WO2008132202A2 - Mischung, welche ein alkylpolyglucosid, ein cotensid und ein polymeres additiv umfasst - Google Patents

Mischung, welche ein alkylpolyglucosid, ein cotensid und ein polymeres additiv umfasst Download PDF

Info

Publication number
WO2008132202A2
WO2008132202A2 PCT/EP2008/055176 EP2008055176W WO2008132202A2 WO 2008132202 A2 WO2008132202 A2 WO 2008132202A2 EP 2008055176 W EP2008055176 W EP 2008055176W WO 2008132202 A2 WO2008132202 A2 WO 2008132202A2
Authority
WO
WIPO (PCT)
Prior art keywords
component
water
emulsion according
soluble
printing
Prior art date
Application number
PCT/EP2008/055176
Other languages
English (en)
French (fr)
Other versions
WO2008132202A3 (de
Inventor
Jörg ADAMS
Jürgen Allgaier
Christian Frank
Original Assignee
Bernd Schwegmann Gmbh & Co. Kg
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102007020426A external-priority patent/DE102007020426A1/de
Application filed by Bernd Schwegmann Gmbh & Co. Kg, Forschungszentrum Jülich GmbH filed Critical Bernd Schwegmann Gmbh & Co. Kg
Priority to US12/451,082 priority Critical patent/US20100144898A1/en
Priority to EP08759391A priority patent/EP2152843A2/de
Priority to JP2010504723A priority patent/JP5647515B2/ja
Publication of WO2008132202A2 publication Critical patent/WO2008132202A2/de
Publication of WO2008132202A3 publication Critical patent/WO2008132202A3/de
Priority to US13/959,970 priority patent/US20140018277A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • C11D17/0021Aqueous microemulsions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/604Alkylpolyglycosides; Derivatives thereof, e.g. esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/06Preparing for use and conserving printing surfaces by use of detergents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/017Mixtures of compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/825Mixtures of compounds all of which are non-ionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/005Preparations for sensitive skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/006Cleaning, washing, rinsing or reclaiming of printing formes other than intaglio formes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/667Neutral esters, e.g. sorbitan esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/16Metals

