EP1082228A1 - Verfahren zum reinigen von druckmaschinen und druckformen - Google Patents

Verfahren zum reinigen von druckmaschinen und druckformen

Info

Publication number
EP1082228A1
EP1082228A1 EP99925019A EP99925019A EP1082228A1 EP 1082228 A1 EP1082228 A1 EP 1082228A1 EP 99925019 A EP99925019 A EP 99925019A EP 99925019 A EP99925019 A EP 99925019A EP 1082228 A1 EP1082228 A1 EP 1082228A1
Authority
EP
European Patent Office
Prior art keywords
water
printing
microemulsion
cleaning
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99925019A
Other languages
English (en)
French (fr)
Other versions
EP1082228B1 (de
Inventor
Dieter Stöckigt
Günter OETTER
Erwin Wolff
Erich Frank
Petra Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flint Group Germany GmbH
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1082228A1 publication Critical patent/EP1082228A1/de
Application granted granted Critical
Publication of EP1082228B1 publication Critical patent/EP1082228B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/06Preparing for use and conserving printing surfaces by use of detergents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • C11D17/0021Aqueous microemulsions

Definitions

  • the invention relates to a method for cleaning printing machines and printing forms, in particular for removing printing inks, for example printing inks based on oil or radiation-curable printing inks, from the cylinders and rollers of printing machines, in particular flat or offset printing machines, and printing forms. for example when printing is interrupted.
  • cleaning agents based on organic solvents and / or aqueous solutions are generally used.
  • the parts of the printing press that come into contact with the printing ink are cleared of ink residues.
  • the printing process is interrupted, printing forms, especially planographic printing forms, must be carefully cleaned of ink residues and coated with preservation solutions based on hydrophilic polymers to maintain the hydrophilicity of the non-image areas.
  • Cleaners that consist exclusively or predominantly of non-polar organic solvents also have the disadvantage that the solvent residues adhering to the parts to be cleaned, for example pressure rollers, cannot be washed off with water after cleaning.
  • a clean printing roller is a prerequisite for good wetting with the printing ink and good ink transfer.
  • the ink-guiding stencil can also be detached from the cleaning agent and thereby damaged or even rendered unusable.
  • DE-B 27 24 557 describes a cleaning agent for lithographic printing plates which contains water and water-miscible organic solvents. Its cleaning effect compared to viscous oil-based printing inks is naturally limited.
  • GB-A 2 089 289 describes oil-in-water and water-in-oil emulsions as cleaners.
  • the disadvantage here is the relatively high interfacial tension between the water and oil phases, so that lipophilic, highly hydrophobic offset printing inks, because of their high interfacial energy, are absorbed by the water-continuous cleaning solution only slowly and only to a small extent.
  • Emulsions of this type are otherwise only kinetically, but not thermodynamically stable, so that they tend to segregate [creaming (settling), thickening, flocculation] in particular in the case of temperature fluctuations and their applicability is thereby impaired.
  • UV-curable offset or high-pressure inks based on polymerizable monomeric or oligomeric acrylates is particularly difficult.
  • esters or mixtures of esters and mineral oil are generally used.
  • the object of the invention was to provide a cleaning method and a liquid cleaning agent which allow printing inks to be removed quickly and effectively without the environment being burdened by vapors of volatile organic components or the printing stencil being attacked by printing forms.
  • the invention relates to a method for cleaning printing presses or printing forms, in which the contaminants are removed from the surface by washing with a liquid.
  • the process according to the invention is characterized in that the liquid is a preferably bicontinuous microemulsion which contains water, a surface-active agent and, as an oil phase, an organic solvent which is immiscible with water.
  • a microemulsion is to be understood as a liquid, preferably bicontinuous mixture of water and oil phase with an extremely low interfacial tension between the water and oil phase, that is to say an interfacial tension which is up to three powers of ten less than that of a conventional water in-oil or oil-in-water emulsion.
  • this interfacial tension is in the range from 10 "3 to 10 " 7 , preferably 10 "4 to 10 " 6 N / m, in the case of emulsions it is usually in the range from 10 "3 to 10 " 2 N / m.
  • a microemulsion in the sense of the present description is thermodynamically stable, visually transparent and preferably of low viscosity.
  • Conventional conventional emulsions can contain oil and water phases in very different proportions by volume. They have a continuous and a disperse phase, which is present in the continuous phase as very small spheres stabilized by coating with surfactants. Depending on the nature of the continuous phase, one speaks of oil-in-water or water-in-oil emulsions. In the ideal case, these emulsions are kinetically stable, ie they remain intact for a long time, but not indefinitely. In particular in the case of temperature fluctuations, they can tend to phase separation by sitting, creaming, thickening or flaking.
  • Bicontinuous microemulsions contain two phases, a water phase and an oil phase, in the form of extended domains that lie side by side and intertwined, with interface-stabilizing interfaces at their interfaces Surfactants are enriched in a monomolecular layer. Bicontinuous microemulsions form very easily, usually because of the very low interfacial tension, if the individual components, water, oil and a suitable surfactant system, are mixed. Since the domains have only very small dimensions in the order of nanometers in at least one dimension, the microemulsions appear visually transparent and, depending on the surface-active system used, are thermodynamically stable in a certain temperature range, that is to say indefinitely.
  • Bicontinuous microemulsions are, for example, in the article "Microemulsions - a scientific and technical treasure trove?” by H.-F. Eicke in S ⁇ FW-Journal 118 (1992), pages 311 to 314.
  • the microemulsions contain certain amphiphiles, i.e. surface-active agents, and in their aqueous phase frequently dissolved electrolytes and optionally other auxiliary substances. Electrolytes are mainly added when the amphiphiles are partially or exclusively ionic surfactants.
  • microemulsions for the extraction of organic pollutants from contaminated soils is described in WO 94/04289.
  • Tertiary oil production has also become known as an area of application for microemulsions.
  • a cleaning agent for carrying out the method according to the invention which consists of a microemulsion which contains water, a surface-active agent and a water-immiscible organic solvent.
  • the components of the microemulsion should be selected so that they do not change the mechanical properties of device parts or sealing materials made of rubber or similar materials, such as elasticity, flexibility, dimensional stability, etc., by swelling or shrinking (swelling).
  • Organic solvents which are immiscible with water are advantageously those having a boiling range above 100, preferably above 150 ° C., in particular from 200 to 400 ° C. In general, organic solvents with 15 flash points above 100 ° C are used.
  • Organic solvents include fats and oils, e.g. Beet oil, fatty acid esters, ethers, ketones, aldehydes and hydrocarbons.
  • esters especially alkyl esters, are of longer chain fatty acids
  • the alkyl group of the alcohol component generally has 1 to 20, preferably 1 to 16 carbon atoms.
  • the fatty acid component normally has 6 to 25, preferably 8 to 18 carbon atoms and can be linear or branched, saturated or unsaturated and contain up to three double bonds in the molecule.
