß­ vorgang ebenfalls zu Problemen, so daß für die Säuberung der Stempel Standzeiten der Maschinen in Kauf genommen werden müssen.
In der Pharmazie werden zur Lösung dieser Problematik Feuchthaltemittel zugesetzt, die Tablettiergeschwindigkeiten verlangsamt, um Lufteinschlüssen vorzubeugen oder Hilfs­ stoffe zugegeben, welche eine zu hohe Rückdehnung der Formkörper nach dem Verpressen verhindern. Hier hat sich mikrokristalline Cellulose bewährt.
Im Stand der Technik zu Wasch- und Reinigungsmittelformkörpern existieren zum Pro­ blem des Deckeins bislang kaum Lösungsansätze. Zur Vermeidung von Stempelanbackun­ gen werden die Beschichtung von Stempelwerkzeugen mit Elastomeren oder Stempel mit Elastomereinlagen beschrieben. Lösungsansätze, die das Problem nicht von der maschi­ nentechnischen Seite, sondern von der Rezepturseite her angehen, sind bislang nicht be­ schrieben.
Wasch- und Reinigungsmittelformkörper, welche Phosphate und Bleichmittel enthalten, sind im Stand der Technik beschrieben. So offenbart beispielsweise die internationale Pa­ tentanmeldung WO 98/42816 (Unilever) Waschmitteltabletten, welche eine Dichte von mehr als 1040 g/cm3 aufweisen und 5 bis 50 Gew.-% Tensid sowie 8 bis 30 Gew.-% Bleichmittel enthalten. Als Bleichmittel werden in dieser Schrift Natriumpercabonat oder Natriumperborat-Tetrahydrat eingesetzt, welche sich in Handversuchen als bevorzugt ge­ genüber Natriumperborat-Monohydrat herausgestellt haben sollen. Weder der Einsatz von Fettalkoholsulfaten noch das Problem des Deckelns werden in dieser Schrift erwähnt.
Waschmitteltabletten mit Natriumpercarbonat und Tripolyphosphat werden auch in der WO 98/24817 (Unilever) beschrieben. Auch in dieser Schrift wird der Einsatz von Fettal­ koholsulfaten nicht beschrieben und auch das Problem des Deckeins nicht gewürdigt.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, Wasch- und Reinigungsmittel­ formkörper bereitzustellen, die ein Rezepturzusammensetzung aufweisen, welche die Ten­ denz der Formkörper zum Deckeln minimiert. Dies sollte einerseits unabhängig von der eingesetzten Tablettiermaschine und andererseits ohne Einbußen in anderen Qualitätspa­ rametern der Tabletten erreicht werden. Insbesondere hohe Härten bei kurzen Zerfallszei­ ten und damit die Möglichkeit, die resultierenden Formkörper über die Einspülkammer dosieren zu können, sind weitere Eigenschaften, die die erfindungsgemäßen Formkörper aufweisen sollen.
Es wurde nun gefunden, daß phosphatbasierte und Percarbonat-haltige Wasch- und Reini­ gungsmittelformkörper mit hervorragenden anwendungstechnischen Eigenschaften und deutlich verringerter Deckelneigung formuliert werden können, wenn diese Fettalkoholsul­ fat(e) enthalten.
Gegenstand der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper aus verdichtetem, teilchenförmigen Wasch- und Reinigungsmittel, enthaltend Tensid(e), Bleichmittel, Gerüststoffe sowie optional weitere Inhaltsstoffe von Wasch- und Reini­ gungsmitteln, dadurch gekennzeichnet, daß die Formkörper Fettalkoholsulfat(e), Percarbo­ nat und Phosphatbuilder enthalten.
Die erfindungsgemäßen Formkörper enthalten Tenside, Phosphatbuilder und Bleichmittel. Hierbei erfüllen die Phosphate Builderaufgaben, während Fettalkoholsulfate als waschakti­ ve Substanzen enthalten sind. Üblicherweise wird hierbei die Hauptmenge an Gerüststoff­ substanz von den Phosphaten ausgemacht.
Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphos­ phate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (ins­ besondere Natrium- und Kalium-)Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekula­ ren Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkru­ stationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3 Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natron­ lauge auf einen pH-Wert von 4, 5 eingestellt und die Maische versprüht wird. Kaliumdihy­ drogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° [Zerset­ zung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Ver­ lust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphos­ phat Na4P2O, über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphor­ säure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres oder zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zerset­ zung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH herge­ stellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein wei­ ßes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3 hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z. B. beim Er­ hitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kalium­ phosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O-, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Er­ hitzen von Dinatriumphosphat auf < 200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphos­ phate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phos­ phate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlös­ liches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n = 3. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kri­ stallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen ent­ wässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphos­ phat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphos­ phat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-% igen Lösung (< 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphos­ phat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtri­ polyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkör­ per enthalten als Phosphate Alkalimetallphosphate, vorzugsweise Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 1 bis 60 Gew.-%, vorzugsweise von 5 bis 50 Gew.-%, besonders bevorzugt von 10 bis 40 Gew.-% und insbesondere von 15 bis 35 Gew.-%, jeweils bezogen auf das Formkörpergewicht.
Neben den Phosphaten können die erfindungsgemäßen Wasch- und Reinigungsmittelform­ körper weitere übliche Gerüststoffe enthalten, die sowohl wasserlöslich als auch wasse­ runlöslich sein können. In den erfindungsgemäßen Wasch- und Reinigungsmittelformkör­ pern können dabei alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Ge­ rüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate und organische Cobuilder. Diese Gerüststoffe können den zu tablettierenden Mischungen zugesetzt wer­ den, sie können aber auch ganz oder teilweise Bestandteil von Tensidgranulaten sein.
Als Gerüststoffe geeignete kristalline, schichtförmige Natriumsilikate besitzen die allge­ meine Formel NaMSixO2x+1.H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für × 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentan­ meldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angege­ benen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 an­ nimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5.yH2O bevor­ zugt, wobei β-Natriumdisilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche lösever­ zögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispiels­ weise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalli­ ne Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels auf­ weisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokri­ stalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamor­ phe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Was­ sergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A-44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Sili­ kate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mi­ schungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O.(1-n)K2O Al2O3.(2-2,5)SiO2.(3,5-5,5) H2O
beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granula­ ren Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpres­ senden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Coun­ ter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkör­ per enthalten zusätzlich einen Zeolith vom Faujasit-Typ in Mengen von 0,5 bis 20 Gew.-%, vorzugsweise von 1 bis 15 Gew.-%, besonders bevorzugt von 2 bis 10 Gew.-% und insbesondere von 2,5 bis 5 Gew.-%, jeweils bezogen auf das Formkörpergewicht, wobei Zeolith X bevorzugt ist.
Die Menge an Gerüststoff beträgt üblicherweise zwischen 10 und 70 Gew.-%, vorzugs­ weise zwischen 15 und 60 Gew.-% und insbesondere zwischen 20 und 50 Gew.-%. Wie­ derum ist die Menge an eingesetzten Buildern abhängig vom Verwendungszweck, so daß Bleichmitteltabletten höhere Mengen an Gerüststoffen aufweisen können (beispielsweise zwischen 20 und 70 Gew.-%, vorzugsweise zwischen 25 und 65 Gew.-% und insbesonde­ re zwischen 30 und 55 Gew.-%), als beispielsweise Waschmitteltabletten (üblicherweise 10 bis 50 Gew.-%, vorzugsweise 12,5 bis 45 Gew.-% uns insbesondere zwischen 17,5 und 37,5 Gew.-%).
