EP2828370B1 - Reinigungsmittel auf mikroemulsionsbasis - Google Patents

Reinigungsmittel auf mikroemulsionsbasis Download PDF

Info

Publication number
EP2828370B1
EP2828370B1 EP13710857.7A EP13710857A EP2828370B1 EP 2828370 B1 EP2828370 B1 EP 2828370B1 EP 13710857 A EP13710857 A EP 13710857A EP 2828370 B1 EP2828370 B1 EP 2828370B1
Authority
EP
European Patent Office
Prior art keywords
weight
water
microemulsion
salt
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13710857.7A
Other languages
English (en)
French (fr)
Other versions
EP2828370A1 (de
Inventor
Renate BEISSER
Jürgen Allgaier
Jens HILLERICH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bernd Schwegmann & Co KG GmbH
Forschungszentrum Juelich GmbH
Original Assignee
Bernd Schwegmann & Co KG GmbH
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bernd Schwegmann & Co KG GmbH, Forschungszentrum Juelich GmbH filed Critical Bernd Schwegmann & Co KG GmbH
Publication of EP2828370A1 publication Critical patent/EP2828370A1/de
Application granted granted Critical
Publication of EP2828370B1 publication Critical patent/EP2828370B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • C11D17/0021Aqueous microemulsions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2079Monocarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2093Esters; Carbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/34Organic compounds containing sulfur
    • C11D3/3472Organic compounds containing sulfur additionally containing -COOH groups or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/123Sulfonic acids or sulfuric acid esters; Salts thereof derived from carboxylic acids, e.g. sulfosuccinates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/667Neutral esters, e.g. sorbitan esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/74Carboxylates or sulfonates esters of polyoxyalkylene glycols

