EP1069072A1 - Poudre conductrice et composition conductrice transparente - Google Patents

Poudre conductrice et composition conductrice transparente Download PDF

Info

Publication number
EP1069072A1
EP1069072A1 EP99910702A EP99910702A EP1069072A1 EP 1069072 A1 EP1069072 A1 EP 1069072A1 EP 99910702 A EP99910702 A EP 99910702A EP 99910702 A EP99910702 A EP 99910702A EP 1069072 A1 EP1069072 A1 EP 1069072A1
Authority
EP
European Patent Office
Prior art keywords
electrically conductive
conductive powder
amorphous silica
oxide
silica fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99910702A
Other languages
German (de)
English (en)
Inventor
Yukiya Otsuka Chemical Co. Ltd. HAREYAMA
Hidetoshi Otsuka Chemical Co. Ltd. OGAWA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Publication of EP1069072A1 publication Critical patent/EP1069072A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides

Definitions

  • the present invention relates to an electrically conductive powder excellent in transparency and electrical conductivity and also to a transparent conductive composition incorporating the electrically conductive powder.
  • the powder particles used in the method (1) because of their fine sizes, exhibit high cohesive strength that facilitates the formation of agglomerates as secondary particles.
  • the problem of poor dispersion arises when they are formulated into a coating composition.
  • the amount of those particles must be increased if they are to be effective in forming electrically conductive paths.
  • the method (2) while effective to provide thin metal films having excellent levels of electrical conductivity and transparency, needs expensive film-forming materials and a large-scale film-forming apparatus, which are problems.
  • the electrically conductive powder must be incorporated therein in a large amount.
  • the higher loading of the electrically conductive powder has created a problem of reducing transparency of the resin.
  • a first aspect of the present invention is characterized in that amorphous silica fibers, obtainable by treating calcium silicate fibers with acid, are coated with one or more metal oxides selected from tin oxide, antimony oxide, indium oxide and zinc oxide.
  • a second aspect of the present invention is characterized in that amorphous silica fibers having a fiber length of 1 - 500 ⁇ m and an aspect ratio of 5 - 5,000 are coated with one or more metal oxides selected from tin oxide, antimony oxide, indium oxide and zinc oxide.
  • Such amorphous silica fibers can be obtained by treating calcium silicate fibers with acid, as analogous to the first aspect.
  • the amorphous silica fibers for use in the second aspect may be those obtained by treating calcium silicate fibers with acid.
  • the amorphous silica fibers preferably have a refractive index in the range of 1.4 - 1.8. Maintaining their refractive index within the above-specified range allows a resin or polymer including such amorphous silica fibers to obtain the further improved transparency.
  • the amount of the coated metal oxide is preferably in the range of 10 - 100 parts by weight, based on 100 parts by weight of the amorphous silica fibers. If it is excessively small, the sufficient electrical conductivity may not be obtained for the electrically conductive powder. On the other hand, if it is excessively large, an economical disadvantage becomes significant while not showing the proportional improvement in electrtical conductivity. Also, the transparency of the conductive powder shows a decreasing trend.
  • the metal oxide to be coated is selected from tin oxide, antimony oxide, indium oxide and zinc oxide.
  • tin oxide containing antimony oxide a metal oxide consisting of indium oxide/tin oxide, generally called ITO, and zinc oxide.
  • ITO indium oxide/tin oxide
  • zinc oxide zinc oxide
  • the amount of antimony oxide incorporated is preferably in the range of 1 - 50 parts by weight, more preferably in the range of 1 - 20 parts by weight, based on 100 parts by weight of tin oxide. Tin oxide, when doped with antimony, exhibits the enhanced level of electrical conductivity.
  • the amorphous silica fibers may be coated with the metal oxide, for example, according to the following procedure.
  • a selected metal oxide such as in the form of its hydroxide, is deposited onto amorphous silica fiber surfaces in an aqueous solution.
  • Subsequent dewatering, drying and heat treatment provides a coating film of electrically conductive metal oxide on surfaces of the amorphous silica fibers.
  • the hydroxide or the like of the metal oxide can be prepared by hydrolyzing a metallic compound.
  • the preferred metallic compounds are those which can be solubilized into water or water-soluble organic solvent, including those soluble in water in an acidic or base condition, such as halides and oxides, and those soluble in water-soluble organic solvents, such as metal alcoholates and metal acetyl acetonates.