Als organische Cobuilder können in den erfindungsgemäßen Wasch- und Reinigungsmit­ telformkörper insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxy­ late, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrie­ ben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsal­ ze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citro­ nensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adi­ pinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus die­ sen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Buil­ derwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen MW der jeweiligen Säureform, die grund­ sätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV- Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäu­ re-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Poly­ meren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus die­ ser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als beson­ ders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Mole­ külmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vor­ zugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vor­ zugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthal­ ten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei ver­ schiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acryl­ säure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE- A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyas­ paraginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmel­ dung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dial­ dehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxyl­ gruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialde­ hyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkata­ lysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolysepro­ dukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Poly­ saccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglu­ cosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungspro­ dukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den inter­ nationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 und WO 95/20608 bekannt. Ebenfalls ge­ eignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A- 196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendia­ mindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'- disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Gly­ cerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathalti­ gen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbon­ säuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maxi­ mal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der inter­ nationalen Patentanmeldung WO 95/20029 beschrieben.
Eine weitere Substanzklasse mit Cobuildereigenschafien stellen die Phosphonate dar. Da­ bei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Ho­ mologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP ver­ wendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbin­ devermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche ent­ halten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkali­ ionen auszubilden, als Cobuilder eingesetzt werden.
Die erfindungsgemäßen Formkörper enthalten zur Entfaltung der Wasch- bzw. Reini­ gungsleistung Tenside. Erfindungsgemäß sind dabei Fettalkoholsulfate in den Formkörpern enthalten, während andere Tenside optional zusätzlich eingesetzt werden können.
Fettalkoholsulfate, die Alkalimetall-, insbesondere Natriumsalze der Schwefelsäurehalbe­ ster längerkettiger Alkohole, sind großtechnisch aus Fettalkoholen zugänglich, welche mit Schwefelsäure, Chlorsulfonsäure, Amidosulfonsäure oder Schwefeltrioxid zu den betref­ fenden Alkylschwefelsäuren umgesetzt und nachfolgend neutralisiert werden. Die Fettal­ kohole werden dabei aus den betreffenden Fettsäuren bzw. Fettsäuregemischen durch Hochdruckhydrierung der Fettsäuremethylester gewonnen. Der mengenmäßig bedeutendste industrielle Prozeß zur Herstellung von Fettalkylschwefelsäuren ist die Sulfierung der Al­ kohole mit SO3/Luft-Gemischen in speziellen Kaskaden-, Fallfilm- oder Rohrbündelreakto­ ren.
Die Fettsäuren, deren Methylester zu den Fettalkoholen hochdruckhydriert werden, werden technisch größtenteils aus nativen Fetten und Ölen durch Hydrolyse gewonnen. Während die bereits im vergangenen Jahrhundert durchgeführte alkalische Verseifung direkt zu den Alkalisalzen (Seifen) führte, wird heute großtechnisch zur Spaltung nur Wasser eingesetzt, das die Fette in Glycerin und die freien Fettsäuren spaltet. Alternativ kann die Spaltung mit Methanol durchgeführt werden, wobei direkt die Methylester und Glycerin gewonnen wer­ den. Großtechnisch angewendete Verfahren sind beispielsweise die Spaltung im Autokla­ ven oder die kontinuierliche Hochdruckspaltung. Im Rahmen der vorliegenden Erfindung als Basis für die Fettalkoholsulfate einsetzbare Carbonsäuren sind beispielsweise Hexan­ säure (Capronsäure), Heptansäure (Önanthsäure), Octansäure (Caprylsäure), Nonansäure (Pelargonsäure), Decansäure (Caprinsäure), Undecansäure usw. Bevorzugt ist im Rahmen der vorliegenden Verbindung der Einsatz von Fettsäuren wie Dodecansäure (Laurinsäure), Tetradecansäure (Myristinsäure), Hexadecansäure (Palmitinsäure), Octadecansäure (Stea­ rinsäure), Eicosansäure (Arachinsäure), Docosansäure (Behensäure), Tetracosansäure (Lignocerinsäure), Hexacosansäure (Cerotinsäure), Triacotansäure (Melissinsäure) sowie der ungesättigten Sezies 9c-Hexadecensäure (Palmitoleinsäure), 6c-Octadecensäure (Petro­ selinsäure), 6t-Octadecensäure (Petroselaidinsäure), 9c-Octadecensäure (Ölsäure), 9t- Octadecensäure ((Elaidinsäure), 9c,12c-Octadecadiensäure (Linolsäure), 9t,12t- Octadecadiensäure (Linolaidinsäure) und 9c,12c,15c-Octadecatreinsäure (Linolensäure). Aus Kostengründen ist es bevorzugt, nicht die reinen Spezies einzusetzen, sondern techni­ sche Gemische der einzelnen Säuren, wie sie aus der Fettspaltung zugänglich sind. Solche Gemische sind beispielsweise Koskosölfettsäure (ca. 6 Gew.-% C8, 6 Gew.-% C10, 48 Gew.-% C12, 18 Gew.-% C14, 10 Gew.-% C16, 2 Gew.-% C18, 8 Gew.-% C18', 1 Gew.-% C18'), Palmkernölfettsäure (ca. 4 Gew.-% C8, 5 Gew.-% C10, 50 Gew.-% C12, 15 Gew.-% C14, 7 Gew.-% C16, 2 Gew.-% C18, 15 Gew.-% C18', 1 Gew.-% C18'), Talgfettsäure (ca. 3 Gew.-% C14, 26 Gew.-% C16, 2 Gew.-% C16', 2 Gew.-% C17, 17 Gew.-% C18, 44 Gew.-% C18', 3 Gew.-% C18', 1 Gew.-% C18'''), gehärtete Talgfettsäure (ca. 2 Gew.-% C14, 28 Gew.-% C16, 2 Gew.-% C17, 63 Gew.-% C18, 1 Gew.-% C18'), technische Ölsäure (ca. 1 Gew.-% C12, 3 Gew.-% C14, 5 Gew.-% C16, 6 Gew.-% C16', 1 Gew.-% C17, 2 Gew.-% C18, 70 Gew.-% C18', 10 Gew.-% C18', 0,5 Gew.-% C18'''), technische Palmitin/Stearinsäure (ca. 1 Gew.-% C12, 2 Gew.-% C14, 45 Gew.-% C16, 2 Gew.-% C17, 47 Gew.-% C18, 1 Gew.-% C18') so­ wie Sojabohnenölfettsäure (ca. 2 Gew.-% C14, 15 Gew.-% C16, 5 Gew.-% C18, 25 Gew.-% C18', 45 Gew.-% C18', 7 Gew.-% C18'''). Als Alk(en)ylsulfate werden vorzugsweise die Al­ kali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18- Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-oxoalkohole und diejenigen Halbester sekun­ därer Alkohole dieser Kettenlängen bevorzugt. Einsetzbar sind auch Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestell­ ten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechni­ schem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15- Alkylsulfate bevorzugt.
Wie vorstehend beschrieben, werden zur Produktion der Fettalkoholsulfate vorzugsweise technische Gemische der Fettsäuren eingesetzt. Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelformkörper enthalten die Alkalimetall-, vorzugs­ weise Natriumsalze, von C8-22-, vorzugsweise C10-20- und insbesondere C12-18- Fettalkylschwefelsäuren.
Unabhängig von der Einarbeitungsform der Fettalkoholsulfate sind dabei Wasch- und Rei­ nigungsmittelformkörper bevorzugt, die die Alkalimetall-, vorzugsweise Natriumsalze, von C8-22-, vorzugsweise C10-20- und insbesondere C12-18-Fettalkylschwefelsäuren, vorzugsweise in Mengen von 0,5 bis 30 Gew.-%, besonders bevorzugt von 1 bis 20 Gew.-% uns insbe­ sondere von 2 bis 10 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
Andere Tenside, die zusätzlich zu den Fettalkoholsulfaten eingesetzt werden könne, kön­ nen aus den Gruppen der anionischen, nichtionischen, kationischen oder amphoteren Ten­ side stammen. Aufgrund ihres Leistungsspektrums und ihrer Verfügbarkeit sind hierbei anionische und nichtionische Tenside bevorzugt.
Als weitere anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei z. B. Alkylbenzolsulfo­ nate (ABS), Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenstän­ diger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschlie­ ßende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Ge­ eignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfo­ chlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewon­ nen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α- sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglyce­ rinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevor­ zugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fett­ säuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Ca­ prinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten gerad­ kettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind ge­ eignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sul­ fosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ab­ leitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fet­ talkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, deren Gesamtgehalt an anionischen Tensiden oberhalb von 5 Gew.-%, vor­ zugsweise oberhalb von 7,5 Gew.-% und insbesondere oberhalb von 10 Gew.-%, jeweils bezogen auf das Formkörpergewicht, liegt.
Bei der Auswahl der anionischen Tenside, die in den erfindungsgemäßen Wasch- und Rei­ nigungsmittelformkörpern zum Einsatz kommen, stehen der Formulierungsfreiheit keine einzuhaltenden Rahmenbedingungen im Weg. Bevorzugte Wasch- und Reinigungsmittel­ formkörper weisen jedoch einen Gehalt an Seife auf, der 0,2 Gew.-%, bezogen auf das Ge­ samtgewicht des Formkörpers, übersteigt.