Definitions

  • the invention relates to aqueous microemulsions, their use as cleaning agents, in particular for the removal of polymer-like soils, such as, for example, paint residues, as well as a method for cleaning using the aqueous microemulsion.
  • Detergents usually get their effectiveness in that they are specially designed for the soiling to be cleaned.
  • a cleaner for water-soluble contaminants is typically water-based, whereas a cleaner for oily soils is typically oil-based.
  • a cleaner that works against both types of soiling consists of water, an oil and at least one surfactant, so that emulsions can form.
  • Surfactants are washing-active substances (detergents) which are contained in detergents, dishwashing detergents and shampoos. They have a characteristic structure and have at least one hydrophilic and one hydrophobic structural unit. They have an amphiphilic character. If the stabilizing character of water-in-oil mixtures is in the foreground, these amphiphilic substances are used as emulsifiers.
  • Surfactants lower the interfacial tension between immiscible phases, a hydrophilic (water-soluble, lipophobic), mostly aqueous phase, and a hydrophobic (oil-soluble, lipophilic) phase.
  • Such aqueous two-phase mixtures are referred to as emulsions.
  • emulsions may contain hydrophilic and hydrophobic phases in different volumes. They have a continuous and a disperse phase, which is a very small droplet stabilized by surfactant occupancy, in the continuous phase. Depending on the nature of the continuous phase, it is referred to as oil-in-water or water-in-oil emulsions.
  • microemulsions are thermodynamically stable, emulsions separate into two phases due to their instability. At the microscopic level, this difference is reflected in the fact that the emulsified liquids in microemulsions generally have smaller structure sizes than in emulsions, such as in DE 10 2005 049 765 A1 described. Thermodynamically unstable emulsions thus have larger structures.
  • Lamellar mesophases can occur in microemulsions. Lamellar mesophases lead to optical anisotropy and possibly increased viscosity. These properties are e.g. undesirable for cleaners. In addition, phase separation occurs when lamellar phases coexist with microemulsions.
  • Microemulsions consist of at least three components, namely oil, water and a surfactant.
  • the surfactant mediates between these two components and allows a macroscopic-homogeneous mixture. On a microscopic scale, the surfactant forms a film between the oil and water domains. Oil and water are immiscible and therefore form domains on the nanoscale.
  • Microemulsions are macroscopically homogeneous, behave optically isotropically and are thermodynamically stable in contrast to emulsions. There are W / O and O / W droplet microemulsions where water droplets from the oil or oil droplets are enclosed by the water. Approximately equal proportions of oil to water promote the formation of a bicontinuous microemulsion. Characteristic of the efficiency of a surfactant is the minimum amount of surfactant required to obtain a microemulsion.
  • Microemulsions are intensively studied in the field of basic science. The knowledge gained is largely based on the use of pure, defined components: deionized water, chemically pure oils and pure surfactants. In technical microemulsions, the components usually consist of mixtures. As a result, the phase ratio changes considerably and the findings from basic research gained in simplified models can not be readily obtained technical applications are transmitted. Another difficulty lies in the low temperature stability of microemulsions, since in practical formulations the stability must be present over a wide temperature range in order to ensure safe storage, transport and application. Especially systems based on the frequently used fatty alcohol ethoxylates are only stable in a very narrow temperature window of a few degrees Celsius or must have extremely high surfactant concentrations in order to be stable over larger temperature ranges.
  • microemulsions prepared with the aid of sugar surfactants can be stable over larger temperature ranges ( WO 2008/132202 A1 ).
  • mixtures of nonionic and ionic surfactants can be used.
  • the development of microemulsions, which are sensitive to the setting of their parameters, and at the same time stable as well as a high cleaning performance, especially with regard to water-insoluble or only very sparingly soluble substances, is a particular challenge.
  • cleaners which are used in the commercial and private sector, for example as brush cleaners or adhesive removers, consist essentially of low-boiling mixtures of aliphatic and aromatic hydrocarbons or other organic solvents to which surfactants are often added. These cleaners are highly harmful to health and harmful to the environment. In addition, conventional cleaners are often highly alkaline, which can attack the substrates to be cleaned.
  • microemulsions are already known in the prior art. So describes DE 10 2005 049 765 in general a process for cleaning with microemulsions by means of hydrophilic polymeric additives.
  • microemulsions containing sodium salts of sulfosuccinic acid esters, C 2 -C 10 diols and oil.
  • the oil component may be an ester.
  • the microemulsions can contain other solvents and are suitable as a cleaner for degreasing or paint stripping.
  • EP 1 780 259 describes microemulsions for cleaning hard surfaces, which in addition to dibasic esters contain polar solvents as well as anionic surfactants.
  • microemulsions based on ester oils described in the prior art require further solvents for stabilizing the microemulsion or for achieving the cleaning performance and are thus generally not free from labeling according to current German legislation.
  • the object of the present invention was to provide environmentally friendly microemulsions which are stable over a wide temperature range, have a low amount of surfactant and, moreover, have an outstanding cleaning performance, in particular with regard to Farbanschmutzieux, oily and greasy soiling and soiling, the organic components are polymer-based and are particularly preferred no labeling according to current German legislation.
  • the object of the present invention was therefore to remedy the problems identified in the prior art.
  • the cleaning performances of the microemulsions according to the invention are essentially the same as those of the solvent-based cleaners.
  • the microemulsions according to the invention also have a wider range of applications. They are useful, for example, for removing fresh or dried water-based inks. Such colors are usually removed with water, but this can lead to resin residues or residues of dried-on paint. Resin residues can stick eg brush hairs.
  • the microemulsions according to the invention are also suitable for removing water-soluble inks without leaving residual resin. Dried paint is removed, which is not possible with water.
  • Conventional brush cleaners are only suitable for cleaning solvent based paints, they are not suitable for water based paints.
  • the Microemulsions according to the invention are furthermore advantageous if long exposure times are necessary, for example in order to remove dried soiling. Conventional cleaners are not suitable here because the organic solvents evaporate quickly.
  • microemulsions according to the invention are readily dilutable with water while retaining their microemulsion property. This allows you to be used with more easily removable dirt, diluted with water. In addition, detergent residues can be easily removed with water.
  • microemulsions according to the invention in contrast to conventional cleaners after contact with skin and after washing, leave a pleasant feeling on the skin.
  • the microemulsions according to the invention are essentially odorless.
  • the microemulsions according to the invention are also distinguished by the fact that they require only a small amount of surfactant and are stable over a relatively wide temperature range.
  • the microemulsion according to the invention is substantially free of volatile organic compounds (VOCs).
  • VOCs volatile organic compounds
  • the VOC is a volatile organic compound which has a vapor pressure of 0.01 kPa or more at 293.15 K.
  • VOCs include e.g. Compounds of the substance groups alkanes / alkenes, aromatics, terpenes, halogenated hydrocarbons, ethers, esters, aldehydes and ketones.
  • the microemulsion of the present invention is substantially free of organic solvents, especially VOCs.
  • substantially free in the context of the present invention means that the microemulsion is less than 10% by weight, preferably less than 5% by weight, more preferably less than 2% by weight, more preferably less than 1% by weight, in particular less than 0.5% by weight, and in particular completely free.
  • the aqueous microemulsion according to the invention comprises as essential components the components a) to e).
  • the aqueous microemulsion according to the invention comprises as component a) one or more liquid carboxylic acid esters, which are also referred to below as "ester oils".
  • the ester oil forms the oil component in the microemulsion.
  • Ester oils have the advantage that they are non-polar and have a lipophilic character, which makes them particularly suitable for oily soiling and, in particular, for soiling whose organic constituents are polymer-based. In addition, they have a high boiling point and are therefore volatile.
  • Suitable liquid carboxylic esters have a melting point which is below 20 ° C, i. the liquid carboxylic esters are liquid at 20 ° C.
  • Suitable carboxylic acid esters have 6 to 40 carbon atoms, preferably 6 to 22 and especially 10 to 22 carbon atoms.
  • the ester oil may contain saturated, unsaturated or aromatic radicals.
  • liquid carboxylic acid esters selected from the group consisting of esters of monohydric alcohol and mono- or dicarboxylic acid and esters of dihydric alcohol and monocarboxylic acid.
  • esters of monohydric alcohols with monocarboxylic acids are particularly preferred.
  • liquid carboxylic acid esters wherein the ester is a C 10 -C 22 monocarboxylic acid and methanol, preferably methyl dodecanoate or rapeseed oil methyl ester.
  • liquid carboxylic acid esters which have a mixture of monocarboxylic acids having 10 to 22 carbon atoms and dicarboxylic acid methyl ester having 6 to 10 carbon atoms.
  • the ester oil comprises one or more components selected from the group consisting of rapeseed oil methyl ester, octyloctanoate, oleic acid ethyl ester, methyl laurate, dimethyl succinate, dimethyl adipate, dimethyl glutarate and isopropyl myristate.
  • the aqueous microemulsions of the present invention comprise the liquid carboxylic acid ester in an amount of 10 to 40% by weight, preferably 20 to 35% by weight, based in each case on the total weight of the microemulsion.
  • the weight ratio of the liquid carboxylic ester (component a)) to the sum of components c), d) and e) to 1.5 to 10 , preferably 2.5 to 8, in particular 3 to 8 or 4 to 8 set.
  • aqueous microemulsions according to the invention have as component b) one or more water-soluble salt (s) with one or more cations, preferably selected from the group consisting of sodium, potassium, calcium, magnesium and ammonium.
  • salts are water-soluble, if at least 1 g of salt per liter of water at 20 ° C can be completely dissolved. Preference is given to the alkali metal or alkaline earth metal or ammonium salts.
  • inorganic and organic anions are suitable.
  • Preferred inorganic anions are selected from the group consisting of sulfate, chloride, hydrogen sulfate, phosphate and hydrogen sulfate.
  • Preferred organic anions are selected from the group consisting of acetate, gluconate, citrate and tartrate.
  • component b) is a water-soluble salt selected from the group consisting of sodium sulfate, sodium chloride, sodium gluconate, sodium citrate, trisodium phosphate, disodium hydrogen phosphate, potassium sulfate, potassium chloride, ammonium sulfate, ammonium chloride, magnesium sulfate, magnesium chloride, calcium chloride, calcium acetate , Magnesium acetate and potassium sodium tartrate.
  • the microemulsions according to the invention comprise calcium acetate and / or magnesium acetate.
  • the salt is typically present in an amount of from 0.1 to 4% by weight, preferably from 0.25 to 3% by weight, based in each case on the total weight of the microemulsion ,
  • the aqueous microemulsion according to the invention additionally contains component c), which is one or more salts of sulfosuccinic acid ester.
  • the salt of the sulfosuccinic acid esters is an alkali metal salt, especially a sodium salt.
  • the salt of sulfosuccinic acid esters acts as an anionic surfactant.
  • sulfosuccinic acid ester salts having C 6 -C 12 -alcohol radicals have been found to be present in the microemulsions according to the invention.
  • the sulfosuccinic ester salt used contributes significantly to the stability of the microemulsion according to the invention.
  • salts of the sulfosuccinic esters selected from the group consisting of diesters of sulfosuccinic acid alkali salt with C 6 -C 10 -alcohols, monoesters of sulfosuccinic acid dialkali salt with C 8 -C 12 -alcohols and monoesters of sulfosuccinic acid dialkali salt with ethoxylated C 10 -C 14 -alcohols.
  • the diester of the sulfosuccinic acid alkali salt is present as a diester having at least one, preferably two, ethoxylated C 10 -C 14 alcohol radicals.
  • the alcohol residues can be linear or branched.
  • the salt of the sulfosuccinic acid esters is the sodium salt of sulfosuccinic acid bis-2-ethylhexyl ester.
  • the salts of the sulfosuccinic acid esters are typically present in an amount of from 1 to 10% by weight, preferably in an amount of from 1.5 to 5% by weight or from 2.0 to 5.0% by weight. %, in each case based on the total weight of the microemulsion.
  • the salt of the sulfosuccinic acid esters is typically present in an amount of from 30 to 75% by weight, preferably in an amount of from 40 to 70% by weight.
  • the microemulsions according to the invention have the component d), which is one or more nonionic surfactant (s) selected from alkoxylated sorbitan ester and alkoxylated vegetable oil.
  • component d is one or more nonionic surfactant (s) selected from alkoxylated sorbitan ester and alkoxylated vegetable oil.
  • the nonionic surfactant is selected from ethoxylated sorbitan ester and / or ethoxylated vegetable oil.
  • Preferred sorbitan esters are the sorbitan monoesters, in particular those sorbitan monoesters which have a saturated or unsaturated, linear or branched fatty acid radical.
  • alkoxylated sorbitan esters which may be, for example, propoxylated and / or ethoxylated.
  • ethoxylated sorbitan esters are particularly preferred, in particular those sorbitan esters which are provided on average with 3 to 30, preferably 4 to 20, ethoxylate groups.
  • the nonionic surfactant is an ethoxylated sorbitan monoester having a saturated or unsaturated C 12 -C 18 fatty acid residue.
  • the nonionic surfactant is an alkoxylated, in particular ethoxylated castor oil.
  • the degree of ethoxylation of the ethoxylated sorbitan ester and / or the ethoxylated vegetable oil is adjusted so that the HLB value is from 11 to 17, more preferably 12 to 16 or 13 to 16.
  • the nonionic surfactant is selected from the group consisting of polyoxyethylene (4) sorbitan monolaurate, polyoxyethylene (20) sorbitan monopalmitate and polyoxymethylene (20) sorbitan monooleate.
  • the nonionic surfactant is preferably in an amount of 1.0 to 7.0% by weight, more preferably 1.5 to 5.0% by weight or 1.0 to 5.0% by weight, based on the Total weight of the microemulsion before.
  • the nonionic surfactant is present in an amount of from 10 to 70% by weight or from 20 to 60% by weight, preferably in an amount of from 15 to 60% by weight or from 23 to 55% by weight. %, in each case based on the total weight of components c), d) and e).
  • the aqueous microemulsions according to the invention contain one or more boosters.
  • the boosters used serve to increase the surfactant efficiency in the microemulsions according to the invention.
  • the boosters help to increase the temperature range in which the microemulsions are stable.
  • the boosters of the present invention are routinely designed to increase the stability of the microemulsions by stiffening the interface.
  • boosters consist of at least one water-soluble unit which has at least one hydrophobic unit at least at one chain end and / or has a hydrophobic unit as non-terminal substituent.
  • the booster is in the form of a polymer. Throughout the polymer booster the hydrophilic character predominates. Due to the hydrophobic moiety or moieties, the polymers in water preferentially form micelles. Suitable boosters are for example in the DE 198 39 054 and DE 10 2005 049 765 described.
  • the water-soluble unit of the booster is not limited in its design to certain types of structures, but it is according to the invention on the combination of the larger water-soluble unit with the hydrophobic units or on.
  • the water-soluble unit of the polymer is preferably linear, but star-shaped, branched or other types of structures are also possible.
  • Linear means in polymers that the atoms forming the backbone of the chain are a linear unit.
  • the water-soluble unit may be nonionic or ionic, that is, a polyelectrolyte.
  • the electrical charges may be on any part of the water-soluble component of the polymer. Structures are also conceivable which are composed of at least one ionic and one nonionic fraction.
  • the water-soluble units can consist of the following monomers or mixtures thereof of at least two components: ethylene oxide, vinylpyrrolidine, acrylic acid, methacrylic acid and maleic anhydride.
  • the water-soluble portion of the polymeric additive is preferably a polyethylene oxide or polyethylene glycol.
  • Further examples are copolymers of ethylene oxide and propylene oxide, polyvinyl alcohol and its water-soluble derivatives.
  • Also suitable are polyvinylpyrrolidone, polyvinylpyridine, polymaleic anhydride, polymaleic acid, polyacrylic acid, polymethacrylic acid, polystyrenesulfonic acid and their water-soluble salts.
  • the water-soluble units are preferably linear.
  • the molecular weight distribution of the water-soluble unit defined by the ratio of the weight-average molecular weight and the number-average molecular weight is preferably ⁇ 1.2.
  • the number-average molecular weight of the water-soluble unit of the polymeric additive is preferably between 500 and 20,000 g / mol, more preferably 1,000 to 7,000 g / mol, or between 1300 and 5000 g / mol.
  • the hydrophobic unit design is not limited to selected types of structures. Rather, here too, only the hydrophobic or water-insoluble properties of this unit are important.
  • Preferred molecular sizes for the hydrophobic moiety are 110-500 g / mol, more preferably 110 to 280 g / mol.
  • the hydrophobic units consist of non-water-soluble residues. These are preferably alkyl radicals which preferably contain between 6 and 50 carbon atoms, more preferably between 8 and 20 carbon atoms.
  • the radicals can also contain aromatic groups or carbon double or triple bonds, they can be linear or branched be.
  • any other hydrophobic organic radicals which contain, for example, oxygen, nitrogen, fluorine or silicon atoms can also be used.
  • the hydrophobic moiety may also be a polymer.
  • the hydrophobic moiety may be a residue of defined structure and molecular weight, such as alkyl groups. Also mixtures of substances, such as occur in technical products, are possible. However, it can also be a polymeric radical, such as polybutylene oxide.
  • the water-soluble moiety of the polymer carries a hydrophobic moiety on at least one chain end.
  • the water-soluble moiety of the polymer may carry a hydrophobic moiety in a non-chain end position.
  • hydrophobic moieties of the polymeric booster may be incorporated at least at one location between the water-soluble moieties such that the water-soluble moieties of the polymer are interrupted by hydrophobic moieties.
  • the ratio of the molecular weights of water-soluble part to hydrophobic part is 7-200, preferably 7-50.
  • the water-soluble unit of the booster is a linear polymer and carries a hydrophobic moiety at one chain end.
  • alkyl ethoxylates obtained by ethoxylation of C 8 -C 20 -alcohols.
  • the booster in water prefers to form micelles.
  • a hydrophobic moiety is located at either end of the water soluble moiety.
  • linear water-soluble polymers which have a hydrophobic unit only at one chain end.
  • alcohol ethoxylates which have a high degree of ethoxylation. These substances can be considered as polyethylene oxide with a hydrophobic alkyl radical or be regarded as long-chain or hydrophilic emulsifiers.
  • hydrophobic components for example, aliphatic alcohols or alkylphenols can be used, which preferably have 8-20 carbon atoms.
  • the alcohol ethoxylates contain from 25 to 500 moles per mole of alcohol, more preferably from 50 to 200 moles of ethylene oxide.
  • An example is the commercially available compound Brij S 100-PA (SG) from Croda.
  • the proportion of water-soluble units which are not linked to hydrophobic units should be as low as possible, that is to say, for example, ⁇ 20% by weight.
  • the booster is in the form of a hydrophilic polymeric additive consisting of a water-soluble unit having at one end of a chain a hydrophobic, water-insoluble group with a Molecular weight of 80 to 500 g / mol and wherein preferably the mass ratio of the water-soluble unit to the hydrophobic, water-insoluble groups is 5 to 200.
  • the booster consists of a linear, water-soluble polymer which carries a hydrophobic, water-insoluble group at one end of the chain.
  • the hydrophobic, water-insoluble group preferably has a molecular weight of 110 to 500 g / mol and particularly preferably a molecular weight of 110 to 280 g / mol.
  • the molecular weight ratio of the water-soluble unit to the hydrophobic water-insoluble groups is preferably 7 to 50.
  • the booster consists of an alcohol ethoxylate of a C 8 -C 20 -alcohol having 25 to 500 ethoxy groups, preferably 50 to 200 ethoxy groups.
  • the booster is present in an amount of 3 to 20% by weight, preferably 5 to 15% by weight, in particular 7 to 15% by weight, in each case based on the total weight of components c), d) and e), before.
  • the aqueous microemulsions according to the invention have the components c) + d) + e) in an amount of 2 to 20% by weight, preferably 3 to 15% by weight, more preferably 3 to 10% by weight and in particular 3 to 8 wt .-% or 4 to 8 wt .-%, each based on the total weight of the microemulsion on.
  • microemulsions according to the invention can be used as cleaning agents in the private as well as in the commercial sector. It is particularly advantageous that the aqueous microemulsions can be used as neutral cleaners and thus replace the known in the prior art aggressive alkaline cleaner for the removal of oily soils, such as paint residues.
  • the microemulsions according to the invention have a pH of from 4 to 11, preferably from 5 to 9.
  • the microemulsions according to the invention may additionally have further additives.
  • Suitable additives are, for example, mono-, di- or triethylene glycol monoalkyl ethers or aryl ethers, such as ethylene glycol propyl ether, ethylene glycol butyl ether (butyl glycol), ethylene glycol hexyl ether, diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether (butyl diglycol), diethylene glycol hexyl ether, triethylene glycol methyl ether, Triethylene glycol ethyl ether, triethylene glycol butyl ether, ethylene glycol phenyl ether;
  • Mono-di- or tripropylene glycol monoalkyl ethers or aryl ethers such as propylene glycol methyl ether, propylene glycol ethyl ether, propylene glycol n-propyl ether, propylene glycol butyl ether, dipropylene glycol methyl ether, dipropylene glycol n-propyl ether, dipropylene glycol butyl ether, tripropylene glycol methyl ether, tripropylene glycol butyl ether, propylene glycol phenyl ether.
  • Mono-di- or triethylene glycol dialkyl ethers such as dipropylene glycol dimethyl ether
  • N-alkylpyrrolidones having a C 1 -C 12 -alkyl radical for example N-ethylpyrrolidone, N-octylpyrrolidone, N-dodecylpyrrolidone.
  • biocides and / or dyes as well as antirust and Antioxdanzstoff can be added.
  • the additives may be present in amounts of 0.01 to 3, preferably 0.1 to 1 wt .-%, based on the total weight of the microemulsion.
  • microemulsions of the invention may be in the form of oil-in-water or water-in-oil microemulsions. Preferably, they are present as a bicontinuous microemulsion. Bicontinuous microemulsions comprise two domains, a hydrophobic and a hydrophilic domain in the form of extended juxtaposed and intertwined domains, at the interface of which stabilizing surface active surfactants are enriched in a monomolecular layer. Microemulsions form very easily because of the very low interfacial tension spontaneously when the individual components water, oil and a suitable surfactant system are mixed.
  • microemulsions Since the domains in at least one dimension only very small extent on the order of nanometers, microemulsions often appear visually transparent and are thermodynamic, ie unlimited in time, stable depending on the surfactant system used in a certain temperature range. If microemulsions have low surfactant contents, they may also be cloudy and yet thermodynamically stable.
  • the microemulsion is particularly stable in the temperature range of 10 to 40 ° C, in particular 5 to 60 ° C.
  • microemulsions according to the invention are stable in a temperature range ⁇ 5 ° C to> 60 ° C.
  • the microemulsion of the present invention may be a water-in-oil or oil-in-water droplet microemulsion wherein water droplets from the oil or oil droplets are enclosed by the water.
  • bicontinuous microemulsions are particularly preferred.
  • the weight fraction of ester oil (component a)) in the ester oil-water mixture is from 12 to 45% by weight, preferably from 23 to 38% by weight, based on the total weight of ester oil and water in the microemulsion.
  • Another object of the present invention is a cleaner, consisting or comprising the microemulsion according to the invention.
  • Another object of the present invention is the use of the microemulsion according to the invention as a cleaning agent, in particular for removing oily soiling or resins and polymer-like soils.
  • the proportion of components c) and d) is less than 15 wt .-%, in particular less than 12 wt .-% or less than 9 wt .-% or less than 7 wt .-%, for example 2.5 to 7 wt .-%, each based on the total weight of the cleaning agent.
  • this very low surfactant content makes it possible to produce products which are not subject to any labeling requirement with respect to their surfactant content.
  • the cleaner according to the invention is particularly suitable as a replacement of organic solvents. This results in a reduction of the amount of organic solvent used up to the abandonment of aromatic solvents result, which is advantageous in terms of occupational safety and environmental protection.
  • both cleaners according to the invention have the microemulsions according to the invention therein increased flash points compared to the organic phases contained therein.
  • the use of the cleaner according to the invention for cleaning colors, especially dried or dry paints, varnishes and tarry compounds and adhesives, as a general purpose cleaner and neutral detergent in the household, in the industry and the commercial sector is possible.
  • a use of the cleaner according to the invention is also recommended when cleaning paints and varnishes on an aqueous and organic basis, in particular for cleaning brushes.
  • the cleaner according to the invention can also be used for cleaning paints, varnishes, oil and / or salt-like residues of metal and / or plastic surfaces.
  • the cleaner according to the invention could thus replace, for example, organic cleaning agents in many areas of application.
  • the microemulsions according to the invention can also be used for cleaning in the printing industry, in particular for removing printing inks and paper dust build-up of printing presses and printing plates. It is suitable, for example, for removing water-based or oil-based printing inks and radiation-curing printing ink.
  • the cleaner finds application in the cleaning of printing cylinders, pressure rollers and surfaces of printing machines, preferably for cleaning printing machines for conventional printing and printing forms, for example, when interrupting the printing process or non-impact printing process.
  • Conventional printing processes in which the cleaner can be used include planographic printing, gravure printing, high-pressure printing, flexographic printing and screen printing, in particular offset and waterless offset printing.
  • the non-impact printing methods without printing form include electrophotography, ionography, magnetography, inkjet and thermography.
  • the microemulsion according to the invention is used for cleaning and / or removing compounds selected from the group consisting of paints, lacquers, greases, oils, resins, bitumen, tar, adhesive residues, sealants, rubber abrasion, cosmetic and make-up remnants and pyrolysis products of organic compounds, in particular for the purification and / or removal of contaminants whose organic constituents are polymer-based, for example, paints, adhesives, sealants, polymer foams, such as polyurethane foams.
  • compounds selected from the group consisting of paints, lacquers, greases, oils, resins, bitumen, tar, adhesive residues, sealants, rubber abrasion, cosmetic and make-up remnants and pyrolysis products of organic compounds, in particular for the purification and / or removal of contaminants whose organic constituents are polymer-based, for example, paints, adhesives, sealants, polymer foams, such as polyurethane foams.
  • microemulsion according to the invention is particularly suitable for the cleaning and / or removal of dried inks and adhesives.
  • the microemulsions according to the invention are used for the purification of dye residue contaminated tools, in particular tools for applying paints, such as brushes, paint rollers or paint sprayers.
  • microemulsions according to the invention show excellent cleaning performance, in particular in the case of polymer-based soiling.
  • the microemulsions according to the invention are suitable for removing organic pyrolysis products.
  • the microemulsions according to the invention are used for cleaning ovens, chimney panes or a grill.
  • Rape methyl ester is an ester oil from Overlack.
  • Octyloctanoate (octanoic acid octyl ester) is an ester oil from Sigma Aldrich.
  • Oleic acid ethyl ester from Sigma Aldrich.
  • Di Basic Ester Mixture of dimethyl succinate (33% by weight), dimethyl adipate (33% by weight), dimethyl glutarate (33% by weight) and methanol (0.2% by weight) from Caldic.
  • Tween 21 is a polyoxyethylene (4) sorbitan monolaurate from Sigma Aldrich, drug content 100%.
  • Tween 40 is a polyoxyethylene (20) sorbitan monopalmitate from Sigma Aldrich, drug content 100%.
  • Tween 80 is a polyoxyethylene (20) sorbitan monooleate from Sigma Aldrich, drug content 100%.
  • Emulan EL is an ethoxylated castor oil from BASF, active ingredient content 100%; HLB: 14.
  • Brij S100-PA- (SG) is a PEG-100 stearyl ether from Croda, drug content 100%.
  • Novel TDA-40 is a PEG-40 isotridecyl ether from Sasol, drug content 100%.
  • Novel 2426-100 is a PEG C 20-28 alkyl ether from Sasol with about 100 EO units, active ingredient content 100%; HLB: 18.3.
  • Emuldac AS-80 is a PEG 80 C 16-18 alkyl ether from Sasol, active ingredient content 100%.
  • Potassium sodium tartrate 4 hydrate trisodium citrate 2 hydrate, disodium hydrogen phosphate 2 hydrate, sodium gluconate (free of water of crystallization), calcium chloride (free of water of crystallization), sodium chloride (free of water of crystallization).
  • the temperature stability of the microemulsions was determined in a thermostated vessel by visual inspection.
  • the temperature phase boundaries of the single-phase microemulsion region were recognized due to the drastically increasing turbidity when the stability window was exceeded or not reached.
  • Lamellar phases were determined by crossed polarizers. In the ranges of stability given for the examples, microemulsions can coexist with lamellar phases.
  • the total surfactant contents relate to the active substance proportions of the surfactant components and of the booster. All percentages are based on the weight of the ingredients.
  • cleaners were tested for the ability to clean other materials. These tests were performed with acrylic sealant, building silicone and adhesive on stainless steel plates.
  • Examples 2 and 5 in WO 2008/132202 were used for comparative experiments.
  • the oil component Hydroseal G232H in Example 2 and Ketrul D85 in Ex. 5
  • the carboxylic acid ester rapeseed methyl ester RME
  • the mass ratio of the two surfactant components was varied around the values given in the examples. This was intended to capture the optimum temperature stability range for the microemulsions.
  • Example 2 from WO 2008/132202 has the following composition (all figures in% by weight): water 46.45 Hydroseal G 232 H 42.38 AG 6210 5.39 Span 20 4.88 Brij 700 0.90
  • the mixture can be characterized from the surfactant side as follows.
  • the surfactant components are AG 6210 (active content 60% by weight, the remainder is water), Span 20 (active content 100% by weight) and Brij 700 (active content 100% by weight). All other details relate to the active contents of the surfactants.
  • the total surfactant content in the above example is 9.0%.
  • the mass fraction of polymeric booster (Brij 700) in the total surfactant mixture is 10.0%.
  • Mass fraction booster m Brij 700 m Active salary AG 6210 + m chip 20 + m Brij 700
  • the stability range of the microemulsion phase is 0 to 52 ° C.
  • Table 1 shows the stability ranges of the microemulsions as a function of the total surfactant content and of delta.
  • the compositions of the individual mixtures are listed in Table 3.
  • Comparative Examples 1 to 15 show that when the hydrocarbon oil is replaced by ester oil, microemulsion phases develop only at total surfactant concentrations above 16%. Apart from the fairly high temperatures at which the microemulsion phases occur, the temperature windows are also quite narrow.
  • Example 5 from WO 2008/132202 has the following composition (all figures in% by weight): water 43.84 Ketrul D85 48.41 AG 6210 3.94 Imwitor 928 3.22 C12E190 0.59
  • the mixture can be characterized from the surfactant side as follows.
  • the surfactant components are AG 6210 (active content 60% by weight, the remainder is water), Imwitor 928 (active content 100% by weight) and C12E190 (active content 100% by weight). All other details relate to the active contents of the surfactants.
  • the total surfactant content in the above example is 6.2%.
  • Mass fraction booster m C 12 e 190 m Active salary AG 6210 + m Imwitor 928 + m C 12 e 190
  • the stability range of the microemulsion phase is 15 to 75 ° C.
  • Example 5 WO 2008/132202 The oil component Ketrul D85 replaced by RME, can not produce a microemulsion phase.
  • the surfactant mixture is not efficient enough to emulsify all water and oil as a microemulsion. Therefore, the total surfactant content in Comparative Examples was increased to about 28%.
  • Table 2 shows the stability ranges of the microemulsions as a function of the total surfactant content and of delta.
  • the compositions of the individual mixtures are listed in Tables 4a-e.
  • Comparative Examples 16 to 38 show that when the hydrocarbon oil is replaced by ester oil, microemulsion phases only form at total surfactant concentrations of about 15%. Apart from the fairly high temperatures at which the microemulsion phases occur, the temperature windows are also quite narrow.
  • composition of microemulsion mixtures in% by mass Composition of microemulsion mixtures in% by mass
  • the information refers to the 60% aqueous solution.
  • the active content is 100%.
  • the mass ratio of water to RME was kept constant for reasons of systematics for the comparative examples 1 to 15 (Tables 3a-c) and 16 to 38 (Tables 4a-e).
  • the water content is composed of the water specified in the tables and the water content of AG 6210. Smaller deviations between the examples are of negligible importance for the phase behavior of the mixtures.
  • Table 3a Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 water 31.94 31.54 30.41 30.12 29,69 RME 32.61 32.64 32,70 32.35 32.12 AG 6210 13.39 15.58 17.58 20,06 22.09 Span 20 19.10 17.29 16.36 14.55 13,20 Brij 700 2.96 2.95 2.95 2.92 2.90
  • Table 3b Comp. 6 Comp. 7 Comp. 8th Comp. 9 Comp. 10 water 35,11 34.77 33,60 32,95 32.19 RME 35.13 35.07 35.36 35.25 35.26 AG 6210 11.24 13.12 14.79 17.00 18.83 Span 20 16.04 14.56 13.77 12.33 11.25 Brij 700 2.48 2.48 2.48 2.47 2.47 Table 3c: Comp. 11 Comp.
  • Table 4a Comp. 16 Comp. 17 Comp. 18 Comp. 19 Comp. 20 water 29.94 29.08 28:19 28.06 27.63 RME 36.75 36.84 36.85 36.74 36.77 AG 6210 11,95 13.88 15.96 16.96 17,98 Imwitor 928 18.63 17.49 16.28 15.51 14,92 Brij 700 2.73 2.71 2.74 2.73 2.70
  • Table 4b Comp. 21 Comp. 22 Comp. 23 Comp. 24 Comp. 25 water 27.29 34.03 33.37 32.69 32.75 RME 36.47 39.49 39.91 39.64 39.36 AG 6210 19.72 9.50 10.82 12.60 13.42 Imwitor 928 13.87 14.81 13.72 12.92 12.26 Brij 700 2.65 2.17 2.18 2.15 2.21 Table 4c: Comp.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