  • a specific manufacturing method involves adding a solution of the aforementioned matallic compound to an aqueous dispersion of amorphous silica fibers. Subsequent hydrolyzing results in deposition of insolubles thereof onto fiber surfaces.
  • the metallic compound solution may be added to the aqueous dispersion of fibers under a hydrolyzing condition. Alternatively, hydrolyzing may be achieved after the addition of the solution to the aqueous dispersion.
  • a first hydrolyzing method utilizes an organic compound, such as alcoholate or acetyl acetonate, for the metallic compound.
  • the organic compound after dissolved in a water-soluble organic solvent, is added to the above-described aqueous dispersion of amorphous silica fibers, whereby the metallic compound is hydrorized to deposit onto fiber surfaces.
  • Such a hydrolysis reaction may be effected under the application of heat or in the presence of an alkaline substance.
  • Useful alkaline substances include hydroxides and carbonates of alkaline metals, and ammonium compounds, for example.
  • a second hydrolyzing method utilizes a halide for the metallic compound.
  • a halide solution in alcohol is added to the aqueous dispersion of amorphous silica fibers.
  • the hydrolysis reaction may be effected under the application of heat or in the presence of an alkaline substance.
  • a useful alkaline substance can be chosen from those described in the aforementioned first method.
  • a third hydrolyzing method involves adding an aqueous solution of the metallic compound to the aforementioned aqueous dispersion of amorphous silica fibers. This method, because of its exclusion of organic solvents, is forvored from the following points; working atmosphere, environmetal pollution, prevention of disasters, and economics. Also in this method, the hydrolysis reaction can be effected under the application of heat or in the presence of an alkaline substance.
  • the amorphous silica fibers used are those prepared by treating calcium silicate fibers with an acid.
  • Useful calcium silicate fibers may be those comprised of wollastonite, xonotlite and the like, for example.
  • the acid treatment of calcium silicate fibers results in the removal of calcium therefrom, so that the amorphous silica fibers are obtained.
  • the acid treatment is not particularly specified, so long as it can convert the calcium silicate fibers to amorphous silica fibers while maintaining the original fibrous form of the calcium silicate fibers.
  • the acid treatment using a weak acid is generally preferred.
  • the preferred acid treatment employs a carbonic acid.
  • a carbonic acid gas is blown into the aqueous dispersion of calcium silicate fibers.
  • the produced calcium carbonate may in some cases remain on the amorphous silica fibers.
  • calcium carbonate can be decomposed for removal therefrom by adding thereto an acid, such as oxalic acid, nitric acid or the like.
  • the amorphous silica fibers retain the original fibrous form of the starting material, i.e., calcium silicate fibers.
  • the amorphous silica fibers can thus be obtained which have the fiber length and aspect ratio approximate in levels to those of the starting calcium silicate fibers. Therefore, the fiber length and aspect ratio of the amorphous silica fibers can be adjusted by suitably selecting the fiber length and aspect ratio of starting wollastonite fibers.
  • the fibrous configuration of the amorphous silica fibers is represented preferably by a fiber length of 1 - 500 ⁇ m and an aspect ratio of 5 - 5,000, more preferably by a fiber length of 10 - 50 ⁇ m and an aspect ratio of 10 - 100.
  • a refractive index of the electrically conductive powder loaded is as close to that of the resin or the like as possible.
  • the referactive index of the electrically conductive powder is preferably in the range of 1.4 - 1.8, more preferably in the range of 1.4 - 1.6.
  • the tranparent coductive composition of the present invention is characterized in that the aforemetnioned electrically conductive fibers of the present invention is included in a binder.
  • binder materials include synthetic polymer compounds such as thermoplastic and thermosetting resins; natural resins and their derivatives; metal-containing organic compounds; inorganic binder materials; and emulsions of organic or inorganic compounds.
  • thermoplastic resins are engineering plastics such as polyolefins, polyvinyl chloride, ABS resin, polystyrene, acrylics, POM resin, PBT resin and PPS resin.
  • Specific examples of thermosetting resins are phenol resin, epoxy resin and the like.
  • Other synthetic polymer compounds include polyphosphazene and the like.
  • One or more of the above-listed binder materials can be selectively employed depending upon the particular purposes and uses sought.