Definitions

  • Additive includes.
  • the invention relates to a mixture comprising two components I and II, an emulsion which are prepared from the mixture and may also be present as a microemulsion, in particular a bicontinuous microemulsion, and a cleaner, a cosmetic article and a foodstuff which comprise the emulsion and a use of the cleaner.
  • Surfactants are detergent substances (detergents) that are contained in detergents, dishwashing detergents, and shampoos. They have a characteristic structure and have at least one hydrophilic and one hydrophobic structural unit. They have an amphiphilic character. If the stabilizing character of water-oil mixtures is in the foreground, these amphiphilic substances are used as emulsifiers. Surfactants lower the interfacial tension between immiscible phases, a hydrophilic (water-soluble, lipophobic), mostly aqueous phase, and a hydrophobic (oil-soluble, lipophilic) phase. Such liquid two-phase mixtures are referred to as emulsions. Conventional emulsions may contain hydrophilic and hydrophobic phases in different volumes.
  • microemulsions are thermodynamically stable, emulsions disintegrate due to their instability. At the microscopic level, this difference is reflected in the fact that the emulsified liquids in microemulsions are enclosed in smaller volumes of liquid (eg 10 "15 ⁇ l_) as described in emulsions (eg 10 "12 ⁇ l_) as described in DE 10 2005 049 765 A. Thermodynamically unstable emulsions thus have larger structures.
  • Lamellar mesophases can occur in microemulsions. Lamellar mesophases lead to optical anisotropy and increased viscosity. These properties are for. B. undesirable for cleaners. In addition, phase separation often occurs when lamellar phases coexist with microemulsions.
  • Microemulsions consist of at least three components, namely oil, water and a surfactant [1-7]. Oil and water are immiscible and therefore form domains on the nanoscale. The surfactant mediates between these two components and allows a macroscopic-homogeneous mixture. On a microscopic scale, the surfactant forms a film between the oil and water domains. Microemulsions are macroscopically homogeneous, behave optically isotropically and are thermodynamically stable in contrast to emulsions. There are W / O and O / W droplet microemulsions in which water droplets from the oil or oil droplets are enclosed by the water. Approximately equal proportions of oil to water promote the formation of a bicontinuous microemulsion.
  • Characteristic of the efficiency of a surfactant is the minimum amount of surfactant required to stabilize emulsions over the desired period or to obtain a microemulsion.
  • Microemulsions have been extensively studied in the field of basic science [8, 9]. The knowledge gained is largely based on the use of pure, defined components: deionized water, chemically pure oils and pure surfactants. In technical microemulsions, the components usually consist of mixtures. As a result, the phase ratio changes considerably and the findings from basic research gained in simplified models can not be without further be transferred to technical applications. Another difficulty lies in the low temperature stability of microemulsions, since in practical formulations stability must be present over a wide temperature range. Particularly systems based on fatty alcohol ethoxylates frequently used are stable only in a very narrow temperature window of a few 0 C and extremely high levels of surfactant must be used.
  • microemulsions made with the aid of sugar surfactants can be stable over larger temperature ranges.
  • mixtures of nonionic and ionic surfactants can be used.
  • sugar surfactants and nonionic surfactant mixtures also have disadvantages.
  • Microemulsions of sugar surfactants can only be produced with the help of cosurfactants.
  • monohydric alcohols such as hexanol or octanol are used.
  • Microemulsions containing ionic surfactants are sensitive to changes in salt concentration.
  • Hazardous material potential They are particularly irritating to the skin and eyes.
  • alkyl polyglucosides which are produced from renewable raw materials and have only a moderate hazardous substance potential and are also relatively skin-friendly.
  • Sorbitan esters which have a very low hazard potential and are also largely produced from renewable raw materials, have been little explored in terms of their use in microemulsions so far.
  • DE-A-198 39 054 discloses a process for increasing the efficiency of surfactants with simultaneous suppression of lamellar mesophases, a process for stabilizing the temperature position of the single phase region for oil, water surfactant mixtures, a process for increasing the structure size of emulsified liquid particles in microemulsions and a A method for reducing the interfacial tension of oil-water mixtures to which AB block copolymers having a water-soluble block A and a water-insoluble block B are added.
  • the polymers consist of a water-soluble block A and a hydrophobic block.
  • the lower limits of the number average molecular weights for A and B are 500 g / mol. This method is suitable for the production of microemulsions.
  • DE-A-103 23 180 describes mixtures containing a surfactant and a cosurfactant which are characterized in that the cosurfactant used is an amphiphilic comb polymer comprising a backbone with two or more side chains attached to the backbone, the side chains being mutually interlinked and / or distinguish the side chains from the backbone in their amphiphilic character.
  • the cosurfactant is suitable for increasing the efficiency in microemulsions.
  • DE-A-4417476 discloses a microemulsion containing alkyl glycosides and fatty acid polyol partial esters.
  • the microemulsion should be present in a wide range of existence; however, a temperature range in which the microemulsion is stable is not disclosed.
  • DE-A-198 24 236 proposes a method for cleaning printing presses or printing plates, in which the contaminants are removed from the surfaces to be cleaned by washing with a microemulsion which Water, a surfactant and a water-immiscible organic solvent.
  • US-A-5719113 discloses detergents comprising an antibacterial substance, a nonionic surfactant and an amphoteric surfactant. In contrast to the mixture according to the invention, no second alcohol group-containing surfactant is disclosed.
  • a technical problem underlying the invention is to provide a mixture which has improved properties and can be processed to form an emulsion, in particular a microemulsion.
  • the emulsion according to the invention in particular microemulsion, has the advantage that it is free or virtually free of volatile organic compounds (so-called volatile organic compounds, VOC).
  • VOC volatile organic compounds
  • ⁇ 2, no. 11 is a volatile organic compound which has a vapor pressure of 0.01 kPa or more at 293.15 Kelvin.
  • VOCs include e.g. Compounds of the substance groups alkanes / alkenes, aromatics, terpenes, halogenated hydrocarbons, esters, aldehydes and ketones.
  • the mixture according to the invention comprises a component I comprising 80-20% by weight of a first surface-active component Ii which is an alkyl polyglucoside comprising 1-2 glucoside units and a hydrocarbon radical, in particular an alkyl radical of 6-16 C atoms, 20-80 %
  • a component I 2 containing a second surfactant containing alcohol groups excluding an alkyl polyglucoside wherein the parts by weight relate only to the component I, and polymeric additive as component II
  • the polymeric additive comprises as component Hi at least one water-soluble unit and at least one hydrophobic unit, wherein the ratio of the number average molecular weights of all water-soluble units and the number average molecular weights of all hydrophobic units is 2: 1 to 1000: 1 or 3: 1 to 1000: 1, in particular 5: 1 to 200: 1 and in particular 10: 1 to 50: 1 and wherein each at least one hydrophobic unit is a number average Molecular weight of at most 1000 g / mol, or the polymeric
  • the polymeric additive of the components Hi, H 2 or H 3 may also be present in combination in the mixture.
  • This component II which is included as a polymeric additive in the mixture according to claim 1, seems to lead to an increase in the efficiency of the surfactants in component I.
  • surfactant saving is also advantageous for environmental or health reasons.
  • Surfactants are ecologically particularly relevant substances whose environmental compatibility must be ensured.
  • Another advantage of surfactant savings occurs when surfactants interfere with the application of the microemulsion.
  • cosmetics may be mentioned whose surfactant content should be as low as possible due to the skin-influencing effect possibly occurring in the case of sensitive skin or a potentially occurring eye-irritating effect of the surfactants. The same applies in particular to food. Consumer exposure to surfactants should be as low as possible. The present invention contributes to this.
  • the emulsion according to the invention compared to the prior art resulted in less time spent cleaning.
  • component I comprises 80 to 20% by weight of component II, which is an alkylpolyglucoside comprising 1-2 glucoside units and a hydrocarbon radical, in particular an alkyl radical of 6-16 C atoms. and further 20-80% by weight of component I 2 which is an alcohol-containing cosurfactant but not an alkylpolyglucoside.
  • component II is an alkylpolyglucoside comprising 1-2 glucoside units and a hydrocarbon radical, in particular an alkyl radical of 6-16 C atoms.
  • component I 2 which is an alcohol-containing cosurfactant but not an alkylpolyglucoside.
  • the parts by weight relate only to the component I.
  • the component I 2 is therefore not propylene glycol.
  • component I 2 has an HLB value of 1-11 or of 3-11 or of 5-11 or of 1-5 or of 3-5.
  • the HLB value describes the hydrophilic and lipophilic portion of a surfactant.
  • the HLB value is calculated according to Griffin as follows [10]:
  • surfactants of component I 2 which are skin-friendly are used in particular.
  • examples are sorbitan esters.
  • other surfactants emulsifiers which are permissible under food law can also be used.
  • component II is more hydrophilic than component I 2 . This means that the HLB value of the component Ii is greater than that of the component I 2 .
  • the mixture according to the invention can be produced such that component Ii has an HLB value of 11-19, in particular of 11-15 and component I 2 has an HLB value of 1-11, in particular 3-11 or 5- 11 or from 1-5 or 3-5.
  • the component II according to the invention is according to claim 1, a polymeric additive comprising either a component Hi or H 2 or H 3 .
  • Component Hi furthermore comprises at least one water-soluble unit and at least one hydrophobic unit, the ratio of the number-average molecular weights of all water-soluble units and the number average molecular weights of all hydrophobic units being 2: 1 to 1000: 1, in particular 5: 1 to 200: 1 and especially 10: 1 to 50: 1 and wherein each at least one hydrophobic unit has a number average molecular weight of at most 1000 g / mol.
  • the component H 2 likewise comprises at least one water-soluble unit and at least one hydrophobic unit. It is an amphiphilic comb polymer comprising a backbone with two or more side chains attached to the backbone, the side chains differing from each other and / or the side chains from the backbone in their amphiphilic character.
  • the component H 3 comprises at least one water-soluble unit and at least one hydrophobic unit, being an AB diblock copolymer or an ABA or BAB triblock copolymer having water-soluble blocks A and hydrophobic blocks B.
  • the mixture according to the invention comprises 80-99% by weight of component I, in particular 85-95% by weight, and 1-20% by weight of component II, in particular 5-15% by weight.
  • An emulsion obtainable by diluting the aqueous solution-oily phase mixture of the present invention is also an object of this invention. This results in the formation of an emulsion between hydrophilic and hydrophobic phase, which is stabilized by the mixture according to the invention.
  • this emulsion is characterized in that it is a microemulsion, which is in particular a bicontinuous microemulsion.
  • Bicontinuous microemulsions comprise two phases, a hydrophobic and a hydrophilic phase, in the form of extended juxtaposed and intertwined domains, at the interface of which stabilizing surface-active surfactants are enriched in a monomolecular layer (see [H]).
  • Microemulsions form very easily and spontaneously because of the very low interfacial tension when the individual components water, oil and a suitable surfactant system are mixed.
  • microemulsions Since the domains in at least one dimension have only very small dimensions on the order of nanometers, microemulsions often appear visually transparent and are thermodynamically, ie indefinitely, stable depending on the surfactant system used in a specific temperature range. If microemulsions have low surfactant contents, they can also be cloudy.
  • the microemulsion of the present invention may be a W / O or O / W droplet microemulsion wherein water droplets from the oil or oil droplets are surrounded by the water.
  • the suitable mass ratio of oily phase to aqueous phase depends strongly on the field of application and can be optimized by the person skilled in the art in routine experiments. For example, in the field of crop protection, a ratio of 0.01 and in the area of household cleaners a ratio of 0.7 can provide satisfactory results.
  • the mass ratio of oily phase to aqueous phase is 0.5 to 1.6. Such conditions are useful for industrial cleaners.
  • the mass ratio of oily phase to aqueous phase of the microemulsion is 1.0 to 1.4.
  • the emulsion comprises as the oily phase mineral oils, in particular aliphatic naphthenic hydrocarbons such as
  • Petroleum gasoline These also include dearomatized petroleum blends with 11-14 carbon atoms, dearomatized benzene with 9-12 carbon atoms, special de-aromatized fractions with 9-10 carbon atoms and polar
  • Solvents such.
  • B derivatives of carbonic acid (eg., 4-Methyl-l, 3-dioxolan-2-one), derivatives of lactic acid, such as. Ethyl lactate, n-propyl lactate and 2-
  • Ethylhexyllactat and of dicarboxylic acids, such as. B. Dimetylester or
  • the oily phase of the emulsion may further comprise triglycerides and products
  • the microemulsion according to the invention has no lamellar phase.
  • the emulsion of the invention comprises 80-99 wt .-% of component I, in particular 85-95 wt .-%, based on the total surfactant active content of the emulsion.
  • component I in turn comprises two components: component Ii and component I 2 of the mixture according to the invention.
  • the emulsion comprises 1-20 wt .-% of component II, in particular 5-15 wt .-%, based on the total surfactant active content of the emulsion, which is a polymeric additive as in the inventive mixture.
  • the amount of the mixture according to the invention based on the total amount of emulsion according to the invention, is 1-20%, in particular 3-15% and especially 3-10%.
  • the emulsion comprises further surfactants.
  • amphiphilic comb polymer (component H 2 ) is characterized in that the backbone of the comb polymer is hydrophobic and that all side chains of the comb polymer are hydrophilic.
  • amphiphilic comb polymer is characterized by having repeating structural units [A] n , [A '] m and [X] 1 , wherein the structural units [A] n and [A'] m form the backbone and the structural unit [A '] m has an anchor function for linking the side units forming structural units [X], and wherein the variables n, m and i are mole fractions, with
  • n + m + i 1, n ⁇ m and l> m.
  • Component I 2 in one embodiment of the invention comprises hydrocarbon radicals, in particular 1-2 alkyl radicals, preferably 1 to 1.5 alkyl radicals, each having 8-20 carbon atoms, and a hydrophilic radical having more than one but not more than 5 OH radicals. Bears groups.
  • Another embodiment of the invention is characterized in that the hydrocarbon radicals, in particular the alkyl radicals, of the component I 2 , via ether or ester groups is connected to the hydrophilic radical.
  • the hydrocarbon radicals, in particular the alkyl radicals, of the component I 2 are bonded to the hydrophilic radical via carbon bonds.
  • the OH groups of component I 2 are ethoxylated. However, there are not more than 5, preferably not more than 2, ethylene oxide units per OH group.
  • the component I 2 comprises a hydrocarbon radical, in particular an alkyl radical having 10 to 18 C atoms, preferably 10 to 14 C atoms.
  • the hydrophilic moiety of the component comprises 1.5-3 I 2 OH groups.
  • hydrophilic moiety of component I 2 is not ethoxylated in an additional embodiment.
  • the component I 2 is a sorbitan ester, such as. B. sorbitan monolaurate or sorbitan monopalmitate, polysorbate, such as. Polysorbate 61 (POE (4) sorbitan monostearate), glycerol monoester, mixture of glycerol monoester and glycerol diester, a monoester or diester of pentaerythritol, a monoether or diether of pentaerythritol, 1,2-decanediol or 1,2-dodecanediol.
  • sorbitan ester such as. B. sorbitan monolaurate or sorbitan monopalmitate
  • polysorbate such as. Polysorbate 61 (POE (4) sorbitan monostearate)
  • glycerol monoester mixture of glycerol monoester and glycerol diester
  • pentaerythritol a monoether or diether of
  • the at least one hydrophobic unit of the component Hi is arranged on at least one chain end of a water-soluble unit.