  • Die Erfindung betrifft wässrige Mikroemulsionen, deren Verwendung als Reinigungsmittel, insbesondere zur Entfernung polymerartiger Verschmutzungen, wie beispielsweise Farbreste, sowie ein Verfahren zum Reinigen unter Verwendung der wässrigen Mikroemulsion.
  • Reinigungsmittel erhalten ihre Wirksamkeit in der Regel dadurch, dass sie speziell auf die zu reinigenden Verschmutzungen konzipiert sind. Ein Reiniger für wasserlösliche Verschmutzungen ist typischerweise wasserbasiert, wohingegen ein Reiniger für ölartige Verschmutzungen typischerweise ölbasiert ist. Ein Reiniger, der gegen beide Verschmutzungsarten wirkt, besteht aus Wasser, einem Öl und mindestens einem Tensid, so dass sich Emulsionen ausbilden können.
  • Tenside sind waschaktive Substanzen (Detergentien), die in Waschmitteln, Spülmitteln und Shampoos enthalten sind. Sie verfügen über einen charakteristischen Aufbau und weisen mindestens eine hydrophile und eine hydrophobe Struktureinheit auf. Sie weisen einen amphiphilen Charakter auf. Steht der stabilisierende Charakter von Wasser-in-Öl Gemischen im Vordergrund, werden diese amphiphilen Substanzen als Emulgatoren eingesetzt.
  • Tenside setzen die Grenzflächenspannung zwischen miteinander nicht mischbaren Phasen, einer hydrophilen (wasserlöslichen, lipophoben), meist wässrigen Phase und einer hydrophoben (öllöslichen, lipophilen) Phase herab.
  • Solche wässrigen Zweiphasengemische werden als Emulsionen bezeichnet.
  • Konventionelle Emulsionen können hydrophile und hydrophobe Phasen in unterschiedlichen Volumenanteilen enthalten. Sie haben eine kontinuierliche und eine disperse Phase, die als sehr kleine, durch Belegung mit Tensiden stabilisierte Tröpfchen, in der kontinuierlichen Phase vorliegt. Je nach Natur der kontinuierlichen Phase spricht man von Öl-in-Wasser oder Wasser-in-Öl Emulsionen.
  • Grundsätzlich unterscheidet man zwischen Emulsionen und Mikroemulsionen. Während Mikroemulsionen thermodynamisch stabil sind, trennen sich Emulsionen aufgrund ihrer Instabilität in 2 Phasen. Im mikroskopischen Bereich spiegelt sich dieser Unterschied darin wieder, dass die emulgierten Flüssigkeiten in Mikroemulsionen in der Regel kleinere Strukturgrößen aufweisen, als in Emulsionen, wie in DE 10 2005 049 765 A1 beschrieben. Thermodynamisch instabile Emulsionen weisen somit größere Strukturen auf.
  • In Mikroemulsionen können lamellare Mesophasen auftreten. Lamellare Mesophasen führen zu optischer Anisotropie und möglicherweise erhöhter Viskosität. Diese Eigenschaften sind z.B. für Reiniger unerwünscht. Außerdem tritt Phasentrennung auf, wenn lamellare Phasen mit Mikroemulsionen coexistieren.
  • Mikroemulsionen bestehen aus mindestens drei Komponenten, nämlich aus Öl, Wasser und einem Tensid. Das Tensid vermittelt zwischen diesen beiden Komponenten und erlaubt eine makroskopisch-homogene Mischung. Auf mikroskopischer Skala bildet das Tensid einen Film zwischen den Öl- und Wasserdomänen. Öl und Wasser sind nicht mischbar und bilden daher Domänen auf der Nanoskala. Mikroemulsionen sind makroskopisch homogen, verhalten sich optisch isotrop und sind im Gegensatz zu Emulsionen thermodynamisch stabil. Es gibt W/O und O/W-Tröpfchen-Mikroemulsionen, wobei Wassertröpfchen vom Öl oder Öltröpfchen vom Wasser umschlossen sind. Etwa gleiche Anteile von Öl zu Wasser fördern die Bildung einer bikontinuierlichen Mikroemulsion. Charakteristisch für die Effizienz eines Tensids ist die minimal benötigte Tensidmenge, um eine Mikroemulsion zu erhalten.
  • Mikroemulsionen werden intensiv im Bereich der Grundlagenwissenschaft untersucht. Die dabei erhaltenen Erkenntnisse beruhen weitgehend auf der Verwendung von reinen, definierten Komponenten: deionisiertes Wasser, chemisch reine Öle und Reintenside. Bei technischen Mikroemulsionen bestehen die Komponenten in der Regel aus Stoffgemischen. Dadurch ändert sich das Phasenverhältnis beträchtlich und die in vereinfachten Modellen gewonnenen Erkenntnisse aus der Grundlagenforschung können nicht ohne weiteres auf technische Anwendungen übertragen werden. Eine weitere Schwierigkeit liegt in der geringen Temperaturstabilität von Mikroemulsionen, da in Praxistauglichen Formulierungen die Stabilität über einen breiten Temperaturbereich hinweg gegeben sein muss, um die sichere Lagerung, den Transport und die Anwendung sicher zu gewährleisten. Besonders Systeme auf Basis der vielfach verwendeten Fettalkoholethoxylate sind nur in einem sehr engen Temperaturfenster von wenigen Grad Celsius stabil bzw. müssen extrem hohe Tensidkonzentrationen aufweisen, um über größere Temperaturbereiche stabil zu sein. Hingegen können Mikroemulsionen, die mit Hilfe von Zuckertensiden hergestellt werden, über größere Temperaturbereiche stabil sein ( WO 2008/132202 A1 ). Ganz ähnlich können auch Gemische aus nicht ionischen und ionischen Tensiden herangezogen werden. Hier macht man sich das komplementäre Temperaturverhalten der nichtionischen und ionischen Tenside zu Nutze. Allerdings ist die Entwicklung von Mikroemulsionen, die empfindlich auf die Einstellung ihrer Parameter reagieren können, und die gleichzeitig stabil als auch eine hohe Reinigungsleistung, insbesondere im Hinblick auf in Wasser unlöslichen oder nur sehr schwer löslichen Stoffen, eine besondere Herausforderung.
  • Zugleich spielen Umweltaspekte und Gesundheitsaspekte eine immer größere Rolle, so dass Wert darauf gelegt wird, Tenside zu verwenden, die ein geringes Gefahrstoffpotential beinhalten. Für technische Anwendungen kann dies von großer Bedeutung sein, da in konventionellen Mikroemulsionen Tensidgehalte von 20 bis 30 % die Regel sind, um eine hinreichend ausgedehnte Temperaturstabilität zu erreichen. In solchen Konzentrationen besitzen Tenside ein nicht zu vernachlässigendes Gefahrpotential.
  • Konventionelle Reiniger, die im gewerblichen und privaten Bereich, z.B. als Pinselreiniger oder Klebstoffentferner verwendet werden, bestehen im Wesentlichen aus niedersiedenden Gemischen von aliphatischen und aromatischen Kohlenwasserstoffen oder anderen organischen Lösemitteln, denen oft Tenside beigemischt werden. Diese Reiniger sind im hohen Maß gesundheitsschädlich und umweltschädlich. Darüber hinaus sind konventionelle Reiniger häufig stark alkalisch, was die zu reinigenden Substrate angreifen kann.
  • Darüber hinaus wirken konventionelle Reiniger bei Kontakt mit der Haut stark entfettend und weisen zudem einen starken Geruch auf.
  • Im Stand der Technik sind bereits technisch einsetzbare Mikroemulsionen bekannt. So beschreibt DE 10 2005 049 765 allgemein ein Verfahren zur Reinigung mit Mikroemulsionen mittels hydrophiler polymerer Additive.
  • US-6,165,962 beschreibt Mikroemulsionen, die Natriumsalze von Sulfobernsteinsäureestern, C2-C10 Diole und Öl enthalten. Die Ölkomponente kann ein Ester sein. Die Mikroemulsionen können weitere Lösemittel enthalten und eignen sich als Reiniger zum Entfetten oder Abbeizen von Farben.
  • US 2009/0093390 , US 7,018,969 , US 2005/0130869 und WO 2006/004721 beschreiben Mikroemulsionsformulierungen zum Reinigen harter Oberflächen, die neben Esterölen noch polare Lösungsmittel sowie Tenside und Cotenside enthalten.
  • US 2004/0038847 und WO 00/52128 beschreiben Mikroemulsionen zur Reinigung harter Oberflächen, die neben Esterölen noch polare Lösungmittel enthalten und als tensidische Komponente anionische Tenside.
  • EP 1 780 259 beschreibt Mikroemulsionen zur Reinigung harter Oberflächen, die neben Dibasicestern noch polare Lösungsmittel enthalten sowie anionische Tenside.
  • Die im Stand der Technik beschriebenen Mikroemulsionen auf Basis von Esterölen benötigen zur Stabilisierung der Mikroemulsion bzw. zur Erzielung der Reinigungsleistung weitere Lösemittel und sind somit in der Regel nach derzeitiger deutscher Gesetzeslage nicht kennzeichnungsfrei.
  • Aufgabe der vorliegenden Erfindung war es, umweltfreundliche Mikroemulsionen zur Verfügung zu stellen, die über einen großen Temperaturbereich stabil sind, eine geringe Tensidmenge aufweisen und die zudem eine hervorragende Reinigungsleistung aufweisen, insbesondere im Hinblick auf Farbanschmutzungen, ölartige und fettartige Anschmutzungen und Verschmutzungen, deren organische Bestandteile polymerbasiert sind und besonders bevorzugt kennzeichnungsfrei sind nach derzeitiger deutscher Gesetzgebung.
  • Aufgabe der vorliegenden Erfindung war es nun, die im Stand der Technik aufgezeigten Probleme zu beheben.
  • Es hat sich überraschend gezeigt, dass die Aufgabe durch eine spezielle Mikroemulsion gelöst werden kann.
  • Gegenstand der vorliegenden Erfindung ist eine wässrige Mikroemulsion umfassend
    1. a) einen oder mehrere flüssige Carbonsäureester zur Ausbildung einer Ölkomponente,
    2. b) ein oder mehrere wasserlösliche(s) Salz(e) mit einem oder mehreren Kationen, vorzugsweise ausgewählt aus der Gruppe bestehend aus Natrium, Kalium, Calcium, Magnesium und Ammonium,
    3. c) ein oder mehrere Salz(e) von Sulfobernsteinsäureester,
    4. d) ein oder mehrere nichtionische(s) Tensid(e) ausgewählt aus alkoxyliertem Sorbitanester und alkoxyliertem Pflanzenöl, und
    5. e) einem oder mehreren Booster(n) in Form eines hydrophilen polymeren Additivs, bestehend aus einer wasserlöslichen Einheit, die an mindestens einem Kettenende eine hydrophobe, wasserunlösliche Gruppe mit einem Molekulargewicht von 80 bis 500 g/ mol aufweist und das Molmassenverhältnis der wasserlöslichen Einheit zur hydrophoben, wasserunlöslichen Gruppen 7 bis 200 beträgt; oder der Booster ein Alkoholethoxylat aus einem C8-C20 Alkohol mit 25 bis 200 Ethoxy-Gruppen ist.
  • Die Reinigungsleistungen der erfindungsgemäßen Mikroemulsionen sind im Wesentlichen gleich, wie die der Lösemittel basierten Reiniger. Die erfindungsgemäßen Mikroemulsionen weisen jedoch darüber hinaus ein breiteres Anwendungsspektrum auf. Sie eignen sich beispielsweise zum Entfernen frischer oder getrockneter wasserbasierter Farben. Solche Farben werden normalerweise mit Wasser entfernt, was aber zu Harzrückständen oder Rückständen von angetrockneter Farbe führen kann. Harzrückstände können z.B. Pinselhaare verkleben. Die erfindungsgemäßen Mikroemulsionen eignen sich auch zum Entfernen wasserlöslicher Farben, ohne Harzrückstände zu hinterlassen. Angetrocknete Farbe wird entfernt, was mit Wasser nicht möglich ist. Konventionelle Pinselreiniger eignen sich nur zum Abreinigen von Lösemittel basierten Farben, für Wasser basierte Farben eignen sie sich nicht. Die erfindungsgemäßen Mikroemulsionen sind weiterhin vorteilhaft, wenn lange Einwirkzeiten notwendig sind, z.B. um getrocknete Verschmutzungen zu entfernen. Konventionelle Reiniger sind hier nicht geeignet, da die organischen Lösemittel schnell verdampfen.
  • Darüber hinaus hat sich gezeigt, dass die erfindungsgemäßen Mikroemulsionen gut mit Wasser verdünnbar sind unter Beibehalt ihrer Eigenschaft als Mikroemulsion. Dadurch können Sie bei leichter entfernbaren Verschmutzungen, wasserverdünnt eingesetzt werden. Außerdem lassen sich Reinigerrückstände leicht mit Wasser entfernen.
  • Darüber hinaus wurde überraschend festgestellt, dass die erfindungsgemäßen Mikroemulsionen im Gegensatz zu konventionellen Reinigern nach dem Inkontaktbringen mit Haut und nach dem Abwaschen, ein angenehmes Gefühl auf der Haut hinterlassen. Darüber hinaus sind die erfindungsgemäßen Mikroemulsionen im Wesentlichen geruchsneutral.
  • Die erfindungsgemäßen Mikroemulsionen zeichnen sich auch dadurch aus, dass sie lediglich eine geringe Tensidmenge benötigen und in einem größeren Temperaturbereich stabil sind. In einer bevorzugten Ausführungsform ist die erfindungsgemäße Mikroemulsion im Wesentlichen frei von flüchtigen organischen Verbindungen (so genannten volatile organic compounds, VOC). Als VOC ist nach der 31. Verordnung der Durchführung des Bundesemissionsschutzgesetzes (31. BimschV, § 2, Nr. 11) eine flüchtige organische Verbindung anzusehen, die bei 293,15 K einen Dampfdruck von 0,01 kPa oder mehr hat. Zu den VOC zählen z.B. Verbindungen der Stoffgruppen Alkane/Alkene, Aromaten, Terpene, Halogenkohlenwasserstoffe, Äther, Ester, Aldehyde und Ketone.
  • Vorzugsweise ist die Mikroemulsion der vorliegenden Erfindung im Wesentlichen frei von organischen Lösungsmitteln, insbesondere VOC. Im Wesentlichen frei im Rahmen der vorliegenden Erfindung bedeutet, dass die Mikroemulsion weniger als 10 Gew.-%, vorzugsweise weniger als 5 Gew.-%, weiter bevorzugt weniger als 2 Gew.-%, mehr bevorzugt weniger als 1 Gew.-%, insbesondere weniger als 0,5 Gew.-%, und im Speziellen vollständig frei ist.
  • Die wässrige erfindungsgemäße Mikroemulsion umfasst als wesentliche Komponenten die Komponenten a) bis e).
  • Komponente a)
  • Die erfindungsgemäße wässrige Mikroemulsion umfasst als Komponente a) ein oder mehrere flüssige Carbonsäureester, die nachfolgend auch als "Esteröle" bezeichnet werden. Das Esteröl bildet die Ölkomponente in der Mikroemulsion. Esteröle haben den Vorteil, dass sie unpolar sind und einen lipophilen Charakter aufweisen, was sie besonders gut für ölartige Verschmutzungen und insbesondere auch für Verschmutzungen, deren organische Bestandteile polymerbasiert sind, eignet. Darüber hinaus weisen sie einen hohen Siedepunkt auf und sind daher schwerflüchtig. Geeignete flüssige Carbonsäureester haben einen Schmelzpunkt, der unterhalb von 20°C liegt, d.h. die flüssigen Carbonsäureester sind bei 20°C flüssig.
  • Geeignete Carbonsäureester weisen 6 bis 40 Kohlenstoffatome, bevorzugt 6 bis 22 und insbesondere 10 bis 22 Kohlenstoffatome auf.
  • Das Esteröl kann gesättigte, ungesättigte oder aromatische Reste enthalten.
  • Besonders bevorzugt sind flüssige Carbonsäureester, ausgewählt aus der Gruppe bestehend aus Ester aus einwertigem Alkohol und Mono- oder Dicarbonsäure und Ester aus zweiwertigem Alkohol und Monocarbonsäure.
  • Insbesondere bevorzugt sind die Ester einwertiger Alkohole mit Monocarbonsäuren.
  • Gute Ergebnisse konnten erzielt werden mit flüssigen Carbonsäureestern, wobei der Ester aus einer C10-C22 Monocarbonsäure und Methanol, vorzugsweise Dodecansäuremethylester oder Rapsölmethylester ist.
  • Weiterhin bevorzugt sind flüssige Carbonsäureester, die eine Mischung aus Monocarbonsäuren mit 10 bis 22 Kohlenstoffatomen und Dicarbonsäuremethylester mit 6 bis 10 Kohlenstoffatomen aufweisen.
  • In einer besonders bevorzugten Ausführungsform weist das Esteröl ein oder mehrere Komponenten, ausgewählt aus der Gruppe bestehend aus Rapsölmethylester, Octyloctanoat, Ölsäureethylester, Methyllaurat, Dimethylsuccinat, Dimethyladipat, Dimethylglutarat und Isopropylmyristat auf.
  • In einer bevorzugten Ausführungsform weisen die wässrigen Mikroemulsionen der vorliegenden Erfindung den flüssigen Carbonsäureester in einer Menge von 10 bis 40 Gew.-%, vorzugsweise 20 bis 35 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Mikroemulsion, auf.
  • Um eine ausbalancierte, auf die weiteren Komponenten eingestellte und hochleistungsfähige Mikroemulsion zu erhalten, hat es sich als vorteilhaft herausgestellt, das Gewichtsverhältnis des flüssigen Carbonsäureester (Komponente a)) zur Summe der Komponenten c), d) und e) auf 1,5 bis 10, bevorzugt 2,5 bis 8, insbesondere 3 bis 8 oder 4 bis 8 einzustellen.
  • Komponente b)
  • Die erfindungsgemäßen wässrigen Mikroemulsionen weisen als Komponente b) ein oder mehrere wasserlösliche(s) Salz(e) mit einem oder mehreren Kationen, vorzugsweise ausgewählt aus der Gruppe bestehend aus Natrium, Kalium, Calcium, Magnesium und Ammonium auf.
  • Im Rahmen der vorliegenden Erfindung sind Salze wasserlöslich, wenn mindestens 1 g Salz pro Liter Wasser bei 20°C vollständig gelöst werden kann. Bevorzugt sind die Alkali- oder Erdalkali- oder Ammoniumsalze.