  • the esters generally have an iodine number ranging from 0 to about
  • esters are methyl, ethyl, isopropyl, n-buryl, n-hexyl, 2-ethylhexyl ester and / or
  • Individual typical esters are, for example, 2-ethylhexyl coconut fatty acid, n-hexyl tall oil fatty acid, rapeseed methyl ester, methyl oleic acid, methyl stearate, isopropyl palmitate, ethyl laurate, 2-
  • ethers with a high boiling range e.g. Dioctyl ether and tricylycerides such as rapeseed oil, coconut oil or soybean oil are suitable.
  • the esters are characterized by a very low vapor pressure, so that when they are used there is no pollution of the atmosphere.
  • the volume fractions of the aqueous and organic phases are approximately of the same order of magnitude, i.e. ,
  • the volume ratio of water to organic phase is generally 10:90 to 90:10, preferably 25:75 to 75:25, in particular 40:60 to 60:40.
  • amphiphilic characters can be used as surfactants, hereinafter also referred to as surfactants, ie anionic, cationic, amphoteric and nonionic surfactants or mixtures thereof.
  • Suitable anionic surfactants are C 10 to C 20 , preferably C 12 to C 16 alkyl sulfates, for example sodium dodecyl sulfate; C, 0 to C 20 , preferably C 12 to C 16 alkyl polyether sulfates, for example sodium dodecyloxypolyethoxysulfate; Alkali salts of diisooctylsulfosuccinic acid; Alkali salts of alkylbenzenesulfonic acids, for example sodium dodecylbenzenesulfonate, of dialkyl phosphates, and of carboxylates, for example of fatty alkyl ether carboxylates.
  • anionic surfactants for example sodium dodecyl sulfate
  • alkanols such as butanol, pentanol or hexanol
  • alkali or alkaline earth metal salts for example sodium chloride, sodium sulfate or calcium chloride, or with other electrolytes, for example NaOH, KOH , Phosphates or silicates used.
  • the microemulsions used according to the invention can also contain complexing agents such as ethylenediaminetetraacetic acid, nitrilotriacetic acid or methylglycinediacetic acid, corrosion inhibitors and / or preservatives.
  • the alkanols can be added in amounts of up to 20, preferably up to 10% by weight, the electrolytes in amounts of up to 10, preferably up to 5% by weight.
  • Cationic surfactants which can be used to prepare microemulsions are, for example, alkyltrimemylammonium halides with alkyl chain lengths of about 8 to 18 carbon atoms and / or quaternized imidazolinium or pyridinium salts.
  • Suitable nonionic or nonionic surfactants are polyglycol monoalkyl ethers with alkyl chain lengths of C 8 to C lg, preferably C 10 to C 16 , and
  • C 10 to C 15 alkyl ethers of polyglycols with 3 to 10 oxyalkylene units are frequently used. These are mostly technical products with a more or less broad molecular weight distribution. Surfactants with a narrow molecular weight distribution produced using special casters can also be used.
  • Triglyceride alkoxylates e.g. Reaction products of 1 mol of triglyceride with 1 to 50 mol of alkylene oxide, particularly 10 to 50 mol of ethylene oxide, are suitable.
  • surfactants based on saccharides for example alkyl polyglucosides or glucosamides, can be used.
  • microemulsions used according to the invention preferably contain anionic surfactants, usually in combination with one or more nonionic surfactants. However, it is also possible to produce microemulsions using only nonionic surfactants. In order to achieve an optimal cleaning effect, in certain cases for each combination of organic solvent, surfactant or surfactants and, where appropriate, electrolytes and complexing agents in aqueous solution, certain relatively narrow quantitative ranges of the individual components are required, which can be determined by simple routine tests. In general, the total amount of surfactants in the microemulsion is in the range from 1 to 35, preferably 1 to 25 and in particular 7 to 25% by weight. If the surfactant content is too high, cleaning problems can arise or the drying of the printing rollers can be difficult.
  • microemulsions used according to the invention generally contain 5 to 60, preferably 20 to 60% by weight of water-immiscible organic solvent and 20 to 80, preferably 30 to 60% by weight of water. All data in% by weight are based on the total weight of the finished microemulsion.
  • microemulsion is thermodynamically stable in a certain temperature range.
  • Preferred microemulsions are those which are thermodynamically stable at room temperature and below.
  • the microemulsion is applied to the parts of the printing press to be cleaned.
  • the surface of the printing ink is wetted quickly, uniformly and completely, so that the printing ink is quickly absorbed and dissolved or emulsified by the cleaning liquid.
  • the remaining microemulsion residues can be easily removed by washing with water.
  • the same applies to the ink residues remaining after printing has been interrupted on a printing form to be cleaned and preserved, in particular an offset or high-pressure form.
  • the most important thing here is the complete removal of color residues from the non-image or background areas of the printing form, on which, for example in the case of flat or offset printing, the required hydrophilicity must be maintained when the printing process is resumed.
  • a printing form is a print-ready printing plate which is generally obtained by exposing and developing a photosensitive printing plate.
  • microemulsions used according to the invention are also suitable for cleaning other substances, e.g. B. of plastics, old paintwork, primers and bare metal sheets. You can e.g. B. can be used as a cleaning agent in the field of car refinishing and as a brush cleaner.
  • Alkyl ether group 46 g of a C 8 -C 8 fatty acid methyl ester mixture, 37 g of water and 0.07 g of calcium chloride and brief shaking of the mixture gave a low viscosity, thermodynamically stable and visually transparent microemulsion.
  • a microemulsion which is stable at room temperature was described as in Preparation 1, but from 8 g of dioctylsulfosuccinate, 16 g of the same polyglycol monoalkyl ether mixture, 15 g of rapeseed oil fatty acid methyl ester, 15 g of coconut fatty acid 2-ethylhexyl ester, 46 g of water and 0. 07 g calcium chloride produced.
  • a microemulsion was obtained from 14 g of dioctyl sulfosuccinate, 34.5 g of soybean oil and 51.5 g of water by mixing as in Preparation Example 1. It was thermodynamically stable and visually transparent in the temperature range from 55 to 58 ° C.
  • microemulsions of Preparation Examples 3 and 4 are not permanently stable outside the specified temperature ranges and separate into an oil and a water phase after long standing at room temperature.
  • the microemulsions of Preparation Examples 1 and 2 permit use for an unlimited period at room temperature.
  • Application example 5
  • the rollers of a rotary offset printing machine were cleaned after every 100,000 prints with commercially available oil-based offset printing ink, once with white spirit (predominantly aliphatic hydrocarbons with a boiling range from 80 to 250 ° C.) and once with the microemulsion from preparation example 1.
  • the cleaning performance i.e. the removal of the ink, essentially the same.
  • the rollers were cleaner and drier after cleaning than when white spirit was used.
  • the residues of the microemulsion could also be removed easily and without residue by simply rinsing with water.
  • the offset printing plate used in the printing process was treated in the same way with both cleaning liquids. In both cases, a clean printing stencil, free of ink residues, was obtained.
  • the printing form cleaned with the microemulsion was smoothly and completely wetted by the aqueous solution of gum arabic subsequently applied, while this solution was also accepted only with difficulty by the non-image-bearing carrier surface of the printing form cleaned with white spirit and only after prolonged intensive treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Coloring (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