  • the at least one hydrophobic moiety of the component Hi is a non-terminal substituent of a water-soluble moiety.
  • the at least one hydrophobic moiety of the Hi component is disposed between at least two water-soluble moieties if more than at least one water-soluble moiety is present.
  • the number-average molecular weight of the water-soluble blocks A and the hydrophobic blocks B of the diblock copolymer or a triblock copolymer of the component H 3 according to claim 1 in one embodiment is between 500 and 100,000 g / mol, in particular between 2000 and 20,000 g / mol and especially between 3000 and 10,000 g / mol.
  • the number average molecular weight of each hydrophobic unit of the component Hi is between 80 and 1000 g / mol, in particular between 110 and 500 g / mol and especially between 110 and 280 g / mol.
  • the number average molecular weight of each water-soluble moiety of the Hi component is at least 500 g / mol; the upper limit of the number average molecular weight depends on the field of application. Typically, the number average molecular weight is between 500 and 50,000 g / mol, in particular between 900 and 20,000 g / mol and especially between 2,000 and 20,000 g / mol or 3,000 and 10,000 g / mol.
  • the number-average molecular weight of all water-soluble units of component II is at least 5 times greater than the number-average molecular weight of the hydrophilic portions of component I.
  • the number average molecular weight of all water soluble units of component II is at least 10 times greater than the number average molecular weight of the hydrophilic portions of component I.
  • the water-soluble moiety of component II comprises at least one of these molecules: polyethylene oxide, polyethylene glycol, copolymers of ethylene oxide and propylene oxide, polyacrolein, polyvinyl alcohol and its water-soluble derivatives, polyvinylpyrrolidone, polyvinylpyridine, polymethacrylic acid, polymaleic anhydride, polyformic acid, polyacrylic acid, polystyrenesulfonic acid and their water-soluble salts ,
  • the water-soluble moiety of the Hi component is a linear polymer.
  • An embodiment of the invention is characterized in that the water-soluble moiety of component II is non-ionic.
  • the water-soluble moiety of component II may be ionic.
  • the water-soluble moiety of component II has at least two electrical charges.
  • the water-soluble moiety of component II is composed of an ionic and a nonionic constituent.
  • the hydrophobic moiety of the component Hi is a hydrocarbon radical, in particular an alkyl radical.
  • the hydrocarbon radical in particular the alkyl radical, comprises 6 to 50 carbon atoms, preferably 8 to 20 carbon atoms.
  • hydrophobic moiety of component II is unsaturated in one embodiment of the invention.
  • the component Hi is an alcohol ethoxylate consisting of a monohydric alcohol having 8-20 C atoms and 25-500 ethylene oxide units.
  • the alkylpolyglucosides of the component Ii have 1-1.5 glucoside units and one Hydrocarbon radical, in particular an alkyl radical having 8-14 C-atoms or 1-2 glucoside units and a hydrocarbon radical, in particular an alkyl radical having 8-14 C atoms on;
  • the component I 2 comprises hydrocarbon radicals, in particular 1-2 alkyl radicals, preferably 1 to 1.5 alkyl radicals, each having 8-20 carbon atoms and a hydrophilic radical which carries more than one, but not more than 5 OH groups.
  • the alkylpolyglucosides of the component Ii have 1-1.5 glucoside units and a hydrocarbon radical, in particular an alkyl radical having 8-14 C atoms or 1-2 glucoside units and a hydrocarbon radical, in particular an alkyl radical having 8-14 C Atoms on;
  • component I 2 is a sorbitan ester, a polysorbate, a glycerol monoester, a mixture of glycerol monoester and glycerol diester, a monoester or diester of pentaerythritol, a monoether or diether of pentaerythritol, 1,2-decanediol or 1,2-dodecanediol.
  • the alkylpolyglucosides of the component Ii have 1-1.5 glucoside units and a hydrocarbon radical, in particular an alkyl radical having 8-14 C atoms or 1-2 glucoside units and a hydrocarbon radical, in particular an alkyl radical having 8-14 C Atoms on;
  • the component I 2 comprises hydrocarbon radicals, in particular 1-2 alkyl radicals, or 1 to 1.5 alkyl radicals, each having 8-20 C atoms and a hydrophilic radical which carries more than one, but not more than 5 OH groups;
  • the at least one hydrophobic unit of the component Hi is arranged on at least one chain end of a water-soluble unit.
  • the alkylpolyglucosides of the component Ii have 1-1.5 glucoside units and a hydrocarbon radical, in particular an alkyl radical having 8-14 C atoms or 1-2 glucoside units and a hydrocarbon radical, in particular an alkyl radical having 8-14 C Atoms on; comprising component I 2 Hydrocarbon radicals, in particular 1-2 alkyl radicals, or 1 to 1.5 alkyl radicals, each having 8-20 C atoms and a hydrophilic radical which carries more than one, but not more than 5 OH groups;
  • the number average molecular weight of each hydrophobic moiety of the component Hi is between 80 and 1000 g / mol, in particular between 110 and 500 g / mol and especially between 110 and 280 g / mol
  • the hydrophobic moiety of the component Hi is a hydrocarbon radical, in particular an alkyl radical which in particular comprises 6 to 50 carbon atoms, especially 8 to 20 carbon atoms, or the component
  • component Ii comprises alkyl glucosides having 6-8 C atoms (eg hexyl and octyl glucosides) and sulfonates (di-, poly-, alkylaryl sulfonates such as, for example, sodium cumene sulfonate, which have a hydrotopic action
  • sulfonates di-, poly-, alkylaryl sulfonates such as, for example, sodium cumene sulfonate, which have a hydrotopic action
  • An additional embodiment of the mixture according to the invention may comprise so-called “builders” (for example sodium phosphates, sodium carbonates, sodium silicates, polyphosphates, phosphonic acids, sodium gluconates, borates, polycarboxylates, EDTA etc.).
  • Builders are complexing agents that bind alkaline earth metals in the emulsion and thus stabilize them.
  • a further embodiment of the mixture according to the invention can be so-called “boosters” as foaming agents which increase the cleaning action, and / or
  • Wetting agents contain (for example, alkyl polyglucosides, phosphonic acids, glycol ethers
  • Base of ethylene glycol and propylene glycol units such as. B.
  • Diethylene glycol monobutyl ether Diethylene glycol monobutyl ether, and AOT (sodium salt of 1,4-bis (2-ethylhexyl) sulfosuccinate)).
  • AOT sodium salt of 1,4-bis (2-ethylhexyl) sulfosuccinate
  • Cleaning effect and stabilization of the microemulsion can contribute and are not foaming agents.
  • Both the mixture according to the invention and the emulsion according to the invention can be used for use in a cleaner.
  • this comprises a microemulsion or bicontinuous microemulsion.
  • the total surfactant concentration is less than 15%, in particular less than 12, or 9%, or 7%. This very low total surfactant content (content of surfactants) allows, depending on the field of application, the production of products that are not subject to labeling with regard to their surfactant content.
  • the cleaner according to the invention is particularly suitable as a replacement of organic solvents. This results in a reduction of the amount of organic solvent used up to the abandonment of aromatic solvents result, which is advantageous in terms of occupational safety and environmental protection.
  • both cleaners according to the invention and the microemulsions according to the invention contained therein have increased flash points compared to the organic phases contained therein.
  • the use of the cleaner according to the invention for cleaning colors, especially dried or dry paints, varnishes and tarry compounds and adhesives, as a general purpose cleaner and neutral detergent in the household, in the industry and the commercial sector is possible.
  • a use of the cleaner according to the invention is also recommended when cleaning paints and varnishes on an aqueous and organic basis, in particular for cleaning brushes.
  • the cleaner according to the invention can also be used for cleaning paints, varnishes, oil and / or salt-like residues of metal and / or plastic surfaces.
  • the cleaner according to the invention could thus replace, for example, organic cleaning agents in many areas of application.
  • the cleaner according to the invention can be advantageously used in the printing industry, in particular for removing printing inks and paper dust build-up of printing presses and printing plates. It is suitable, for example, for removing water-based or oil-based printing inks and radiation-curing printing ink. Furthermore, the cleaner finds application in the cleaning of printing cylinders, pressure rollers and surfaces of printing machines, preferably for cleaning of printing machines for conventional printing, as well as printing plates, for example, when interrupting the printing process and non-impact printing method.
  • Conventional printing methods in which the cleaner can be used include planographic printing, gravure printing, letterpress printing, flexographic printing, and screen printing; Of particular note is offset and waterless offset printing.
  • Non-impact printing methods without printing form include electrophotography, ionography, magnetography, ink jet and thermography.
  • cleaning operations are carried out in regular production operation. These are carried out either by manual cleaning or by using automatic cleaning systems.
  • the cleaners used include organic solvents. Before prolonged production interruptions (eg weekends), the ink-bearing parts of the machine with the help of solvents cleaned.
  • printing forms especially planographic printing forms, must be carefully freed from ink residues when the printing process is interrupted.
  • some of the newer printing systems are also equipped with inking unit washing facilities. Otherwise it is cleaned manually with the help of cleaning cloths.
  • the wiper water systems of the pressure equipment are periodically emptied and cleaned.
  • the detergent is applied to rubber blankets with a cloth.
  • the order is carried out with a spray bottle.
  • the mixture according to the invention contained in the cleaner dissolves the paint and can then be removed from the blanket or the inking rollers.
  • the cleaner is applied to the surface of the blanket by means of a rag. Under light pressure of the cleaner-containing film, the z. B. loosened paint residues and paper components, washed off with a cleaning cloth. Problems often cause residues of color pigments,
  • the inking unit, printing plate, rubber blanket on the blanket cylinder and the impression cylinder are to be cleaned depending on the operating status and requirements when changing jobs.
  • automatic washing systems which differ in the nature of their technical design.
  • a brush washer the cleaning is done by means of a brush roller. About this supplied cleaning fluid is transferred to the surface to be cleaned (rubber, impression cylinder and inking unit).
  • the cloth of the cloth washing device is finely dosed over z.
  • B. nozzle strips with Supplied cleaning fluid The cleaning cloth is pressed against the surface to be cleaned (rubber, impression cylinder and inking unit).
  • the cleaner according to the invention has the advantage that the paper dust is also removed during the cleaning without, however, leading to the problem of a paper web tear listed in the preceding paragraph.
  • the emulsion according to the invention can also be used in the food, pharmaceutical or chemical industries.
  • a further subject of this invention is a cosmetic article comprising the emulsion according to the invention.
  • the emulsion according to the invention is suitable for the preparation of a food, pesticide, in particular herbicide, or medicament.
  • the components of the microemulsion mixtures can be used in each
  • Pre-dissolved constituents in water and pre-dissolved the oil-soluble components in oil Pre-dissolved the oil-soluble components in oil. Strong stirring and optionally heating accelerates the mixing process.
  • Ketrul D85 (Total) is an aliphatic hydrocarbon mixture with a flash point of 82 0 C.
  • Hydroseal G232H is an aliphatic hydrocarbon mixture with a flash point of 103 0 C.
  • Span 20 (Uniqema): sorbitan monolaurate, drug content 100%.
  • Imwitor 928 (Sasol): glyceryl mono-, di- and tricocoat, active ingredient content 100%.
  • Hydropalat 225 Alkylpolyglucoside with alkyl chain length C 8 / io, active ingredient content 70%.
  • Hydropalat 600 Alkylpolyglucoside with alkyl chain length Ci 2 / i 4 , active ingredient content 51.5%.
  • C12E190 and C12E480 are alcohol ethoxylates consisting of n-dodecanol on which 190 or 480 ethylene oxide units have been grafted on.
  • Sodium gluconate (Dr. Paul Lohmann): Sodium gluconate, active ingredient content 100%.
  • Zusolat 1004 (Zschimmer & Schwarz): fatty alcohol ethoxylate with 5EO, active ingredient content 85%.
  • the temperature stability of the microemulsions was determined in a thermostated water bath by visual inspection in transmitted light.
  • the mixtures were investigated in closed, cylindrical glass vessels of about 5-15 mm in diameter, at high turbidity of the microemulsions cuvettes were used of 1 mm layer thickness.
  • the temperature phase boundaries of the single-phase microemulsion region could due to the drastically increasing turbidity when exceeding or falling below the stability window.
  • Lamellar phases were determined by crossed polarizers. In the stability ranges given for the examples, there are basically single-phase microemulsions which do not contain any lamellar phases.
  • the total surfactant contents relate to the active substance proportions of the surfactant components and of the polymeric additive. All percentages are based on the weight of the ingredients.
  • the stability range of the microemulsion is between 11 and 28 0 C
  • the stability range of the microemulsion is between 43 and 71 0 C, total surfactant content 10.0%.
  • the stability range of the microemulsion is between 44 and 72 0 C, total surfactant content 8.0%.
  • the range of stability of the microemulsion is 6.2% between 15 and 75 0 C, total surfactant.
  • the range of stability of the microemulsion is 6.2% 11-70 0 C, total surfactant.
  • the stability range of the microemulsion is between 13 and 42 0 C, total surfactant content 5.9%.
  • Example 8 Drinking water: 36.06% Sodium tripolyphosphate: 1.21% Ketrul D85: 46.59% Butyl diglycol: 1.86% Span 20: 4.25% Hydropalate 600: 9.04% Brij 700: 0.99%
  • the stability range of the microemulsion is between 0 and 26 0 C, total surfactant content 9.9%.
  • the stability range of the microemulsion is between 13 and 33 0 C
  • the flash points were measured with the microemulsion from Examples 1 and 7.
  • the determined flash points are 9O 0 C and 92 0 C.
  • the flash point of Ketrul D 85 is 82 0 C.
  • Example 11 Drinking water: 31.60%, sodium gluconate: 2.30%, dipropylene glycol dimethyl ether 8.60%, Ketrul D85: 41.70%, Span 20: 7.00%, AG6210: 6.70%, Zusolat 1004: 1, 40%, Brij 700: 0.70%
  • the stability range of the microemulsion is between 5 and 40 0 C; the total surfactant content is 12.9%.
  • the blankets of a rotary offset printing machine with commercial offset printing ink were cleaned once with an organic solvent-based cleaner (mainly aliphatic hydrocarbons, white spirit) and once with the microemulsion of the invention.
  • the cleaning performance, d. H. the cleaning of the ink, as well as the paper dust build-up, d. H. the solid residues of paper fibers were essentially the same.
  • the rollers were cleaner and drier than using organic solvents as cleaning agents, resulting in reduced start-up waste.
  • the labor required to manually clean the blankets was lower.
  • Drinking water 31.60%, sodium gluconate: 2.30%, dipropylene glycol dimethyl ether 8.60%, Ketrul D85: 41.70%, Span 20: 7.00%, AG6210: 6.70%, Zusolat: 1004: 1 , 40%, Brij 700: 0.70%
  • the stability range of the microemulsion is between 5 and 40 0 C; the total surfactant content is 12.9%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Dermatology (AREA)
  • Materials Engineering (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Mischung umfassend eine Komponente I, umfassend 80 -20 Gew.-% einer Komponente I<SUB>1</SUB>, die ein Alkylpolyglucosid ist, umfassend 1-2 Glucosideinheiten und einen Kohlenwasserstoffrest, 20 -80 Gew.-% einer Komponente I<SUB>2</SUB>, die ein Alkoholgruppen enthaltendes Cotensid ausgenommen ein Alkylpolyglucosid ist, und polymeres Additiv als Komponente II, wobei das polymere Additiv als Komponente II<SUB>1 </SUB>mindestens eine wasserlösliche Einheit und mindestens eine hydrophobe Einheit umfasst, wobei das Verhältnis der zahlenmittleren Molekulargewichte aller wasserlöslichen Einheiten und der zahlenmittleren Molekulargewichte aller hydrophoben Einheiten 2:1 bis 1000:1,, oder das polymere Additiv als Komponente II<SUB>2</SUB> mindestens eine wasserlösliche Einheit und mindestens eine hydrophobe Einheit umfasst, wobei es ein amphiphiles Kammpolymer ist, oder das polymere Additiv als Komponente II<SUB>3 </SUB>mindestens eine wasserlösliche Einheit und mindestens eine hydrophobe Einheit umfasst, wobei Komponente II<SUB>3 </SUB>ein AB-Diblockcopolymer oder ein ABA-bzw. BAB-Triblockcoplymer mit wasserlöslichen Blöcken A und hydrophoben Blöcken B ist.

