EP1104005B1 - Lampe à décharge à gaz à électrode pourvue d'une couche émettrice à oxyde - Google Patents

Lampe à décharge à gaz à électrode pourvue d'une couche émettrice à oxyde Download PDF

Info

Publication number
EP1104005B1
EP1104005B1 EP00204015A EP00204015A EP1104005B1 EP 1104005 B1 EP1104005 B1 EP 1104005B1 EP 00204015 A EP00204015 A EP 00204015A EP 00204015 A EP00204015 A EP 00204015A EP 1104005 B1 EP1104005 B1 EP 1104005B1
Authority
EP
European Patent Office
Prior art keywords
gas discharge
metal
discharge lamp
electrode
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00204015A
Other languages
German (de)
English (en)
Other versions
EP1104005A1 (fr
Inventor
Georg Dr. Philips Corp. Int. Prop. GmbH Gärtner
Willem Dr. Van Den Hoek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP1104005A1 publication Critical patent/EP1104005A1/fr
Application granted granted Critical
Publication of EP1104005B1 publication Critical patent/EP1104005B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0675Main electrodes for low-pressure discharge lamps characterised by the material of the electrode
    • H01J61/0677Main electrodes for low-pressure discharge lamps characterised by the material of the electrode characterised by the electron emissive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0675Main electrodes for low-pressure discharge lamps characterised by the material of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode
    • H01J61/0737Main electrodes for high-pressure discharge lamps characterised by the material of the electrode characterised by the electron emissive material