Als optional einzusetzende nichtionische Tenside werden vorzugsweise alkoxylierte, vor­ teilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C- Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicher­ weise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit li­ nearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol be­ vorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14- Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu die­ sen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt wer­ den. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als allei­ niges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und pro­ poxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkyl­ kette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Pa­ tentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der in­ ternationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt wer­ den.
Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemei­ nen Formel RO(G)z, in der R für einen linearen oder verzweigten, insbesondere in 2- Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glyko­ seeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungs­ grad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbeson­ dere zwischen 1, 1 und 1,4.
Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in de­ nen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n-Alkylrest ist.
Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können bevorzugt Al­ kylpolyglycoside enthalten, wobei Gehalte der Formkörper an APG über 0,2 Gew.-%, be­ zogen auf den gesamten Formkörper, bevorzugt sind. Besonders bevorzugte Wasch- und Reinigungsmittelformkörper enthalten APG in Mengen von 0,2 bis 10 Gew.-%, vorzugs­ weise 0,2 bis 5 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N­ dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealka­ nolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vor­ zugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (II),
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Was­ serstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuc­ kers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylie­ rung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (III),
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlen­ stoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Aryl­ rest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Poly­ hydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substitu­ iert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder Propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäu­ remethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhy­ droxyfettsäureamide überführt werden.
Im Rahmen der vorliegenden Erfindung sind Wasch- und Reinigungsmittelformkörper bevorzugt, die zusätzlich nichtionische(s) Tensid(e) enthalten und bei denen der Gehalt der Formkörper an nichtionischen Tensiden oberhalb von 2 Gew.-%, vorzugsweise oberhalb von 5 Gew.-% und insbesondere oberhalb von 7,5 Gew.-%, jeweils bezogen auf das Form­ körpergewicht, liegt.
Im Rahmen der vorliegenden Erfindung können nichtionische Tenside aus sämtlichen vor­ stehend genannten Gruppen eingesetzt werden. Unabhängig von der chemischen Natur der eingesetzten nichtionischen Tenside sind Wasch- und Reinigungsmittelformkörper bevor­ zugt, die zusätzlich nichtionische Tenside mit einem Schmelzpunkt unter 40°C, vorzugs­ weise unter 30°C und insbesondere unter 25°C, in Mengen von 0,5 bis 20 Gew.-%, vor­ zugsweise von 1 bis 10 Gew.-% und insbesondere von 1,5 bis 5 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
Zur Entfaltung der gewünschten Bleichleistung enthalten die Wasch- und Reinigungsmit­ telformkörper der vorliegenden Erfindung Natriumpercarbonat. Dabei ist "Natriumpercarbonat" eine in unspezifischer Weise verwendete Bezeichnung für Natrium­ carbonat-Peroxohydrate, welche streng genommen keine "Percarbonate" (also Salze der Perkohlensäure) sondern Wasserstoffperoxid-Addukte an Natriumcarbonat sind. Die Han­ delsware hat die durchschnittliche Zusammensetzung 2 Na2CO3.3 H2O2 und ist damit kein Peroxycarbonat. Natriumpercarbonat bildet ein weißes, wasserlösliches Pulver der Dichte 2,14 gcm-3, das leicht in Natriumcarbonat und bleichend bzw. oxidierend wirkenden Sauer­ stoff zerfällt.
Natriumcarbonatperoxohydrat wurde erstmals 1899 durch Fällung mit Ethanol aus einer Lösung von Natriumcarbonat in Wasserstoffperoxid erhalten, aber irrtümlich als Peroxy­ carbonat angesehen. Erst 1909 wurde die Verbindung als Wasserstoffperoxid- Anlagerungsverbindung erkannt, dennoch hat die historische Bezeichnung "Natriumpercarbonat" sich in der Praxis durchgesetzt, weshalb sie auch im Rahmen der vorliegenden Anmeldung Verwendung findet.
Die industrielle Herstellung von Natriumpercarbonat wird überwiegend durch Fällung aus wäßriger Lösung (sogenanntes Naßverfahren) hergestellt. Hierbei werden wäßrige Lösun­ gen von Natriumcarbonat und Wasserstoffperoxid vereinigt und das Natriumpercarbonat durch Aussalzmittel (überwiegend Natriumchlorid), Kristallisierhilfsmittel (beispielsweise Polyphosphate, Polyacrylate) und Stabilisatoren (beispielsweise Mg2+-Ionen) gefällt. Das ausgefällte Salz, das noch 5 bis 12 Gew.-% Mutterlauge enthält, wird anschließend abzen­ trifuigiert und in Fließbett-Trocknern bei 90°C getrocknet. Das Schüttgewicht des Fertig­ produkts kann je nach Herstellungsprozeß zwischen 800 und 1200 g/l schwanken. In der Regel wird das Percarbonat durch ein zusätzliches Coating stabilisiert. Coatingverfahren und Stoffe, die zur Beschichtung eingesetzt werden, sind in der Patentliteratur breit be­ schrieben. Grundsätzlich können erfindungsgemäß alle handelsüblichen Percarbonattypen eingesetzt werden, wie sie beispielsweise von den Firmen Solvay Interox, Degussa, Kemira oder Akzo angeboten werden. Die Vorteilhaftigkeit des schnellen Formkörperzerfalls re­ sultiert erfindungsgemäß aus der definierten Partikelgröße des Percarbonats.
Das Natriumpercarbonat Bleichmittel wird in Abhängigkeit vom gewünschten Produkt in variierenden Mengen in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern eingesetzt. Übliche Gehalte liegen dabei zwischen 5 und 50 Gew.-%, vorzugsweise zwi­ schen 10 und 40 Gew.-% und insbesondere zwischen 15 und 35 Gew.-%, jeweils bezogen auf den gesamten Formkörper.
Auch ist beim Natriumpercarbonat der Gehalt der Formkörper an diesem Stoff vom Ein­ satzzweck der Formkörper abhängig. Während übliche Universalwaschmittel in Tabletten­ form zwischen 5 und 30 Gew.-%, vorzugsweise zwischen 7,5 und 25 Gew.-% und insbe­ sondere zwischen 12,5 und 22,5 Gew.-% Natriumpercarbonat enthalten, liegen die Gehalte bei Bleichmittel- oder Bleichboostertabletten zwischen 15 und 50 Gew.-%, vorzugsweise zwischen 22,5 und 45 Gew.-% uns insbesondere zwischen 30 und 40 Gew.-%.
Eine bevorzugte Ausführungsform der vorliegenden Erfindung stellt Waschmitteltabletten für das Waschen von Textilien in einer Haushaltswaschmaschine bereit. Diese bevorzugten Wasch- und Reinigungsmittelformkörper sind dadurch gekennzeichnet, daß sie als alleini­ ges Bleichmittel Natriumpercarbonat in Mengen von 1 bis 40 Gew.-%, vorzugsweise von 2,5 bis 35 Gew.-%, besonders bevorzugt von 5 bis 30 Gew.-% und insbesondere von 7,5 bis 25 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
Zusätzlich zum Natriumpercarbonat können die erfindungsgemäßen Wasch- und Reini­ gungsmittelformkörper Bleichaktivator(en) enthalten, was im Rahmen der vorliegenden Erfindung bevorzugt ist. Bleichaktivatoren werden in Wasch- und Reinigungsmittel einge­ arbeitet, um beim Waschen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhy­ drolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C- Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoe­ säure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N- Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoyl­ gruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraa­ cetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4- dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetyl­ glykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwer­ tige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5- dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Formkörper eingearbeitet werden. Bei diesen Stof­ fen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetall­ komplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -Carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N­ haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleich­ katalysatoren verwendbar.
Die erfindungsgemäßen Formkörper enthalten, jeweils bezogen auf den gesamten Form­ körper, zwischen 0,5 und 30 Gew.-%, vorzugsweise zwischen 1 und 20 Gew.-% und insbe­ sondere zwischen 2 und 15 Gew.-% eines oder mehrerer Bleichaktivatoren oder Bleichka­ talysatoren. Je nach Verwendungszweck der hergestellten Formkörper können diese Men­ gen variieren. So sind in typischen Universalwaschmitteltabletten Bleichaktivator-Gehalte zwischen 0,5 und 10 Gew.-%, vorzugsweise zwischen 2 und 8 Gew.-% und insbesondere zwischen 4 und 6 Gew.-% üblich, während Bleichmitteltabletten durchaus höhere Gehalte, beispielsweise zwischen 5 und 30 Gew.-%, vorzugsweise zwischen 7,5 und 25 Gew.-% und insbesondere zwischen 10 und 20 Gew.-% aufweisen können. Der Fachmann ist dabei in seiner Formulierungsfreiheit nicht eingeschränkt und kann auf diese Weise stärker oder schwächer bleichende Waschmitteltabletten, Reinigungsmitteltabletten oder Bleichmittelt­ abletten herstellen, indem er die Gehalte an Bleichaktivator und Bleichmittel variiert.
Ein besonders bevorzugt verwendeter Bleichaktivator ist das N,N,N',N'- Tetraacetylethylendiamin, das in Wasch- und Reinigungsmitteln breite Verwendung findet. Dementsprechend sind bevorzugte Wasch- und Reinigungsmittelformkörper dadurch ge­ kennzeichnet, daß als Bleichaktivator Tetraacetylethylendiamin in den oben genannten Mengen eingesetzt wird.