Description

Mischung, welche ein Alkylpolyqlucosid, ein Cotensid und ein polymeres
Additiv umfasst.
Die Erfindung betrifft eine Mischung, umfassend zwei Komponenten I und II, eine Emulsion, welche aus der Mischung hergestellt werden und auch als Mikroemulsion, insbesondere also eine bikontinuierliche Mikroemulsion, vorliegen kann, sowie einen Reiniger, ein Kosmetikartikel und ein Lebensmittel, welche die Emulsion umfassen und eine Verwendung des Reinigers.
Tenside sind waschaktive Substanzen (Detergentien), die in Waschmitteln, Spülmitteln, und Shampoos enthalten sind. Sie verfügen über einen charakteristischen Aufbau und weisen mindestens eine hydrophile und eine hydrophobe Struktureinheit auf. Sie weisen einen amphiphilen Charakter auf. Steht der stabilisierende Charakter von Wasser-Öl-Gemischen im Vordergrund, werden diese amphiphilen Substanzen als Emulgatoren eingesetzt. Tenside setzen die Grenzflächenspannung zwischen miteinander nicht mischbaren Phasen, einer hydrophilen (wasserlöslichen, lipophoben), meist wässrigen Phase und einer hydrophoben (öllöslichen, lipophilen) Phase herab. Solche flüssigen Zwei-Phasen-Gemische werden als Emulsionen bezeichnet. Konventionelle Emulsionen können hydrophile und hydrophobe Phasen in unterschiedlichen Volumenanteilen enthalten. Sie haben eine kontinuierliche und eine disperse Phase, die als sehr kleine, durch Belegung mit Tensiden stabilisierte Kügelchen, in der kontinuierlichen Phase vorliegt. Je nach Natur der kontinuierlichen Phase spricht man von Öl-in-Wasser- oder Wasser-in-ÖI- Emulsionen.
Grundsätzlich unterscheidet man zwischen Emulsionen und Mikroemulsionen. Während Mikroemulsionen thermodynamisch stabil sind, zerfallen Emulsionen aufgrund ihrer Instabilität. Im mikroskopischen Bereich spiegelt sich dieser Unterschied darin wieder, dass die emulgierten Flüssigkeiten in Mikroemulsionen in kleinere Flüssigkeitsvolumina (z. B. 10"15 μl_) gefasst sind als in Emulsionen (z. B. 10"12 μl_) wie in DE 10 2005 049 765 Al beschrieben. Thermodynamisch instabile Emulsionen weisen somit größere Strukturen auf.
In Mikroemulsionen können lamellare Mesophasen auftreten. Lamellare Mesophasen führen zu optischer Anisotropie und erhöhter Viskosität. Diese Eigenschaften sind z. B. für Reiniger unerwünscht. Außerdem tritt oft Phasentrennung auf, wenn lamellare Phasen mit Mikroemulsionen koexistieren.
Mikroemulsionen bestehen aus mindestens drei Komponenten, nämlich aus Öl, Wasser und einem Tensid [1-7]. Öl und Wasser sind nicht mischbar und bilden daher Domänen auf der Nanoskala. Das Tensid vermittelt zwischen diesen beiden Komponenten und erlaubt eine makroskopisch-homogene Mischung. Auf mikroskopischer Skala bildet das Tensid einen Film zwischen den Öl- und Wasserdomänen. Mikroemulsionen sind makroskopisch homogen, verhalten sich optisch isotrop und sind im Gegensatz zu Emulsionen thermodynamisch stabil. Es gibt W/O- und O/W-Tröpfchen-Mikroemulsionen, wobei Wassertröpfchen vom Öl oder Öltröpfchen vom Wasser umschlossen sind. Etwa gleiche Anteile von Öl zu Wasser fördern die Bildung einer bikontinuierlichen Mikroemulsion.
Charakteristisch für die Effizienz eines Tensids ist die minimal benötigte Tensidmenge, um Emulsionen über den gewünschten Zeitraum zu stabilisieren oder um eine Mikroemulsion zu erhalten.
Mikroemulsionen wurden intensiv im Bereich der Grundlagenwissenschaft untersucht [8, 9]. Die dabei erhaltenen Erkenntnisse beruhen weitgehend auf der Verwendung von reinen, definierten Komponenten : deionisiertes Wasser, chemisch reine Öle und Reintenside. Bei technischen Mikroemulsionen bestehen die Komponenten in der Regel aus Stoffgemischen. Dadurch ändert sich das Phasenverhältnis beträchtlich und die in vereinfachten Modellen gewonnenen Erkenntnisse aus der Grundlagenforschung können nicht ohne weiteres auf technische Anwendungen übertragen werden. Eine weitere Schwierigkeit liegt in der geringen Temperaturstabilität von Mikroemulsionen, da in praxistauglichen Formulierungen die Stabilität über einen breiten Temperaturbereich hinweg gegeben sein muss. Besonders Systeme auf Basis der vielfach verwendeten Fettalkoholethoxylate sind nur in einem sehr engen Temperaturfenster von wenigen 0C stabil bzw. müssen extrem hohe Tensidkonzentrationen verwendet werden. Hingegen können Mikroemulsionen, die mit Hilfe von Zuckertensiden hergestellt werden, über größere Temperaturbereiche stabil sein. Ganz ähnlich können auch Gemische aus nichtionischen und ionische Tensiden herangezogen werden. Hier macht man sich das unterschiedliche Temperaturverhalten der nichtionischen und der ionischen Tenside zunutze. Allerdings weisen auch Zuckertenside und nichtionische Tensidmischungen Nachteile auf. Mikroemulsionen aus Zuckertensiden können nur mit Hilfe von Cotensiden hergestellt werden. Nach dem Stand der Technik werden dabei einwertige Alkohole wie Hexanol oder Octanol verwendet. Mikroemulsionen, die ionische Tenside beinhalten, sind empfindlich gegenüber Veränderungen der Salzkonzentration.
Da die Forschung über Mikroemulsionen weitgehend im Bereich der Grundlagenforschung stattfindet, wurde in diesem Feld bislang wenig Wert darauf gelegt, Tenside zu verwenden, die ein geringes Gefahrstoffpotential beinhalten bzw. auf der Basis von nachwachsenden Rohstoffen hergestellt werden. Für technische Anwendungen kann dies von großer Bedeutung sein, da in konventionellen Mikroemulsionen Tensidgehalte von 20-30 % die Regel sind, um eine hinreichend ausgedehnte Temperaturstabilität zu erreichen. In solchen Konzentrationen besitzen Tenside ein nicht zu vernachlässigendes
Gefahrstoffpotential. Sie wirken insbesondere reizend auf die Haut und Augen.
Eine Ausnahme in dieser Beziehung bilden Alkylpolyglucoside, die aus nachwachsenden Rohstoffen hergestellt werden und nur ein mäßiges Gefahrstoffpotential besitzen und zudem relativ hautfreundlich sind.
Sorbitanester hingegen, die ein sehr geringes Gefahrstoffpotential besitzen und auch weitgehend aus nachwachsenden Rohstoffen hergestellt werden, sind hinsichtlich ihres Einsatzes in Mikroemulsionen bisher kaum erforscht worden.
Die DE-A-198 39 054 offenbart ein Verfahren zur Effizienzsteigerung von Tensiden bei simultaner Unterdrückung lamellarer Mesophasen, ein Verfahren zur Stabilisierung der Temperaturlage des Einphasengebietes für Öl-, Wasser- Tensidmischungen, ein Verfahren zur Erhöhung der Strukturgröße von emulgierten Flüssigkeitsteilchen in Mikroemulsionen sowie ein Verfahren zur Verminderung der Grenzflächenspannung von Öl-Wassergemischen, bei denen AB-Blockcopolymere mit einem wasserlöslichen Block A und einem wasserunlöslichen Block B zugegeben werden. Die Polymere bestehen aus einem wasserlöslichen Block A und einem hydrophoben Block. Die unteren Grenzen der zahlenmittleren Molekulargewichte für A und B liegen bei 500 g/mol. Dieses Verfahren eignet sich für die Herstellung von Mikroemulsionen.
Die DE-A-103 23 180 beschreibt Mischungen, enthaltend ein Tensid und ein Cotensid, die dadurch gekennzeichnet sind, dass man als Cotensid ein amphiphiles Kammpolymer einsetzt, aufweisend ein Rückgrat mit am Rückgrat angebrachten zwei oder mehreren Seitenketten, wobei sich die Seitenketten untereinander und/oder die Seitenketten vom Rückgrat in ihrem amphiphilen Charakter unterscheiden. Das Cotensid eignet sich zur Effizienzsteigerung in Mikroemulsionen.
Ferner offenbart DE-A-44 17 476 eine Mikroemulsion, die Alkylglykoside und Fettsäure-Polyol-Partialester enthält. Die Mikroemulsion soll dabei in einem breitem Existenzbereich vorliegen; ein Temperaturbereich, in dem die Mikroemulsion stabil ist, wird jedoch nicht offenbart.
DE-A-198 24 236 schlägt ein Verfahren zum Reinigen von Druckmaschinen oder Druckformen vor, bei dem man die Verunreinigungen von den zu reinigenden Oberflächen durch Waschen mit einer Mikroemulsion entfernt, die Wasser, ein grenzflächenaktives Mittel und ein mit Wasser nicht mischbares organisches Lösemittel enthält.
US-A-5719113 offenbart Reinigungsmittel umfassend eine antibakterielle Substanz, ein nichtionisches Tensid und ein amphoteres Tensid. Im Gegensatz zu der erfindungsgemäßen Mischung wird kein zweites alkoholgruppen- enthaltendes Tensid offenbart.
Ein der Erfindung zugrunde liegendes technisches Problem besteht darin, eine Mischung zu schaffen, welche verbesserte Eigenschaften aufweist und zu einer Emulsion, insbesondere einer Mikroemulsion, verarbeitet werden kann.
Diese Emulsion, insbesondere Mikroemulsion, soll eine geringere Menge an Tensiden benötigen und in einem größeren Temperaturbereich stabil sein. In einer Ausführungsform weist die erfindungsgemäße Emulsion, insbesondere Mikroemulsion, den Vorteil auf, dass sie frei oder nahezu frei von flüchtigen organischen Verbindungen (sog. volatile organic Compounds, VOC) ist. Als VOC ist nach der 31. Verordnung zur Durchführung des Bundes- Immissionsschutzgesetzes (31. BimschV) § 2, Nr. 11, eine flüchtige organische Verbindung anzusehen, die bei 293,15 Kelvin einen Dampfdruck von 0,01 kPa oder mehr hat. Zu den VOC zählen z.B. Verbindungen der Stoffgruppen Alkane/Alkene, Aromaten, Terpene, Halogenkohlenwasserstoffe, Ester, Aldehyde und Ketone.
Das Problem wird durch eine erfindungsgemäße Mischung gemäß Patentanspruch 1 gelöst.
Die erfindungsgemäße Mischung umfasst eine Komponente I, umfassend 80- 20 Gew.-% einer ersten tensidischen Komponente Ii, die ein Alkylpolyglucosid ist, umfassend 1-2 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest von 6-16 C-Atomen, 20-80 Gew.-% einer Komponente I2, die ein Alkoholgruppen enthaltendes zweites Tensid ausgenommen ein Alkylpolyglucosid ist, wobei sich die Gewichtsanteile nur auf die Komponente I beziehen, und polymeres Additiv als Komponente II, wobei das polymere Additiv als Komponente Hi mindestens eine wasserlösliche Einheit und mindestens eine hydrophobe Einheit umfasst, wobei das Verhältnis der zahlenmittleren Molekulargewichte aller wasserlöslichen Einheiten und der zahlenmittleren Molekulargewichte aller hydrophoben Einheiten 2: 1 bis 1000 : 1 oder 3: 1 bis 1000: 1, insbesondere 5 : 1 bis 200: 1 und insbesondere 10: 1 bis 50: 1 beträgt und wobei jede mindestens eine hydrophobe Einheit ein zahlenmittleres Molekulargewicht von maximal 1000 g/mol besitzt, oder das polymere Additiv als Komponente H2 mindestens eine wasserlösliche Einheit und mindestens eine hydrophobe Einheit umfasst, wobei es ein amphiphiles Kammpolymer ist, welches ein Rückgrat mit am Rückgrat angebrachten zwei oder mehreren Seitenketten umfasst, wobei sich die Seitenketten untereinander und/oder die Seitenketten vom Rückgrat in ihrem amphiphilen Charakter unterscheiden, oder das polymere Additiv als Komponente H3 mindestens eine wasserlösliche Einheit und mindestens eine hydrophobe Einheit umfasst, wobei das polymere Additiv als Komponente H3 ein AB-Diblockcopolymer oder ein ABA- bzw. BAB- Triblockcoplymer mit wasserlöslichen Blöcken A und hydrophoben Blöcken B ist.
Das polymere Additiv der Komponenten Hi, H2 oder H3 kann auch in Kombination in der Mischung vorliegen.
Diese Komponente II, die als polymeres Additiv in der Mischung gemäß Patentanspruch 1 enthalten ist, scheint zu einer Effizienzsteigerung der Tenside in Komponente I zu führen.
Neben Kostengründen ist die Tensideinsparung auch aus ökologischen oder gesundheitlichen Gründen vorteilhaft. Tenside sind ökologisch besonders relevante Stoffe, deren Umweltverträglichkeit sichergestellt werden muss. Ein weiterer Vorteil der Einsparung von Tensiden tritt in Erscheinung, wenn sich Tenside bei der Anwendung der Mikroemulsion störend auswirken. Beispielhaft können Kosmetika genannt werden, deren Tensidgehalt aufgrund der möglicherweise bei empfindlicher Haut auftretenden hautbeeinflussenden Wirkung oder einer möglicherweise auftretenden augenreizenden Wirkung der Tenside möglichst gering sein sollte. Gleiches gilt in besonderem Maße für Lebensmittel. Eine Belastung des Konsumenten durch Tenside sollte so niedrig wie möglich sein. Die vorliegende Erfindung leistet dazu einen Beitrag.
In einer Ausführungsform führte die erfindungsgemäße Emulsion gegenüber dem Stand der Technik zu einem geringeren Zeitaufwand beim Abreinigen.
Die erfindungsgemäße Mischung umfasst die Komponenten I und II. Komponente I umfasst ihrerseits 80 - 20 Gew.-% Komponente Ii, welche ein Alkylpolyglucosid ist, das 1-2 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen_Alkylrest von 6-16 C-Atomen, umfasst, und des weiteren 20 - 80 Gew.-% der Komponente I2, welche ein Alkoholgruppen enthaltendes Cotensid, aber kein Alkylpolyglucosid ist. Die Gewichtsanteile beziehen sich dabei nur auf die Komponente I.
Erfindungsgemäß ist die Komponente I2 folglich nicht Propylenglykol.
Komponente I2 weist in einer Ausführungsform der erfindungsgemäßen Mischung in wässriger Lösung einen HLB-Wert von 1-11 oder von 3-11 oder von 5-11 oder von 1-5 oder von 3-5 auf. Der HLB-Wert beschreibt den hydrophilen und lipophilen Anteil eines Tensids.
Der HLB-Wert wird nach Griffin wie folgt berechnet [10] :
HLB= 20 * Mh/M Mh = Molmasse des hydrophilen Anteils eines Moleküls M = Molmasse des gesamten Moleküls
Erfindungsgemäß werden insbesondere Tenside der Komponente I2 eingesetzt, die hautfreundlich sind. Als Beispiele sind Sorbitanester zu nennen. Daneben können aber auch andere, gemäß Lebensmittelrecht zulässige Tenside (Emulgatoren) eingesetzt werden.
In einer Ausführungsform der erfindungsgemäßen Mischung ist Komponente Ii hydrophiler als Komponente I2. Dies bedeutet, dass der HLB-Wert der Komponente Ii größer ist als der der Komponente I2.
Beispielsweise kann die erfindungsgemäße Mischung so hergestellt sein, dass die Komponente Ii einen HLB-Wert von 11-19, insbesondere von 11-15 aufweist und die Komponente I2 einen HLB-Wert von 1-11, insbesondere von 3-11 oder 5-11 oder von 1-5 oder 3-5 aufweist.
Die erfindungsgemäße Komponente II ist gemäß Anspruch 1 ein polymeres Additiv, das entweder eine Komponente Hi oder H2 oder H3 umfasst. Komponente Hi umfasst weiterhin mindestens eine wasserlösliche Einheit und mindestens eine hydrophobe Einheit, wobei das Verhältnis der zahlenmittleren Molekulargewichte aller wasserlöslichen Einheiten und der zahlenmittleren Molekulargewichte aller hydrophoben Einheiten 2: 1 bis 1000: 1, insbesondere 5: 1 bis 200: 1 und besonders 10: 1 bis 50: 1 beträgt und wobei jede mindestens eine hydrophobe Einheit ein zahlenmittleres Molekulargewicht von maximal 1000 g/mol besitzt.
Die Komponente H2 umfasst ebenfalls mindestens eine wasserlösliche Einheit und mindestens eine hydrophobe Einheit. Es handelt sich um ein amphiphiles Kammpolymer, welches ein Rückgrat mit am Rückgrat angebrachten zwei oder mehreren Seitenketten umfasst, wobei sich die Seitenketten untereinander und/oder die Seitenketten vom Rückgrat in ihrem amphiphilen Charakter unterscheiden. Die Komponente H3 umfasst mindestens eine wasserlösliche Einheit und mindestens eine hydrophobe Einheit, wobei sie ein AB-Diblockcopolymer oder ein ABA- bzw. BAB-Triblockcoplymer mit wasserlöslichen Blöcken A und hydrophoben Blöcken B ist.