Definitions

  • the invention relates to a gas discharge lamp, in particular a low-pressure gas discharge lamp, equipped with an electrode comprising an electrode made of an electrode metal and an electrode coating of an electron-emitting material containing a metal powder and at least one alkaline earth oxide selected from the group consisting of calcium oxide, strontium oxide and barium oxide ,
  • the generation of light in a gas discharge lamp is based on the ionization and the resulting electrical discharge of the atoms of the filling gas of the lamp when an electric current flows through the lamp. From the electrodes of the lamp, electrons are emitted which are accelerated so much by the electric field between the electrodes that they can excite and ionise them upon collision with the gas atoms. When the gas atoms return to their ground state and the recombination of electrons and ions, a more or less large part of the potential energy is converted into radiation.
  • the amount of electrons that can be emitted by the electrodes depends on the work function of the electrodes for electrons.
  • Tungsten which is typically used as the electrode metal, has a relatively high work function by itself. Therefore, the electrode metal is usually coated with a material whose main purpose is to improve the electron-emitting properties of the electrode metal.
  • Characteristic of the electron-emitting coating materials of electrodes in gas discharge lamps is that they contain an alkaline earth metal, either in the form of the alkaline earth metal oxide or an alkaline earth metal-containing precursor for the alkaline earth metal oxide.
  • Low-pressure gas discharge lamps of conventional type are thus generally equipped with electrodes consisting of tungsten wires with an electron-emitting coating containing oxides of the alkaline earth metals calcium, strontium and barium.
  • a tungsten wire is coated, for example, with the carbonates of the alkaline earth metals in a binder formulation.
  • the carbonates are converted at temperatures of about 1000 ° C in the oxides.
  • This burning of the electrode it already provides a noticeable emission current, which is not yet stable.
  • This activation process turns the originally non-conducting ion lattice of the alkaline earth oxides into an electronic semiconductor by incorporating donor-type impurities into the crystal lattice of the oxides.
  • These impurities consist essentially of elemental alkaline earth metal, z. As calcium, strontium or barium.
  • the electron emission of such electrodes is based on this impurity mechanism.
  • the purpose of the activation process is to provide a sufficient amount of excess elemental alkaline earth metal that allows the oxides in the electron-emitting coating to deliver the maximum emission current at a prescribed heat output.
  • the electrode coating constantly loses alkaline earth metal during the lifetime of the lamp, because the electrode coating as a whole evaporates partly slowly and is partly spattered by the ion current in the lamp.
  • the elemental alkaline earth metal is initially replenished by reduction of the alkaline earth oxide on the tungsten wire during operation of the lamp.
  • this replenishment comes to a standstill when the tungsten wire is passivated over time by a high-resistance interface of tungsten oxide, alkaline earth silicate or alkaline earth tungstate.
  • the electron-emitting substance in addition to Erdalkalimischcarbonat zirconium and further 3 to 15 wt .-% of a reducing metal powder having a high melting point, wherein the reducing metal powder of at least one of tantalum, niobium, tungsten and molybdenum existing group is selected, and the electron-emitting substance is distributed so that it fills the entire winding core of the coil up to the two end turns of the multi-filament filament.
  • the metal powders of tantalum, niobium, tungsten or molybdenum also surround themselves over time, just like the electrode carrier wire, with a passivating separating layer of tungsten oxide, alkaline earth silicate or alkaline earth tungstate, or of the corresponding niobium, tantalum or molybdenum compounds.
  • a gas discharge lamp equipped with an electrode comprising a support of an electrode metal and a first electrode coating of an electron-emitting material comprising a metal powder preparation of a powder of a reducing metal selected from the group consisting of aluminum, silicon, titanium, zirconium, Hafnium, tantalum, molybdenum, tungsten and their alloys, with a powder coating with a precious metal selected from the group of rhenium, cobalt, nickel, ruthenium, palladium, rhodium, iridium and platinum and their alloys, and at least one alkaline earth metal oxide selected from the group of calcium oxide Strontium oxide and barium oxide.
  • a metal powder preparation of a powder of a reducing metal selected from the group consisting of aluminum, silicon, titanium, zirconium, Hafnium, tantalum, molybdenum, tungsten and their alloys with a powder coating with a precious metal selected from the group of rhenium, cobalt, nickel, ruthen
  • Gas discharge lamps with such electrodes have a uniform electron emission over a long period of time because the powder coating of the metal powder with a noble metal avoids a reaction of the alkaline earth oxide with the reducing metal during the activation phase in the process of manufacturing the gas discharge lamp. Only during operation of the gas discharge lamp does the reducing metal diffuse through the powder coating of a noble metal and reduces the alkaline earth oxide to elemental alkaline earth metal. Due to the continuous alkaline earth tracking a depletion of the electron emission is avoided and ensures that sufficient metallic alkaline earth is released during the whole operation of the lamp. The emission current is uniform and uniform and extends the life of the gas discharge lamp.
  • the electrodes in these gas discharge lamps are also resistant to poisoning.
  • the reject rate in the production is low because these electrodes can be easily reproduced produced.