Es wird ein Verfahren zum Reinigen von Druckmaschinen oder Druckformen vorgeschlagen, bei dem man die Verunreinigungen von den zu reinigenden Oberflächen durch Waschen mit einer Mikroemulsion entfernt, die Wasser, ein grenzflächenaktives Mittel und ein mit Wasser nicht mischbares organisches Lösemittel enthält.

Description

Verfahren zum Reinigen von Druckmaschinen und Druckformen
Die Erfindung betrifft ein Verfahren zum Reinigen von Druckmaschinen und Druckformen, insbesondere zum Entfernen von Druckfarben, zum Beispiel von Druckfarben auf Ölbasis oder durch Strahlung härtbaren Druckfarben, von den Zylindern und Walzen von Druckmaschinen, besonders Flach- oder Offsetdruckma- schinen, sowie von Druckformen, zum Beispiel bei Unterbrechung des Druckvorgangs.
Für die genannten Zwecke werden im allgemeinen Reinigungsmittel auf Basis organischer Lösemittel und/oder wäßriger Lösungen eingesetzt. Dabei werden in Druckereien bei längerem Maschinenstillstand oder bei einem Farbwechsel die mit der Druckfarbe kontaktierten Teile der Druckmaschine von Farbresten befreit. Ebenso müssen Druckformen, besonders Flachdruckformen, bei einer Unterbrechung des Druckprozesses sorgfältig von Farbresten gereinigt und zur Erhaltung der Hydrophilie der Nichtbildstellen mit Konservierungslösungen auf Basis hydrophiler Polymerer überzogen werden. Reiniger, die organische Lösemittel enthalten, haben zumeist flüchtige organische Anteile (VOC = volatile organic compounds), die die Atmosphäre belasten und arbeitsmedizinisch und ökologisch bedenklich sind. Reiniger, die ausschließlich oder überwiegend aus unpolaren organischen Lösemitteln bestehen, haben zudem den Nachteil, daß sich die an den zu reinigenden Teilen, zum Beispiel Druckwalzen, anhaftenden Lösemittelreste nach dem Reinigen nicht mit Wasser abwaschen lassen. Eine saubere Druckwalze ist jedoch Voraussetzung für eine gute Benetzung mit der Druckfarbe und gute Farbübertragung. Bei manchen Druckformen kann auch die farbführende Druckschablone vom Reinigungsmittel angelöst und dadurch beschädigt oder sogar unbrauchbar werden. In der DE-B 27 24 557 wird ein Reinigungsmittel für lithographische Druckplatten beschrieben, das Wasser und mit Wasser mischbare organische Lösemittel enthält. Seine Reinigungswirkung gegenüber viskosen Druckfarben auf Ölbasis ist naturgemäß begrenzt.
In der GB-A 2 089 289 werden Öl-in- Wasser- und Wasser-in-Öl-Emulsionen als Reiniger beschrieben. Von Nachteil ist hierbei die relativ hohe Grenzflächenspannung zwischen Wasser- und Ölphase, so daß beispielsweise lipophile, stark hydrophobe Offsetdruckfarben wegen ihrer hohen Grenzflächenenergie gegenüber der wasserkontinuierlichen Reinigerlösung nur langsam und nur in geringem Maße von dieser aufgenommen werden.
Ähnliches gilt für Emulsionen, wie sie zum Beispiel auch in der WO-A 90/03419 oder der EP-A 0 498 545 beschrieben werden.
Emulsionen dieser Art sind im übrigen nur kinetisch, aber nicht thermodynamisch stabil, so daß sie insbesondere bei Temperaturschwankungen zur Entmischung [Aufrahmen (Absitzen), Verdicken, Ausflocken] neigen und dadurch in ihrer Anwendbarkeit beeinträchtigt werden.
Besonders schwierig ist das Entfernen von durch UV-Strahlung härtbaren Offsetoder Hochdruckfarben auf Basis von polymerisierbaren monomeren oder oligomeren Acrylaten. Zu ihrer Entfernung werden im allgemeinen Ester oder Gemische von Estern und Mineralöl eingesetzt.
Aufgabe der Erfindung war es, ein Reinigungsverfahren und ein flüssiges Reinigungsmittel zu Verfügung zu stellen, die es gestatten, Druckfarben schnell und effektiv abzulösen, ohne daß die Umgebung durch Dämpfe flüchtiger organischer Komponenten belastet oder die Druckschablone von Druckformen angegriffen wird. Die Erfindung geht aus von einem Verfahren zum Reinigen von Druckmaschinen oder Druckformen, bei dem man die Verunreinigungen von der Oberfläche durch Waschen mit einer Flüssigkeit entfernt.
Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß die Flüssigkeit eine vorzugsweise bikontinuierliche Mikroemulsion ist, die Wasser, ein grenzflächenaktives Mittel und als Ölphase ein mit Wasser nicht mischbares organisches Lösemittel enthält.
Unter einer Mikroemulsion soll im Rahmen der vorliegenden Beschreibung eine flüssige, vorzugsweise bikontinuierliche Mischung aus Wasser- und Ölphase mit extrem niedriger Grenzflächenspannung zwischen Wasser- und Ölphase verstanden werden, das heißt einer Grenzflächenspannung, die bis zu drei Zehnerpotenzen kleiner ist als die einer üblichen Wasser-in-Öl- oder Öl-in- Wasser-Emulsion. Bei Mikroemulsionen liegt diese Grenzflächenspannung im Bereich von 10"3 bis 10"7, bevorzugt 10"4 bis 10"6 N/m, bei Emulsionen gewöhnlich im Bereich von 10"3 bis 10"2 N/m. Eine Mikroemulsion im Sinne der vorliegenden Beschreibung ist thermodynamisch stabil, visuell transparent und vorzugsweise niedrigviskos.