  • Es wurde gefunden, dass durch geeignete Auswahl der Salze die Bildung der Mikroemulsion und deren Temperaturstabilitätsfenster gesteuert werden kann. Ohne das Vorliegen von Salz ist entweder ein sehr großer Anteil an Tensid in der Emulsion notwendig oder die Mikroemulsion ist in einem für die Anmeldung irrelevanten Temperaturbereich stabil. Durch den Einsatz des Salzes lässt sich daher vorteilhaft die Tensidmenge verringern, was neben den Umweltvorteilen auch Kostenvorteile mit sich bringt. Dabei ist die Tensidmenge wiederum ein Balanceakt, weil mit einer größeren Tensidmenge auch der Temperaturbereich, in dem die Mikroemulsion stabil ist, breiter wird.
  • Als Gegenionen sind sowohl anorganische als auch organische Anionen geeignet. Bevorzugte anorganische Anionen sind dabei ausgewählt aus der Gruppe bestehen aus Sulfat, Chlorid, Hydrogensulfat, Phosphat und Hydrogensulfat.
  • Bevorzugte organische Anionen sind ausgewählt aus der Gruppe bestehend aus Acetat, Gluconat, Citrat und Tartrat.
  • In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist die Komponente b) ein wasserlösliches Salz, ausgewählt aus der Gruppe bestehend aus Natriumsulfat, Natriumchlorid, Natriumgluconat, Natriumcitrat, Trinatriumphosphat, Dinatriumhydrogenphosphat, Kaliumsulfat, Kaliumchlorid, Ammoniumsulfat, Ammoniumchlorid, Magnesiumsulfat, Magnesiumchlorid, Calciumchlorid, Calciumacetat, Magnesiumacetat und Kaliumnatriumtartrat.
  • Überraschend gute Ergebnisse konnten mit Acetatsalzen erzielt werden. In einer besonders bevorzugten Ausführungsform weisen die erfindungsgemäßen Mikroemulsionen Calciumacetat und/oder Magnesiumacetat auf.
  • Zur Einstellung des Temperaturfensters und zur Optimierung der Reinigungsleistung der erfindungsgemäßen Mikroemulsion, liegt das Salz typischerweise in einer Menge von 0,1 bis 4 Gew.-%, vorzugsweise 0,25 bis 3 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Mikroemulsion vor.
  • Komponente c)
  • Die erfindungsgemäße wässrige Mikroemulsion enthält zusätzlich die Komponente c), welche ein oder mehrere Salz(e) von Sulfobernsteinsäureester ist.
  • In einer bevorzugten Ausführungsform ist das Salz der Sulfobernsteinsäureester ein Alkalimetallsalz, insbesondere ein Natriumsalz. Das Salz der Sulfobernsteinsäureester agiert als anionisches Tensid. Insbesondere haben sich für die erfindungsgemäßen Mikroemulsionen Sulfobernsteinsäureestersalze herausgestellt, die C6-C12-Alkoholreste aufweisen. Das eingesetzte Sulfobernsteinsäureestersalz trägt maßgeblich zur Stabilität der erfindungsgemäßen Mikroemulsion bei. Besonders bevorzugt sind die Salze der Sulfobernsteinsäureester, ausgewählt aus der Gruppe bestehend aus Diester von Sulfobernsteinsäure-Alkalisalz mit C6-C10-Alkoholen, Monoester von Sulfobernsteinsäure-Dialkalisalz mit C8-C12-Alkoholen und Monoester von Sulfobernsteinsäure-Dialkalisalz mit ethoxylieren C10-C14-Alkoholen.
  • In einer Ausführungsform liegt der Diester des Sulfobernsteinsäure-Alkalisalzes als ein Diester vor, der mindestens einen, vorzugsweise zwei ethoxylierte C10-C14-Alkoholreste aufweist.
  • Die Alkoholreste können linear oder verzweigt sein. In einer besonders bevorzugten Ausführungsform ist das Salz der Sulfobernsteinsäureester das Natriumsalz des Sulfobernsteinsäure-bis-2-ethylhexylester.
  • Zur Einstellung einer optimalen erfindungsgemäßen wässrigen Mikroemulsion liegen die Salze der Sulfobernsteinsäureester typischerweise in einer Menge von 1 bis 10 Gew.-%, bevorzugt in einer Menge von 1,5 bis 5 Gew.-% oder 2,0 bis 5,0 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Mikroemulsion vor.
  • Bezogen auf das Gesamtgewicht der Komponenten c), d) und e) liegt das Salz der Sulfobernsteinsäureester typischerweise in einer Menge von 30 bis 75 Gew.-%, bevorzugt in einer Menge von 40 bis 70 Gew.-%, vor.
  • Komponente d)
  • Als weitere wesentliche Komponente weisen die erfindungsgemäßen Mikroemulsionen die Komponente d) auf, welche ein oder mehrere nicht ionische Tensid(e), ausgewählt aus alkoxyliertem Sorbitanester und alkoxyliertem Pflanzenöl ist.
  • In einer bevorzugten Ausführungsform ist das nicht ionische Tensid ausgewählt aus ethoxyliertem Sorbitanester und/oder ethoxyliertem Pflanzenöl.
  • Bevorzugte Sorbitanester sind die Sorbitanmonoester, insbesondere solche Sorbitanmonoester, die einen gesättigten oder ungesättigten, linearen oder verzweigten Fettsäurerest aufweisen.
  • Prinzipiell einsetzbar sind alkoxylierte Sorbitanester, die beispielsweise propoxyliert und/oder ethoxyliert vorliegen können. Besonders bevorzugt sind allerdings ethoxylierte Sorbitanester, insbesondere solche Sorbitanester, die durchschnittlich mit 3 bis 30, vorzugsweise 4 bis 20 Ethoxylatgruppen versehen sind.
  • In einer bevorzugten Ausführungsform ist das nichtionische Tensid ein ethoxylierter Sorbitanmonoester mit einem gesättigten oder ungesättigten C12-C18-Fettsäurerest.
  • In einer weiteren Ausführungsform ist das nichtionische Tensid ein alkoxyliertes, insbesondere ethoxyliertes Rizinusöl.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist der Ethoxylierungsgrad des ethoxylierten Sorbitanesters und/oder des ethoxylierten Pflanzenöls so eingestellt, dass der HLB-Wert von 11 bis 17, besonders bevorzugt 12 bis 16 oder 13 bis 16 ist.
  • Der HLB-Wert wird nach Griffin wie folgt berechnet: HLB = 20 * M h / M ,
    Figure imgb0001
    wobei
    • Mh = Molmasse des hydrophilen Anteils eines Moleküls und
    • M = Molmasse des gesamten Moleküls ist.
  • (Griffin, W.C. Classification of Surface Active Agents by HLB, J. Soc. Cosmet. CHEM. 1, 1949).
  • In einer speziellen Ausführungsform ist das nichtionische Tensid ausgewählt aus der Gruppe bestehend aus Polyoxyethylen(4)sorbitanmonolaurat, Polyoxyethylen(20)sorbitanmonopalmitat und Polyoxymethylen(20)sorbitan-monooleat.
  • Das nichtionische Tensid liegt bevorzugt in einer Menge von 1,0 bis 7,0 Gew.-%, besonders bevorzugt 1,5 bis 5,0 Gew.-% oder 1,0 bis 5,0 Gew.-%, bezogen auf das Gesamtgewicht der Mikroemulsion vor.
  • In einer besonders bevorzugten Ausführungsform liegt das nichtionische Tensid in einer Menge von 10 bis 70 Gew.-% oder von 20 bis 60 Gew.-%, bevorzugt in einer Menge von 15 bis 60 Gew.-% oder von 23 bis 55 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Komponenten c), d) und e) vor.
  • Komponente e)
  • Als weitere Komponente e) enthalten die erfindungsgemäßen wässrigen Mikroemulsionen einen oder mehrere Booster.
  • Die eingesetzten Booster dienen der Steigerung der Tensideffizienz in den erfindungsgemäßen Mikroemulsionen. Darüber hinaus tragen die Booster dazu bei, den Temperaturbereich, in dem die Mikroemulsionen stabil sind, zu vergrößern. Die Booster der vorliegenden Erfindung sind regelmäßig derart ausgestaltet, dass sie die Stabilität der Mikroemulsionen erhöhen, indem die Grenzfläche versteift wird.
  • Erfindungsgemäß werden Booster eingesetzt, welche aus mindestens einer wasserlöslichen Einheit bestehen, die mindestens an einem Kettenende mindestens eine hydrophobe Einheit besitzt und/oder eine hydrophobe Einheit als nicht-terminalen Substituenten besitzt.
  • Der Booster liegt in Form eines Polymers vor. Im gesamten polymeren Booster überwiegt der hydrophile Charakter. Auf Grund der hydrophoben Einheit oder Einheiten bilden die Polymere in Wasser bevorzugt Mizellen. Geeignete Booster sind beispielsweise in der DE 198 39 054 und DE 10 2005 049 765 beschrieben.
  • Die wasserlösliche Einheit des Boosters ist in ihrer Ausgestaltung nicht auf bestimmte Strukturtypen begrenzt, vielmehr kommt es erfindungsgemäß auf die Kombination der größeren wasserlöslichen Einheit mit der oder den hydrophoben Einheiten an.
  • Die wasserlösliche Einheit des Polymers ist vorzugsweise linear, es sind aber auch sternförmige, verzweigte oder andere Strukturtypen möglich. Unter linear wird bei Polymeren verstanden, dass die Atome, die das Rückgrat der Kette bilden eine lineare Einheit darstellen.
  • Die wasserlösliche Einheit kann nichtionisch oder ionisch, das heißt, ein Polyelektrolyt, sein. Die elektrischen Ladungen können sich an jedem Teil der wasserlöslichen Komponente des Polymers befinden. Es sind auch Strukturen denkbar, welche sich aus mindestens einem ionischen und einem nichtionischen Anteil zusammensetzen.
  • Beispielhaft, aber nicht beschränkend können die wasserlöslichen Einheiten aus folgenden Monomeren oder deren Mischungen von mindestens zwei Komponenten bestehen: Ethylenoxid, Vinylpyrrolidin, Acrylsäure, Methacrylsäure und Maleinsäureanhydrid.
  • Der wasserlösliche Teil des polymeren Additivs ist bevorzugt ein Polyethylenoxid oder Polyethylenglykol. Weitere Beispiele sind Copolymerisate aus Ethylenoxid und Propylenoxid, Polyvinylalkohol und dessen wasserlösliche Derivate. Außerdem eignen sich Polyvinylpyrrolidon, Polyvinylpyridin, Polymaleinsäureanhydrid, Polymaleinsäure, Polyacrylsäure, Polymethacrylsäure, Polystyrolsulfonsäure und deren wasserlösliche Salze.
  • Die wasserlöslichen Einheiten sind vorzugsweise linear.
  • Die Molekulargewichtsverteilung der wasserlöslichen Einheit, definiert durch das Verhältnis des gewichtmittleren Molekulargewichts und des zahlenmittleren Molekulargewichts, beträgt bevorzugt ≤ 1,2.
  • Das zahlenmittlere Molekulargewicht der wasserlöslichen Einheit des polymeren Additivs liegt vorzugsweise zwischen 500 und 20.000 g/mol, besser 1000 bis 7.000 g/mol, oder zwischen 1300 und 5000 g/mol.
  • Bevorzugt ist ein lineares, wasserlösliches Polymer, das an einem Kettenende eine hydrophobe Gruppe trägt.
  • In ähnlicher Weise wie für den wasserlöslichen Teil des polymeren Additivs, ist die Ausgestaltung der hydrophoben Einheit nicht auf ausgewählte Strukturtypen beschränkt. Vielmehr kommt es auch hier lediglich auf die hydrophoben bzw. nicht wasserlöslichen Eigenschaften dieser Einheit an.
  • Bevorzugte Molekülgrößen für die hydrophobe Einheit liegen bei 110-500 g/mol, insbesondere bevorzugt 110 bis 280 g/mol.
  • Die hydrophoben Einheiten bestehen aus nicht wasserlöslichen Resten. Dabei handelt es sich bevorzugt um Alkylreste, die bevorzugt zwischen 6 und 50 Kohlenstoffatome, besonders bevorzugt zwischen 8 und 20 Kohlenstoffatome enthalten. Die Reste können auch aromatische Gruppen oder Kohlenstoff - Doppel- oder Dreifachbindungen enthalten, sie können linear oder verzweigt sein. Außer Kohlenwassestoffresten sind auch beliebige andere hydrophobe organische Reste verwendbar, die beispielsweise Sauerstoff, Stickstoff, Fluor oder Siliciumatome enthalten. Die hydrophobe Einheit kann auch ein Polymerisat sein.
  • Die hydrophobe Einheit kann ein Rest mit definierter Struktur und Molekulargewicht sein, wie beispielsweise Alkylreste. Auch Stoffgemische, wie sie beispielsweise in technischen Produkten vorkommen, sind möglich. Es kann sich aber auch um einen polymeren Rest handeln, wie Polybutylenoxid.
    Die wasserlösliche Einheit des Polymers trägt an mindestens einem Kettenende eine hydrophobe Einheit.
  • An jedem Kettenende sind auch mehr als eine hydrophobe Einheit möglich.
    Die wasserlösliche Einheit des Polymers kann eine hydrophobe Einheit in einer Nicht-Kettenend-Position tragen.
  • Weiterhin können hydrophobe Einheiten des polymeren Boosters an mindestens einer Stelle zwischen die wasserlöslichen Einheiten eingebaut sein, so dass die wasserlöslichen Einheiten des Polymers durch hydrophobe Einheiten unterbrochen werden.
  • Es sind alle Kombinationen der angeführten Strukturtypen möglich.
  • Das Verhältnis der Molekulargewichte von wasserlöslichem Teil zu hydrophobem Teil beträgt 7-200, bevorzugt 7-50.
  • In der bevorzugten Form ist die wasserlösliche Einheit des Boosters ein lineares Polymer und trägt an einem Kettenende eine hydrophobe Einheit.
  • Beispielhaft können folgende polymere Booster aufgeführt werden:
    • durch Ethoxylierung von C8-C20 - Alkoholen erhaltene Alkylethoxylate,
    • an beiden Kettenenden hydrophob modifiziertes Polyethylenglokol, das z.B. durch Umsetzung von Polyethylenglykol mit C8-C20 Isocyanaten oder C8-C20-Säurechloriden erhalten werden kann,
    • AB Diblockcopolymere, ABA oder BAB Triblockcopolymere aus 1,2 Butylenoxid und Ethylenoxid.
  • Insbesondere wirksam und gleichzeitig biologisch abbaubar sind die durch Ethoxylierung von C8-C20-Alkoholen erhaltenen Alkylethoxylate.
  • Aufgrund der hydrophoben Einheiten bilden die Booster in Wasser bevorzugt Mizellen.
  • In einer Ausführungsform befindet sich an jeweils beiden Enden der wasserlöslichen Einheit eine hydrophobe Einheit.
  • Als erfindungsgemäße Booster werden lineare wasserlösliche Polymere, die nur an einem Kettenende eine hydrophobe Einheit tragen, bevorzugt. Innerhalb dieses Strukturtyps werden Alkoholethoxylate bevorzugt, die einen hohen Ethoxylierungsgrad besitzen. Diese Substanzen können als Polyethylenoxid mit einem hydrophoben Alkylrest betrachtet werden oder als langkettige oder hydrophile Emulgatoren angesehen werden. Als hydrophobe Komponenten können beispielsweise aliphatische Alkohole oder Alkylphenole verwendet werden, die bevorzugt 8-20 Kohlenstoffatome besitzen. Die Alkoholethoxylate enthalten pro Mol Alkohol 25 bis 500 Mol, besonders bevorzugt 50-200 Mol Ethylenoxid. Ein Beispiel ist die kommerziell erhältliche Verbindung Brij S 100-PA (SG) der Firma Croda.
  • Im polymeren Booster sollte der Anteil der wasserlöslichen Einheiten die nicht mit hydrophoben Einheiten verknüpft sind, möglichst gering sein, das heißt beispielsweise ≤ 20 Gew.%.
  • In einer bevorzugten Ausführungsform liegt der Booster in Form eines hydrophilen polymeren Additivs, bestehend aus einer wasserlöslichen Einheit, die an einem Kettenende eine hydrophobe, wasserunlösliche Gruppe mit einem Molekulargewicht von 80 bis 500 g/mol besitzt und wobei vorzugsweise das Massenverhältnis der wasserlöslichen Einheit zu den hydrophoben, wasserunlöslichen Gruppen 5 bis 200 beträgt. In einer Ausführungsform besteht der Booster aus einem linearen, wasserlöslichen Polymer, welches an einem Kettenende eine hydrophobe, wasserunlösliche Gruppe trägt. Die hydrophobe, wasserunlösliche Gruppe hat bevorzugt ein Molekulargewicht von 110 bis 500 g/mol und besonders bevorzugt ein Molekulargewicht von 110 bis 280 g/mol. Das Molmassenverhältnis der wasserlöslichen Einheit zu den hydrophoben wasserunlöslichen Gruppen beträgt bevorzugt 7 bis 50.
  • In einer besonders bevorzugten Ausführungsform besteht der Booster aus einem Alkoholethoxylat aus einem C8-C20-Alkohol mit 25 bis 500 Ethoxygruppen, vorzugsweise 50 bis 200 Ethoxygruppen.
  • In einer weiteren bevorzugten Ausführungsform liegt der Booster in einer Menge von 3 bis 20 Gew.-%, bevorzugt 5 bis 15 Gew.-%, insbesondere 7 bis 15 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Komponenten c), d) und e), vor.
  • Die erfindungsgemäßen wässrigen Mikroemulsionen weisen in einer bevorzugten Ausführungsform die Komponenten c) + d) + e) in einer Menge von 2 bis 20 Gew.-%, bevorzugt 3 bis 15 Gew.-%, weiter bevorzugt 3 bis 10 Gew.-% und insbesondere 3 bis 8 Gew.-% oder 4 bis 8 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Mikroemulsion, auf.
  • Die erfindungsgemäßen Mikroemulsionen können als Reinigungsmittel im privaten wie auch im gewerblichen Bereich verwendet werden. Besonders vorteilhaft ist, dass die wässrigen Mikroemulsionen als Neutralreiniger eingesetzt werden können und somit die im Stand der Technik bekannten aggressiven alkalischen Reiniger zur Entfernung ölartiger Verschmutzungen, wie beispielsweise Farbreste, ersetzen. Die erfindungsgemäßen Mikroemulsionen weisen in einer Ausführungsform einen pH-Wert von 4 bis 11, vorzugsweise 5 bis 9 auf.
  • Die erfindungsgemäßen Mikroemulsionen können darüber hinaus weitere Additive aufweisen. Geeignete Additive sind beispielsweise Mono- Di- oder Triethylenglycolmonoalkylether oder -arylether wie Ethylenglycol-propylether, Ethylenglycol-butylether (Butylglycol), Ethylenglycol-hexylether, Diethylenglycolmethylether, Diethylenglycol-ethylether, Diethylenglycol-butylether (Butyldiglycol), Diethylenglycol-hexylether, Triethylenglycol-methylether, Triethylenglycol-ethylether, Triethylenglycol-butylether, Ethylenglycolphenylether;
  • Mono- Di- oder Tripropylenglycolmonoalkylether oder -arylether wie Propylenglycol-methylether, Propylenglycol-ethylether, Propylenglycol-n-propylether, Propylenglycol-butylether, Dipropylenglycol-methylether, Dipropylenglycol-n-propylether, Dipropylenglycol-butylether, Tripropylenglycolmethylether, Tripropylenglycol-butylether, Propylenglycol-phenylether.