  • a second electrode coating of a noble metal selected from the group of rhenium, cobalt, nickel, ruthenium, palladium, rhodium, iridium, platinum is arranged between the support and the first electrode coating.
  • a noble metal selected from the group of rhenium, cobalt, nickel, ruthenium, palladium, rhodium, iridium, platinum is arranged between the support and the first electrode coating.
  • the metal powder formulation consists of a powder of a tungsten-iridium alloy with a powder coating of iridium.
  • the electron-emitting material additionally contains zirconium oxide.
  • the metal powder preparation has a mean grain size d of 2.0 microns ⁇ d ⁇ 3.0 microns.
  • Fig. 1 shows schematically the light generation in a fluorescent lamp.
  • Gas discharge lamps can be divided into low pressure lamps and high pressure lamps. Distinguish yourself in the way of stabilizing the discharge.
  • Fig. 1 shows an example of a low-pressure discharge lamp with mercury filling, ie a fluorescent lamp.
  • a gas discharge lamp consists of a glass tube 1 in rod, ring or U-shape.
  • the electrodes 2 are located at the ends of the tube.
  • Two-pin bases 3 serve as connection.
  • the inside of the glass tube is provided with a phosphor layer 4 whose chemical composition is the spectrum of the light or its color certainly.
  • the glass tube contains, in addition to a noble gas filling of argon, a small amount of mercury or mercury vapor, which excites under operating conditions to glow, emitting the Hg resonance line at a wavelength of 253.7 nm in the ultraviolet range.
  • the emitted UV radiation excites the phosphors in the phosphor layer to emit light in the visible region 5.
  • the lamp further comprises means for igniting and operating, e.g. B. a choke coil and a starter.
  • a gas discharge lamp includes an electron-emitting electrode comprising a support of an electrode metal and a first electrode coating of an electron-emitting material.
  • the carrier of an electrode metal is usually made of tungsten or a tungsten alloy, optionally with a molybdenum, molybdenum, niobium, tantalum and their alloys. It can also consist of nickel, platinum, silicon, magnesium, aluminum or their alloys.
  • the carrier may be formed as a wire, helix, spiral, corrugated wire, tube, ring, plate or band. It is usually heated directly by the current flow.
  • the raw material for the electron-emitting material is applied.
  • the carbonates of the alkaline earth metals calcium, strontium and barium are ground and optionally mixed with each other and with zirconium metal powder.
  • the weight ratio of calcium carbonate: strontium carbonate: barium carbonate: zirconium equal to 25.2: 31.5: 40.3: 3.
  • a metal powder having an average particle size of 2-3 microns is used with a 0.1 to 0.2 micron thick powder coating.
  • CVD methods such as fluid Bed CVD can be used. This coated metal powder is added to the raw mass.
  • the raw mass can still be mixed with a binder. It is then applied to the support by brushing, dipping, cataphoretic deposition or spraying.
  • the coated electrodes are melted into the lamp ends. During evacuation and filling of the lamp, the electrodes are formed.
  • the electrode wire is heated by direct current passage to a temperature of 1000 ° C to 1200 ° C. At this temperature, the alkaline earth carbonates are converted to the alkaline earth oxides to release CO and CO 2 and then form a porous sintered body. After this "burning off" of the electrodes activation takes place, which has the purpose to provide excess, embedded in the oxides, elemental alkaline earth metal.
  • the excess alkaline earth metal is formed by reduction of alkaline earth metal oxide. During the actual reduction activation, the alkaline earth oxide is reduced by the liberated CO or the carrier metal.
  • there is a current activation which reaches the required free alkaline earth metal by electrolytic processes at high temperatures.
  • the finished-forming electron-emitting material may preferably contain 2 to 20% by weight of a metal powder preparation.
  • the zirconia content can be between zero and 10 wt .-%.
  • a three-coiled tungsten wire is coated with rhenium with a layer thickness of 1 micron.
  • tungsten powder is coated with a mean grain size of 3 .mu.m in fluid Bed CVD process with a rhenium layer with a layer thickness of 0.1 microns.
  • Tripelcarbonat consisting of Calcium carbonate, strontium carbonate and barium carbonate in the weight ratio 1: 1.25: 1.6 is mixed with 3% by weight of zirconium metal powder and 10% by weight of the rhenium-coated tungsten powder and a binder preparation of nitrocellulose and butyl acetate.
  • the rhenium-coated tungsten wire is coated with this emission compound, then placed in a lamp envelope and heated to 1000 ° C.
  • the electrode is baked, the carbonates of the alkaline earth metals are converted into their oxides and the zirconium metal powder is converted into zirconium oxide.
  • This burn-in process may be followed by activation by means of reduction activation or current activation.
  • Such a lamp has a short ignition phase, the emitter electrode a low work function of 1.42 eV and a conductivity improved by a factor of 2.
  • a three-coiled tungsten wire is coated with rhenium with a layer thickness of 1 micron.
  • tungsten powder is coated with a mean grain size of 3 .mu.m in fluid Bed CVD process with a rhenium layer with a layer thickness of 0.1 microns.
  • Tripelcarbonate consisting of calcium carbonate, strontium carbonate and barium carbonate in a weight ratio of 1: 1.25: 1.6 is mixed with 3% by weight zirconium metal powder and 10% by weight of the rhenium-coated tungsten powder and a binder preparation of nitrocellulose and butyl acetate.
  • the rhenium-coated tungsten wire is coated with this emission compound, then placed in a lamp envelope and heated to 1000 ° C.
  • the electrode is baked, the carbonates of the alkaline earth metals are converted into their oxides and the zirconium metal powder is converted into zirconium oxide.
  • Such a lamp has a short ignition phase, the emitter electrode a low work function of 1.42 eV and a conductivity improved by a factor of 2.