In einer weiteren Ausführungsform umfasst die erfindungsgemäße Mischung 80-99 Gew.-% Komponente I, insbesondere 85-95 Gew.-%, und 1-20 Gew.-% Komponente II, insbesondere 5-15 Gew.-%.
Eine Emulsion erhältlich durch Verdünnen der erfindungsgemäßen Mischung mit wässriger Lösung und öliger Phase ist ebenfalls Gegenstand dieser Erfindung. Es kommt dabei zur Bildung einer Emulsion zwischen hydrophiler und hydrophober Phase, welche durch die erfindungsgemäße Mischung stabilisiert wird.
In einer Ausführungsform ist diese Emulsion dadurch gekennzeichnet, dass es sich um eine Mikroemulsion handelt, welche insbesondere eine bikontinuierliche Mikroemulsion ist. Bikontinuierliche Mikroemulsionen umfassen zwei Phasen, eine hydrophobe und eine hydrophile Phase, in Form von ausgedehnten nebeneinanderliegenden und ineinander verschlungenen Domänen, an deren Grenzfläche stabilisierende grenzflächenaktive Tenside in einer monomolekularen Schicht angereichert sind (vgl. [H]). Mikroemulsionen bilden sich sehr leicht und wegen der sehr niedrigen Grenzflächenspannung spontan, wenn die Einzelkomponenten Wasser, Öl und ein geeignetes grenzflächenaktives System vermischt werden. Da die Domänen in mindestens einer Dimension nur sehr geringe Ausdehnungen in der Größenordnung von Nanometern haben, erscheinen Mikroemulsionen oft visuell transparent und sind je nach dem eingesetzten grenzflächenaktiven System in einem bestimmten Temperaturbereich thermodynamisch, d. h. zeitlich unbegrenzt, stabil. Wenn Mikroemulsionen geringe Tensidgehalte aufweisen, können sie auch trüb sein. In einer anderen Ausführungsform kann die erfindungsgemäße Mikroemulsion eine W/O- oder O/W- Tröpfchen-Mikroemulsion sein, wobei Wassertröpfchen vom Öl oder Öltröpfchen vom Wasser umschlossen sind.
Das geeignete Massenverhältnis von öliger Phase zu wässriger Phase hängt stark vom Anwendungsgebiet ab und kann vom Fachmann in Routineversuchen optimiert werden. So kann beispielsweise im Bereich Pflanzenschutz ein Verhältnis von 0,01 und im Bereich Haushaltsreiniger ein Verhältnis von 0,7 zufriedenstellende Ergebnisse liefern.
In einer weiteren Ausführungsform der erfindungsgemäßen Mikroemulsion beträgt das Massenverhältnis von öliger Phase zu wässriger Phase 0,5 bis 1,6. Solche Verhältnisse sind bei Industriereinigern sinnvoll.
In einer anderen Ausführungsform des erfindungsgemäßen Reinigers beträgt das Massenverhältnis von öliger Phase zu wässriger Phase der Mikroemulsion 1,0 bis 1,4.
In einer Ausführungsform umfasst die Emulsion als ölige Phase Mineralöle, insbesondere aliphatische naphthenische Kohlenwasserstoffe wie
Petroleumbenzin. Hierzu zählen auch entaromatisierte Petroleumverschnitte mit 11-14 C-Atomen, entaromatisierte Testbenzine mit 9-12 C-Atomen, spezielle entaromatisierte Fraktionen mit 9-10 C-Atomen sowie polare
Lösungsmittel wie z. B. Derivate der Kohlensäure (z. B.4-Methyl-l,3-dioxolan- 2-on), Derivate der Milchsäure, wie z. B. Ethyllactat, n-Propyllactat und 2-
Ethylhexyllactat, und von Dicarbonsäuren, wie z. B. Dimetylester oder
Dimethyldiisobutylester der Glutarsäure, Adipinsäure oder Bernsteinsäure, als auch Glykolether auf Basis von Ethylenglykol- und Propylenglykoleinheiten, wie z. B. Diethylenglykolmonobutylether oder Dipropylenglykoldimethylether. Die ölige Phase der Emulsion kann ferner Triglyceride und Produkte aus
Veresterung oder Umesterung von Pflanzenölen mit Alkoholen wie z. B. Fettsäuremethylester (z. B. Rapsölmethylester oder Kokosester) umfassen. Diese Stoffe können auch tensidische Wirkung entfalten.
Insbesondere bei der Verwendung von Triglyceriden z. B. aus Pflanzen oder schwerflüchtigen Kohlenwasserstoffölen, insbesondere aliphatischen Kohlenwasserstoffen, kann eine fast geruchsneutrale Emulsion hergestellt werden.
In einer weiteren Ausführungsform weist die erfindungsgemäße Mikroemulsion keine lamellare Phase auf.
In einer Ausführungsform umfasst die erfindungsgemäße Emulsion 80-99 Gew.-% Komponente I, insbesondere 85-95 Gew.-%, bezogen auf den gesamten tensidischen Aktivgehalt der Emulsion. Dabei umfasst Komponente I wiederum zwei Komponenten : Komponente Ii und Komponente I2 der erfindungsgemäßen Mischung. Außerdem umfasst die Emulsion 1-20 Gew.-% Komponente II, insbesondere 5-15 Gew.-%, bezogen auf den gesamten tensidischen Aktivgehalt der Emulsion, welche wie in der erfindungsgemäßen Mischung ein polymeres Additiv ist.
In einer Ausführungsform beträgt die Menge der erfindungsgemäßen Mischung bezogen auf die Gesamtmenge an erfindungsgemäßer Emulsion 1-20 %, insbesondere 3-15 % und besonders 3-10 %.
In einer zusätzlichen Ausführungsform umfasst die Emulsion weitere Tenside.
In einer Ausführungsform ist das amphiphile Kammpolymer (Komponente H2) dadurch gekennzeichnet, dass das Rückgrat des Kammpolymers hydrophob ist und dass alle Seitenketten des Kammpolymers hydrophil sind.
In einer weiteren Ausführungsform ist das amphiphile Kammpolymer dadurch gekennzeichnet, dass es sich wiederholende Struktureinheiten [A]n, [A']m und [X]1 aufweist, wobei die Struktureinheiten [A]n und [A']m das Rückgrat bilden und die Struktureinheit [A']m eine Ankerfunktion zum Anbinden der die Seitenketten bildenden Struktureinheiten [X], aufweist, und wobei die Variablen n, m und i Molfraktionen sind, mit
n + m+i = l, n≥m und l>m.
Die Komponente I2 umfasst in einer Ausführung der Erfindung Kohlenwasserstoffreste, insbesondere 1-2 Alkylreste, bevorzugt 1 bis 1,5 Alkylreste, mit jeweils 8-20 C-Atomen, und einen hydrophilen Rest, der mehr als eine, jedoch maximal 5 OH-Gruppen trägt.
In einer erfindungsgemäßen Ausführungsform weist das Alkylpolyglucosid der Komponente Ii 1-1,5 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 8-14 C-Atomen, auf.
Eine andere Ausführungsform der Erfindung ist dadurch charakterisiert, dass die Kohlwasserstoffreste, insbesondere die Alkylreste, der Komponente I2, über Ether- oder Estergruppen mit dem hydrophilen Rest verbunden ist.
In einer weitern Ausführungsform sind die Kohlenwasserstoffreste, insbesondere die Alkylreste, der Komponente I2 über Kohlenstoffbindungen mit dem hydrophilen Rest verbunden.
In einer Ausführungsform sind die OH-Gruppen der Komponente I2 ethoxyliert. Es sind jedoch nicht mehr als 5, vorzugsweise nicht mehr als 2, Ethylenoxideinheiten pro OH-Gruppe vorhanden.
In einer weiteren Ausführungsform umfasst die Komponente I2 einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 10 - 18 C-Atomen, bevorzugt 10 - 14 C-Atomen. In noch einer weiteren Ausführung umfasst der hydrophile Rest der Komponente I2 1,5-3 OH-Gruppen.
Der hydrophile Rest der Komponente I2 ist in einer zusätzlichen Ausführungsform nicht ethoxyliert.
In einer Ausführungsform ist die Komponente I2 ein Sorbitanester, wie z. B. Sorbitanmonolaurat oder Sorbitanmonopalmitat, Polysorbat, wie z. B. Polysorbate 61 (POE(4)sorbitanmonostearat), Glycerinmonoester, Gemisch aus Glycerinmonoester und Glycerindiester, ein Monoester oder Diester von Pentaerythrit, ein Monoether oder Diether von Pentaerythrit, 1,2-Decandiol oder 1,2-Dodecandiol.
In einer weiteren Ausführungsform ist die mindestens eine hydrophobe Einheit der Komponente Hi an mindestens einem Kettenende einer wasserlöslichen Einheit angeordnet.
In einer zusätzlichen Ausführungsform ist die mindestens eine hydrophobe Einheit der Komponente Hi ein nichtterminaler Substituent einer wasserlöslichen Einheit.
In einer bestimmten Ausführungsform ist die mindestens eine hydrophobe Einheit der Komponente Hi zwischen mindestens zwei wasserlöslichen Einheiten angeordnet, falls mehr als mindestens eine wasserlösliche Einheit vorhanden ist.
Das zahlenmittlere Molekulargewicht der wasserlöslichen Blöcke A und der hydrophoben Blöcke B des Diblockcopolymers oder eines Triblockcopolymers der Komponente H3 gemäß Patentanspruch 1 liegt bei einer Ausführungsform zwischen 500 und 100000 g/mol, insbesondere zwischen 2000 und 20000 g/mol und besonders zwischen 3000 und 10000 g/mol. In einer Ausführungsform liegt das zahlenmittlere Molekulargewicht jeder hydrophoben Einheit der Komponente Hi zwischen 80 und 1000 g/mol, insbesondere zwischen 110 und 500 g/mol und besonders zwischen 110 und 280 g/mol.
In einer zusätzlichen Ausführungsform beträgt das zahlenmittlere Molekulargewicht jeder wasserlöslichen Einheit der Komponente Hi mindestens 500 g/mol; die Obergrenze des zahlenmittleren Molekulargewichts ist vom Anwendungsgebiet abhängig. Typischerweise beträgt das zahlenmittlere Molekulargewicht zwischen 500 und 50000 g/mol, insbesondere zwischen 900 und 20000 g/mol und besonders zwischen 2000 und 20000 g/mol oder 3000 und 10000 g/mol.
In einer weiteren Ausführungsform ist das zahlenmittlere Molekulargewicht aller wasserlöslichen Einheiten der Komponente II mindestens 5 mal größer als das zahlenmittlere Molekulargewicht der hydrophilen Anteile der Komponente I.
In noch einer Ausführungsform ist das zahlenmittlere Molekulargewicht aller wasserlöslichen Einheiten der Komponente II mindestens 10 mal größer als das zahlenmittlere Molekulargewicht der hydrophilen Anteile der Komponente I.
In einer Ausführungsform umfasst die wasserlösliche Einheit der Komponente II mindestens eines dieser Moleküle: Polyethylenoxid, Polyethylenglykol, Copolymerisate aus Ethylenoxid und Propylenoxid, Polyacrolein, Polyvinylalkohol und dessen wasserlösliche Derivate, Polyvinylpyrrolidon, Polyvinylpyridin, Polymethacrylsäure, Polymaleinsäureanhydrid, Polyameisensäure, Polyacrylsäure, Polystyrolsulfonsäure und deren wasserlösliche Salze. In einer zusätzlichen Ausführungsform ist die wasserlösliche Einheit der Komponente Hi ein lineares Polymer.
Eine Ausführungsform der Erfindung ist dadurch charakterisiert, dass die wasserlösliche Einheit der Komponente II nicht ionisch ist.
In einer anderen Ausführungsform der Erfindung kann die wasserlösliche Einheit der Komponente II ionisch sein.
In einer zusätzlichen Ausführungsform weist die wasserlösliche Einheit der Komponente II mindestens zwei elektrische Ladungen auf.
In einer weiteren Ausführungsform setzt sich die wasserlösliche Einheit der Komponente II aus einem ionischen und einem nichtionischen Bestandteil zusammen.
In einer Ausführungsform ist die hydrophobe Einheit der Komponente Hi ein Kohlenwasserstoffrest, insbesondere einen Alkylrest.
In einer weiteren Ausführungsform umfasst der Kohlenwasserstoffrest, insbesondere der Alkylrest 6 bis 50 Kohlenstoffatome, vorzugsweise 8 bis 20 Kohlenstoffatome.
Die hydrophobe Einheit der Komponente II ist in einer erfindungsgemäßen Ausführung ungesättigt.
In einer zusätzlichen Ausführung ist die Komponente Hi ein Alkoholethoxylat bestehend aus einem einwertigem Alkohol mit 8-20 C-Atomen und 25-500 Ethylenoxideinheiten.
In einer Ausgestaltung der erfindungsgemäßen Mischung weisen die Alkylpolyglucoside der Komponente Ii 1-1,5 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 8-14 C-Atomen oder 1-2 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 8-14 C-Atomen auf; die Komponente I2 umfasst Kohlenwasserstoffreste, insbesondere 1-2 Alkylreste, bevorzugt 1 bis 1,5 Alkylreste, mit jeweils 8-20 C-Atomen und einen hydrophilen Rest, der mehr als eine, jedoch maximal 5 OH-Gruppen trägt.
In einer zusätzlichen Ausgestaltung der erfindungsgemäßen Mischung weisen die Alkylpolyglucoside der Komponente Ii 1-1,5 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 8-14 C-Atomen oder 1-2 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 8-14 C-Atomen auf; die Komponente I2 ist ein Sorbitanester, ein Polysorbat, ein Glycerinmonoester, ein Gemisch aus Glycerinmonoester und Glycerindiester, ein Monoester oder Diester von Pentaerythrit, ein Monoether oder Diether von Pentaerythrit, 1,2-Decandiol oder 1,2-Dodecandiol.
In einer weiteren Ausgestaltung der erfindungsgemäßen Mischung weisen die Alkylpolyglucoside der Komponente Ii 1-1,5 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 8-14 C-Atomen oder 1-2 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 8-14 C-Atomen auf; die Komponente I2 umfasst Kohlenwasserstoffreste, insbesondere 1-2 Alkylreste, oder 1 bis 1,5 Alkylreste, mit jeweils 8-20 C-Atomen und einen hydrophilen Rest, der mehr als eine, jedoch maximal 5 OH-Gruppen trägt; die mindestens eine hydrophobe Einheit der Komponente Hi ist an mindestens einem Kettenende einer wasserlöslichen Einheit angeordnet.
In noch einer Ausgestaltung der erfindungsgemäßen Mischung weisen die Alkylpolyglucoside der Komponente Ii 1-1,5 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 8-14 C-Atomen oder 1-2 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 8-14 C-Atomen auf; die Komponente I2 umfasst Kohlenwasserstoffreste, insbesondere 1-2 Alkylreste, oder 1 bis 1,5 Alkylreste, mit jeweils 8-20 C-Atomen und einen hydrophilen Rest, der mehr als eine, jedoch maximal 5 OH-Gruppen trägt; ferner liegt entweder das zahlenmittlere Molekulargewicht jeder hydrophoben Einheit der Komponente Hi zwischen 80 und 1000 g/mol, insbesondere zwischen 110 und 500 g/mol und besonders zwischen 110 und 280 g/mol, oder die hydrophobe Einheit der Komponente Hi ist ein Kohlenwasserstoffrest, insbesondere einen Alkylrest, welcher insbesondere 6 bis 50 Kohlenstoffatome, besonders 8 bis 20 Kohlenstoffatome umfasst, oder die Komponente II ist ein Alkoholethoxylat, welches aus einem einwertigem Alkohol mit 8-20 C-Atomen und 25-500 Ethylenoxideinheiten besteht.
In einer anderen Ausführungsform der erfindungsgemäßen Mischung umfasst Komponente Ii Alkylglucoside mit 6-8 C-Atomen (z. B. Hexyl- und Octylglucoside) und Sulfonate (Di-, PoIy-, Alkylarylsulfonate wie z. B. Natriumcumolsulfonat, welche eine hydrotope Wirkung zeigen. Eine zusätzliche Ausführungsform der erfindungsgemäßen Mischung kann sog. „Builder" (z. B. Natriumphosphate, Natriumcarbonate, Natriumsilikate, Polyphosphate, Phosphonsäuren, Natriumgluconate, Borate, Polycarboxylate, EDTA etc.) umfassen.
Builder (Gerüststoffe, Aufbaustoffe) sind Komplexbildner, die Erdalkalimetalle in der Emulsion binden und diese somit stabilisieren.
Eine weitere Ausführungsform der erfindungsgemäßen Mischung kann sog. „Booster" als Schaumbildner, die die Reinigungswirkung steigern, und/oder
Benetzer enthalten (z. B. Alkylpolyglucoside, Phosphonsäuren, Glykolether auf
Basis von Ethylenglykol- und Propylenglykoleinheiten, wie z. B.
Diethylenglykolmonobutylether, und AOT (Natriumsalz von 1,4-Bis(2- ethylhexyl)-sulfosuccinat)). Bei Benetzern handelt es sich dabei um Tenside, die zu einer Verstärkung der
Reinigungswirkung und Stabilisierung der Mikroemulsion beitragen können und keine Schaumbildner sind . Sowohl die erfindungsgemäße Mischung, als auch die erfindungsgemäße Emulsion sind zur Verwendung in einem Reiniger einsetzbar. Dieser umfasst in einer Ausführungsform eine Mikroemulsion oder bikontinuierliche Mikroemulsion.