  • Mono- Di- oder Triethylenglycoldialkylether, Mono- Di- oder Tripropylenglycoldialkylether wie Dipropylenglycoldimethylether
  • N-Alkylpyrrolidone, mit einem C1-C12-Alkylrest, z.B. N-Etylpyrrolidon, N-Octylpyrrolidon, N-Dodecylpyrrolidon.
  • Darüber hinaus können Biozide und/oder Farbstoffe sowie Rostschutz- und Antioxdanzmittel zugesetzt werden.
  • Die Additive können in Mengen von 0,01 bis 3, vorzugsweise 0,1 bis 1 Gew.-%, bezogen auf das Gesamtgewicht der Mikroemulsion, vorliegen.
  • Die erfindungsgemäßen Mikroemulsionen können in Form von Öl-in-Wasser oder Wasser-in-Öl Mikroemulsionen vorliegen. Bevorzugt liegen sie als bikontinuierliche Mikroemulsion vor. Bikontinuierliche Mikroemulsionen umfassen zwei Domänen, eine hydrophobe und eine hydrophile Domäne in Form von ausgedehnten nebeneinander liegenden und ineinander verschlungenen Domänen, an deren Grenzfläche stabilisierende grenzflächenaktive Tenside in einer monomolekularen Schicht angereichert sind. Mikroemulsionen bilden sich sehr leicht wegen der sehr niedrigen Grenzflächenspannung spontan, wenn die Einzelkomponenten Wasser, Öl und ein geeignetes grenzflächenaktives System vermischt werden. Da die Domänen in mindestens einer Dimension nur sehr geringe Ausdehnung in der Größenordnung von Nanometern haben, erscheinen Mikroemulsionen oft visuell transparent und sind je nach dem eingesetzten grenzflächenaktiven System in einem bestimmten Temperaturbereich thermodynamisch, d.h. zeitlich unbegrenzt, stabil. Wenn Mikroemulsionen geringe Tensidgehalte aufweisen, können sie auch trüb sein und sind trotzdem thermodynamisch stabil.
  • Die Mikroemulsion ist besonders stabil im Temperaturbereich von 10 bis 40°C, insbesondere 5 bis 60 °C.
  • In einer weiteren Ausführungsform sind die erfindungsgemäßen Mikroemulsionen stabil in einem Temperaturbereich < 5°C bis > 60°C.
  • In einer Ausführungsform kann die erfindungsgemäße Mikroemulsion eine Wasser-in-Öl- oder Öl-in-Wasser-Tröpfchenmikroemulsion sein, wobei Wassertröpfchen vom Öl oder Öltröpfchen vom Wasser umschlossen sind.
  • Besonders bevorzugt sind bikontinuierliche Mikroemulsionen.
  • Typischerweise beträgt der Gewichtsanteil von Esteröl (Komponente a)) im Esteröl-Wassergemisch 12 bis 45 Gew.-%, vorzugsweise 23 bis 38 Gew.-%, bezogen auf das Gesamtgewicht von Esteröl und Wasser in der Mikroemulsion.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Reiniger, bestehend oder umfassend die erfindungsgemäße Mikroemulsion.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Mikroemulsion als Reinigungsmittel, insbesondere zur Entfernung ölartiger Verschmutzungen oder Harze und polymerartige Verschmutzungen.
  • In einer Ausführungsform des erfindungsgemäßen Reinigers beträgt der Anteil der Komponenten c) und d) weniger als 15 Gew.-%, insbesondere weniger als 12 Gew.-% oder weniger als 9 Gew.-% oder weniger als 7 Gew.-%, beispielsweise 2,5 bis 7 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Reinigungsmittels. Dieser sehr geringe Tensidgehalt ermöglicht je nach Anwendungsgebiet die Herstellung von Produkten, die keiner Kennzeichnungspflicht hinsichtlich ihres Tensidgehalts unterliegen.
  • Der erfindungsgemäße Reiniger ist als Ersatz von organischen Lösungsmitteln besonders geeignet. Dies hat eine Reduktion der eingesetzten Menge organischer Lösungsmittel bis hin zum Verzicht auf aromatische Lösungsmittel zur Folge, welches vorteilhaft im Hinblick auf Arbeitsschutz und Umweltschutz ist. Außerdem weisen sowohl erfindungsgemäße Reiniger die darin befindlichen erfindungsgemäßen Mikroemulsionen erhöhte Flammpunkte gegenüber den darin enthaltenen organischen Phasen auf.
  • Ferner ist die Verwendung des erfindungsgemäßen Reinigers zum Abreinigen von Farben, insbesondere von angetrockneten oder trockenen Farben, Lacken und teerartigen Verbindungen und Klebstoffen, als Allzweckreiniger und Neutralreiniger im Haushalt, in der Industrie und gewerblichen Bereich möglich.
  • Eine Verwendung des erfindungsgemäßen Reinigers ist auch beim Abreinigen von Farben und Lacken auf wässriger und organischer Basis empfehlenswert, insbesondere zum Reinigen von Pinseln.
  • Der erfindungsgemäße Reiniger kann ferner zum Abreinigen von Farben, Lacken, Öl und/oder salzartigen Rückständen von Metall- und/oder Kunststoffoberflächen verwendet werden.
  • Eine Verwendung empfiehlt sich für empfindliche Oberflächen, insbesondere solche, die von organischen Lösungsmitteln oder sauren oder alkalischen Reinigern angegriffen werden, wie z.B. Aluminiumoberflächen. Der erfindungsgemäße Reiniger könnte somit beispielsweise organische Reinigungsmittel in vielen Anwendungsbereichen ersetzen.
  • Zudem können die erfindungsgemäßen Mikroemulsionen auch zur Reinigung in der Druckindustrie, insbesondere zum Entfernen von Druckfarben und Papierstaubaufbau von Druckmaschinen und Druckformen verwendet werden. Er eignet sich zum Beispiel zur Entfernung von Druckfarben auf Wasser- oder Ölbasis und von durch Strahlung aushärtende Druckfarbe. Ferner findet der Reiniger Anwendung beim Reinigen von Druckzylindern, Druckwalzen und Oberflächen von Druckmaschinen, bevorzugt zum Reinigen von Druckmaschinen zum konventionellen Drucken sowie von Druckformen, zum Beispiel bei Unterbrechung des Druckvorgangs oder bei non-impact-Druckverfahren. Zu den konventionellen Druckverfahren mit Druckformen, bei denen der Reiniger eingesetzt werden kann, zählt das Flachdruckverfahren, der Tiefdruck, der Hochdruck, der Flexodruck und der Siebdruck, besonders hervorzuheben ist der Offset- und der wasserlose Offset-Druck. Zu den non-impact-Druckverfahren ohne Druckform zählen die Elektrophotographie, Ionographie, Magnetographie, Inkjet und Thermographie.
  • In einer weiteren Ausführungsform der vorliegenden Erfindung wird die erfindungsgemäße Mikroemulsion zur Reinigung und/oder Entfernung von Verbindungen, ausgewählt aus der Gruppe bestehend aus Farben, Lacke, Fette, Öle, Harze, Bitumen, Teer, Klebereste, Dichtstoffe, Gummiabrieb, Kosmetik- und Schminkreste sowie Pyrolyseprodukte organischer Verbindungen, insbesondere zur Reinigung und/oder Entfernung von Verschmutzungen, deren organische Bestandteile polymerbasiert sind, beispielsweise Farben, Klebstoffe, Dichtmassen, Polymerschäume, wie beispielsweise Polyurethanschäume, verwendet.
  • Insbesondere geeignet ist die erfindungsgemäße Mikroemulsion zur Reinigung und/oder Entfernung angetrockneter Farben und Kleber.
  • In einer besonders bevorzugten Ausführungsform werden die erfindungsgemäßen Mikroemulsionen zur Reinigung von mit Farbstoffresten verunreinigten Werkzeugen, insbesondere Werkzeugen zum Auftragen von Farben, wie beispielsweise Pinsel, Farbrollen oder Farbsprühgeräte verwendet.
  • Es hat sich gezeigt, dass die erfindungsgemäßen Mikroemulsionen insbesondere bei polymerbasierten Anschmutzungen hervorragende Reinigungsleistungen zeigen.
  • Überraschend wurde ebenfalls gefunden, dass die erfindungsgemäßen Mikroemulsionen zur Entfernung von organischen Pyrolyseprodukten geeignet sind. In einer besonders bevorzugten Ausführungsform werden die erfindungsgemäßen Mikroemulsionen zur Reinigung von Backöfen, Kaminscheiben oder einem Grill verwendet.
  • Ein weiterer Gegenstand der vorliegenden Erfindung umfasst ein Verfahren zur Reinigung, umfassend die folgenden Schritte:
    1. a) Applizieren einer erfindungsgemäßen Mikroemulsion auf eine verunreinigte Oberfläche,
    2. b) gegebenenfalls Einwirkenlassen der Mikroemulsion, und
    3. c) Entfernen der Verunreinigung.
  • Es hat sich gezeigt, dass insbesondere beim Entfernen polymerbasierter Verunreinigungen eine Einwirkzeit von vorzugsweise 1 Minute bis zu 2 Tagen, weiter bevorzugt 5 Minuten bis 1 Stunde, beispielsweise 10 bis 30 Minuten das Ablösen der polymerbasierten Verunreinigung erheblich erleichtert.
  • Lange Einwirkzeiten sind mit den erfindungsgemäßen Mikroemulsionen problemlos möglich, da der Dampfdruck im Verhältnis zu konventionellen lösemittelbasierten Reinigern gering ist.
  • Beispiele Verwendete Komponenten:
  • Das verwendete Trinkwasser zeichnet sich durch folgende Charakteristika aus: pH = 8.0, Natrium 14 mg/l Kalium 2,7 mg/l, Calcium 60mg/l, Magnesium 14 mg/l, Nitrat 34.9 mg/l, Chlorid 46.1 mg/l.
  • Rapsmethylester (RME) ist ein Esteröl der Firma Overlack.
  • Oktyloktanoat (Oktansäureoktylester) ist ein Esteröl der Firma Sigma Aldrich.
  • Ölsäureethylester der Firma Sigma Aldrich.
  • Methyllaurat der Firma Sigma Aldrich.
  • Di Basic Ester: Mischung aus Dimethylsuccinat (33 Gew.%), Dimethyladipat (33 Gew.%), Dimethylglutarat (33 Gew. %) und Methanol (0,2 Gew.%) der Firma Caldic.
  • Isopropylmyristat der Firma Sigma Aldrich.
  • Triumphnetzer ZSG (AOT, Sulfobernsteinsäure 1,4-bis-(2-ethylhexyl)ester, Natriumsalz ist ein anionisches Tensid der Firma Zschimmer und Schwarz; Wirkstoffgehalt 69%).
  • Tween 21 ist ein Polyoxyethylen (4) Sorbitan Monolaurat der Firma Sigma Aldrich, Wirkstoffgehalt 100%.
  • Tween 40 ist ein Polyoxyethylen (20) Sorbitan Monopalmitat der Firma Sigma Aldrich, Wirkstoffgehalt 100%.
  • Tween 80 ist ein Polyoxyethylen (20) Sorbitan Monooleat der Firma Sigma Aldrich, Wirkstoffgehalt 100%.
  • Emulan EL ist ein ethoxyliertes Rizinusöl der Firma BASF, Wirkstoffgehalt 100%; HLB: 14.
  • Brij S100-PA-(SG) ist ein PEG-100 Stearylether der Firma Croda, Wirkstoffgehalt 100%.
  • Novel TDA-40 ist ein PEG-40 Isotridecylether der Firma Sasol, Wirkstoffgehalt 100%.
  • Novel 2426-100 ist ein PEG C20-28 Alkylether der Firma Sasol mit etwa 100 EO Einheiten, Wirkstoffgehalt 100%; HLB: 18,3.
  • Emuldac AS-80 ist ein PEG 80 C16-18 Alkylether der Firma Sasol, Wirkstoffgehalt 100%.
  • Kaliumnatriumtartrat 4 Hydrat, Trinatriumcitrat 2 Hydrat, Dinatriumhyrogenphosphat 2 Hydrat, Natriumgluconat (kristallwassserfrei), Calciumchlorid (kristallwassserfrei), Natriumchlorid (kristallwassserfrei).
  • Akachemie Solupast D Löser (0203) der Firma PUFAS Werk KG: Mischung aus N-Butylacetat (50-100 %), schwere Erdöldestillate, mit Wasserstoff behandelt (10-25 %) und ethoxylierter C13-Oxoalkohol (≤ 2,5 %).
  • Pinselreiniger der Firma PUFAS Werk KG: Mischung aus Testbenzin (50-100 %), ethoxylierter C13-Oxoalkohol (2,5-10 %), Solvent Naphtha leicht (2,5-10 %), 1,2,4-Trimethylbenzol (2,5-10 %) und Dipropylenglykolmonomethylether (2,5-10 %).
  • Praktiker Buntlack rot auf Alkydharzbasis der Firma Faust.
  • Praktiker 2 in 1 Buntlack rot auf Acrylbasis der Firma Faust.
  • Acryl-Dichtmasse der Firma Faust.
  • Bausilikon der Firma Faust.
  • Pattex Gel der Firma Henkel.
  • Pinsel der Firma Wistoba Nr. 1000 02, helle Borsten, Breite 14 mm, Länge 33 mm.
  • Edelstahlplatten (Werkstoffnummer 1.4571).
  • Die Temperaturstabilität der Mikroemulsionen wurde in einem thermostatisierten Gefäß durch visuelle Begutachtung bestimmt. Die Temperatur-Phasengrenzen des einphasigen Mikroemulsionsbereichs konnten aufgrund der drastisch ansteigenden Trübheit bei Über- oder Unterschreiten des Stabilitätsfensters erkannt werden. Lamellare Phasen wurden mit Hilfe von gekreuzten Polarisatoren bestimmt. In den für die Beispiele angegebenen Stabilitätsbereichen können Mikroemulsionen mit lamellaren Phasen koexistieren.
  • Die Gesamttensidgehalte beziehen sich auf die Wirkstoffanteile der tensidischen Komponenten sowie des Boosters. Alle Prozentangaben beziehen sich auf das Gewicht der Inhaltsstoffe.
  • Beispiel 1
    • Triumphnetzer: 10,72%
    • Tween 21: 4,21%
    • Oktyloktanoat: 21,52%
    • Wasser: 61,53%
    • Kaliumnatriumtartrat 4 Hydrat: 0,73%
    • Brij S100-PA-(SG): 1,29%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen 5C° und 34°C, Gesamttensidgehalt 12,9%.
    Beispiel 2
    • Triumphnetzer: 7,24%
    • Tween 21: 6,45%
    • Oktyloktanoat: 21,24%
    • Wasser: 62,00%
    • Kaliumnatriumtartrat 4 Hydrat: 1,77%
    • Brij S100-PA-(SG): 1,30%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen <0°C und 45°C, Gesamttensidgehalt 12,7%.
    Beispiel 3
    • Triumphnetzer: 8,22%
    • Tween 21: 5,99%
    • Oktyloktanoat: 21,22%
    • Wasser: 61,87%
    • Dinatriumhyrogenphosphat 2 Hydrat: 1,40%
    • Brij S100-PA-(SG): 1,30%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen <0°C und 44°C, Gesamttensidgehalt 13,0%.
    Beispiel 4
    • Triumphnetzer: 10,70%
    • Tween 21: 4,05%
    • Oktyloktanoat: 21,38%
    • Wasser: 61,18%
    • Natriumgluconat: 1,41%
    • Brij S100-PA-(SG): 1,28%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen 5°C und 38°C, Gesamttensidgehalt 12,7%.
    Beispiel 5
    • Triumphnetzer: 6,91%
    • Tween 40: 5,89%
    • Ölsäureethylester: 26,14%
    • Wasser: 58,93%
    • CaCl2: 0,94%
    • Brij S100-PA-(SG): 1,19%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen <0°C und 48°C, Gesamttensidgehalt 11,9%.
    Beispiel 6
    • Triumphnetzer: 12,52%
    • Tween 21: 4,73%
    • Oktyloktanoat: 24,99%
    • Wasser: 55,58%
    • Trinatriumcitrat 2 Hydrat: 0,71%
    • Brij S100-PA-(SG): 1,47%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen <0°C und 45°C, Gesamttensidgehalt 14,8%.
    Beispiel 7
    • Triumphnetzer: 8,96%
    • Tween 21: 5,29%
    • Oktyloktanoat: 33,95%
    • Wasser: 49,33%
    • Trinatriumcitrat 2 Hydrat: 1,17%
    • Brij S100-PA-(SG): 1,30%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen <0°C und 43°C, Gesamttensidgehalt 12,8%.
    Beispiel 8
    • Triumphnetzer: 7,38%
    • Tween 21: 2,21%
    • Oktyloktanoat: 22,24%
    • Wasser: 65,33%
    • Trinatriumcitrat 2 Hydrat: 1,50%
    • Novel 24/26-100: 1,34%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen 5C° und 30°C, Gesamttensidgehalt 8,7%.
    Beispiel 9
    • Triumphnetzer: 10,66%
    • Tween 21: 3,44%
    • Oktyloktanoat: 21,19%
    • Wasser: 61,34%
    • Trinatriumcitrat 2 Hydrat: 1,44%
    • Emuldac AS-80: 1,93%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen 5C° und 35°C, Gesamttensidgehalt 12,7%.
    Beispiel 10
    • Triumphnetzer: 8,52%
    • Tween 21: 6,27%
    • Oktyloktanoat: 21,14%
    • Wasser: 61,99%
    • Trinatriumcitrat 2 Hydrat: 1,44%
    • Novel TDA-40: 0,64%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen <0°C und 45°C, Gesamttensidgehalt 12,8%.
    Beispiel 11 Triumphnetzer: 11,56%
    • Tween 40: 3,47%
    • Ölsäureethylester: 21,29%
    • Wasser: 61,07%
    • Trinatriumcitrat 2 Hydrat: 1,32%
    • Brij S100-PA-(SG): 1,29%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen 6C° und 47°C, Gesamttensidgehalt 12,7%.
    Beispiel 12
    • Triumphnetzer: 8,35%
    • Tween 40: 3,11%
    • Methyllaurat: 26,41%
    • Wasser: 60,26%
    • Trinatriumcitrat 2 Hydrat: 0,88%
    • Brij S100-PA-(SG): 0,99%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen <0°C und 53°C, Gesamttensidgehalt 9,9%.
    Beispiel 13
    • Triumphnetzer: 6,56%
    • Emulan EL: 1,61%
    • RME: 27,76%
    • Wasser: 62,87%
    • NaCl : 0,47%
    • Brij S100-PA-(SG): 0,73%
    • Stabilitätsbereich der Mikroemulsion liegt unter 10 und 30°C, Gesamttensidgehalt 6,9 %.
    Beispiel 14
    • Triumphnetzer: 7,44%
    • Tween 21: 5,50%
    • Oktyloktanoat: 12,88%
    • Di Basic Ester: 8,74%
    • Wasser: 62,81%
    • Trinatriumcitrat 2 Hydrat: 1,46%
    • Brij S100-PA-(SG): 1,17%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen <0°C und >60°C, Gesamttensidgehalt 11,8%.
    Beispiel 15
    • Triumphnetzer: 8,35%
    • Tween 21: 5,79%
    • Oktyloktanoat: 21,20%
    • Wasser: 61,94%
    • Trinatriumcitrat 2 Hydrat: 1,43%
    • Brij S100-PA-(SG): 1,29%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen <0°C und 44°C, Gesamttensidgehalt 12,8%.
    Beispiel 16
    • Triumphnetzer: 8,39%
    • Tween 40: 6,04%
    • Methyllaurat: 29,83%
    • Wasser: 53,32%
    • Trinatriumcitrat 2 Hydrat: 1,15%
    • Brij S100-PA-(SG): 1,27%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen <0°C und über 60°C, Gesamttensidgehalt 13,1%.
    Beispiel 17
    • Triumphnetzer: 6,94%