Landscapes

  • Discharge Lamp (AREA)

Claims (5)

  1. Lampe à décharge à gaz dotée d'une électrode qui comprend un support en un métal d'électrode et un premier revêtement d'électrode en une matière émettrice d'électrons qui comprend une préparation de poudre métallique à partir d'une poudre d'un métal réducteur choisi dans le groupe de l'aluminium, du silicium, du titane, du zirconium, de l'hafnium, du tantale, du molybdène, du tungstène et de leurs alliages avec un revêtement de poudre avec un métal choisi dans le groupe du rhénium, du cobalt, du nickel, du ruthénium, du palladium, du rhodium, de l'iridium et du platine et leurs alliages et au moins un oxyde alcalino-terreux sélectionné dans le groupe de l'oxyde de calcium, de l'oxyde de strontium et de l'oxyde de baryum.
  2. Lampe à décharge à gaz selon la revendication 1,
    caractérisée en ce
    qu'un deuxième revêtement d'électrode en un métal choisi dans le groupe du rhénium, du cobalt, du nickel, du ruthénium, du palladium, du rhodium, de l'iridium et du platine est disposé entre le support et le premier revêtement d'électrode.
  3. Lampe à décharge à gaz selon la revendication 1,
    caractérisée en ce
    que la préparation de poudre métallique se compose d'une poudre d'un alliage de tungstène-iridium et d'un revêtement de poudre en iridium.
  4. Lampe à décharge à gaz selon la revendication 1,
    caractérisée en ce
    que la préparation de poudre métallique a un diamètre moyen des grains d de 2,0 µm ≤ d ≤ 3,0 µm.
  5. Lampe à décharge à gaz selon la revendication 1,
    caractérisée en ce
    que la matière émettant des électrons contient par ailleurs de l'oxyde de zirconium.
EP00204015A 1999-11-23 2000-11-14 Lampe à décharge à gaz à électrode pourvue d'une couche émettrice à oxyde Expired - Lifetime EP1104005B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19956322 1999-11-23
DE19956322A DE19956322A1 (de) 1999-11-23 1999-11-23 Gasentladungslampe mit Oxidemitter-Elektrode

Publications (2)

Publication Number Publication Date
EP1104005A1 EP1104005A1 (fr) 2001-05-30
EP1104005B1 true EP1104005B1 (fr) 2006-12-20

Family

ID=7930034

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00204015A Expired - Lifetime EP1104005B1 (fr) 1999-11-23 2000-11-14 Lampe à décharge à gaz à électrode pourvue d'une couche émettrice à oxyde

Country Status (4)