Phosphat(e) und Fettalkoholsulfat(e) können auf beliebige Weise in die erfindungsgemä­ ßen Wasch- und Reinigungsmittelformkörper eingebracht werden. Es hat sich als vorteil­ haft erwiesen, wenn das zu Formkörpern zu verpressende Vorgemisch Phosphat(e) und Fettalkoholsulfat(e) in Form eines Tensidgranulats enthält. Hierzu wird zuerst ein Tensid­ granulat hergestellt, das vorzugsweise die Gesamtmenge der in den Formkörpern enthalte­ nen Phosphate und Fettalkoholsulfate enthält, und nachfolgend mit weiteren Aufberei­ tungskomponenten abgemischt, wonach das Vorgemisch einer Tablettierung zugeführt wird. Es ist weiterhin bevorzugt, daß das vorstehend genannte Tensidgranulat die Gesamt­ menge der in den Formkörpern enthaltenen nichtionischen Tenside, vorzugsweise sogar die Gesamtmenge der insgesamt in den Formkörpern enthaltenen Tenside, enthält. Zusam­ mengefaßt sind also Wasch- und Reinigungsmittelformkörper bevorzugt, die dadurch ge­ kennzeichnet sind, daß die sie Gesamtmenge an Phosphaten in Form eines Tensidgranulats enthalten, das vorzugsweise, auch die Gesamtmenge der in den Formkörpern enthaltenen Tenside enthält.
Solche erfindungsgemäß bevorzugten Tensidgranulate haben naturgemäß höhere Phos­ phatgehalte als der Gesamtformkörper. Erfindungsgemäß sind Wasch- und Reinigungs­ mittelformkörper bevorzugt, bei denen das Tensidgranulat 5 bis 70 Gew.-%, vorzugsweise 10 bis 65 Gew.-%, besonders bevorzugt 20 bis 60 Gew.-% und insbesondere 25 bis 50 Gew.-% Phosphat, jeweils bezogen auf das Gewicht des Tensidgranulats, enthält.
Auch andere Inhaltsstoffe von Wasch- und Reinigungsmitteln, insbesondere sogenannten Kleinkomponenten wie optische Aufheller, Polymere, Entschäumer, Phosphonate, Farb- und Duftstoffe, können Bestandteil des Tensidgranulats sein. Diese Stoffe werden weiter unten beschrieben. Das zu verpressende Vorgemisch kann weiterhin einen oder mehrere Stoffe aus den Gruppen der Bleichmittel, Bleichaktivatoren, Desintegrationshilfsmittel usw. enthalten. Die genannten Stoffe, die weiter unten beschrieben werden, können in spe­ ziellen Ausführungsformen der vorliegenden Erfindung auch Bestandteil des Tensidgra­ nulats sein.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern durch Abmischen eines tensidhaltigen Granulats mit pulverförmigen Aufbereitungskomponenten und nachfolgendes formgebendes Ver­ pressen, wobei das zu verpressende Vorgemisch Fettalkoholsulfat(e), Percarbonat und Phosphatbuilder enthält.
Hinsichtlich bevorzugter Ausführungsformen und Mengenanteile einzelner Komponenten gilt für das erfindungsgemäße Verfahren sinngemäß das vorstehend für die erfindungsge­ mäßen Wasch- und Reinigungsmittelformkörper Gesagte. Bevorzugte Verfahren sind daher beispielsweise dadurch gekennzeichnet, daß das tensidhaltige Granulat die Gesamtmenge der in den Formkörpern enthaltenen Phosphats enthält, wobei Granulate, welche zusätzlich die Gesamtmenge der nichtionischen Tenside, vorzugsweise die Gesamtmenge aller Tensi­ de, enthalten, bevorzugt sind.
In bevorzugten erfindungsgemäßen Verfahrensvarianten enthält das zu verpressende Vor­ gemisch tensidhaltige(s) Granulat(e) sowie weitere Aufbereitungskomponenten, wobei Phosphat(e) und vorzugsweise die Tenside Bestandteil des Granulats sind. Die Herstellung der tensidhaltigen Granulate kann dabei durch übliche technische Granulationsverfahren wie Kompaktierung, Extrusion, Mischergranulation, Pelletierung oder Wirbelschichtgra­ nulation erfolgen. Es ist dabei für die späteren Wasch- und Reinigungsmittelformkörper von Vorteil, wenn das zu verpressende Vorgemisch ein Schüttgewicht aufweist, das dem üblicher Kompaktwaschmittel nahe kommt. Insbesondere ist es bevorzugt, daß das zu ver­ pressende Vorgemisch ein Schüttgewicht von mindestens 500 g/l, vorzugsweise minde­ stens 600 g/l und insbesondere mindestens 700 g/l aufweist.
Das tensidhaltige Granulat genügt in bevorzugten Verfahrensvarianten bestimmten Teil­ chengrößenkriterien. So sind erfindungsgemäße Verfahren bevorzugt, bei denen das ten­ sidhaltige Granulat Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwischen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbesondere zwi­ schen 600 und 1400 µm, aufweist.
Neben den Aktivsubstanzen (anionische und/oder nichtionische und/oder kationische und/oder amphotere Tenside) enthalten die Tensidgranulate vorzugsweise noch Trägerstof­ fe, die besonders bevorzugt aus der Gruppe der Gerüststoffe stammen. Besonders vorteil­ hafte Verfahren sind dadurch gekennzeichnet, daß das zu verpressende Vorgemisch ein tensidhaltiges Granulat enthält, welches anionische und/oder nichtionische Tenside sowie Gerüststoffe enthält und dessen Gesamt-Tensidgehalt 5 bis 60 Gew.-%, vorzugsweise 10 bis 50 Gew.-% und insbesondere 15 bis 40 Gew.-%, jeweils bezogen auf das Tensidgranu­ lat, beträgt.
Um die gewünschte Menge an waschaktiver Substanz in die Wasch- und Reinigungsmittel­ formkörper einzuarbeiten, sind Verfahrensvarianten bevorzugt, in denen das Vorgemisch ein tensidhaltiges Granulat enthält, das Tensidgehalte von 5 bis 60 Gew.-%, vorzugsweise von 10 bis 50 Gew.-% und insbesondere von 15 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des Tensidgranulats, aufweist (siehe oben). Insbesondere Wasch- und Reini­ gungsmittelformkörper, bei denen der Gehalt des Tensidgranulats an anionischen Tensiden 5 bis 45 Gew.-%, vorzugsweise 10 bis 40 Gew.-% und insbesondere 15 bis 35 Gew.-%, jeweils bezogen auf das Gewicht des Tensidgranulats, beträgt sowie Wasch- und Reini­ gungsmittelformkörper, bei denen der Gehalt des Tensidgranulats an nichtionischen Tensi­ den 1 bis 30 Gew.-%, vorzugsweise 5 bis 25 Gew.-% und insbesondere 7,5 bis 20 Gew.-%, jeweils bezogen auf das Gewicht des Tensidgranulats, beträgt, sind erfindungsgemäß be­ vorzugt. Besonders bevorzugte Varianten des erfindungsgemäßen Verfahrens sind dadurch gekennzeichnet, daß der Anteil des tensidhaltigen Granulats am zu verpressenden Vorge­ misch und damit an den Wasch- und Reinigungsmittelformkörpern 40 bis 95 Gew.-%, vor­ zugsweise 45 bis 85 Gew.-% und insbesondere 55 bis 75 Gew.-%, jeweils bezogen auf das Gewicht der Wasch- und Reinigungsmittelformkörper, beträgt.
Die Herstellung tensidhaltiger Granulate ist im Stand der Technik breit beschreiben, wobei neben umfangreicher Patentliteratur auch auf zahlreiche Übersichtsartikel und Monogra­ phien zurückgegriffen werden kann. So beschreibt W. Hermann de Groot, I. Adami, G. F. Moretti "The Manufacture of Modern Detergent Powders ", Hermann de Groot Academic Publisher, Wassenaar, 1995 verschiedene Sprühtrocknungs-, Misch- und Granulierverfah­ ren zur Herstellung von Wasch- und Reinigungsmitteln.
Aus energetischen Gründen ist es im Rahmen der vorliegenden Erfindung bevorzugt, wenn das tensidhaltige Granulat nicht durch Sprühtrocknung, sondern über ein Granulierverfah­ ren hergestellt wird. Neben den herkömmlichen Granulier- und Agglomerationsverfahren, die in den unterschiedlichsten Mischgranulatoren und Mischagglomeratoren durchgeführt werden können, sind beispielsweise auch Preßagglomerationsverfahren einsetzbar. Verfah­ ren, bei denen das tensidhaltige Granulat durch Granulation, Agglomeration, Preßagglome­ ration oder eine Kombination dieser Verfahren hergestellt wird, sind daher bevorzugt.
Die Granulierung kann in einer Vielzahl von in der Wasch- und Reinigungsmittelindustrie üblicherweise eingesetzten Apparaten durchgeführt werden. So ist es beispielsweise mög­ lich, die in der Pharmazie gängigen Verrunder zu verwenden. In solchen Drehtellerappa­ raturen beträgt die Verweilzeit der Granulate üblicherweise weniger als 20 Sekunden. Auch herkömmliche Mischer und Mischgranulatoren sind zur Granulierung geeignet. Als Mi­ scher können dabei sowohl Hochintensitätsmischer ("high-shear mixer") als auch normale Mischer mit geringeren Umlaufgeschwindigkeiten verwendet werden. Geeignete Mischer sind beispielsweise Eirich®-Mischer der Serien R oder RV (Warenzeichen der Maschinen­ fabrik Gustav Eirich, Hardheim), der Schugi® Flexomix, die Fukae® FS-G-Mischer (Wa­ renzeichen der Fukae Powtech, Kogyo Co., Japan), die Lödige® FM-, KM- und CB- Mischer (Warenzeichen der Lödige Maschinenbau GmbH, Paderborn) oder die Drais®- Serien T oder K-T (Warenzeichen der Drais-Werke GmbH, Mannheim). Die Verweilzeiten der Granulate in den Mischern liegen im Bereich von weniger als 60 Sekunden, wobei die Verweilzeit auch von der Umlaufgeschwindigkeit des Mischers abhängt. Hierbei verkürzen sich die Verweilzeiten entsprechend, je schneller der Mischer läuft. Bevorzugt betragen die Verweilzeiten der Granulate im Mischer/Verrunder unter einer Minute, vorzugsweise unter 15 Sekunden. In langsam laufenden Mischern, z. B. einem Lödige KM, werden Verweil­ zeiten von bis zu 20 Minuten eingestellt, wobei Verweilzeiten unter 10 Minuten wegen der Verfahrensökonomie bevorzugt sind.
Bei dem Verfahren der Preßagglomeration wird das tensidhaltige Granulat unter Druck und unter Einwirkung von Scherkräften verdichtet und dabei homogenisiert und anschließend formgebend aus den Apparaten ausgetragen. Die technisch bedeutsamsten Preßagglomera­ tionsverfahren sind die Extrusion, die Walzenkompaktierung, die Pelletierung und das Ta­ blettieren. Im Rahmen der vorliegenden Erfindung bevorzugt zur Herstellung des tensid­ haltige Granulats eingesetzte Preßagglomerationsverfahren sind die Extrusion, die Wal­ zenkompaktierung und die Pelletierung.
Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrati­ onshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfalls­ zeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, ver­ größern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfs­ mittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. mo­ difizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein- Derivate.
Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vor­ zugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desinte­ grationshilfsmittel, jeweils bezogen auf das Formkörpergewicht.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reini­ gungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy- Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose- Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Cellulo­ seester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vor­ zugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulose­ derivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feintei­ liger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformkörper, die Sprengmittel in granularer oder gegebenenfalls cogranu­ lierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Ste­ fan Herzog) und DE 197 10 254 (Henkel) sowie der internationalen Patentanmeldung WO 98/40463 (Henkel) beschrieben. Diesen Schriften sind auch nähere Angaben zur Her­ stellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entneh­ men. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 µm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 µm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 µm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulose­ basis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Kompo­ nente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulo­ sen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufwei­ sen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kom­ paktierbar sind.
Somit sind im Rahmen der vorliegenden Erfindung Verfahren bevorzugt, bei denen das zu verpressende Vorgemisch zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Gewicht des Vor­ gemischs, enthält.
In weiter bevorzugten Verfahren enthält das Vorgemisch zusätzlich einen oder mehrere Stoffe aus der Gruppe der Gerüststoffe, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duft­ stoffe, Parfümträger, Fluoreszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antire­ depositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibito­ ren und Korrosionsinhibitoren. Diese Stoffe werden nachfolgend beschrieben.
Die wichtigsten Vertreter aus den Gruppen der Gerüststoffe und Bleichaktivatoren wurden weiter oben beschrieben, es folgen Angaben zu den weiteren Inhaltsstoffen. Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymati­ sche Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmi­ schungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Pro­ tease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mischungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüll­ substanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate in den erfindungsgemäßen Form­ körpern kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich können die Wasch- und Reinigungsmittelformkörper auch Komponenten ent­ halten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (soge­ nannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese Öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methyl­ cellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezo­ gen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbe­ sondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders be­ vorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäu­ re-Polymere.
Die Formkörper können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z. B. Salze der 4,4'-Bis(2-anilino-4- morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Me­ thylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Wei­ terhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)- diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorge­ nannten Aufheller können verwendet werden.
Farb- und Duftstoffe werden den erfindungsgemäßen Wasch- und Reinigungsmittelform­ körpern zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Ver­ braucher neben der Wasch- bzw. Reinigungsleistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobuty­ rat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenyle­ thylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexyl­ propionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, ∝-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limo­ nen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwen­ det, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lin­ denblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl so­ wie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt der erfindungsgemäßen Wasch- und Reinigungsmittelform­ körper an Farbstoffen unter 0,01 Gew.-%, während Duftstoffe bis zu 2 Gew.-% der ge­ samten Formulierung ausmachen können.
Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langan­ haltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielswei­ se Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Um den ästhetischen Eindruck der erfindungsgemäßen Wasch- und Reinigungsmittelform­ körper zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevor­ zugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Vor der Verpressung des teilchenförmigen Vorgemischs zu Wasch- und Reinigungsmittel­ formkörpern kann das Vorgemisch mit feinteiligen Oberflächenbehandlungsmitteln "abgepudert" werden. Dies kann für die Beschaffenheit und physikalischen Eigenschaften sowohl des Vorgemischs (Lagerung, Verpressung) als auch der fertigen Wasch- und Reini­ gungsmittelformkörper von Vorteil sein. Feinteilige Abpuderungsmittel sind im Stand der Technik altbekannt, wobei zumeist Zeolithe, Silikate oder andere anorganische Salze ein­ gesetzt werden. Bevorzugt wird das Vorgemisch jedoch mit feinteiligem Zeolith "abgepudert", wobei Zeolithe vom Faujasit-Typ bevorzugt sind. Im Rahmen der vorliegen­ den Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, To­ ronto, 1974, Seite 92). Neben dem Zeolith X sind also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Im Rahmen der vorliegenden Erfindung sind Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern bevorzugt, bei denen die bzw. eine der zugemischten Aufbe­ reitungskomponenten ein Zeolith vom Faujasit-Typ mit Teilchengrößen unterhalb 100 µm, vorzugsweise unterhalb 10 µm und insbesondere unterhalb 5 µm ist und mindestens 0,2 Gew.-%, vorzugsweise mindestens 0,5 Gew.-% und insbesondere mehr als 1 Gew.-% des zu verpressenden Vorgemischs ausmacht.
Die Herstellung der erfindungsgemäßen Formkörper erfolgt zunächst durch das trockene Vermischen der Bestandteile, die ganz oder teilweise vorgranuliert sein können, und an­ schließendes Informbringen, insbesondere Verpressen zu Tabletten, wobei auf herkömmli­ che Verfahren zurückgegriffen werden kann. Zur Herstellung der erfindungsgemäßen Formkörper wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablet­ tierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elasti­ sche Verformung), plastische Verformung und Ausstoßen.
Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosie­ rung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wo­ bei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimm­ ten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikali­ schen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zer­ drückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elasti­ schen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfach- oder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Ober­ stempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Ver­ pressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehre­ re Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrun­ gen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem soge­ nannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unter­ stempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unter­ stempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Be­ füllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stel­ len, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erfor­ derlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzli­ che Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befül­ lung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstell­ bar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellba­ ren Druckrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen verse­ hen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen wer­ den muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füll­ schuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau ha­ ben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.
Bei der Tablettierung mit Rundläuferpressen hat es sich als vorteilhaft erwiesen, die Ta­ blettierung mit möglichst geringen Gewichtschwankungen der Tablette durchzuführen. Auf diese Weise lassen sich auch die Härteschwankungen der Tablette reduzieren. Geringe Gewichtschwankungen können auf folgende Weise erzielt werden:
  • - Verwendung von Kunststoffeinlagen mit geringen Dickentoleranzen
  • - Geringe Umdrehungszahl des Rotors
  • - Große Füllschuhe
  • - Abstimmung des Füllschuhflügeldrehzahl auf die Drehzahl des Rotors
  • - Füllschuh mit konstanter Pulverhöhe
  • - Entkopplung von Füllschuh und Pulvervorlage
Zur Verminderung von Stempelanbackungen bieten sich sämtliche aus der Technik be­ kannte Antihaftbeschichtungen an. Besonders vorteilhaft sind Kunststoffbeschichtungen, Kunststoffeinlagen oder Kunststoffstempel. Auch drehende Stempel haben sich als vorteil­ haft erwiesen, wobei nach Möglichkeit Ober- und Unterstempel drehbar ausgeführt sein sollten. Bei drehenden Stempeln kann auf eine Kunststoffeinlage in der Regel verzichtet werden. Hier sollten die Stempeloberflächen elektropoliert sein.