    • Tween 80: 6,00%
    • Ölsäureethylester: 26,07%
    • Wasser: 58,87%
    • CaCl2: 0,95%
    • Brij S100-PA-(SG): 1,17%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen <0°C und 48°C, Gesamttensidgehalt 12,0%.
    Beispiel 18
    • Triumphnetzer: 5,24%
    • Tween 21: 4,74%
    • Oktyloktanoat: 26,70%
    • Wasser: 61,41%
    • Trinatriumcitrat 2 Hydrat: 1,29%
    • Brij S100-PA-(SG): 0,62%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen <0°C und 33°C, Gesamttensidgehalt 9,0%.
    Beispiel 19
    • Triumphnetzer: 11,51%
    • Tween 21: 3,61%
    • Oktyloktanoat: 21,35%
    • Wasser: 61,17%
    • Kaliumnatriumtartrat 4 Hydrat: 1,05%
    • Brij S100-PA-(SG): 1,31%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen 12C° und 50°C, Gesamttensidgehalt 12,9%.
    Beispiel 20
    • Triumphnetzer: 8,92%
    • Tween 21: 4,40%
    • Isopropylmyristat: 25,78%
    • Wasser: 58,35%
    • Trinatriumcitrat 2 Hydrat: 1,37%
    • Brij S100-PA-(SG): 1,18%
    • Stabilitätsbereich der Mikroemulsion liegt zwischen 16.5°C und 50°C, Gesamttensidgehalt 11,7%.
    Reinigungsbeispiele:
  • Es wurden Reinigungstests mit öllöslicher Farbe (Praktiker Buntlack auf Alkydharzbasis) und wasserlöslicher Farbe (Praktiker 2 in 1 Buntlack auf Acrylbasis) durchgeführt, wobei sowohl Tests mit frischer und eingetrockneter Farbe durchgeführt wurden.
  • Abreinigung frischer öllöslicher Farbe von Pinseln
  • Auf die zu reinigenden Pinsel wurde 1,2g Praktiker Buntlack auf Alkydharzbasis aufgebracht und anschließend in jeweils 100ml Reiniger mehrere Male auf den Becherglasboden ausgedrückt und unter fließendem Wasser ausgespült. Als Reiniger wurden die Mikroemulsionsgemische 1, 12, 14 und als Vergleichsbeispiel der Pinselreiniger der Firma Pufas verwendet. In allen Fällen wurde die Farbe im Wesentlichen vom Pinsel entfernt.
  • Abreinigung eingetrockneter öllöslicher Farbe von Pinseln
  • Auf die zu reinigenden Pinsel wurde 1,2g Praktiker Buntlack auf Alkydharzbasis aufgebracht und 24 Stunden getrocknet. Anschließend wurden die Pinsel in jeweils 100ml Reiniger in einem Becherglas für 48 Stunden eingeweicht. Danach wurden die Pinsel mehrere Male auf den Becherglasboden ausgedrückt und unter fließendem Wasser ausgespült. Als Reiniger wurden die Mikroemulsionsgemische 12 und 14 verwendet. Nach Ausdrücken und Auswaschen mit Wasser war in allen Fällen die eingetrocknete Farbe im Wesentlichen entfernt.
  • Abreinigung eingetrockneter wasserlöslicher Farbe von Pinseln
  • Auf die zu reinigenden Pinsel wurde 1,5g Praktiker 2 in 1 Buntlack auf Acrylbasis aufgebracht und 24 Stunden getrocknet. Anschließend wurden die Pinsel in jeweils 100ml Reiniger in einem Becherglas für 48 Stunden eingeweicht. Danach wurden die Pinsel mehrere Male auf den Becherglasboden ausgedrückt und unter fließendem Wasser ausgespült. Wurde als Reiniger die Mikroemulsionsgemische 1, 12 und 14 verwendet, lösten sich die Farbreste als feste Partikel von den Pinselhaaren und konnten durch Abreiben und Ausspülen mit Wasser im Wesentlichen vom den Pinseln entfernt werden. Der Pinselreiniger der Firma Pufas konnte die eingetrocknete Farbe nicht entfernen.
  • Zusätzlich wurden die Reiniger auf die Tauglichkeit zum Abreinigen anderer Materialien hin untersucht. Diese Tests wurden mit Acryl-Dichtmasse, Bausilikon und Klebstoff auf Edelstahlplatten durchgeführt.
  • Abreinigen von fester Acryl-Dichtmasse
  • Auf die mit Aceton gereinigten Edelstahlplatten (Werkstoffnummer 1.4571) wurden jeweils 0,25g der Acryl-Dichtmasse auf eine Fläche von etwa 40x40mm aufgebracht und 24 Stunden an der Luft getrocknet. Danach wurde jeweils 0,5g der Mikroemulsionsgemische 1, 12 und 14, sowie des Lösers Solupast der Firma Pufas auf die Dichtmasse aufgetragen. Nach zwei Stunden Einwirkzeit konnte in allen Fällen die Dichtmasse mit leichter mechanischer Kraft mit Hilfe eines Spatels abgeschabt werden. Nach 24 Stunden Einwirkzeit war der Zustand bei Verwendung der Mikroemulsionsgemische unverändert, im Fall des Lösers Solupast haftete die Dichtmasse wieder fest auf der Stahloberfläche.
  • Abreinigen von fester Silikondichtmasse
  • Auf die mit Aceton gereinigten Edelstahlplatten wurden jeweils 0,40g der Silikondichtmasse auf eine Fläche von etwa 40x40mm aufgebracht und 24 Stunden an der Luft getrocknet. Danach wurde jeweils 0,5g der Mikroemulsionsgemische 1, 12 und 14, sowie des Lösers Solupast der Firma Pufas auf das Silikon aufgetragen. Nach zwei Stunden Einwirkzeit konnte in allen Fällen die Dichtmasse mit leichter mechanischer Kraft mit Hilfe eines Spatels abgehoben werden. Nach 24 Stunden Einwirkzeit war der Zustand bei Verwendung der Mikroemulsionsgemische unverändert, im Fall des Lösers Solupast haftete die Silikonmasse wieder fest auf der Stahloberfläche.
  • Abreinigen von eingetrocknetem Kleber
  • Auf die mit Aceton gereinigten Edelstahlplatten wurden jeweils 0,55g des Pattex-Gels auf eine Fläche von etwa 40x40mm aufgebracht und 24 Stunden an der Luft getrocknet. Danach wurde jeweils 0,5g der Mikroemulsionsgemische 1, 12 und 14, sowie des Lösers Solupast der Firma Pufas auf den Kleber aufgetragen. Nach zwei Stunden Einwirkzeit konnte in allen Fällen der Kleber mit leichter mechanischer Kraft mit Hilfe eines Spatels abgeschabt werden. Nach 24 Stunden Einwirkzeit war der Zustand bei Verwendung der Mikroemulsionsgemische unverändert, im Fall des Lösers Solupast haftete der Kleber wieder fest auf der Stahloberfläche.
  • Vergleichsbeispiele Vergleichsversuche: Ersatz von Kohlenwasserstoffölen durch Esteröle in Beispielen aus WO 2008/132202
  • Die Beispiele 2 und 5 in WO 2008/132202 (S. 24, 25) wurden für Vergleichsversuche herangezogen. In beiden Fällen wurde die Ölkomponente (Hydroseal G232H in Bsp. 2 und Ketrul D85 in Bsp. 5) durch den Carbonsäureester Rapsmethylester (RME) ersetzt. Außerdem wurde das Massenverhältnis der beiden tensidischen Komponenten (Span 20 und AG 6210 in Bsp. 2 sowie Imwitor 928 und AG 6210 in Bsp. 5) um die in den Beispielen angegebenen Werte herum variiert. Damit sollte der optimale Temperaturstabilitätsbereich für die Mikroemulsionen erfasst werden.
  • Vergleichsbeispiele zu Beispiel 2 aus WO 2008/132202
  • Beispiel 2 aus WO 2008/132202 hat folgende Zusammensetzung (alle Angaben in Gewichts-%):
    Wasser 46,45
    Hydroseal G 232 H 42,38
    AG 6210 5,39
    Span 20 4,88
    Brij 700 0,90
  • Das Gemisch lässt sich von der tensidischen Seite folgendermaßen charakterisieren.
  • Die tensidischen Komponenten sind AG 6210 (Aktivgehalt 60 Gew.-%, der Rest ist Wasser), Span 20 (Aktivgehalt 100 Gew.-%) sowie Brij 700 (Aktivgehalt 100 Gew.-%). Alle weiteren Angaben beziehen sich auf die Aktivgehalte der Tenside. Der Gesamttensidgehalt in obigem Beispiel beträgt 9,0%.
    Der Massenanteil AG 6210 im Gemisch mit Span 20 (Delta) beträgt 39,9 %. Delta = m Aktivgehalt AG 6210 m Aktivgehalt AG 6210 + m Span 20
    Figure imgb0002
  • Der Massenanteil polymerer Booster (Brij 700) im Gesamttensidgemisch beträgt 10,0%. Massenanteil Booster = m Brij 700 m Aktivgehalt AG 6210 + m Span 20 + m Brij 700
    Figure imgb0003
  • Der Stabilitätsbereich der Mikroemulsionsphase beträgt 0 bis 52 °C.
  • Wird in Beispiel 2 aus WO 2008/132202 die Ölkomponente Hydroseal G 232 H durch RME ersetzt, lässt sich keine Mikroemulsionsphase erzeugen. Das Tensidgemisch ist nicht effizient genug um alles Wasser und Öl als Mikroemulsion zu emulgieren.
  • Deshalb wurde der Gesamttensidgehalt in den Vergleichsbeispielen auf ca. 30% erhöht. Delta wurde um den Wert in Beispiel 2 aus WO 2008/132202 herum variiert; der Massenanteil Booster sowie das Massenverhältnis Wasser zu Öl wurden konstant gehalten auf den Werten von Beispiel 2 aus WO 2008/132202 .
  • Die folgende Tabelle 1 zeigt die Stabilitätsbereiche der Mikroemulsionen in Abhängigkeit vom Gesamttensidgehalt sowie von Delta. Die Zusammensetzungen der einzelnen Gemische (Vergleichsbeispiele 1 bis 15) sind in Tabelle 3 aufgeführt.
  • Das Temperaturverhalten der Gemische wurde bis 75 °C gemessen. Höhere Temperaturen sind für die meisten Anwendungen nicht relevant. Tabelle 1:
    Delta in % 24,9 29,6 35,1 39,2 45,3 50,1
    Gesamttensidgehalt % 30,1 29,9 29,9 29,5 29,4
    Mikroemulsionsstabilitätsbereich ≥63°C ≥59°C ≥52°C
    (Vgl.-Bsp. 1) (Vgl.-Bsp. 2) (Vgl.-Bsp. 3) (Vgl.-Bsp. 4) (Vgl.-Bsp. 5)
    Gesamttensidgehalt % 25,3 25,2 25,1 25,0 25,0
    Mikroemulsionsstabilitätsbereich ≥64°C ≥57°C
    (Vgl.-Bsp. 6) (Vgl.-Bsp. 7) (Vgl.-Bsp. 8) (Vgl.-Bsp. 9) (Vgl.-Bsp. 10)
    Gesamttensidgehalt % 20,0 20,1
    Mikroemulsionsstabilitätsbereich ≥63°C
    (Vgl.-Bsp. 11) (Vgl.-Bsp. 12)
    Gesamttensidgehalt % 16,6 16,0
    Mikroemulsionsstabilitätsbereich ≥69°C -
    (Vgl.-Bsp. 13) (Vgl.-Bsp. 14)
    Gesamttensidgehalt % 15,0
    Mikroemulsionsstabilitätsbereich -
    (Vgl. - Bsp. 15)
  • Die Vergleichsbeispiele 1 bis 15 zeigen, dass beim Austausch des Kohlenwasserstofföls durch Esteröl sich Mikroemulsionsphasen erst bei Gesamttensidkonzentrationen oberhalb von 16 % ausbilden. Abgesehen von den recht hohen Temperaturen bei denen die Mikroemulsionsphasen auftreten sind auch die Temperaturfenster recht eng.
  • Vergleichsbeispiele zu Beispiel 5 aus WO 2008/132202
  • Beispiel 5 aus WO 2008/132202 hat folgende Zusammensetzung (alle Angaben in Gewichts-%):
    Wasser 43,84
    Ketrul D85 48,41
    AG 6210 3,94
    Imwitor 928 3,22
    C12E190 0,59
  • Das Gemisch lässt sich von der tensidischen Seite folgendermaßen charakterisieren.
  • Die tensidischen Komponenten sind AG 6210 (Aktivgehalt 60 Gew.-%, der Rest ist Wasser), Imwitor 928 (Aktivgehalt 100 Gew.-%) sowie C12E190 (Aktivgehalt 100 Gew.-%). Alle weiteren Angaben beziehen sich auf die Aktivgehalte der Tenside.
  • Der Gesamttensidgehalt in obigem Beispiel beträgt 6,2%.
  • Der Massenanteil AG 6210 im Gemisch mit Imwitor 928 (Delta) beträgt 42,3 %. Delta = m Aktivgehalt AG 6210 m Aktivgehalt AG 6210 + m Imwitor 928
    Figure imgb0004
  • Der Massenanteil polymerer Booster (C12E190) im Gesamttensidgemisch beträgt 9,6%. Massenanteil Booster = m C 12 E 190 m Aktivgehalt AG 6210 + m Imwitor 928 + m C 12 E 190
    Figure imgb0005
  • Der Stabilitätsbereich der Mikroemulsionsphase beträgt 15 bis 75°C.
  • Wird in Beispiel 5 aus WO 2008/132202 die Ölkomponente Ketrul D85 durch RME ersetzt, lässt sich keine Mikroemulsionsphase erzeugen. Das Tensidgemisch ist nicht effizient genug um alles Wasser und Öl als Mikroemulsion zu emulgieren. Deshalb wurde der Gesamttensidgehalt in den Vergleichsbeispielen auf ca. 28% erhöht. Delta wurde um den Wert in Beispiel 5 aus WO 2008/132202 herum variiert; der Massenanteil Booster sowie das Massenverhältnis Wasser zu Öl wurden konstant gehalten auf den Werten von Beispiel 5 aus WO 2008/132202 . Als Booster wurde in den Vergleichsbeispielen 16 bis 38 Brij 700 verwendet, welches sich tensidisch gleich verhält wie C12E190.
  • Die folgende Tabelle 2 zeigt die Stabilitätsbereiche der Mikroemulsionen in Abhängigkeit vom Gesamttensidgehalt sowie von Delta. Die Zusammensetzungen der einzelnen Gemische (Vergleichsbeispiele 16 bis 38) sind in Tabellen 4a-e aufgeführt.
  • Das Temperaturverhalten der Gemische wurde bis 75 °C gemessen. Höhere Temperaturen sind für die meisten Anwendungen nicht relevant. Tabelle 2:
    Delta in % 23,0 27,8 32,1 36,9 39,6 41,9 46,0
    Gesamttensidgehalt % 28,5 28,5 28,6 28,4 28,4
    Mikroemulsionsstabilitätsbereich 72-74°C ≥66°C ≥62°C ≥59°C 56-74°C -
    (Vgl.-Bsp. 16) (Vgl.-Bsp. 17) (Vgl.-Bsp. 18) (Vgl.-Bsp. 19) (Vgl.-Bsp. 20) (Vgl.-Bsp. 21)
    Gesamttensidgehalt % 22,7 22,4 22,6 22,5 22,6
    Mikroemulsionsstabilitätsbereich 67-72°C ≥67°C ≥63°C - -
    (Vgl.-Bsp. 22) (Vgl.-Bsp. 23) (Vgl.-Bsp. 24) (Vgl.-Bsp. 25) (Vgl.-Bsp. 26)
    Gesamttensidgehalt % 20,0 20,0 20,0 20,0 20,0
    Mikroemulsionsstabilitätsbereich 69-74°C ≥66°C - - -
    (Vgl.-Bsp. 27) (Vgl.-Bsp. 28) (Vgl.-Bsp. 29) (Vgl.-Bsp.30) (Vgl.-Bsp. 31)
    Gesamttensidgehalt % 18,1 18,0
    Mikroemulsionsstabilitätsbereich ≥69°C 66-74°C
    (Vgl.-Bsp. 32) (Vgl.-Bsp. 33)
    Gesamttensidgehalt % 14,9 15,0 15,0
    Mikroemulsionsstabilitätsbereich ≥74°C ≥69°C -
    (Vgl.-Bsp. 34) (Vgl.-Bsp. 35) (Vgl.-Bsp. 36)
    Gesamttensidgehalt % 13,0 13,1
    Mikroemulsionsstabilitätsbereich - -
    (Vgl.-Bsp. 37) (Vgl.-Bsp. 38)
  • Die Vergleichsbeispiele 16 bis 38 zeigen, dass beim Austausch des Kohlenwasserstofföls durch Esteröl sich Mikroemulsionsphasen erst bei Gesamttensidkonzentrationen ab etwa 15 % ausbilden. Abgesehen von den recht hohen Temperaturen bei denen die Mikroemulsionsphasen auftreten sind auch die Temperaturfenster recht eng.
  • Fazit
  • Der Austausch des Kohlenwasserstofföls durch Esteröl in den Beispielen 2 und 5 von WO 2008/132202 führt zu Mikroemulsionssystemen mit recht engen Temperaturstabilitätsfensten. Es sind außerdem verhältnismäßig hohe Gesamttensidkonzentrationen nötig. Im Gegensatz dazu erlauben die Tensidmischungen gemäß der Erfindung für Esteröle deutlich geringere Gesamttensidkonzentrationen und auch weitere Temperaturfenster, die zudem in einem für Reinigeranwendungen besseren Temperaturbereich liegen (siehe Beispiele 1-20).
  • Zusammensetzung der Mikroemulsionsgemische in Massen-%
  • Bei AG 6210 beziehen sich die Angaben auf die 60 %ige wässrige Lösung. Bei allen anderen Substanzen ist der Aktivgehalt 100%.
  • Das Massenverhältnis Wasser zu RME wurde aus Gründen der Systematik für die Vergleichsbeispiele 1 bis 15 (Tabellen 3a-c) und 16 bis 38 (Tabellen 4a-e) jeweils konstant gehalten. Der Wasseranteil setzt sich aus dem in den Tabellen angegebenen Wasser und dem Wasseranteil von AG 6210 zusammen. Kleinere Abweichungen zwischen den Beispielen sind für das Phasenverhalten der Mischungen von vernachlässigbarer Bedeutung.
  • Vergleichsbeispiele zu Beispiel 2 aus WO 2008/132202
  • Tabelle 3a:
    Vgl.-Bsp. 1 Vgl.-Bsp. 2 Vgl.-Bsp. 3 Vgl.-Bsp. 4 Vgl.-Bsp. 5
    Wasser 31,94 31,54 30,41 30,12 29,69
    RME 32,61 32,64 32,70 32,35 32,12
    AG 6210 13,39 15,58 17,58 20,06 22,09
    Span 20 19,10 17,29 16,36 14,55 13,20
    Brij 700 2,96 2,95 2,95 2,92 2,90
    Tabelle 3b:
    Vgl.-Bsp. 6 Vgl.-Bsp. 7 Vgl.-Bsp. 8 Vgl.-Bsp. 9 Vgl.-Bsp. 10
    Wasser 35,11 34,77 33,60 32,95 32,19
    RME 35,13 35,07 35,36 35,25 35,26
    AG 6210 11,24 13,12 14,79 17,00 18,83
    Span 20 16,04 14,56 13,77 12,33 11,25
    Brij 700 2,48 2,48 2,48 2,47 2,47
    Tabelle 3c:
    Vgl.-Bsp. 11 Vgl.-Bsp. 12 Vgl.-Bsp. 13 Vgl.-Bsp. 14 Vgl.-Bsp. 15
    Wasser 38,72 38,45 43,40 41,17 44,34
    RME 37,64 37,48 37,52 39,97 38,44
    AG 6210 8,93 10,47 6,15 7,12 5,55
    Span 20 12,74 11,62 11,13 10,17 10,05
    Brij 700 1,97 1,98 1,80 1,57 1,62
  • Vergleichsbeispiele zu Beispiel 5 aus WO 2008/132202
  • Tabelle 4a:
    Vgl.-Bsp. 16 Vgl.-Bsp. 17 Vgl.-Bsp. 18 Vgl.-Bsp. 19 Vgl.-Bsp. 20
    Wasser 29,94 29,08 28,19 28,06 27,63
    RME 36,75 36,84 36,85 36,74 36,77
    AG 6210 11,95 13,88 15,96 16,96 17,98
    Imwitor 928 18,63 17,49 16,28 15,51 14,92
    Brij 700 2,73 2,71 2,74 2,73 2,70
    Tabelle 4b:
    Vgl.-Bsp. 21 Vgl.-Bsp. 22 Vgl.-Bsp. 23 Vgl.-Bsp. 24 Vgl.-Bsp. 25
    Wasser 27,29 34,03 33,37 32,69 32,75
    RME 36,47 39,49 39,91 39,64 39,36
    AG 6210 19,72 9,50 10,82 12,60 13,42
    Imwitor 928 13,87 14,81 13,72 12,92 12,26
    Brij 700 2,65 2,17 2,18 2,15 2,21
    Tabelle 4c:
    Vgl.-Bsp. 26 Vgl.-Bsp. 27 Vgl.-Bsp. 28 Vgl.-Bsp. 29 Vgl.-Bsp. 30
    Wasser 31,66 35,67 34,91 34,48 34,32
    RME 39,94 40,95 41,28 41,05 40,91
    AG 6210 14,33 8,39 9,64 11,14 11,92
    Imwitor 928 11,91 13,08 12,23 11,43 10,89
    Brij 700 2,16 1,91 1,94 1,90 1,96
    Tabelle 4d:
    Vgl.-Bsp. 31 Vgl.-Bsp. 32 Vgl.-Bsp. 33 Vgl.-Bsp. 34 Vgl.-Bsp. 35
    Wasser 33,67 36,91 36,29 39,62 38,89
    RME 41,27 41,98 42,22 43,43 43,61
    AG 6210 12,64 7,57 8,70 5,17 6,28
    Imwitor 928 10,51 11,81 11,04 10,36 9,79
    Brij 700 1,91 1,73 1,75 1,42 1,43
    Tabelle 4e:
    Vgl.-Bsp. 36 Vgl.-Bsp. 37 Vgl.-Bsp. 38
    Wasser 38,30 40,78 40,13
    RME 43,80 44,42 44,60
    AG 6210 7,25 4,51 5,48
    Imwitor 928 9,19 9,05 8,54
    Brij 700 1,46 1,24 1,25