Country Link
US (1) US6674240B1 (fr)
EP (1) EP1104005B1 (fr)
JP (1) JP2001155679A (fr)
DE (2) DE19956322A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10242241A1 (de) * 2002-09-12 2004-03-25 Philips Intellectual Property & Standards Gmbh Niederdruckgasentladungslampe mit Ba TiO3-ähnlichen Elektronen-Ermittersubstanzen
CN101297452A (zh) * 2005-09-14 2008-10-29 力特保险丝有限公司 充气式电涌放电器、激活化合物、点火条及相应方法
US7633226B2 (en) * 2005-11-30 2009-12-15 General Electric Company Electrode materials for electric lamps and methods of manufacture thereof
JP2008060056A (ja) * 2006-08-04 2008-03-13 Sumitomo Electric Ind Ltd 冷陰極蛍光ランプ用電極
CN101681789A (zh) * 2007-05-10 2010-03-24 皇家飞利浦电子股份有限公司 具有包括硫属元素的气体填充物的气体放电灯
DE102013215056A1 (de) * 2013-07-31 2015-02-19 Osram Gmbh Niederdruckentladungslampe mit Entladungsgefäß und Elektrode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574052A (en) * 1978-11-29 1980-06-04 Toshiba Corp Gas discharge lamp
NL193963C (nl) * 1994-05-04 2001-03-02 Matsushita Electric Works Ltd Elektrode voor toepassing in een fluorescerende lamp en werkwijze ter vervaardiging daarvan.
EP0738423B1 (fr) * 1994-11-08 1999-01-13 Koninklijke Philips Electronics N.V. Lampe a decharge basse pression
US5847498A (en) * 1994-12-23 1998-12-08 Philips Electronics North America Corporation Multiple layer composite electrodes for discharge lamps
JP2876591B2 (ja) * 1996-11-29 1999-03-31 三菱電機株式会社 電子管用陰極
WO1999049495A1 (fr) * 1998-03-20 1999-09-30 Hamamatsu Photonics K.K. Tube a decharge pour source lumineuse

Also Published As

Publication number Publication date
US6674240B1 (en) 2004-01-06
EP1104005A1 (fr) 2001-05-30
DE19956322A1 (de) 2001-05-31
DE50013884D1 (de) 2007-02-01
JP2001155679A (ja) 2001-06-08

Similar Documents

Publication Publication Date Title
DE2626700C2 (de) Hochdruckgasentladungslampe und Verfahren zu ihrer Herstellung
DE10291427B4 (de) Halogen-Metalldampflampe für einen Kraftfahrzeugscheinwerfer
DE2161173C3 (de) Oxydelektrode für elektrische Hochleistungs-Gasentladungslampen
DE19643219A1 (de) Amalgam-Halterungsanordnung für eine elektrodenlose Entladungslampe
EP1104933A2 (fr) Lampe à décharge à gaz à électrode pourvu d'un émetteur à oxyde
DE1911985C3 (de) Hochdruck-Bogenentladungslampe
EP1104005B1 (fr) Lampe à décharge à gaz à électrode pourvue d'une couche émettrice à oxyde
DE102012002048A1 (de) Kathode für eine Entladungslampe
DE60022315T2 (de) Niederdruck-Quecksilberdampfentladungslampe
DE69915966T2 (de) Niederdruck-Quecksilberdampfentladungslampe
DE19616408A1 (de) Elektrode für Entladungslampen
EP1776713A2 (fr) Source de lumiere et procede de stabilisation mecanique du filament ou de l'electrode d'une source de lumiere
DE3686193T2 (de) Natriumhochdruckentladungslampe mit getter.
DE69919505T2 (de) Niederdruckquecksilberdampfentladungslampe
DE2845283A1 (de) Hochintensitaetsentladungslampe
DE69911538T2 (de) Niederdruckquecksilberdampfentladungslampe
DE10232239A1 (de) Niederdruckgasentladungslampe mit Elektrode
EP1189253B1 (fr) Tube à rayons cathodiques avec cathode à oxydes dopée
DE10223933A1 (de) Glühentladungslampe, Elektrode hierfür und Leuchtkörper
EP0592915A1 (fr) Lampe à décharge à basse pression et procédé de production d'un lampe à décharge à basse pression
DE60217237T2 (de) Kathodenbeschichtung für thermionische Kathoden in Entladungslampen
DE69202138T2 (de) Verfahren zur Herstellung eine Elektrode für eine Entladungslampe und dadurch hergestellte Elektrode.
DE60027262T2 (de) Niederdruck-quecksilberdampfentladungslampe
DE3119747A1 (de) Emittierende masse und verfahren zu ihrer herstellung
EP2052405B1 (fr) Corps de démarrage pour une lampe à décharge basse pression

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011130

AKX Designation fees paid

Free format text: DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50013884

Country of ref document: DE

Date of ref document: 20070201

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070131

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070810

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071114