Übliche konventionelle Emulsionen können Öl- und Wasserphase in sehr unterschiedlichen Volumenanteilen enthalten. Sie haben eine kontinuierliche und eine disperse Phase, die als sehr kleine, durch Belegung mit Tensiden stabilisierte Kügelchen in der kontinuierlichen Phase vorliegt. Je nach der Natur der kontinuierliches Phase spricht man von Öl-in-Wasser- oder Wasser-in-Öl- Emulsionen. Diese Emulsionen sind im Idealfall kinetisch stabil, d.h. sie bleiben auch längere Zeit, aber nicht unbegrenzt, erhalten. Insbesondere bei Temperaturschwankungen können sie zur Phasentrennung durch Absitzen, Aufrahmen, Verdicken oder Flocken neigen. Bikontinuierliche Mikroemulsionen enthalten zwei Phasen, eine Wasser- und eine Ölphase, in Form von ausgedehnten nebeneinanderliegenden und ineinander verschlungenen Domänen, an deren Grenzfläche stabilisierende grenzflächenaktive Tenside in einer monomolekularen Schicht angereichert sind. Bikontinuierliche Mikroemulsionen bilden sich sehr leicht, in der Regel wegen der sehr niedrigen Grenzflächenspannung spontan, wenn die Einzelkomponenten, Wasser, Öl und ein geeignetes grenzflächenaktives System, vermischt werden. Da die Domänen in mindestens einer Dimension nur sehr geringe Ausdehnungen in der Größenordnung von Nanometern haben, erscheinen die Mikroemulsionen visuell transparent und sind je nach dem eingesetzten grenzflächenaktiven System in einem bestimmten Temperaturbereich thermodynamisch, d.h. zeitlich unbegrenzt, stabil.
Bikontinuierliche Mikroemulsionen sind zum Beispiel in dem Artikel "Mikroemulsionen - eine wissenschaftliche und anwendungstechnische Fundgrube?" von H.-F. Eicke in SÖFW-Jouraal 118 (1992), Seiten 311 bis 314, beschrieben.
Zum Erreichen der erforderlichen niedrigen Grenzflächenspannung an den Phasengrenzen enthalten die Mikroemulsionen bestimmte Amphiphile, d.h. grenzflächenaktive Mittel, und in ihrer wäßrigen Phase häufig gelöste Elektrolyte und gegebenenfalls weitere Hilfsstoffe. Elektrolyte werden vor allem dann zugesetzt, wenn die Amphiphilen zum Teil oder ausschließlich ionische Tenside sind.
Der Einsatz von Mikroemulsionen zur Extraktion von organischen Schadstoffen aus kontaminierten Böden ist in der WO 94/04289 beschrieben. Auch die Tertiärförderung von Erdöl ist als Anwendungsgebiet für Mikroemulsionen bekannt geworden.
Es ist ferner aus der EP-A-0 498 545 bekannt, Mikroemulsionen als Reinigungsmittel, z. B. für lackierte oder blanke Metallbleche, Kunststoffe und andere Oberflächen, insbesondere zur Vorbehandlung für nachfolgende Beschichtungen einzusetzen. Gemäß einem anderem Aspekt der Erfindung wird ein Reinigungsmittel zur Durchführung des erfindungsgemäßen Verfahrens vorgeschlagen, das aus einer Mikroemulsion besteht, die Wasser, ein grenzflächenaktives Mittel und ein mit Wasser nicht mischbares organisches Lösemittel enthält.
5
Die Bestandteile der Mikroemulsion sollten so ausgewählt werden, daß sie die mechanischen Eigenschaften von Vorrichtungsteilen oder Dichtungsmaterialien aus Gummi oder ähnlichen Materialien, wie Elastizität, Flexibilität, Dimensionsbeständigkeit usw., durch Quellung oder Schrumpfung (Entquellung) lo nicht verändern.
Als mit Wasser nicht mischbare organische Lösemittel werden vorteilhaft solche mit einem Siedebereich oberhalb 100, bevorzugt oberhalb 150°C, insbesondere von 200 bis 400°C eingesetzt. Im allgemeinen werden organische Lösemittel mit 15 Flammpunkten oberhalb 100°C eingesetzt. Unter "organischen Lösemitteln" sind unter anderen Fette und Öle, z.B. Rüböl, Fettsäureester, Ether, Ketone, Aldehyde und Kohlenwasserstoffe zu verstehen.
Im allgemeinen sind Ester, besonders Alkylester, von längerkettigen Fettsäuren
20 geeignet. Die Alkylgruppe der Alkoholkomponente hat im allgemeinen 1 bis 20, bevorzugt 1 bis 16 Kohlenstoffatome. Die Fettsäurekomponente hat normalerweise 6 bis 25, bevorzugt 8 bis 18 Kohlenstoffatome und kann linear oder verzweigt, gesättigt oder ungesättigt sein und bis zu drei Doppelbindungen im Molekül enthalten. Die Ester haben im allgemeinen eine Jodzahl im Bereich von 0 bis etwa
25 150, bevorzugt von 0 bis 40. Verbindungen mit höherem Gehalt an
Doppelbindungen zeigen häufig eine Neigung zum Verharzen und damit zur
Abscheidung unerwünschter Substanzen. Solche Verbindungen werden deshalb, wenn überhaupt, nur in geringen Anteilen zugesetzt. Beispiele für geeignete Ester sind Methyl-, Ethyl-, Isopropyl-, n-Buryl-, n-Hexyl-, 2-Ethylhexylester und/oder
30 Isooctylester von Fettsäuren oder Fettsäuregemischen, zum Beispiel von Octansäure,
2-Ethylhexansäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Ölsäure, Linolsäure, Behensäure oder Sojaöl-, Kokosöl-, Palmkernöl-, Palmöl-, Sonnenblumenöl-, Spermöl-, Tallöl-, Rapsöl-, Rizinusöl- oder Taigfettsäuren. Einzelne typische Ester sind beispielsweise Kokosfettsäure-2-ethylhexylester, Tallölfettsäure-n-hexylester, Rapsmethylester, Ölsäure-methylester, Stearinsäure- methylester, Palmitinsäure-isopropylester, Laurinsäure-ethylester, 2-