Claims (16)

  1. Wässrige Mikroemulsion umfassend
    a) einen oder mehrere flüssige Carbonsäureester zur Ausbildung einer Ölkomponente,
    b) ein oder mehrere wasserlösliche(s) Salz(e) mit einem oder mehreren Kationen, vorzugsweise ausgewählt aus der Gruppe bestehend aus Natrium, Kalium, Calcium, Magnesium und Ammonium,
    c) ein oder mehrere Salz(e) von Sulfobernsteinsäureester,
    d) ein oder mehrere nichtionische(s) Tensid(e) ausgewählt aus alkoxyliertem Sorbitanester und alkoxyliertem Pflanzenöl, und
    e) einem oder mehreren Booster(n) in Form eines hydrophilen polymeren Additivs, bestehend aus einer wasserlöslichen Einheit, die an mindestens einem Kettenende eine hydrophobe, wasserunlösliche Gruppe mit einem Molekulargewicht von 80 bis 500 g/mol aufweist und das Molmassenverhältnis der wasserlöslichen Einheit zu den hydrophoben, waserunlöslichen Gruppen 7 bis 200 beträgt; oder
    der Booster ein Alkoholethoxylat aus einem C8-C20 Alkohol mit 25 bis 500 Ethoxy-Gruppen ist.
  2. Wässrige Mikroemulsion gemäß Anspruch 1, dadurch gekennzeichnet, dass der flüssige Carbonsäureester 6 bis 22, bevorzugt 10 bis 22 Kohlenstoffatome aufweist.
  3. Wässrige Mikroemulsion gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass der flüssige Carbonsäureesterester ausgewählt ist aus der Gruppe bestehend aus Ester aus einwertigem Alkohol und Mono- oder Dicarbonsäure und Ester aus zweiwertigem Alkohol und Monocarbonsäure, besonders bevorzugt sind die Ester einwertiger Alkohole mit Monocarbonsäuren, im Speziellen ist der flüssige Carbonsäureester ein Ester aus einer C10-C22-Monocarbonsäure und Methanol, vorzugsweise Dodekansäuremethylester oder Rapsölmethylester.
  4. Wässrige Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der flüssige Carbonsäureester in einer Menge von 10 bis 40 Gew.-%, vorzugsweise 20 bis 35 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Mikroemulsion vorliegt.
  5. Wässrige Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Gewichtsverhältnis des flüssigen Carbonsäureesters (Komponente (a)) zur Summe der Komponenten (c), (d) und (e) 1,5 bis 10, bevorzugt 2,5 bis 8, insbesondere 3 bis 8 oder 4 bis 8 beträgt.
  6. Wässrige Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Salz der Sulfobernsteinsäureester ausgewählt ist aus der Gruppe bestehend aus Diester von Sulfobernsteinsäure-Alkalisalz mit C6-C10-Alkoholen, Monoester von Sulfobernsteinsäure-Dialkalisalz mit C8-C12-Alkoholen und Monoester von Sulfobernsteinsäure-Dialkalisalz mit ethoxylierten C10-C14-Alkoholen, im Speziellen ist das Salz der Sulfobernsteinsäureester das Natriumsalz des Sulfobernsteinsäure-bis-2-ethylhexylester.
  7. Wässrige Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Salz der Sulfobernsteinsäureester in einer Menge von 1 bis 10 Gew.-%, bevorzugt in einer Menge von 2 bis 5 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Mikroemulsion, vorliegt.
  8. Wässrige Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Salz der Sulfobernsteinsäureester in einer Menge von 30 bis 75 Gew.-%, bevorzugt in einer Menge von 40 bis 70 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Komponenten (c), (d) und (e), vorliegt.
  9. Wässrige Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das nichtionische Tensid ausgewählt ist aus ethoxyliertem Sorbitanester und/oder ethoxyliertem Pflanzenöl, bevorzugt ist das nichtionische Tensid ein ethoxylierter Sorbitan monoester mit einem gesättigten oder ungesättigtem C12-C18-Fettsäurerest oder ethoxyliertes Rizinusöl; im Speziellen ist das nichtionische Tensid ethoxylierter Sorbitanester und/oder ethoxyliertes Pflanzenöl mit einem HLB-Wert von 11 bis 17, vorzugsweise 12 bis 16 oder 13 bis 16.
  10. Wässrige Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Booster ein Alkoholethoxylat aus einem C8-C20 Alkohol mit 50 bis 200 Ethoxy-Gruppen ist.
  11. Wässrige Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Booster in einer Menge von 3 bis 20 Gew.-%, bevorzugt 5 bis 15 Gew.-%, insbesondere 7 bis 15 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Komponenten (c), (d) und (e), vorliegt.
  12. Wässrige Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Salz ausgewählt ist aus der Gruppe bestehend aus Natriumsulfat, Natriumchlorid, Natriumgluconat, Natriumeitrat, Trinatriumphosphat, Dinatriumhydrogenphosphat, Kaliumsulfat, Kaliumchlorid, Ammoniumsulfat, Ammoniumchlorid, Magnesiumsulfat, Magnesiumchlorid, Calciumchlorid, Calciumacetat und Magnesiumacetat, bevorzugt ist das Salz ein Acetat, insbesondere Calciumacetat und/oder Magnesiumacetat.
  13. Wässrige Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Summe der Komponenten (c), (d) und (e) in einer Menge von 2 bis 20 Gew.-%; bevorzugt 3 bis 15 Gew.-%, weiter bevorzugt 3 bis 10 Gew.-% und insbesondere 3 bis 8 Gew.-% oder 4 bis 8 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Mikroemulsion, vorliegt.
  14. Wässrige Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Mikroemulsion als bikontinuierliche Mikroemulsion vorliegt.
  15. Verwendung der Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche
    als Reinigungsmittel, insbesondere zur Entfernung ölartiger Verschmutzungen oder
    zur Reinigung und/oder Entfernung von Verbindungen ausgewählt aus der Gruppe bestehend aus Farben, Lacke, Fette, Öle, Harze, Bitumen, Teer, Klebereste, Dichtstoffe, Gummiabrieb, Kosmetik- und Schminkreste sowie Pyrolyseprodukte organischer Verbindungen, insbesondere zur Reinigung und/oder Entfernung von Verschmutzungen deren organische Bestandteile polymerbasiert sind, beispielsweise Farben, Klebstoffe, Dichtmassen, Polymerschäume oder
    zur Reinigung von mit Farbstoffresten verunreinigten Werkzeugen, insbesondere Werkzeugen zum Auftragen von Farben, beispielsweise Pinsel, Farbrollen oder Farbsprühgeräte oder
    zur Reinigung von Backöfen, Kaminscheiben oder einem Grill.
  16. Verfahren zum Reinigen umfassend die folgenden Schritte
    a) Applizieren einer Mikroemulsion gemäß einem oder mehreren der vorangehenden Ansprüche auf eine verunreinigte Oberfläche,
    b) gegebenenfalls Einwirklassen der Mikroemulsion, und
    c) Entfernen der Verunreinigung.
EP13710857.7A 2012-03-20 2013-03-20 Reinigungsmittel auf mikroemulsionsbasis Not-in-force EP2828370B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012204378A DE102012204378A1 (de) 2012-03-20 2012-03-20 Reinigungsmittel auf Mikroemulsionsbasis
PCT/EP2013/055791 WO2013139842A1 (de) 2012-03-20 2013-03-20 Reinigungsmittel auf mikroemulsionsbasis