In noch einer Ausführungsform des erfindungsgemäßen Reinigers beträgt die Gesamttensidkonzentration weniger als 15%, insbesondere weniger als 12, oder 9%, oder 7%. Dieser sehr geringe Gesamttensidgehalt (Gehalt an grenzflächenaktiven Stoffen) ermöglicht je nach Anwendungsgebiet die Herstellung von Produkten, die keiner Kennzeichnungspflicht hinsichtlich ihres Tensidgehalts unterliegen.
Der erfindungsgemäße Reiniger ist als Ersatz von organischen Lösungsmitteln besonders geeignet. Dies hat eine Reduktion der eingesetzten Menge organischer Lösungsmittel bis hin zum Verzicht auf aromatische Lösungsmittel zur Folge, welches vorteilhaft im Hinblick auf Arbeitsschutz und Umweltschutz ist. Außerdem weisen sowohl erfindungsgemäße Reiniger wie die darin befindlichen erfindungsgemäßen Mikroemulsionen erhöhte Flammpunkte gegenüber den darin enthaltenen organischen Phasen auf.
Ferner ist die Verwendung des erfindungsgemäßen Reinigers zum Abreinigen von Farben, insbesondere von angetrockneten oder trockenen Farben, Lacken und teerartigen Verbindungen und Klebstoffen, als Allzweckreiniger und Neutralreiniger im Haushalt, in der Industrie und gewerblichen Bereich möglich.
Eine Verwendung des erfindungsgemäßen Reinigers ist auch beim Abreinigen von Farben und Lacken auf wässriger und organischer Basis empfehlenswert, insbesondere zum Reinigen von Pinseln. Der erfindungsgemäße Reiniger kann ferner zum Abreinigen von Farben, Lacken, Öl und/oder salzartigen Rückständen von Metall- und/oder Kunststoffoberflächen verwendet werden.
Eine Verwendung empfiehlt sich für empfindliche Oberflächen, insbesondere solche die von organischen Lösungsmitteln oder sauren oder alkalischen Reinigern angegriffen werden, wie z. B. Aluminiumoberflächen. Der erfindungsgemäße Reiniger könnte somit beispielsweise organische Reinigungsmittel in vielen Anwendungsbereichen ersetzen.
Der erfindungsgemäße Reiniger kann vorteilhaft in der Druckindustrie, insbesondere zum Entfernen von Druckfarben und Papierstaubaufbau von Druckmaschinen und Druckformen verwendet werden. Er eignet sich zum Beispiel zur Entfernung von Druckfarben auf Wasser- oder Ölbasis und von durch Strahlung aushärtende Druckfarbe. Ferner findet der Reiniger Anwendung beim Reinigen von Druckzylindern, Druckwalzen und Oberflächen von Druckmaschinen, bevorzugt zum Reinigen von Druckmaschinen zum konventionellen Drucken, sowie von Druckformen zum Beispiel bei Unterbrechung des Druckvorgangs und bei Non-Impact-Druckverfahren. Zu den konventionellen Druckverfahren mit Druckformen, bei denen der Reiniger eingesetzt werden kann, zählt das Flachdruckverfahren, der Tiefdruck, der Hochdruck, der Flexodruck und der Siebdruck; besonders hervorzuheben ist der Offset- und der wasserlose Offsetdruck. Zu den Non-Impact Druckverfahren ohne Druckform zählen die Elektrophotographie, Ionographie, Magnetographie, Ink Jet- und Thermographie.
Für die aufgeführten Reinigungszwecke, insbesondere im Offsetdruck, fallen im regulären Produktionsbetrieb kontinuierlich Reinigungsarbeiten an. Diese werden entweder durch manuelle Reinigung oder unter Einsatz automatischer Reinigungsanlagen ausgeführt. Die eingesetzten Reiniger umfassen organische Lösungsmittel. Vor längeren Produktionsunterbrechungen (z. B. Wochenende) werden die farbführenden Teile der Maschine mit Hilfe von Lösungsmitteln gereinigt. Zudem müssen Druckformen, besonders Flachdruckformen, bei einer Unterbrechung des Druckprozesses sorgfältig von Farbrückständen befreit werden. Neben den Gummituchwaschanlagen sind neuere Druckanlagen teilweise auch mit Farbwerk-Wascheinrichtungen ausgestattet. Ansonsten wird manuell mit Hilfe von Putztüchern gereinigt. Im Rahmen von Instandhaltungs- und Wartungsarbeiten werden periodisch auch die Wischwassersysteme der Druckanlagen entleert und gereinigt.
Bei der manuellen Reinigung wird das Waschmittel bei Gummitüchern mit einem Putzlappen aufgetragen. Für die Farbwalzen erfolgt der Auftrag mit einer Spritzflasche. Die im Reiniger enthaltene erfindungsgemäße Mischung löst die Farbe an und kann dann vom Gummituch bzw. den Farbwalzen entfernt werden. Bei der manuellen Reinigung des Gummituchzylinders erfolgt die Auftragung des Reinigers mittels eines Putzlappens auf die Oberfläche des Gummituches. Unter leichtem Druck wird der reinigungsmittelhaltige Film, der z. B. angelöste Farbreste und Papierbestandteile enthält, mit einem Putztuch abgewaschen. Probleme verursachen oft Rückstände von Farbpigmenten,
Papierstrich, Kalziumcarbonat und andere Mineralien in den Poren der
Farbwalze. Sie führen zum „Blanklaufen" der Farbwalzen und zum „Blindlaufen" der Druckplatten. Mit konventionellen Tensidmischungen lassen sich solche Rückstände nicht entfernen.
Im Offsetdruck sind je nach Betriebszustand und Anforderungen bei Auftragswechsel Farbwerk, Druckplatte, Gummituch auf dem Gummizylinder und der Gegendruckzylinder zu reinigen. Zur Reinigung des Farbwerks und der Zylinderoberflächen stehen automatische Waschanlagen zur Verfügung, die sich in der Art ihrer technischen Ausführung unterscheiden. Bei einer Bürstenwascheinrichtung erfolgt die Reinigung mit Hilfe einer Bürstenwalze. Über diese wird zugeführte Reinigungsflüssigkeit an die zu reinigende Oberfläche (Gummi-, Gegendruckzylinder und Farbwerk) übertragen. Das Tuch der Tuchwascheinrichtung wird fein dosiert über z. B. Düsenleisten mit Reinigungsflüssigkeit versorgt. Das Reinigungstuch liegt angepresst auf der zu reinigende Oberfläche (Gummi-, Gegendruckzylinder und Farbwerk).
Im Bezug auf die Situation bei Andruck bzw. Fortdruck in einem Rollenoffsetbetrieb kann der Einsatz wässriger Reiniger bei Kontakt mit der eingezogenen Papierbahn aufgrund der Durchfeuchtung des Bedruckstoffes Papier zu Papierbahnrissen führen. Dies gilt es insbesondere für den Einsatz in automatischen Reinigungsanlagen zu beachten.
Der erfindungsgemäße Reiniger weist mit seinem wässrigen Anteil den Vorteil auf, dass bei der Reinigung der Papierstaub mitentfernt wird, ohne jedoch zu den im vorherigen Absatz aufgeführten Problem eines Papierbahnrisses zu führen.
Bei auftretenden Druckproblemen und zur Sicherstellung einer gleichmäßigen Produktqualität werden Zwischenreinigungen der farbübertragenden Gummitücher durchgeführt. Dazu werden automatische Reinigungsanlagen eingesetzt. Etwa 80% der Heatset-Maschinen in Deutschland sind mit automatischen (Gummituch)-Waschanlagen ausgestattet. Je nach Auftragungsart arbeiten 55% mit Tuchbahnen, 30-35% mit Bürstensystemen und 10-15% mit Sprühsystemen. Ansonsten erfolgt die Reinigung manuell. Etwa 90% der im Heatsetdruck eingesetzten Reiniger sind derzeit flüchtige organische Verbindungen (Dampfdruck > 0,01 kPa/20 0C), die übrigen 10% sind höher siedende Reinigungsmittel auf Mineralöl- oder Pflanzenölbasis bzw. Mischungen daraus.
Die erfindungsgemäße Emulsion kann ferner in der Lebensmittel-, der Pharma- oder chemischen Industrie eingesetzt werden.
Ein weiterer Gegenstand dieser Erfindung ist ein Kosmetikartikel, welcher die erfindungsgemäße Emulsion umfasst. Außerdem eignet sich die erfindungsgemäße Emulsion zur Herstellung eines Lebensmittels, Pestizids, insbesondere Herbizids, oder Arzneimittels.
Schließlich ist ein Verfahren zur Herstellung der erfindungsgemäßen Emulsion, wobei die Komponenten Ii, I2 und II gemischt werden, Gegenstand dieser
Erfindung . Die Bestandteile der Mikroemulsionsgemische können dabei in jeder
Reihenfolge gemischt werden. Bevorzugt werden die gut wasserlöslichen
Bestandteile in Wasser vorgelöst und die gut öllöslichen Bestandteile in Öl vorgelöst. Starkes Rühren und gegebenenfalls Erwärmen beschleunigt den Mischungsvorgang.
Die Erfindung wird anhand der folgenden Beispiele näher erläutert.
Beispiele
Das verwendete Trinkwasser zeichnet sich durch folgende Charakteristika aus: pH = 8,0; Natrium 14 mg/mL; Kalium 2,7 mg/mL; Calcium 60mg/ml_; Magnesium 14 mg/mL; Nitrat 34,9 mg/mL; Chlorid 46,1 mg/mL.
Ketrul D85 (Total) ist ein aliphatisches Kohlenwasserstoffgemisch mit einem Flammpunkt von 820C.
Hydroseal G232H ist ein aliphatisches Kohlenwasserstoffgemisch mit einem Flammpunkt von 1030C.
Span 20 (Uniqema) : Sorbitanmonolaurat, Wirkstoffgehalt 100%. Imwitor 928 (Sasol): Glycerylmono-, di- und tricocoat, Wirkstoffgehalt 100%.
Hydropalat 225 (Cognis) : Alkylpolyglucosid mit Alkylkettenlänge C8/io, Wirkstoffgehalt 70%.
Hydropalat 600 (Cognis) : Alkylpolyglucosid mit Alkylkettenlänge Ci2/i4, Wirkstoffgehalt 51,5%.
AG 6210 (Akzo Nobel): Alkylpolyglucosid mit Alkylkettenlänge C8/io, Wirkstoffgehalt 60%.
1,2-Decandiol (Aldrich) : Wirkstoffgehalt 98%.
Brij 700 (Uniqema) : PEG-100 Stearylether, Wirkstoffgehalt 100%.
C12E190 und C12E480 sind Alkoholethoxylate, bestehend aus n-Dodekanol auf das 190 bzw. 480 Ethylenoxideinheiten aufpolymerisiert sind.
Natriumgluconat (Dr. Paul Lohmann): Natriumgluconat, Wirkstoffgehalt 100%.
DME (Clariant), Dipropylenglykoldimethylether, Wirkstoffgehalt 100%.
Zusolat 1004 (Zschimmer & Schwarz) : Fettalkoholethoxylat mit 5EO, Wirkstoffgehalt 85%.
Die Temperaturstabilität der Mikroemulsionen wurde in einem thermostatisierten Wasserbad durch visuelle Begutachtung im Durchlicht bestimmt. Dazu wurden die Gemische in geschlossenen, zylinderförmigen Glasgefäßen von ca. 5-15 mm Durchmesser untersucht, bei hoher Trübheit der Mikroemulsionen wurden Küvetten von 1 mm Schichtdicke verwendet. Die Temperatur-Phasengrenzen des einphasigen Mikroemulsionsbereichs konnten aufgrund der drastisch ansteigenden Trübheit bei Über- oder Unterschreiten des Stabilitätsfensters erkannt werden. Lamellare Phasen wurden mit Hilfe von gekreuzten Polarisatoren bestimmt. In den für die Beispiele angegebenen Stabilitätsbereichen liegen grundsätzlich einphasige Mikroemulsionen vor, die keine lamellare Phasen beinhalten.
Die Gesamttensidgehalte beziehen sich auf die Wirkstoffanteile der tensidischen Komponenten sowie des polymeren Additivs. Alle Prozentangaben beziehen sich auf das Gewicht der Inhaltsstoffe.
Beispiel 1
Trinkwasser: 39,81 %
Natriumtripolyphosphat: 1,23 % Ketrul D85: 47,52 %
Butyldiglycol : 1,90 %
Span 20: 5,63 %
Hydropalat 225: 3,05 %
Brij 700: 0,86 %
Der Stabilitätsbereich der Mikroemulsion liegt zwischen 11 und 28 0C,
Gesamttensidgehalt 8,6 %.
Beispiel 2
Trinkwasser: 46,45 %
Hydroseal G232H : 42,38 %
Span 20: 4,88 %
AG 6210: 5,39 % Brij 700: 0,90 % Der Stabilitätsbereich der Mikroemulsion liegt zwischen 0 und 52 0C, Gesamttensidgehalt 9,0 %.
Beispiel 3
Trinkwasser: 37,60 % Ketrul D85: 49,98 % Imwitor 928: 5,41% AG 6210: 6,01% Brij 700: 1,00 %
Der Stabilitätsbereich der Mikroemulsion liegt zwischen 43 und 71 0C, Gesamttensidgehalt 10,0 %.
Beispiel 4
Trinkwasser: 38,99 % Ketrul D85: 51,07 % Imwitor 928: 4,33% AG 6210: 4,81% Brij 700: 0,80 %
Der Stabilitätsbereich der Mikroemulsion liegt zwischen 44 und 72 0C, Gesamttensidgehalt 8,0 %.
Beispiel 5
Trinkwasser: 43,84 % Ketrul D85: 48,41% Imwitor 928: 3,22% AG 6210 : 3,94 % C12E190 : 0,59 %
Der Stabilitätsbereich der Mikroemulsion liegt zwischen 15 und 75 0C, Gesamttensidgehalt 6,2 %.
Beispiel 6
Trinkwasser: 43,73 % Ketrul D85: 48,47% Imwitor 928: 3,24% AG 6210: 3,97 % C12E480: 0,59 %
Der Stabilitätsbereich der Mikroemulsion liegt zwischen 11 und 70 0C, Gesamttensidgehalt 6,2 %.
Beispiel 7
Trinkwasser: 39,71 %
Natriumtripolyphosphat: 1,26 %
Ketrul D85: 48,85 %
Butyldiglycol : 1,94 %
Span 20: 2,93 % Hydropalat 600: 4,73 %
Brij 700: 0,58 %
Der Stabilitätsbereich der Mikroemulsion liegt zwischen 13 und 42 0C, Gesamttensidgehalt 5,9 %.
Beispiel 8 Trinkwasser: 36,06 % Natriumtripolyphosphat: 1,21 % Ketrul D85: 46,59 % Butyldiglycol : 1,86 % Span 20: 4,25 % Hydropalat 600: 9,04 % Brij 700: 0,99 %
Der Stabilitätsbereich der Mikroemulsion liegt zwischen 0 und 26 0C, Gesamttensidgehalt 9,9 %.
Beispiel 9
Trinkwasser: 49,89 %
Ketrul D85: 37,98 %
1,2-Decandiol : 3,43 %
AG 6210: 7,80 %
Brij 700: 0,90 %
Der Stabilitätsbereich der Mikroemulsion liegt zwischen 13 und 33 0C,
Gesamttensidgehalt 9,0 %.
Beispiel 10
Die Flammpunkte wurden gemessen mit den Mikroemulsion aus den Beispielen 1 und 7. Die ermittelten Flammpunkte betragen 9O0C und 920C. Der Flammpunkt von Ketrul D 85 beträgt 820C.
Beispiel 11 Trinkwasser: 31,60%, Natriumgluconat: 2,30%, Dipropylenglykol- dimethylether 8,60%, Ketrul D85: 41,70%, Span 20: 7,00%, AG6210: 6,70%, Zusolat 1004: 1,40%, Brij 700: 0,70%
Der Stabilitätsbereich der Mikroemulsion liegt zwischen 5 und 400C; der Gesamttensidgehalt beträgt 12,9%.
Im Rahmen eines vergleichenden Versuchs wurden die Gummitücher einer Rotations-Offsetdruckmaschine mit handelsüblicher Offsetdruckfarbe (Fa. Huber) auf Ölbasis einmal mit einem auf organischem Lösungsmittel basierendem Reiniger (in der Hauptsache aliphatische Kohlenwasserstoffe, Testbenzine) und einmal mit der erfindungsgemäßen Mikroemulsion gereinigt. Die Reinigungsleistung, d. h. die Abreinigung der Druckfarbe, sowie des Papierstaubaufbaus, d. h. die festen Rückstände aus Papierfasern, war im Wesentlichen gleich. Nach der Reinigung waren die Walzen sauberer und trockener als bei Verwendung von organischen Lösungsmitteln als Reinigungsmittel, was eine reduzierte Anfahrmakulatur zur Folge hatte. Bei Verwendung der Mikroemulsion war der Arbeitsaufwand beim manuellen Abreinigen der Gummitüchern geringer.
Beispiel 12
Trinkwasser: 31,60%, Natriumgluconat: 2,30%, Dipropylenglykol- dimethylether 8,60%, Ketrul D85 : 41,70%, Span 20: 7,00%, AG6210 : 6,70%, Zusolat: 1004: 1,40%, Brij 700: 0,70%
Der Stabilitätsbereich der Mikroemulsion liegt zwischen 5 und 400C; der Gesamttensidgehalt beträgt 12,9%.
Im Rahmen eines Vergleichsversuchs wurden handelsübliche Pinsel, die mit Lack auf Acrylbasis (Weisslack, Fa. Classic) sowie Lack auf Alkydharzbasis (Buntlack, Fa. Classic) verunreinigt waren, einerseits mit einem Reinigungsbenzin (Pinselreiniger, Fa. Classic) und andererseits mit der Mikroemulsion gereinigt. In beiden Fällen war die Reinigungsleistung, d. h. die Entfernung der Lackrückstände von den Pinselhaaren, im Wesentlichen gleich. Insbesondere konnten die Reste der Mikroemulsion leicht durch einfaches Abspülen mit Wasser entfernt werden. In der Haptik und der erneuten anschließenden Benetzung zeigte sich kein Unterschied.
Referenzen :
[1] Kahlweit, Strey, Angew. Chem. Int. Ed. Engl. 24, 654 (1985).
[2] Sottmann, Strey, J. Chem. Phys. 106, 8606 (1997). [3] Stubenrauch, Current Opinion in Colloid & Interfacial Science 6, 160
(2001).
[4] Sottmann et al., Langmuir 18, 3058 (2002).
[5] Aramaki et al., J. Colloid Interface Sei. 196, 74 (1997).
[6] Binks et al., Langmuir 13, 7030 (1997). [7] Silas, Kaier, J. Colloid Interface Sei. 243, 248 (2001).
[8] Kahlweit, Strey, Angew. Chem. Int. Ed. Engl. 24, 654 (1985).
[9] Sottmann, Strey, J. Chem. Phys. 106, 8606 (1997).
[10] Griffin, W. C, Classification of surface active agents by HLB, J. Soc.
Cosmet. Chem. 1, 1949. [11] Advanced Materials, 2000, 12, Nr. 23, 1751 ff.