Ethylhexansäure-2- ethylhexylester und Octansäure-n-octylester. Neben diesen Estern sind auch Ether mit hohem Siedebereich, z.B. Dioctylether, sowie Tricylyceride, wie Rapsöl, Kokosöl oder Sojaöl, geeignet.
Die Ester zeichnen sich durch einen sehr niedrigen Dampfdruck aus, so daß bei ihrem Einsatz keine Belastung der Atmosphäre eintritt. Wie es bei bikontinuierlichen Mikroemulsionen die Regel ist, liegen die Volumenanteile von wäßriger und organischer Phase etwa in der gleichen Größenordnung, d.h. , das Volumenverhältnis von Wasser zu organischer Phase beträgt im allgemeinen 10:90 bis 90: 10, bevorzugt 25:75 bis 75:25, insbesondere 40:60 bis 60:40.
Als grenzflächenaktive Mittel, im folgenden auch als Tenside bezeichnet, können grundsätzlich solche unterschiedlichen amphiphilen Charakters eingesetzt werden, also anionische, kationische, amphotere und nichtionische Tenside oder deren Gemische.
Geeignete anionische Tenside sind C10- bis C20-, bevorzugt C12- bis C16-Alkylsulfate, zum Beispiel Natriumdodecylsulfat; C,0- bis C20-, bevorzugt C12- bis C16-Alkylpoly- ethersulfate, zum Beispiel Natriumdodecyloxypolyethoxysulfat; Alkalisalze von Diisooctylsulfobemsteinsäure; Alkalisalze von Alkylbenzolsulfonsäuren, zum Beispiel Natriumdodecylbenzolsulfonat, von Dialkylphosphaten, und von Carboxylaten, z.B. von Fettalkylethercarboxylaten. Einige anionische Tenside, zum Beispiel Natriumdodecylsulfat, werden oft zusammen mit Alkanolen wie Butanol, Pentanol oder Hexanol als Co-Tenside und/oder mit Alkali- oder Erdalkalisalzen, zum Beispiel Natriumchlorid, Natriumsulfat oder Calciumchlorid, oder mit anderen Elektrolyten, zum Beispiel NaOH, KOH, Phosphaten oder Silikaten eingesetzt. Weiterhin können die erfindungsgemäß eingesetzten Mikroemulsionen noch Komplexbildner wie Ethylendiamintetraessigsäure, Nitrilotriessigsäure oder Methylglycindiessigsäure, Korrosionsinhibitoren und/oder Konservierungsmittel enthalten.
Die Alkanole können in Mengen bis zu 20, bevorzugt bis zu 10 Gew.-%, die Elektrolyte in Mengen bis zu 10, bevorzugt bis zu 5 Gew.-% zugesetzt werden.
Als kationische Tenside können zur Herstellung von Mikroemulsionen bei- spielsweise Alkyltrimemylammoniumhalogenide mit Alkylkettenlängen von etwa 8 bis 18 C-Atomen und/oder quaternierte Imidazolinium- oder Pyridiniumsalze eingesetzt werden.
Geeignete nichtionische beziehungsweise nichtionogene Tenside sind Polygly- kolmonoalkylether mit Alkylkettenlängen von C8 bis Clg bevorzugt C10 bis C16, und
2 bis 20, bevorzugt 3 bis 15 Oxyalkylen-, insbesondere -ethylen-, -propylen- und/oder -butyleneinheiten, oder Blockcopolymere aus diesen Einheiten. Häufig werden C10- bis C15- Alkylether von Polyglykolen mit 3 bis 10 Oxyalkyleneinheiten verwendet. Hierbei handelt es sich zumeist um technische Produkte mit einer mehr oder weniger breiten Molgewichtsverteilung. Auch über spezielle Kastalysatoren hergestellte Tenside mit enger Molgewichtsverteilung können eingesetzt werden.
Ferner sind Triglyceridalkoxylate, z.B. Umsetzungsprodukte von 1 mol Triglycerid mit 1 bis 50 mol Alkylenoxid, besonders 10 bis 50 mol Ethylenoxid, geeignet.
Daneben sind Tenside auf Basis von Sacchariden, zum Beispiel Alkylpolyglukoside oder Glukosamide einsetzbar.
Die erfindungsgemäß eingesetzten Mikroemulsionen enthalten bevorzugt anionische Tenside, meist in Kombination mit einem oder mehreren nichtionischen Tensiden. Es können aber auch Mikroemulsionen allein mit nichtionischen Tensiden hergestellt werden. Zur Erzielung einer optimalen Reinigungswirkung sind im Einzelfall für jede Kombination von organischem Lösemittel, Tensid beziehungsweise Tensiden und gegebenenfalls Elektrolyten und Komplexbildnern in wäßriger Lösung bestimmte relativ enge Mengenanteilbereiche der einzelnen Komponenten erforderlich, die sich durch einfache Routineversuche ermitteln lassen. Allgemein liegt der Anteil an Tensiden in der Mikroemulsion insgesamt im Bereich von 1 bis 35, bevorzugt 1 bis 25 und insbesondere 7 bis 25 Gew.-%. Bei zu hohem Tensidanteil können Reinigungsprobleme entstehen, oder die Trocknung der Druckwalzen kann Schwierigkeiten bereiten.
Im allgemeinen werden 1 bis 20, bevorzugt 3 bis 15 und insbesondere 5 bis 10 Gew.-% anionisches Tensid; 1 bis 20 Gew.-% Polyethylenglykolmonoalkylether; 0,1 bis 10, bevorzugt 0,5 bis 5 Gew.- Umsetzungsprodukt von Triglycerid mit Ethylenoxid und 1 bis 20 Gew.-% Polyalkylenglykolmonoalkylether mit Oxyethylen- und/ oder Oxypropyleneinheiten eingesetzt.
Die erfmdungsgemäß eingesetzten Mikroemulsionen enthalten im allgemeinen 5 bis 60, bevorzugt 20 bis 60 Gew.-% mit Wasser nicht mischbares organisches Lösemittel und 20 bis 80, bevorzugt 30 bis 60 Gew.-% Wasser. Alle Angaben in Gew.-% sind hier auf das Gesamtgewicht der fertigen Mikroemulsion bezogen.