Es zeigte sich weiterhin, daß lange Preßzeiten vorteilhaft sind. Diese können mit Druck­ schienen, mehreren Druckrollen oder geringen Rotordrehzahlen eingestellt werden. Da die Härteschwankungen der Tablette durch die Schwankungen der Preßkräfte verursacht wer­ den, sollten Systeme angewendet werden, die die Preßkraft begrenzen. Hier können elasti­ sche Stempel, pneumatische Kompensatoren oder federnde Elemente im Kraftweg einge­ setzt werden. Auch kann die Druckrolle federnd ausgeführt werden.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen GmbH, Berlin, Mapag Maschinenbau AG, Bern (CH) sowie Courtoy N. V., Halle (BE/LU). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D.
Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe ge­ fertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestal­ tungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barren­ form, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Quer­ schnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Die portionierten Preßlinge können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungs­ mittel entspricht. Ebenso ist es aber möglich, Preßlinge auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgege­ bene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgese­ hen ist. Für den Einsatz von Textilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung der portionierten Preßlinge als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe- Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 bevorzugt ist. Handelsübliche Hydrau­ likpressen, Exzenterpressen oder Rundläuferpressen sind geeignete Vorrichtungen insbe­ sondere zur Herstellung derartiger Preßlinge.
Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmittelformkörper über eine Dosierhilfe problemlos möglich und im Rahmen der vorliegenden Erfindung bevorzugt.
Ein weiterer bevorzugter Formkörper, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Formkörperwaschmittels kann auch in anderen geometrischen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden.
Möglich ist es aber auch, daß die verschiedenen Komponenten nicht zu einer einheitlichen Tablette verpreßt werden, sondern daß Formkörper erhalten werden, die mehrere Schich­ ten, also mindestens zwei Schichten, aufweisen. Dabei ist es auch möglich, daß diese ver­ schiedenen Schichten unterschiedliche Lösegeschwindigkeiten aufweisen. Hieraus können vorteilhafte anwendungstechnische Eigenschaften der Formkörper resultieren. Falls bei­ spielsweise Komponenten in den Formkörpern enthalten sind, die sich wechselseitig nega­ tiv beeinflussen, so ist es möglich, die eine Komponente in der schneller löslichen Schicht zu integrieren und die andere Komponente in eine langsamer lösliche Schicht einzuarbei­ ten, so daß die erste Komponente bereits abreagiert hat, wenn die zweite in Lösung geht. Der Schichtaufbau der Formkörper kann dabei sowohl stapelartig erfolgen, wobei ein Lö­ sungsvorgang der inneren Schicht(en) an den Kanten des Formkörpers bereits dann erfolgt, wenn die äußeren Schichten noch nicht vollständig gelöst sind, es kann aber auch eine vollständige Umhüllung der inneren Schicht(en) durch die jeweils weiter außen liegende(n) Schicht(en) erreicht werden, was zu einer Verhinderung der frühzeitigen Lösung von Be­ standteilen der inneren Schicht(en) führt.
In einer weiter bevorzugten Ausführungsform der Erfindung besteht ein Formkörper aus mindestens drei Schichten, also zwei äußeren und mindestens einer inneren Schicht, wobei mindestens in einer der inneren Schichten ein Peroxy-Bleichmittel enthalten ist, während beim stapelförmigen Formkörper die beiden Deckschichten und beim hüllenförmigen Formkörper die äußersten Schichten jedoch frei von Peroxy-Bleichmittel sind. Weiterhin ist es auch möglich, Peroxy-Bleichmittel und gegebenenfalls vorhandene Bleichaktivatoren und/oder Enzyme räumlich in einem Formkörper voneinander zu trennen. Derartige mehr­ schichtige Formkörper weisen den Vorteil auf, daß sie nicht nur über eine Einspülkammer oder über eine Dosiervorrichtung, welche in die Waschflotte gegeben wird, eingesetzt wer­ den können; vielmehr ist es in solchen Fällen auch möglich, den Formkörper im direkten Kontakt zu den Textilien in die Maschine zu geben, ohne daß Verfleckungen durch Bleichmittel und dergleichen zu befürchten wären.
Ähnliche Effekte lassen sich auch durch Beschichtung ("coating") einzelner Bestandteile der zu verpressenden Wasch- und Reinigungsmittelzusammensetzung oder des gesamten Formkörpers erreichen. Hierzu können die zu beschichtenden Körper beispielsweise mit wäßrigen Lösungen oder Emulsionen bedüst werden, oder aber über das Verfahren der Schmelzbeschichtung einen Überzug erhalten.
Nach dem Verpressen weisen die Wasch- und Reinigungsmittelformkörper eine hohe Sta­ bilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach
Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die Kraft in N, die zu dem auf den Formkörper ausgeübten Druck führt, der den Bruch des Formkörpers verursacht, D ist der Formkörperdurchmesser in Meter und t ist die Höhe der Formkörper.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von Tensidgra­ nulaten, welche Phosphat(e) und Fettalkoholsulfat(e) enthalten, zur Verbesserung der Härte und Zerfallszeit und der Minimierung der Deckelneigung von Wasch- und Reinigungsmit­ telformkörpern. Dieser erfindungsgemäße Einsatz der genannten Tensidgranulate im Vor­ gemisch führt zu Formkörpern mit vorteilhaften Eigenschaften, wie die nachstehenden Beispiele zeigen. Hinsichtlich bevorzugter Ausführungsformen der erfindungsgemäßen Verwendung (Mengenanteile der Phosphate und Fettalkoholsulfate, weitere Inhaltsstoffe, Zusammensetzung des Vorgemischs etc.) gilt analog das vorstehend für das erfindungsge­ mäße Verfahren Gesagte.
Auch die Verwendung von teilchenförmigen Vorgemischen, welche Phosphat(e) und Fet­ talkoholsulfat(e) enthalten, zur Herstellung Härte- und Zerfallszeit-verbesserter Wasch- und Reinigungsmittelformkörper ist ein Gegenstand der vorliegend 03817 00070 552 001000280000000200012000285910370600040 0002019910819 00004 03698en Erfindung. Wie be­ reits vorstehend erwähnt, ist es nicht erforderlich, daß das Tensidgranulat die Gesamtmen­ ge an Phosphaten und Fettalkoholsulfaten enthält - es kommt vielmehr auf die Zusammen­ setzung des Vorgemischs an, um die Probleme des Deckelns weitestgehend zu verhindern.
Auch in phosphatarmen Wasch- und Reinigungsmittelformkörpern läßt sich der erfin­ dungsgemäße Ansatz verwirklichen, so daß die Verwendung von teilchenförmigen Vorge­ mischen, welche Fettalkoholsulfat(e) und Percarbonat enthalten, zur Herstellung Härte- und Zerfallszeit-verbesserter Wasch- und Reinigungsmittelformkörper mit verringerter Deckelneigung ein weiterer Gegenstand der vorliegenden Erfindung ist. Auch hier lassen sich bevorzugte Mengen usw. dem vorstehenden Text entnehmen.
Die Inkorporation aller drei Bestandteile (Phosphat, Fettalkoholsulfat und Percarbonat) in ein Vorgemisch führt ebenfalls zu Wasch- und Reinigungsmittelformkörpern mit vorteil­ haften Eigenschaften, so daß die Verwendung von teilchenförmigen Vorgemischen, welche Phosphat(e), Fettalkoholsulfat(e) und Percarbonat enthalten, zur Herstellung Härte- und Zerfallszeit-verbesserter Wasch- und Reinigungsmittelformkörper mit verringerter Deckel­ neigung ein weiterer Gegenstand der vorliegenden Erfindung ist.
Beispiele
Durch Naßgranulation in einem 20-Liter-Pflugscharmischer der Firma Lödige wurde ein Tensidgranulat hergestellt, dessen Zusammensetzung in Tabelle 1 angegeben ist. Im An­ schluß an die Granulation wurde das Granulat in einer Aeromatic-Wirbelschichtapparatur bei einer Zulufttemperatur von 60°C 30 Minuten getrocknet. Nach der Trocknung wurde das Granulat zur Entfernung der Feinanteile < 0,6 mm und Grobkornanteile < 1,6 mm ab­ gesiebt.
Das Tensidgranulat wurde dann mit weiteren Komponenten zu preßfähigen Vorgemischen aufbereitet, deren Zusammensetzung in Tabelle 2 angegeben ist. Das erfindungsgemäße Vorgemisch E enthielt dabei Natriumpercarbonat, während die Vorgemische der Ver­ gleichsbeispiele V1 bzw. V2 Natriumperborat enthielten. Die Vorgemische wurden in einer Korsch-Exzenterpresse zu Tabletten (Durchmesser: 44 mm, Höhe: 22 mm, Gewicht: 37,5 g) verpreßt. Die Meßwerte der Tablettenhärten sind jeweils die Mittelwerte einer Doppel­ bestimmung, wobei die Einzelwerte je Formkörpertyp um maximal 2 N variierten.
Tabelle 1
Zusammensetzung des Tensidgranulats [Gew.-%]
Tabelle 2
Zusammensetzung der Vorgemische [Gew.-%]
Die Härte der Tabletten wurde nach zwei Tagen Lagerung durch Verformung der Tablette bis zum Bruch gemessen, wobei die Kraft auf die Seitenflächen der Tablette einwirkte und die maximale Kraft, der die Tablette standhielt, ermittelt wurde.
Zur Bestimmung der Deckelneigung wurden Serien von mehreren Hundert Formkörpern bei unterschiedlichen Preßkräften verpreßt. Sofern ein schichtweises Aufreißen der Form­ körper beobachtet wurde, wurde dies in Tabelle 3 vermerkt. Die experimentellen Daten zeigt die Tabelle 3:
Tabelle 3
Waschmitteltabletten [physikalische Daten]
Tabelle 3 zeigt, daß die Formkörper V1 und V2 bereits bei Tablettenhärten oberhalb von 40 N zum Deckeln neigen, während die erfindungsgemäßen Formkörper E problemlos auch auf Härten von 60 N verpreßt werden können, ohne daß ein schichtweises Aufreißen der Formkörper auftritt.