Claims

Patentansprüche
1. Mischung umfassend
1.1 Komponente I, umfassend
1.1.1 80 - 20 Gew.-% einer ersten tensidischen Komponente Ii, die ein Alkylpolyglucosid ist, umfassend 1-2 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest von 6-16
C-Atomen,
1.1.2 20 - 80 Gew.-% einer Komponente I2, die ein Alkoholgruppen enthaltendes zweites Tensid ausgenommen ein Alkylpolyglucosid ist, wobei sich die Gewichtsanteile nur auf die Komponente I beziehen, und
1.2 polymeres Additiv als Komponente II, wobei
1.2.1 das polymere Additiv als Komponente Hi mindestens eine wasserlösliche Einheit und mindestens eine hydrophobe Einheit umfasst, wobei das Verhältnis der zahlenmittleren Molekulargewichte aller wasserlöslichen Einheiten und der zahlenmittleren Molekulargewichte aller hydrophoben Einheiten 2 : 1 bis 1000 : 1, insbesondere 5 : 1 bis 200: 1 und besonders 10: 1 bis 50: 1 beträgt und wobei jede mindestens eine hydrophobe Einheit ein zahlenmittleres
Molekulargewicht von maximal 1000 g/mol besitzt, oder
1.2.2 das polymere Additiv als Komponente H2 mindestens eine wasserlösliche Einheit und mindestens eine hydrophobe Einheit umfasst, wobei es ein amphiphiles Kammpolymer ist, welches ein
Rückgrat mit am Rückgrat angebrachten zwei oder mehreren Seitenketten umfasst, wobei sich die Seitenketten untereinander und/oder die Seitenketten vom Rückgrat in ihrem amphiphilen Charakter unterscheiden, oder
1.2.3 das polymere Additiv als Komponente H3 mindestens eine wasserlösliche Einheit und mindestens eine hydrophobe Einheit umfasst, wobei Komponente H3 ein AB-Diblockcopolymer oder ein ABA- bzw. BAB-Triblockcoplymer mit wasserlöslichen Blöcken A und hydrophoben Blöcken B ist.
2. Emulsion erhältlich durch Verdünnen der Mischung gemäß Anspruch 1 mit wässriger Lösung und öliger Phase.
3. Emulsion gemäß Anspruch 2 mit:
3.1 80-99 Gew.-% Komponente I, insbesondere 85-95 Gew.-%, bezogen auf den gesamten tensidischen Aktivgehalt der Emulsion, umfassend
3.1.1 Komponente Ii gemäß Anspruch 1,
3.1.2 Komponente I2 gemäß Anspruch 1 und 3.2 1-20 Gew.-% polymeres Additiv als Komponente II, insbesondere 5-15 Gew.-%, bezogen auf den gesamten tensidischen Aktivgehalt der Emulsion und 3.3 gegebenenfalls weitere Tenside.
4. Emulsion gemäß der Ansprüche 2 und 3, wobei die Komponente I2
Kohlenwasserstoffe, insbesondere 1-2 Alkylreste, vorzugsweise 1 bis 1,5 Alkylreste, mit jeweils 8-20 C-Atomen und einen hydrophilen Rest umfasst, der mehr als eine, jedoch maximal 5 OH-Gruppen trägt.
5. Emulsion gemäß mindestens einem der Ansprüche 2 - 4, wobei die
Alkylpolyglucoside der Komponente Ii 1-1,5 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 8-14 C-Atomen oder 1-2 Glucosideinheiten und einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 8-14 C-Atomen aufweisen.
6. Emulsion gemäß Anspruch 4, wobei die Kohlenwasserstoffreste, insbesondere die Alkylreste, der Komponente I2 über Ether- oder
Estergruppen mit dem hydrophilen Rest verbunden sind.
7. Emulsion gemäß mindestens einem der Ansprüche 4 und 6, wobei die Kohlenwasserstoffreste, insbesondere die Alkylreste, der Komponente I2 über Kohlenstoffbindungen mit dem hydrophilen Rest verbunden sind.
8. Emulsion gemäß mindestens einem der Ansprüche 4 - 7, wobei die Komponente I2 mindestens einen Kohlenwasserstoffrest, insbesondere einen Alkylrest mit 10 - 18 C-Atomen, vorzugsweise mit 10 - 14 C- Atomen umfasst.
9. Emulsion gemäß mindestens einem der Ansprüche 4 - 8, wobei der hydrophile Rest der Komponente I2 1,5-3 OH-Gruppen umfasst.
10. Emulsion gemäß mindestens einem der Ansprüche 4 - 9, wobei der hydrophile Rest der Komponente I2 nicht ethoxyliert ist.
11. Emulsion gemäß Anspruch 3, wobei Komponente I2 ein Sorbitanester,
Polysorbat, Glycerinmonoester, Gemisch aus Glycerinmonoester und Glycerindiester, ein Monoester oder Diester von Pentaerythrit, ein
Monoether oder Diether von Pentaerythrit, 1,2-Decandiol oder 1,2-
Dodecandiol ist.
12. Emulsion gemäß mindestens einem der Ansprüche 3 - 11, wobei die mindestens eine hydrophobe Einheit der Komponente Hi an mindestens einem Kettenende einer wasserlöslichen Einheit angeordnet ist.
13. Emulsion gemäß mindestens einem der Ansprüche 3 - 12, wobei das zahlenmittlere Molekulargewicht der wasserlöslichen Blöcke A und der hydrophoben Blöcke B des Diblockcopolymers oder eines Triblockcopolymers der Komponente H3 gemäß Anspruch 1 zwischen
500 und 100000 g/mol liegt, insbesondere zwischen 2000 und 20000 g/mol und besonders zwischen 3000 und 10000 g/mol.
14. Emulsion gemäß mindestens einem der Ansprüche 3 - 13, wobei das zahlenmittlere Molekulargewicht jeder hydrophoben Einheit der
Komponente Hi zwischen 80 und 1000 g/mol liegt, insbesondere zwischen 110 und 500 g/mol und besonders zwischen 110 und 280 g/mol.
15. Emulsion gemäß mindestens einem der Ansprüche 3 - 14, wobei das zahlenmittlere Molekulargewicht jeder wasserlöslichen Einheit der Komponente Hi mindestens 500 g/mol beträgt.
16. Emulsion gemäß mindestens einem der Ansprüche 3 - 15, wobei die wasserlösliche Einheit der Komponente II ein lineares Polymer ist.
17. Emulsion gemäß mindestens einem der Ansprüche 3 - 16, wobei die wasserlösliche Einheit der Komponente II nicht ionisch ist.
18. Emulsion gemäß mindestens einem der Ansprüche 3 - 17, wobei die wasserlösliche Einheit der Komponente II ionisch ist.
19. Emulsion gemäß mindestens einem der Ansprüche 3 - 18, wobei sich die wasserlösliche Einheit der Komponente II aus einem ionischen und einem nichtionischen Bestandteil zusammensetzt.
20. Emulsion gemäß mindestens einem der Ansprüche 3 - 19, wobei die hydrophobe Einheit der Komponente Hi ein Kohlenwasserstoffrest, insbesondere ein Alkylrest, ist.
21. Emulsion gemäß Anspruch 20, wobei der Kohlenwasserstoffrest, insbesondere der Alkylrest 6 bis 50 Kohlenstoffatome, vorzugsweise 8 bis 20 Kohlenstoffatome umfasst.
22. Emulsion gemäß mindestens einem der Ansprüche 3 - 21, wobei die Komponente Hi ein Alkoholethoxylat bestehend aus einem einwertigem
Alkohol mit 8-20 C-Atomen und 25 - 500 Ethylenoxideinheiten ist.
23. Emulsion gemäß mindestens einem der Ansprüche 2 - 22 dadurch gekennzeichnet, dass sie eine Mikroemulsion, insbesonders eine bikontinuierliche Mikroemulsion ist.
24. Reiniger, welcher die Emulsion gemäß mindestens einem der Ansprüche 2 - 23 umfasst.
25. Reiniger gemäß Anspruch 24 mit einem Gesamttensidgehalt von weniger als 15%, insbesondere weniger als 12% oder 9% oder 7%.
26. Verwendung des Reinigers gemäß Anspruch 24 oder 25 in der Druckindustrie, vor allem im Offsetdruck, insbesondere zum Entfernen von Druckfarben und von Papierstaubaufbau von Druckmaschinen und
Druckformen, zum Reinigen von Druckzylindern, Druckwalzen und Oberflächen von Druckmaschinen, bevorzugt zum Reinigen von Druckmaschinen zum konventionellen Drucken, sowie von Druckformen bei Unterbrechung des Druckvorgangs.
27. Verwendung des Reinigers gemäß Anspruch 24 oder 25 zum Abreinigen von Farben, Lacken, Papierstauaufbau, salzartigen, ölartigen und teerartigen Verbindungen und Klebstoffen, als Allzweckreiniger und Neutralreiniger im Haushalt, in der Industrie und gewerblichen Bereich.
28. Kosmetikartikel, welcher die Emulsion gemäß mindestens einem der Ansprüche 2 - 23 umfasst.
29. Lebensmittel, welches die Emulsion gemäß mindestens einem der Ansprüche 2 - 23 umfasst.
30. Verfahren zur Herstellung der Emulsion gemäß mindestens einem der
Ansprüche 2 - 23, wobei die Komponenten Ii, I2 und II gemischt werden.
31. Verwendung des Reinigers gemäß Anspruch 24 oder 25 zum Abreinigen von Farben und Lacken auf wässriger und organischer Basis, insbesondere zum Reinigen von Pinseln.
32. Verwendung des Reinigers gemäß Anspruch 24 oder 25 zum Abreinigen von Farben, Lacken, Öl und/oder salzartigen Rückständen von Metall- oder/und Kunststoffoberflächen.
PCT/EP2008/055176 2007-04-27 2008-04-28 Mischung, welche ein alkylpolyglucosid, ein cotensid und ein polymeres additiv umfasst WO2008132202A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/451,082 US20100144898A1 (en) 2007-04-27 2008-04-28 Mixture comprising an alkylpolyglucoside, a cosurfactant and a polymer additive
EP08759391A EP2152843A2 (de) 2007-04-27 2008-04-28 Mischung, welche ein alkylpolyglucosid, ein cotensid und ein polymeres additiv umfasst
JP2010504723A JP5647515B2 (ja) 2007-04-27 2008-04-28 アルキルポリグルコシド、共界面活性剤および高分子添加剤を含む混合物
US13/959,970 US20140018277A1 (en) 2007-04-27 2013-08-06 Mixture comprising an alkyl polyglucoside, a cosurfactant and a polymer additive