Publications (2)

Publication Number Publication Date
EP2828370A1 EP2828370A1 (de) 2015-01-28
EP2828370B1 true EP2828370B1 (de) 2017-06-07

Family

ID=47902001

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13710857.7A Not-in-force EP2828370B1 (de) 2012-03-20 2013-03-20 Reinigungsmittel auf mikroemulsionsbasis

Country Status (6)

Country Link
US (1) US9150823B2 (de)
EP (1) EP2828370B1 (de)
JP (1) JP2015510964A (de)
CN (1) CN104220579A (de)
DE (1) DE102012204378A1 (de)
WO (1) WO2013139842A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890229B2 (ja) * 2012-04-04 2016-03-22 上野化学工業株式会社 インキローラー及びブランケット用洗浄剤並びにこれを用いた洗浄法
CN105980489A (zh) * 2014-06-20 2016-09-28 加迪特解决方案有限公司 涂鸦清除组合物及其用途
DE102015011694A1 (de) 2015-09-14 2017-03-16 Forschungszentrum Jülich GmbH Reinigungsmittel auf Mikroemulsionsbasis
US10058488B2 (en) 2015-10-14 2018-08-28 Illinois Tool Works Inc. Skin cleansing article impregnated with a low VOC cleaner comprising a 9-decanoic acid methyl ester
JP6468305B2 (ja) * 2017-03-07 2019-02-13 栗田工業株式会社 水処理薬品及びその調製方法、並びにポリアミド系逆浸透膜の洗浄方法
FR3064002B1 (fr) 2017-03-14 2021-07-02 Prevor Int Melange liquide pour nettoyer les deversements de peinture, vernis, colorant et/ou lasure
FR3065731B1 (fr) * 2017-04-27 2019-07-19 Rhodia Operations Agents fluxants pour enduits superficiels a chaud
FR3065732B1 (fr) * 2017-04-27 2019-07-19 Rhodia Operations Agents d'interfaces pour la preparation de revetements routiers a froid
JP7210542B2 (ja) 2017-08-07 2023-01-23 ユニベルシテ ドゥ ジュネーブ Ctイメージング用のヨウ素化脂肪酸のナノエマルジョン
DE102017223123A1 (de) * 2017-12-18 2019-06-19 Henkel Ag & Co. Kgaa Maschinelles Geschirrspülmittel mit verbesserter Klarspül- und Reinigungsleistung, Verfahren unter Einsatz dieses Mittels sowie Verwendung des Mittels
WO2023073195A1 (en) * 2021-10-28 2023-05-04 Adiposs SA Emulsions, compositions for emulsions, methods for making the same and uses thereof

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511513A (en) * 1981-03-09 1985-04-16 Johnson & Johnson Baby Products Company Detergent compounds and compositions
FR2676922B1 (fr) * 1991-06-03 1995-01-20 Givaudan Lavirotte Applications en cosmetique de derives n-acyles de melanges d'acides amines issus d'hydrolysats de proteines vegetales.
EP0571677A1 (de) * 1992-05-29 1993-12-01 Unilever Plc Parfümöle enthaltende wässrige Mikroemulsionen
US5573702A (en) * 1993-11-22 1996-11-12 Colgate-Palmolive Co. Liquid cleaning compositions with grease release agent
AU1355995A (en) * 1994-03-14 1995-09-21 Colgate-Palmolive Company, The Microemulsion all purpose liquid cleaning compositions
DE19504914C1 (de) * 1995-02-15 1995-11-16 Goldwell Gmbh Haarwaschmittel
US6165962A (en) 1997-07-31 2000-12-26 E. I. Du Pont De Nemours And Comapny Aqueous microemulsions
DE19839054A1 (de) 1998-08-28 2000-03-02 Forschungszentrum Juelich Gmbh Verfahren zur Effizienzsteigerung von Tensiden bei simultaner Unterdrückung lamellarer Mesophasen sowie Tenside, welchen ein Additiv beigefügt ist
US6821937B2 (en) 1999-03-05 2004-11-23 Cognis Corporation Hard surface cleaning composition
WO2000052128A1 (en) 1999-03-05 2000-09-08 Cognis Corporation Hard surface cleaning composition
US5962396A (en) * 1999-04-09 1999-10-05 Colgate-Palmolive Co. Post forming cleaning compositions comprising isopentane
US7018969B1 (en) 2003-01-17 2006-03-28 Cognis Corporation Thickeners for methyl ester microemulsions
US20040209795A1 (en) * 2003-04-21 2004-10-21 Vlad Florin Joseph VOC-free microemulsions
US6982244B2 (en) 2003-12-15 2006-01-03 Cognis Corporation Methyl ester-based microemulsions for cleaning hard surfaces
US20060084589A1 (en) * 2004-10-20 2006-04-20 Vlad Florin J Solubilizing systems for flavors and fragrances
CN101039653B (zh) * 2004-10-20 2010-06-16 弗门尼舍有限公司 调味料和芳香剂的增溶体系
WO2006100615A1 (en) * 2005-03-23 2006-09-28 Firmenich Sa Air freshener device comprising a specific liquid composition
DE102005049765A1 (de) 2005-10-18 2007-04-19 Forschungszentrum Jülich GmbH Verfahren zur Effizienzsteigerung von Tensiden, zur Aufweitung des Temperaturfensters, zur Unterdrückung lamellarer Mesophasen in Mikroemulsionen mittels Additiven, sowie Mikroemulsionen
US7547670B2 (en) 2005-10-25 2009-06-16 Cognis Ip Management Gmbh Low odor ester-based microemulsions for cleaning hard surfaces
US7964545B2 (en) * 2006-07-04 2011-06-21 Kao Corporation Skin cleansing composition
US20080200565A1 (en) * 2007-01-26 2008-08-21 Harwell Jeffrey H Surfactant-only microemulsions for cleaning system design and product delivery
US20100144898A1 (en) 2007-04-27 2010-06-10 Joerg Adams Mixture comprising an alkylpolyglucoside, a cosurfactant and a polymer additive
EP2045320B1 (de) * 2007-09-19 2012-04-25 Bubbles & Beyond Gmbh Reinigungsmittel zur Entfernung von Farbschichten von Oberflächen, Verfahren zur Herstellung des Mittels und Verfahren zur Reinigung
US20090093390A1 (en) 2007-10-03 2009-04-09 Cognis Ip Management Gmbh Thickened Methyl Ester Microemulsions for Cleaning Hard Surfaces
US20100093581A1 (en) * 2008-10-15 2010-04-15 Rubi Rose, Llc. All Purpose Cleaning Compositions
CA2777816C (en) * 2009-10-16 2017-03-07 Copperhead Chemical Company A liquid crystal composition and a method of making the same
EP2340804A1 (de) * 2009-12-31 2011-07-06 Takasago International Corporation Duftstoffmikroemulsionszusammensetzungen

Also Published As

Publication number Publication date
EP2828370A1 (de) 2015-01-28
US20150045278A1 (en) 2015-02-12
WO2013139842A1 (de) 2013-09-26
US9150823B2 (en) 2015-10-06
CN104220579A (zh) 2014-12-17
JP2015510964A (ja) 2015-04-13
DE102012204378A1 (de) 2013-09-26

Similar Documents

Publication Publication Date Title
EP2828370B1 (de) Reinigungsmittel auf mikroemulsionsbasis
EP2045320B1 (de) Reinigungsmittel zur Entfernung von Farbschichten von Oberflächen, Verfahren zur Herstellung des Mittels und Verfahren zur Reinigung
EP3350307B1 (de) Reinigungsmittel auf mikroemulsionsbasis
WO2008132202A2 (de) Mischung, welche ein alkylpolyglucosid, ein cotensid und ein polymeres additiv umfasst
DE69302384T2 (de) Verbesserungen in bezug auf reinigungsmittelzusammensetzungen
EP1082228B1 (de) Verfahren zum reinigen von druckmaschinen und druckformen
DE69217486T2 (de) Verfahren zur reinigung gestrichener harter oberflaechen mit reinigungsmitteln, die wenig fluechtige organische verbindungen enthalten
DE19859808A1 (de) Mehrphasiges Reinigungsmittel mit Ligninsulfonat
DE69509766T2 (de) Mikroemulsionen
DE69511555T2 (de) Verbesserungen in bezug auf tensidöl-mikroemulsionkonzentrate
DE69614029T2 (de) Von Ketonen stammendes Tensid und Verfahren zum Behandeln von Abwässern aus Industrie, Handel oder öffentlichen Körperschaften
EP1141225A1 (de) Wässriges mehrphasiges reinigungsmittel
DE4025039C2 (de)
EP1141227B1 (de) Mehrphasiges reiningungsmittel mit naphthalinsulfonsäure- formaldehyd- kondensat
DE4228461C1 (de) Reinigungsmediumzusammensetzung
DE19859799A1 (de) Mehrphasiges Reinigungsmittel mit endgruppenverschlossenem polyalkoxyliertem Alkohol
DE4441144C2 (de) Reinigungsmittel für die Druckereitechnik
DE102007020426A1 (de) Mischung, welche ein Alkylpolyglucosid, ein Cotensid und ein polymeres Additiv umfasst
WO2004013271A1 (de) Reinigungsmittel für harte oberflächen
AT409968B (de) Reinigungsmittel zur reinigung von oberflächen aus beton, asphalt oder dgl.
DE102006027757A1 (de) Reinigungsmittel und dessen Verwendung
DE19517815A1 (de) Flüssiges wasserhaltiges Mittel zur Reinigung von textilen Oberflächen
DE19859641A1 (de) Mehrphasiges Reinigungsmittel mit alkoxyliertem Dihydroxyaromaten
DE10202007A1 (de) Alkylglykolalkoxylate, ihre Mischungen mit Tensiden und ihre Verwendung

Legal Events

Date Code Title Description
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 899237

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013007432

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170607

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170908

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171007

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013007432

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

26N No opposition filed

Effective date: 20180308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130320

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210322

Year of fee payment: 9

Ref country code: CH

Payment date: 20210324

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210324

Year of fee payment: 9

Ref country code: DE

Payment date: 20210331

Year of fee payment: 9

Ref country code: AT

Payment date: 20210318

Year of fee payment: 9

Ref country code: BE

Payment date: 20210322

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013007432

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 899237

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220320

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220320

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220320

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331