Jede Mikroemulsion ist in einem bestimmten Temperaturbereich thermodynamisch stabil. Bevorzugt werden solche Mikroemulsionen, die bei Raumtemperatur und darunter thermodynamisch stabil sind. Es können aber auch in vielen Fällen solche Mikroemulsionen mit Erfolg eingesetzt werden, deren Stabilitätsbereich oberhalb Raumtemperatur, zum Beispiel zwischen 50 und 60°C liegt.
Hohe Konzentrationen an Tensiden in bekannten Reinigerflüssigkeiten führen oft zu schlechter Druckfarbenablösung, verbunden mit Tensidablagerungen auf den
Druckwalzen; diese Nachteile treten mit den erfindungsgemäß eingesetzten Mikroemulsionen nicht ein.
Bei der Durchführung des erfindungsgemäßen Reinigungsverfahrens wird die Mikroemulsion auf die zu reinigenden Teile der Druckmaschine aufgebracht. Die Oberfläche der Druckfarbe wird schnell, gleichmäßig und vollständig benetzt, so daß die Druckfarbe rasch von der Reinigungsflüssigkeit aufgenommen und gelöst beziehungsweise emulgiert wird. Die verbleibenden Reste der Mikroemulsion lassen sich leicht durch Waschen mit Wasser entfernen. Das gleiche gilt für die nach Unterbrechung des Drucks auf einer zu reinigenden und zu konservierenden Druckform, insbesondere einer Offset- oder Hochdruckform verbliebenen Farbreste. Wichtig ist hier vor allem die vollständige Entfernung von Farbresten von den Nichtbild- oder Hintergrundstellen der Druckform, auf denen zum Beispiel beim Flach- oder Offsetdruck bei Wiederaufnahme des Druckvorgangs die erforderliche Hydrophilie erhalten bleiben muß. Als Druckform wird im Rahmen dieser Beschreibung eine druckfertige Druckplatte bezeichnet, die in der Regel durch Belichten und Entwickeln einer lichtempfindlichen Druckplatte erhalten wird.
Die erfindungsgemäß eingesetzten Mikroemulsionen eigenen sich auch zur Reinigung von anderen Substanzen, z. B. von Kunststoffen, Altlackierungen, Grundierungen und blanken Metallblechen. Sie können z. B. als Reinigungsmittel im Bereich der Autotreparaturlackierungen sowie als Pinselreiniger eingesetzt werden.
Die folgenden Beispiele erläutern Ausführungsformen des erfindungsgemäßen Verfahrens und für dabei eingesetzte Mikroemulsionen sowie deren Herstellung.
Herstellungsbeispiel 1
Durch Vermischen von 10 g Dioctylsulfosuccinat (Natriumsalz), 7 g eines Polyglykolmonoalkylethergemischs mit ca. 5 Oxyethyleneinheiten und einer C10-C13-
Alkylethergruppe, 46 g eines C8-C,8-Fettsäuremethylestergemischs, 37 g Wasser und 0,07 g Calciumchlorid und kurzes Schütteln des Gemischs wurde eine bei Raumtemperatur thermodynamisch stabile und visuell transparente Mikroemulsion niedriger Viskosität erhalten.
Herstellungsbeispiel 2
Eine Mikroemulsion, die bei Raumtemperatur stabil ist, wurde wie im Herstellungsbeispiel 1 beschrieben, jedoch aus 8 g Dioctylsulfosuccinat, 16 g des gleichen Polyglykolmonoalkylethergemischs, 15 g Rapsölfettsäure- methylester, 15 g Kokosfettsäure-2-ethyl-hexylester, 46 g Wasser und 0,07 g Calciumchlorid hergestellt.
Herstellungsbeispiel 3
Aus 14 g Dioctylsulfosuccinat, 34,5 g Sojaöl und 51,5 g Wasser wurde durch Vermischen wie im Herstellungsbeispiel 1 eine Mikroemulsion erhalten. Sie war im Temperaturbereich von 55 bis 58°C thermodynamisch stabil und visuell transparent.
Herstellungsbeispiel 4
17,0 g Dioctylsulfosuccinat wurden in 41,5 g Wasser gelöst und die Lösung mit 415 g Decan vermischt. Die Mischung bildet im Temperaturbereich von 51 bis 56°C eine thermodynamisch stabile visuell transparente Mikroemulsion niedriger Viskosität.
Die Mikroemulsionen der Herstellungsbeispiele 3 und 4 sind außerhalb der angegebenen Temperaturbereiche nicht dauernd stabil und trennen sich nach längerem Stehen bei Raumtemperatur in eine Öl- und eine Wasserphase auf. Die Mikroemulsionen der Herstellungsbeispiele 1 und 2 gestatten dagegen einen Gebrauch von unbeschränkter Dauer bei Raumtemperatur. Anwendungsbeispiel 5
In einem Vergleichsversuch wurden die Walzen einer Rotations-Offsetdruck- maschine nach jeweils 100.000 Drucken mit handelsüblicher Offsetdruckfarbe auf Ölbasis einmal mit Testbenzin (überwiegend aliphatische Kohlenwasserstoffe mit einem Siedebereich von 80 bis 250°C) und einmal mit der Mikroemulsion von Herstellungsbeispiel 1 gereinigt. In beiden Fällen war die Reinigungsleistung, d.h. die Entfernung der Druckfarbe, im wesentlichen gleich. Bei Verwendung der Mikroemulsion waren die Walzen nach der Reinigung sauberer und trockener als bei Verwendung von Testbenzin. Auch konnten die Reste der Mikroemulsion leicht und rückstandsfrei durch einfaches Abspülen mit Wasser entfernt werden.
In gleicher Weise wurde die beim Druckvorgang eingesetzte Offsetdruckform mit beiden Reinigerflüssigkeiten behandelt. In beiden Fällen wurde eine saubere, von Farbresten befreite Druckschablone erhalten. Die mit der Mikroemulsion gereinigte Druckform wurde von der danach aufgebrachten wäßrigen Lösung von Gummi arabicum glatt und vollständig benetzt, während diese Lösung auch von der die Nichtbildstellen bildenden Trägeroberfläche der mit Testbenzin gereinigten Druckform nur schwer und erst nach längerer intensiver Behandlung angenommen wurde.