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102007020426A DE102007020426A1 (de) 2007-04-27 2007-04-27 Mischung, welche ein Alkylpolyglucosid, ein Cotensid und ein polymeres Additiv umfasst
DE102007020426.6 2007-04-27
DE102007035388.1 2007-07-26
DE102007035388 2007-07-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/959,970 Division US20140018277A1 (en) 2007-04-27 2013-08-06 Mixture comprising an alkyl polyglucoside, a cosurfactant and a polymer additive

Publications (2)

Publication Number Publication Date
WO2008132202A2 true WO2008132202A2 (de) 2008-11-06
WO2008132202A3 WO2008132202A3 (de) 2009-01-08

Family

ID=39790330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/055176 WO2008132202A2 (de) 2007-04-27 2008-04-28 Mischung, welche ein alkylpolyglucosid, ein cotensid und ein polymeres additiv umfasst

Country Status (4)

Country Link
US (2) US20100144898A1 (de)
EP (1) EP2152843A2 (de)
JP (1) JP5647515B2 (de)
WO (1) WO2008132202A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013139842A1 (de) 2012-03-20 2013-09-26 Bernd Schwegmann Gmbh & Co. Kg Reinigungsmittel auf mikroemulsionsbasis
DE102015011694A1 (de) 2015-09-14 2017-03-16 Forschungszentrum Jülich GmbH Reinigungsmittel auf Mikroemulsionsbasis

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005049765A1 (de) * 2005-10-18 2007-04-19 Forschungszentrum Jülich GmbH Verfahren zur Effizienzsteigerung von Tensiden, zur Aufweitung des Temperaturfensters, zur Unterdrückung lamellarer Mesophasen in Mikroemulsionen mittels Additiven, sowie Mikroemulsionen
US7655082B2 (en) * 2007-02-15 2010-02-02 Sanford, L.P. Ink compositions containing an emulsion
US9109191B2 (en) * 2009-12-15 2015-08-18 Invista North America S.A.R.L. Emulsion compositions and a method for selecting surfactants
GB2535131B (en) * 2014-10-06 2022-05-04 Nch Corp pH neutral deruster composition
CN109092203A (zh) * 2018-09-18 2018-12-28 徐州东宁胶业有限公司 一种液体胶的搅拌装置
CN110627161A (zh) * 2019-08-30 2019-12-31 佛山市南海区里水镇经济促进局 一种多功能分离筛网的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19839054A1 (de) * 1998-08-28 2000-03-02 Forschungszentrum Juelich Gmbh Verfahren zur Effizienzsteigerung von Tensiden bei simultaner Unterdrückung lamellarer Mesophasen sowie Tenside, welchen ein Additiv beigefügt ist
EP1639989A1 (de) * 2004-09-22 2006-03-29 Kao Corporation Mikroemulsion

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4120084A1 (de) * 1991-06-18 1992-12-24 Henkel Kgaa Verwendung von speziellen alkylglykosiden als hilfsmittel in der textilen vorbehandlung
DE4320119A1 (de) * 1993-06-18 1994-12-22 Henkel Kgaa Flüssigkristalline wäßrige Tensidzubereitung
FR2712595B1 (fr) * 1993-11-19 1995-12-22 Seppic Sa Un concentré comportant des alkylglycosides et ses utilisations.
DE19615271A1 (de) * 1996-04-18 1997-10-23 Huels Chemische Werke Ag Tensidhaltige Reinigungsmittel in Form einer Mikroemulsion
DE19747892A1 (de) * 1997-10-30 1999-05-06 Henkel Kgaa Verwendung von Alkylpolyglycosiden in Druckfarbenreinigern
US6407051B1 (en) * 2000-02-07 2002-06-18 Ecolab Inc. Microemulsion detergent composition and method for removing hydrophobic soil from an article
SE523226C2 (sv) * 2000-05-25 2004-04-06 Akzo Nobel Nv En mikroemulsion innehållande en grenad alkylglykosid
DE60327691D1 (de) * 2002-02-11 2009-07-02 Rhodia Chimie Sa Waschmittel mit blockcopolymer
JP4603289B2 (ja) * 2003-06-06 2010-12-22 花王株式会社 硬質表面用洗浄剤組成物
FR2867395B1 (fr) * 2004-03-15 2006-06-16 Rhodia Chimie Sa Emulsion sechee, son procede de preparation, et ses utilisations
JP4832036B2 (ja) * 2004-09-22 2011-12-07 花王株式会社 皮膚洗浄剤
JP2006256963A (ja) * 2005-03-15 2006-09-28 Cognis Japan Ltd 皮膚洗浄剤組成物
DE102005049765A1 (de) * 2005-10-18 2007-04-19 Forschungszentrum Jülich GmbH Verfahren zur Effizienzsteigerung von Tensiden, zur Aufweitung des Temperaturfensters, zur Unterdrückung lamellarer Mesophasen in Mikroemulsionen mittels Additiven, sowie Mikroemulsionen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19839054A1 (de) * 1998-08-28 2000-03-02 Forschungszentrum Juelich Gmbh Verfahren zur Effizienzsteigerung von Tensiden bei simultaner Unterdrückung lamellarer Mesophasen sowie Tenside, welchen ein Additiv beigefügt ist
EP1639989A1 (de) * 2004-09-22 2006-03-29 Kao Corporation Mikroemulsion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013139842A1 (de) 2012-03-20 2013-09-26 Bernd Schwegmann Gmbh & Co. Kg Reinigungsmittel auf mikroemulsionsbasis
DE102012204378A1 (de) 2012-03-20 2013-09-26 Bernd Schwegmann Gmbh & Co. Kg Reinigungsmittel auf Mikroemulsionsbasis
EP2828370A1 (de) 2012-03-20 2015-01-28 Bernd Schwegmann GmbH & Co. KG Reinigungsmittel auf mikroemulsionsbasis
DE102015011694A1 (de) 2015-09-14 2017-03-16 Forschungszentrum Jülich GmbH Reinigungsmittel auf Mikroemulsionsbasis
WO2017045659A1 (de) 2015-09-14 2017-03-23 Forschungszentrum Jülich GmbH Reinigungsmittel auf mikroemulsionsbasis

Also Published As

Publication number Publication date
EP2152843A2 (de) 2010-02-17
US20140018277A1 (en) 2014-01-16
WO2008132202A3 (de) 2009-01-08
JP5647515B2 (ja) 2014-12-24
JP2010525132A (ja) 2010-07-22
US20100144898A1 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
EP2828370B1 (de) Reinigungsmittel auf mikroemulsionsbasis
WO2008132202A2 (de) Mischung, welche ein alkylpolyglucosid, ein cotensid und ein polymeres additiv umfasst
DE60305861T2 (de) Reinigungsmittelzusammensetzungen
DE19615271A1 (de) Tensidhaltige Reinigungsmittel in Form einer Mikroemulsion
EP3350307B1 (de) Reinigungsmittel auf mikroemulsionsbasis
DE19859808A1 (de) Mehrphasiges Reinigungsmittel mit Ligninsulfonat
EP1082228B1 (de) Verfahren zum reinigen von druckmaschinen und druckformen
EP0656049B1 (de) Giessfähige flüssige wässrige reinigungsmittelkonzentrate
EP1470208B1 (de) Alkylglykolalkoxylate oder -diglykolalkoxylate, ihre mischungen mit tensiden und ihre verwendung
WO2000039270A1 (de) Wässriges mehrphasiges reinigungsmittel
EP1141227B1 (de) Mehrphasiges reiningungsmittel mit naphthalinsulfonsäure- formaldehyd- kondensat
DE4025039C2 (de)
DE102007020426A1 (de) Mischung, welche ein Alkylpolyglucosid, ein Cotensid und ein polymeres Additiv umfasst
EP1141224B1 (de) Mehrphasiges reinigungsmittel mit endgruppenverschlossenem polyalkoxyliertem alkohol
WO1999022943A1 (de) Verwendung von alkylpolyglycosiden in druckfarbenreinigern
DE4441144C2 (de) Reinigungsmittel für die Druckereitechnik
WO2004013271A1 (de) Reinigungsmittel für harte oberflächen
DE19859641A1 (de) Mehrphasiges Reinigungsmittel mit alkoxyliertem Dihydroxyaromaten
DE10061418A1 (de) Verfahren zur Abfüllung mehrphasiger flüssiger Wasch- und Reinigungsmittel
DE10202007A1 (de) Alkylglykolalkoxylate, ihre Mischungen mit Tensiden und ihre Verwendung
DE10060095A1 (de) Verfahren zur Herstellung wäßriger mehrphasiger Reinigungsmittel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08759391

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010504723

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2008759391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008759391

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12451082

Country of ref document: US