  • the transparent conductive composition of the present invention is provided in the form of the conductive resin composition
  • an additive such as a filler, reinforcer, pigment, anti-oxidant, antistatic agent, lubricant, heat stabilizer, or flame retarder may suitably be incorporated therein within the limits not to lose the required transparency.
  • the electrically conductive powder of the present invention may be subjected to surface treatment with a coupling agent or the like before it is mixed with the binder.
  • tranparent conductive resin composition conventional mixing operations may suitably be employed including, for example, Banbury mixing, internal mixing, extrusion pelletizing and the like.
  • the transparent conductive composition of the present invention because of its excellent transparency, becomes advantageous when used in the processed forms such as a coating film, film, sheet and the like. It can be formed into a coating film when used in the form of conventional coating compositions such as solvent-based, water-based and emulsion coating compositions. Also, it can be rendered into a film or sheet by a conventional film- or sheet-forming process.
  • the transparent conductive composition of the present invention contains 3 - 80 % by weight of the electrically conductive powder and has a volume resistivity of not exceeding 10 10 ⁇ cm and a total luminous transmittance of 30 - 100 %.
  • the excessively low loading of the electrically conductive powder may result in the failure to obtain the desired electrical conductivity.
  • the excessively high loading of the electrically conductive powder may result in the reduced transparency.
  • the volume resistivity of not exceeding 10 10 ⁇ cm is mostly required.
  • the total luminous transmittance is preferably not below 30 %, more preferably not below 50 %.
  • electrically conductive powders can be provided which, when loaded in a resin or the like, are able to impart both transparency and electrical conductivity thereto.
  • transparent conductive compositions can be provided which have excellent transparency and electrical conductivity.
  • the electrically conductive powder of the present invention are also useful for electrostatic coating and electrodepsition primer in the coating field of steel plates and the like.
  • the electrically conductive powder of the present invention when added to a base layer made from a metallic coating composition commonly used in the coating field of steel plates and the like, can make the base layer directly coatable without the interposition of a primer.
  • a coating composition for use in such a base layer may contain the electrically conductive powder of the present invention, an aluminum paste, a pigment and a polyester-melamine binder, for example.
  • the electrically conductive powder of the present invention when formulated in a coating composition, not only imparts the desired electrical conductivity but also exhibits the excellent flatting effect, which makes it very suitable for applications in the aforementioned coating fields.
  • the product was suction filtered, washed with water, dewatered and dried.
  • the resulting product was amorphous silica fibers having an average fiber length of 23 ⁇ m, an average fiber diameter of 0.77 ⁇ m, an average aspect ratio of 30 and a refractive index of 1.5.
  • amorphous silica fibers obtained in Preparation Example was dispersed in 2.5 liter of deionized water.
  • a mixed solution of tin chloride and antimony chloride in hydrochloric acid and an aqueous solution of sodium hydroxide were concurrently but separately added dropwise to the dispersion while stirred and maintained at 70 °C.
  • the dispersion was stirred for an additional 2 hours, while its pH was kept at about 3.
  • the dispersion was then filtered, washed with water, dewatered, dried at 110 °C for 10 hours, and then heat treated at 450 °C to obtain a fibrous-form electrically conductive powder of the present invention.
  • Its tin oxide and antimony oxide contents were 25 parts by weight and 5 parts by weight, respectively, based on 100 parts by weight of the base material.
  • Example 1 The procedure of the above Example 1 was followed, with the exception that white carbon (product name "NIPSIL”, manufactured by Nippon Silica Kogyo Co., Ltd., comprised principally of SiO 2 , an average particle size of 16 ⁇ m, a refractive index of 1.48) was used a base material, to prepare an electrically conductive powder.
  • white carbon product name "NIPSIL”, manufactured by Nippon Silica Kogyo Co., Ltd., comprised principally of SiO 2 , an average particle size of 16 ⁇ m, a refractive index of 1.478
  • Example 1 The procedure of the above Example 1 was followed, except that muscovite (product name "Z-20", manufactured by Hikawa Kogyo Co., Ltd., flake-form, an average particle size of 50 ⁇ m, a refractive index of 1.56) was used as a base material, to prepare an electrically conductive powder.