Claims

Patentansprüche
1. Verfahren zum Reinigen von Druckmaschinen oder Druckformen, bei dem man die Verunreinigungen von den zu reinigenden Oberflächen durch Waschen mit einer Flüssigkeit entfernt, dadurch gekennzeichnet, daß die Flüssigkeit eine
Mikroemulsion ist, die Wasser, ein grenzflächenaktives Mittel und ein mit
Wasser nicht mischbares organisches Lösemittel enthält.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Mikroemulsion bikontinuierlich ist.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man das Waschen in einem Temperaturbereich durchführt, in dem die Mikroemulsion thermodynamisch stabil ist.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als mit Wasser nicht mischbares organisches Lösemittel ein Alkylester einer längerkettigen Fettsäure eingesetzt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Alkylgruppe des Esters 1 bis 20 Kohlenstoffatome enthält.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die längerkettige Fettsäure eine gesättigte oder ungesättigte Säure mit 8 bis 25
Kohlenstoffatomen ist.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als grenzflächenaktives Mittel ein anionisches Tensid eingesetzt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Mikroemulsion zusätzlich ein nichtionisches grenzflächenaktives Mittel enthält.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in dem Wasser ein 5 Elektrolyt gelöst ist.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der Elektrolyt ein wasserlösliches Alkali- oder Erdalkalisalz ist.
10 11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß in dem Wasser ein Komplexbildner oder ein Korrosionsinhibitor gelöst ist.
12. Reinigungsmittel zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß es aus einer Mikroemulsion besteht, die 15 Wasser, ein grenzflächenaktives Mittel und ein mit Wasser nicht mischbares organisches Lösemittel enthält.
EP99925019A 1998-05-29 1999-05-20 Verfahren zum reinigen von druckmaschinen und druckformen Expired - Lifetime EP1082228B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19824236A DE19824236A1 (de) 1998-05-29 1998-05-29 Verfahren zum Reinigen von Druckmaschinen und Druckformen
DE19824236 1998-05-29
PCT/EP1999/003479 WO1999062723A1 (de) 1998-05-29 1999-05-20 Verfahren zum reinigen von druckmaschinen und druckformen

Publications (2)

Publication Number Publication Date
EP1082228A1 true EP1082228A1 (de) 2001-03-14
EP1082228B1 EP1082228B1 (de) 2002-04-03

Family

ID=7869413

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99925019A Expired - Lifetime EP1082228B1 (de) 1998-05-29 1999-05-20 Verfahren zum reinigen von druckmaschinen und druckformen

Country Status (9)

Country Link
US (1) US6544348B1 (de)
EP (1) EP1082228B1 (de)
JP (1) JP4343435B2 (de)
AT (1) ATE215453T1 (de)
AU (1) AU746240B2 (de)
CA (1) CA2332584C (de)
DE (2) DE19824236A1 (de)
DK (1) DK1082228T3 (de)
WO (1) WO1999062723A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10258668A1 (de) * 2002-12-13 2004-06-24 Basf Ag Verfahren zur Herstellung von Flexodruckformen mittels Lasergravur unter Verwendung von fotopolymeren Flexodruckelementen und fotopolymerisierbares Flexodruckelementen
US7037882B2 (en) * 2004-05-05 2006-05-02 Bba Nonwovens Simpsonville, Inc. Composition and material for cleaning printing machines
US20060264350A1 (en) * 2004-05-05 2006-11-23 Bba Nonwovens Simpsonville Inc. Printing blanket cleaning material
EP1595940A1 (de) * 2004-05-12 2005-11-16 Malaysian Palm Oil Board Hochleistungsreinigungsmittel
DE102004025364A1 (de) 2004-05-19 2005-12-08 Basf Drucksysteme Gmbh Verfahren zur Herstellung von Flexodruckformen mittels Laser-Direktgravur
US20080287331A1 (en) * 2007-05-18 2008-11-20 Hai-Hui Lin Low voc cleaning composition for cleaning printing blankets and ink rollers
CN101434764B (zh) * 2007-11-15 2010-12-01 中国石油化工股份有限公司 一种油墨清洗剂
ES2344668T3 (es) * 2007-11-30 2010-09-02 Agfa Graphics N.V. Metodo para tratar una plancha de impresion litografica.
ES2365885T3 (es) * 2008-03-31 2011-10-13 Agfa Graphics N.V. Un método para tratar una plancha de impresión litográfica.
WO2009137096A1 (en) * 2008-05-09 2009-11-12 Rhodia Inc. Cleaning compositions incorporating green solvents and methods for use
JP2010234554A (ja) * 2009-03-30 2010-10-21 Fujifilm Corp 印刷版の作製方法
EP2513277B1 (de) * 2009-12-16 2015-07-29 Unilever N.V. Bikontinuierliche mikroemulsionswaschmittelzusammensetzung
EP2361963A1 (de) * 2010-02-01 2011-08-31 Unilever N.V. Bikontinuierliche Mikroemulsions-Waschmittelzusammensetzung
DE102015011694A1 (de) * 2015-09-14 2017-03-16 Forschungszentrum Jülich GmbH Reinigungsmittel auf Mikroemulsionsbasis