Claims (19)

1. Wasch- und Reinigungsmittelformkörper aus verdichtetem, teilchenförmigen Wasch- und Reinigungsmittel, enthaltend Tensid(e), Bleichmittel, Gerüststoffe sowie optional weitere Inhaltsstoffe von Wasch- und Reinigungsmitteln, dadurch gekennzeichnet, daß die Formkörper Fettalkoholsulfat(e), Percarbonat und Phosphatbuilder enthalten.
2. Wasch- und Reinigungsmittelformkörper nach Anspruch 1, dadurch gekennzeichnet, daß sie als Phosphate Alkalimetallphosphate, vorzugsweise Pentanatrium- bzw. Penta­ kaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 1 bis 60 Gew.-%, vorzugsweise von 5 bis 50 Gew.-%, besonders bevorzugt von 10 bis 40 Gew.- % und insbesondere von 15 bis 35 Gew.-%, jeweils bezogen auf das Formkörperge­ wicht, enthalten.
3. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß sie die Alkalimetall-, vorzugsweise Natriumsalze, von C8-22-, vor­ zugsweise C10-20- und insbesondere C12-18-Fettalkylschwefelsäuren, vorzugsweise in Mengen von 0,5 bis 30 Gew.-%, besonders bevorzugt von 1 bis 20 Gew.-% uns insbe­ sondere von 2 bis 10 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
4. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als alleiniges Bleichmittel Natriumpercarbonat in Mengen von 1 bis 40 Gew.-%, vorzugsweise von 2, 5 bis 35 Gew.-%, besonders bevorzugt von 5 bis 30 Gew.-% und insbesondere von 7, 5 bis 25 Gew.-%, jeweils bezogen auf das Form­ körpergewicht, enthalten.
5. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sie zusätzlich einen Zeolith vom Faujasit-Typ in Mengen von 0,5 bis 20 Gew.-%, vorzugsweise von 1 bis 15 Gew.-%, besonders bevorzugt von 2 bis 10 Gew.-% und insbesondere von 2, 5 bis 5 Gew.-%, jeweils bezogen auf das Formkörper­ gewicht, enthalten, wobei Zeolith X bevorzugt ist.
6. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie zusätzlich nichtionische Tenside mit einem Schmelzpunkt un­ ter 40°C, vorzugsweise unter 30°C und insbesondere unter 25°C, in Mengen von 0,5 bis 20 Gew.-%, vorzugsweise von 1 bis 10 Gew.-% und insbesondere von 1,5 bis 5 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
7. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die sie Gesamtmenge an Phosphaten in Form eines Tensidgranu­ lats enthalten, das vorzugsweise auch die Gesamtmenge der in den Formkörpern ent­ haltenen Tenside enthält.
8. Wasch- und Reinigungsmittelformkörper nach Anspruch 7, dadurch gekennzeichnet, daß das Tensidgranulat 5 bis 70 Gew.-%, vorzugsweise 10 bis 65 Gew.-%, besonders bevorzugt 20 bis 60 Gew.-% und insbesondere 25 bis 50 Gew.-% Phosphat, jeweils be­ zogen auf das Gewicht des Tensidgranulats, enthält.
9. Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern durch Ab­ mischen eines tensidhaltigen Granulats mit pulverförmigen Aufbereitungs­ komponenten und nachfolgendes formgebendes Verpressen, dadurch gekennzeichnet, daß das zu verpressende Vorgemisch Fettalkoholsulfat(e), Percarbonat und Phosphat­ builder enthält.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß das tensidhaltige Granulat die Gesamtmenge des in den Formkörpern enthaltenen Phosphats enthält, wobei Gra­ nulate, welche zusätzlich die Gesamtmenge der nichtionischen Tenside, vorzugsweise die Gesamtmenge aller Tenside, enthalten, bevorzugt sind.
11. Verfahren nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß das ten­ sidhaltige Granulat anionische und/oder nichtionische Tenside sowie Gerüststoffe ent­ hält und einen Gesamt-Tensidgehalt von 5 bis 60 Gew.-%, vorzugsweise von 10 bis 50 Gew.-% und insbesondere von 15 bis 40 Gew.-%, jeweils bezogen auf das Tensidgra­ nulat, aufweist.
12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß das ten­ sidhaltige Granulat Teilchengrößen zwischen 100 und 2000 µm, vorzugsweise zwi­ schen 200 und 1800 µm, besonders bevorzugt zwischen 400 und 1600 µm und insbe­ sondere zwischen 600 und 1400 µm, aufweist.
13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß der Anteil des tensidhaltigen Granulats an den Wasch- und Reinigungsmittelformkörpern 40 bis 95 Gew.-%, vorzugsweise 45 bis 85 Gew.-% und insbesondere 55 bis 75 Gew.-%, je­ weils bezogen auf das Gewicht der Wasch- und Reinigungsmittelformkörper, beträgt.
14. Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß das zu verpressende Vorgemisch zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulier­ ter oder kompaktierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Gewicht des Vorgemischs, enthält.
15. Verfahren nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, daß das zu verpressende Vorgemisch weiterhin einen oder mehrere Stoffe aus der Gruppe der Ge­ rüststoffe, Bleichaktivatoren, Enzyme, pH-Stellmittel, Duftstoffe, Parfümträger, Fluo­ reszenzmittel, Farbstoffe, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, opti­ schen Aufheller, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korrosi­ onsinhibitoren enthält.
16. Verwendung von Tensidgranulaten, welche Phosphat(e) und Fettalkoholsulfat(e) ent­ halten, zur Verbesserung der Härte und Zerfallszeit und der Minimierung der Deckel­ neigung von Wasch- und Reinigungsmittelformkörpern.
17. Verwendung von teilchenförmigen Vorgemischen, welche Phosphat(e) und Fettalko­ holsulfat(e) enthalten, zur Herstellung Härte- und Zerfallszeit-verbesserter Wasch- und Reinigungsmittelformkörper mit verringerter Deckelneigung.
18. Verwendung von teilchenförmigen Vorgemischen, welche Fettalkoholsulfat(e) und Percarbonat enthalten, zur Herstellung Härte- und Zerfallszeit-verbesserter Wasch- und Reinigungsmittelformkörper mit verringerter Deckelneigung.
19. Verwendung von teilchenförmigen Vorgemischen, welche Phosphat(e), Fettalkoholsul­ fat(e) und Percarbonat enthalten, zur Herstellung Härte- und Zerfallszeit-verbesserter Wasch- und Reinigungsmittelformkörper mit verringerter Deckelneigung.
DE19910819A 1999-03-11 1999-03-11 Wasch- und Reinigungsmittelformkörper mit Tensid-Bleichmittel-Builderkombination Withdrawn DE19910819A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE19910819A DE19910819A1 (de) 1999-03-11 1999-03-11 Wasch- und Reinigungsmittelformkörper mit Tensid-Bleichmittel-Builderkombination
PCT/EP2000/001812 WO2000053717A1 (de) 1999-03-11 2000-03-02 Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination
AT00912538T ATE269395T1 (de) 1999-03-11 2000-03-02 Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination
AU34266/00A AU3426600A (en) 1999-03-11 2000-03-02 Moulded washing and cleaning agents with a surfactant/bleaching agent/builder combination
EP00912538A EP1159392B2 (de) 1999-03-11 2000-03-02 Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination
DE50006819T DE50006819D1 (de) 1999-03-11 2000-03-02 Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination
ES00912538T ES2223479T5 (es) 1999-03-11 2000-03-02 Cuerpos moldeados de agentes de lavado y de limpieza con combinacion de tensioactivos-agentes de blanqueo-adyuvantes.
CA002300616A CA2300616A1 (en) 1999-03-11 2000-03-10 Detergent tablets containing a surfactant/bleaching agent/builder combination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19910819A DE19910819A1 (de) 1999-03-11 1999-03-11 Wasch- und Reinigungsmittelformkörper mit Tensid-Bleichmittel-Builderkombination