  • muscovite product name "Z-20", manufactured by Hikawa Kogyo Co., Ltd., flake-form, an average particle size of 50 ⁇ m, a refractive index of 1.56
  • a transparent conductive sheet incorporating the electrically conductive powder of Example 1 was prepared according to the following procedure.
  • a pellet-form polypropylene resin was melt in a twin-screw kneader, the electrically conducitive powder of Example 1 was supplied from a side hopper, and the mixture was kneaded and extruded into a sheet-form, i.e. an electrically conductive sheet, which had a thickness of 30 ⁇ m.
  • a blending proportion of the electrically conductive powder in the sheet was 30 % by weight.
  • Example 2 The procedure of the above Example 2 was followed, except that the electrically conductive powder of Comparative Example 1 was used, to prepare a sheet.
  • Example 2 The procedure of the above Example 2 was followed, except that the electrically conductive powder of Comparative Example 2 was used, to prepare a sheet.
  • Example 1 The procedure of the above Example 1 was followed, except that titanium oxide fibers (product name "FTL-200", manufactured by Ishihara Sangyo Co., Ltd., rutile-form, an average fiber length of 5 ⁇ m, a refractive index of 2.90) was used as the base material, to prepare an electrically conductive powder.
  • titanium oxide fibers product name "FTL-200", manufactured by Ishihara Sangyo Co., Ltd., rutile-form, an average fiber length of 5 ⁇ m, a refractive index of 2.90
  • Example 2 The procedure of the above Example 2 was followed with the use of this electrically conductive powder to prepare a sheet.
  • Example 2 The sheets obtained in Example 2 and Comparative Examples 3 - 5 were respectively measured for volume resistivity and total luminous transmittance in accordance with the following procedures. The results are shown in Table 1.
  • a sample piece was placed between two electrodes.
  • a DC voltage was applied across the sample piece, and a value of the current flowing though the sample piece was measured.
  • a volume resistivity (numerical value given by dividing the voltage by the current flowing through a unit volume of the sample piece: a unit of ⁇ cm ) was determined from this measured value.
  • Example 1 1 X 10 5 85.3 Comp.
  • Example 3 Comp.
  • Example 4 Comp.
  • Example 2 3 X 10 6 81.2 Comp.
  • Example 5 Titanium Oxide Fiber 2 X 10 6 19.7
  • the electrically conductive powder of the above Example 1 was loaded in a solvent-containing solution-type urethane resin in the concentration of 40 % by weight, based on a total solids weight, followed by mixing thereof with sufficient stirring. The mixture was then applied onto a PET film and cured by heat drying to obtain a coating film having a dry film thickness of 10 ⁇ m.
  • Example 3 The procedure of the above Example 3 was followed, except that the electrically conductive powder of Comparative Example 1 was used, to form a coating film.
  • Example 3 The procedure of the above Example 3 was followed, except that the electrically conductive powder of Comparative Example 2 was used, to form a coating film.
  • Example 3 The procedure of the above Example 3 was followed, except that the same electrically conductive powder as used in Comparative Example 5, i.e., the electrically conductive powder prepared from titanium oxide fibers as the base material was used, to form a coating film.
  • the same electrically conductive powder as used in Comparative Example 5 i.e., the electrically conductive powder prepared from titanium oxide fibers as the base material was used, to form a coating film.
  • Example 3 The coating films obtained in Example 3 and Comparative Examples 6 - 8 were measured, respectively, for volume resistivity and total luminous transmittance according to the same procedures as described above. The results are shown in Table 2. Electrically Conductive Powder Volume Resistivity ( ⁇ cm) Total Luminous Transmittance (%) Example 3 Example 1 4 X 10 4 91.2 Comp. Example 6 Comp. Example 1 3 X 10 6 77.6 Comp. Example 7 Comp. Example 2 5 X 10 5 83.5 Comp. Example 8 Titanium Oxide Fiber 4 X 10 4 27.6
  • the sheet of Example 2 and the coating film of Example 3, respectively prepared by using the electrically conductive powder of Example 1 in accordance with the present invention exhibit the reduced levels of volume resistivity, markedly increased levels of total luminous transmittance and improved degrees of electrical conductivity and transparency, compared to those of Comparative Examples 3 - 8.
  • the present invention is applicable to members for which transparency and electrical conductivity have been conventionally sought, such as display device parts, antistatic films or packages, transparent electrodes and transparent heating units.