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100096A (en) 1976-06-04 1978-07-11 Addressograph Multigraph Corp. Cleaner for hydrophilic metal surfaces of lithographic duplicators
US4399243A (en) 1980-12-12 1983-08-16 Richardson Graphics Company Cleaner and scratch remover composition
DK533188D0 (da) 1988-09-26 1988-09-26 Aarhus Oliefabrik As Anvendelse af (c1-c5) alkylestere af alifatiske (c8-c22) monocarboxylsyrer til afrensning af fedt, maling, trykfarver o.l. og rensemiddel indeholdendesaadanne estere
US5380453A (en) * 1988-09-26 1995-01-10 Unichema Chemie B.V. Composition comprising alkyl esters of aliphatic (C8 -C22) monocarboxylic acids and oil in water emulsifier
GB9101850D0 (en) * 1991-01-29 1991-03-13 Du Pont Howson Ltd Improvements in or relating to printing
US5213624A (en) 1991-07-19 1993-05-25 Ppg Industries, Inc. Terpene-base microemulsion cleaning composition
DE4126719A1 (de) * 1991-08-13 1993-02-18 Baldwin Gegenheimer Gmbh Nichtionisches fluessiges drucktuchwaschmittel fuer die maschinelle gummituchreinigung in offsetdruckmaschinen
NZ264113A (en) * 1993-08-04 1996-06-25 Colgate Palmolive Co Liquid crystal or microemulsion liquid cleaners containing esterified polyethoxyether nonionic surfactant, anionic surfactant, cosurfactant, optionally a fatty acid, and water-insoluble hydrocarbon or perfume

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9962723A1 *

Also Published As

Publication number Publication date
AU746240B2 (en) 2002-04-18
DE19824236A1 (de) 1999-12-02
DK1082228T3 (da) 2002-07-08
JP4343435B2 (ja) 2009-10-14
CA2332584C (en) 2007-11-20
WO1999062723A1 (de) 1999-12-09
AU4145199A (en) 1999-12-20
CA2332584A1 (en) 1999-12-09
ATE215453T1 (de) 2002-04-15
US6544348B1 (en) 2003-04-08
EP1082228B1 (de) 2002-04-03
DE59901125D1 (de) 2002-05-08
JP2002516776A (ja) 2002-06-11

Similar Documents

Publication Publication Date Title
EP2828370B1 (de) Reinigungsmittel auf mikroemulsionsbasis
EP1082228B1 (de) Verfahren zum reinigen von druckmaschinen und druckformen
DE69529832T2 (de) Wässeriges metallreinigungsmittel
WO2008132202A2 (de) Mischung, welche ein alkylpolyglucosid, ein cotensid und ein polymeres additiv umfasst
EP3350307B1 (de) Reinigungsmittel auf mikroemulsionsbasis
EP1470208B1 (de) Alkylglykolalkoxylate oder -diglykolalkoxylate, ihre mischungen mit tensiden und ihre verwendung
DE2539343A1 (de) Nicht schaeumende, dispergierende zusammensetzung und ihre verwendung
DE60207723T2 (de) Entfettungsmittel zum entfetten und/oder dekontaminieren der harten oberflächen
EP1141225A1 (de) Wässriges mehrphasiges reinigungsmittel
EP1027221B1 (de) Verwendung von alkylpolyglycosiden in druckfarbenreinigern
EP1657594B1 (de) Verfahren zur Hydrophilierung von Siebruckschablonenträgern sowie Verfahren zur Entfernung von Schablonenmaterial von einem Siebdruckschablonenträger und Entschichtungsflüssigkeit hierfür
DE4025039C2 (de)
DE69630386T2 (de) Reinigungsmittel
DE4441144C2 (de) Reinigungsmittel für die Druckereitechnik
EP1280877B1 (de) Silikon-entferner
DE4228461C1 (de) Reinigungsmediumzusammensetzung
WO1999011745A1 (de) Reinigungs- und wasserbehandlungsverfahren
DE102006027757A1 (de) Reinigungsmittel und dessen Verwendung
DE102007020426A1 (de) Mischung, welche ein Alkylpolyglucosid, ein Cotensid und ein polymeres Additiv umfasst
DE10313461A1 (de) Reinigungslösung und Reinigungsverfahren für Lackleitungen und/oder Lackauftragsgeräte
DE10202007A1 (de) Alkylglykolalkoxylate, ihre Mischungen mit Tensiden und ihre Verwendung
EP0891213B1 (de) Extraktion organischer verbindungen aus tensidhaltigen wässrigen lösungen
DE102021131879A1 (de) Konzentrat für eine Reinigungslösung u.a.
EP3055396A1 (de) Set, umfassend ein tuch und eine flüssigkeit, und zusammensetzung für die hydrophilierung von oberflächen
DD271708A1 (de) Verfahren zur herstellung eines handreinigungsmittels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010608

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF DRUCKSYSTEME GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020403

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020403

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020403

REF Corresponds to:

Ref document number: 215453

Country of ref document: AT

Date of ref document: 20020415

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59901125

Country of ref document: DE

Date of ref document: 20020508

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020520

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020703

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020702

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021030

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1082228E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: XSYS PRINT SOLUTIONS DEUTSCHLAND GMBH

Free format text: BASF DRUCKSYSTEME GMBH#SIEGLESTRASSE 25#70469 STUTTGART (DE) -TRANSFER TO- XSYS PRINT SOLUTIONS DEUTSCHLAND GMBH#SIEGLESTRASSE 25#70469 STUTTGART (DE)

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: XSYS PRINT SOLUTIONS DEUTSCHLAND GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110525

Year of fee payment: 13

Ref country code: SE

Payment date: 20110527

Year of fee payment: 13

Ref country code: FR

Payment date: 20110607

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110531

Year of fee payment: 13

Ref country code: BE

Payment date: 20110530

Year of fee payment: 13

Ref country code: GB

Payment date: 20110525

Year of fee payment: 13

Ref country code: DK

Payment date: 20110525

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110527

Year of fee payment: 13

BERE Be: lapsed

Owner name: *XSYS PRINT SOLUTIONS DEUTSCHLAND G.M.B.H.

Effective date: 20120531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120521

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59901125

Country of ref document: DE

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120520

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201