Publications (1)

Publication Number Publication Date
DE19910819A1 true DE19910819A1 (de) 2000-09-14

Family

ID=7900581

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19910819A Withdrawn DE19910819A1 (de) 1999-03-11 1999-03-11 Wasch- und Reinigungsmittelformkörper mit Tensid-Bleichmittel-Builderkombination
DE50006819T Expired - Lifetime DE50006819D1 (de) 1999-03-11 2000-03-02 Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50006819T Expired - Lifetime DE50006819D1 (de) 1999-03-11 2000-03-02 Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination

Country Status (7)

Country Link
EP (1) EP1159392B2 (de)
AT (1) ATE269395T1 (de)
AU (1) AU3426600A (de)
CA (1) CA2300616A1 (de)
DE (2) DE19910819A1 (de)
ES (1) ES2223479T5 (de)
WO (1) WO2000053717A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1108777A2 (de) * 1999-12-01 2001-06-20 José Alejandro Mumoli Einzeldosis-Seife und Verfahren der Herstellung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19932569A1 (de) * 1999-07-13 2001-01-18 Henkel Kgaa Wasch- und Reinigungsmittelformkörper, insbesondere für das maschinelle Geschirrspülen
AU2001291505B2 (en) * 2000-09-29 2006-02-02 Nucor Corporation Production of thin steel strip

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5070286A (de) * 1973-10-25 1975-06-11
GB8311865D0 (en) 1983-04-29 1983-06-02 Procter & Gamble Ltd Bleach compositions
GB2276345A (en) 1993-03-24 1994-09-28 Unilever Plc Process for making shaped articles
GB9422925D0 (en) 1994-11-14 1995-01-04 Unilever Plc Detergent compositions
DE19601840A1 (de) * 1996-01-19 1997-07-24 Henkel Kgaa Verfahren zur Herstellung von Wasch- oder Reinigungsmittelformkörpern
DE19709411A1 (de) * 1997-03-07 1998-09-10 Henkel Kgaa Waschmittelformkörper
GB9706083D0 (en) * 1997-03-24 1997-05-14 Unilever Plc Detergent compositions
GB9707582D0 (en) 1997-04-15 1997-06-04 Unilever Plc Detergent compositions
DE19749749A1 (de) * 1997-11-11 1999-05-12 Henkel Kgaa Verfahren zur Herstellung stabiler und schnell zerfallender Waschmittelformkörper
CN1290295A (zh) 1998-02-10 2001-04-04 荷兰联合利华有限公司 洗涤剂组合物片
GB2334528A (en) 1998-02-21 1999-08-25 Procter & Gamble Hydrogen peroxide releasing detergent composition
DE19808758A1 (de) * 1998-03-02 1999-09-09 Henkel Kgaa Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1108777A2 (de) * 1999-12-01 2001-06-20 José Alejandro Mumoli Einzeldosis-Seife und Verfahren der Herstellung
EP1108777A3 (de) * 1999-12-01 2003-07-02 José Alejandro Mumoli Einzeldosis-Seife und Verfahren der Herstellung

Also Published As

Publication number Publication date
ATE269395T1 (de) 2004-07-15
ES2223479T5 (es) 2008-05-16
AU3426600A (en) 2000-09-28
WO2000053717A1 (de) 2000-09-14
EP1159392A1 (de) 2001-12-05
CA2300616A1 (en) 2000-09-11
EP1159392B1 (de) 2004-06-16
ES2223479T3 (es) 2005-03-01
EP1159392B2 (de) 2007-12-12
DE50006819D1 (de) 2004-07-22

Similar Documents

Publication Publication Date Title
EP1123378B1 (de) Wasch- und reinigungsmittelformkörper mit wasserfrei granuliertem brausesystem
DE19955240A1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
EP1165742B1 (de) Ein- oder mehrphasige wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
DE10015661A1 (de) Wasch- und Reinigungsmittelformkörper mit speziellem Tensidgranulat
EP1123380B1 (de) Wasch- und reinigungsmittelformkörper/verpackung-kombination
EP1159392B1 (de) Wasch- und reinigungsmittelformkörper mit tensid- bleichmittel- builderkombination
EP1165741B1 (de) Wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
WO2000014196A1 (de) Waschmitteltabletten mit bindemitteln
WO2000017307A1 (de) Wasch- und reinigungsmittelformkörper mit natriumpercarbonat
DE19950765A1 (de) Abriebverbesserte Wasch- oder Reinigungsmittelformkörper
DE19910818A1 (de) Wasch- und Reinigungsmittelformkörper mit Tensid-Builderkombination
DE19908026A1 (de) Abriebstabile Wasch- und Reinigungsmittelformkörper mit festen Additiven
DE10026334A1 (de) Wasch- und Reinigungsmittelformkörper mit Pfropfcopolymer-Beschichtung
WO2000022087A1 (de) Wasch- und reinigungsmittelformkörper mit organischen oligocarbonsäuren
DE19925503A1 (de) Mehrphasige Wasch- und Reinigungsmittelformkörper mit optischen Aufhellern
DE10044073A1 (de) Beschichtete Tabletten und Verfahren zur Tablettenbeschichtung
WO2000017305A1 (de) Wasch- und reinigungsmittelformkörper mit grobteiligen aufbereitungskomponenten
DE19908025A1 (de) Verfahren zur Herstellung schnell zerfallender Wasch- und Reinigungsmittelformkörper
WO2000065017A1 (de) Bleichmittelhaltige waschmitteltabletten
DE19940548A1 (de) Wasch- oder Reinigungsmittelformkörper
WO2000015753A1 (de) Abs-haltige wasch- und reinigungsmittelformkörper
DE19915321A1 (de) Wasch- und Reinigungsmittelformkörper mit Desintegrationshilfsmittel
WO2000024862A1 (de) Fas-haltige wasch- und reinigungsmittelformkörper
DE19915320A1 (de) Wasch- und Reinigungsmittelformkörper mit speziellen Tensidgranulaten
DE19919444A1 (de) Wasch- und Reinigungsmittelformkörper mit Bindemittelcompound

Legal Events

Date Code Title Description
8141 Disposal/no request for examination