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)
  • Conductive Materials (AREA)
EP99910702A 1998-03-27 1999-03-24 Poudre conductrice et composition conductrice transparente Withdrawn EP1069072A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8150898 1998-03-27
JP10081508A JP2978146B2 (ja) 1998-03-27 1998-03-27 導電性粉末及び透明導電性組成物
PCT/JP1999/001516 WO1999050179A1 (fr) 1998-03-27 1999-03-24 Poudre conductrice et composition conductrice transparente

Publications (1)

Publication Number Publication Date
EP1069072A1 true EP1069072A1 (fr) 2001-01-17

Family

ID=13748308

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99910702A Withdrawn EP1069072A1 (fr) 1998-03-27 1999-03-24 Poudre conductrice et composition conductrice transparente

Country Status (4)

Country Link
EP (1) EP1069072A1 (fr)
JP (1) JP2978146B2 (fr)
CA (1) CA2325582A1 (fr)
WO (1) WO1999050179A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1428899A1 (fr) * 2002-12-13 2004-06-16 CENTRO SVILUPPO MATERIALI S.p.A. Procédé de déposition de revêtements basés sur des oxydes semi-conducteurs dopés par pulvérisation à plasma
CN100388392C (zh) * 2005-06-20 2008-05-14 浙江大学 以层状硅酸盐矿物为基体的导电粉体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4182825B2 (ja) 2002-07-01 2008-11-19 住友金属鉱山株式会社 日射遮蔽用アンチモン錫酸化物微粒子とこれを用いた日射遮蔽体形成用分散液および日射遮蔽体並びに日射遮蔽用透明基材
JP5284632B2 (ja) * 2007-12-12 2013-09-11 日揮触媒化成株式会社 導電性繊維状中空シリカ微粒子分散質およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580715A (en) * 1978-12-11 1980-06-18 Tokuyama Soda Co Ltd Production of amorphous silica hydrate
JPS625507A (ja) * 1985-06-28 1987-01-12 住友化学工業株式会社 繊維状透明導電性物質
JPS62122005A (ja) * 1985-11-21 1987-06-03 住友化学工業株式会社 導電性に優れた繊維状白色導電性フイラ−の製造方法
JPS634503A (ja) * 1986-06-24 1988-01-09 住友化学工業株式会社 耐光性に優れた繊維状白色導電性物質の製造方法
JPH05116930A (ja) * 1991-10-22 1993-05-14 Nippon Chem Ind Co Ltd 白色導電性粉末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9950179A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1428899A1 (fr) * 2002-12-13 2004-06-16 CENTRO SVILUPPO MATERIALI S.p.A. Procédé de déposition de revêtements basés sur des oxydes semi-conducteurs dopés par pulvérisation à plasma
CN100388392C (zh) * 2005-06-20 2008-05-14 浙江大学 以层状硅酸盐矿物为基体的导电粉体

Also Published As

Publication number Publication date
JP2978146B2 (ja) 1999-11-15
CA2325582A1 (fr) 1999-10-07
JPH11278826A (ja) 1999-10-12
WO1999050179A1 (fr) 1999-10-07

Similar Documents

Publication Publication Date Title
US4431764A (en) Antistatic transparent coating composition
JP3444919B2 (ja) 導電性顔料
JP2959928B2 (ja) 白色導電性樹脂組成物
US5707552A (en) Zinc antimonate anhydride and method for producing same
RU2310935C2 (ru) Электропроводный состав в форме хлопьевидных частиц и электропроводная композиция
KR100394889B1 (ko) 침상 전기전도성 산화주석 미세입자 및 그의 제조방법
US5906679A (en) Coating compositions employing zinc antimonate anhydride particles
JPS6313463B2 (fr)
KR100906009B1 (ko) 도전성 산화아연 분말 및 그의 제조 방법, 및 도전성조성물
CA2055853A1 (fr) Mastic fibreux conducteur et procede de production connexe
JPH0640719A (ja) 導電性硫酸バリウム及びその製造法
JP2884260B2 (ja) 導電性硫化亜鉛粉体、その製造方法及びその用途
EP1069072A1 (fr) Poudre conductrice et composition conductrice transparente
JPS61141616A (ja) 導電性二酸化チタン微粉末及びその製造方法
JP3195072B2 (ja) 繊維状導電性フィラー及びその製造方法
US5766512A (en) Zinc antimonate anhydride and method for producing same
CN1359988A (zh) 浅色片状导电颜料的制备方法
JP3875282B2 (ja) 導電性薄板状硫酸バリウムフィラー及びその製造方法
JP3222955B2 (ja) 透明導電性粉末及びその製造方法
JP3515625B2 (ja) 針状導電性酸化錫微粉末およびその製造方法
JP3431726B2 (ja) 導電性粉末及びその製造方法、導電性塗膜
JP3394556B2 (ja) 導電性硫酸バリウムフィラー及びその製造方法
JPH10316429A (ja) 導電性酸化チタンとその製法およびこれを含有したプラスチック組成物
JP2844012B2 (ja) 導電性微粉末およびその製造方法
JPS62201976A (ja) 白色導電性塗料

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000926

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030401