EP1064726A1 - Schaltungsanordnung zur reduzierung des leckstromes - Google Patents
Schaltungsanordnung zur reduzierung des leckstromesInfo
- Publication number
- EP1064726A1 EP1064726A1 EP99919067A EP99919067A EP1064726A1 EP 1064726 A1 EP1064726 A1 EP 1064726A1 EP 99919067 A EP99919067 A EP 99919067A EP 99919067 A EP99919067 A EP 99919067A EP 1064726 A1 EP1064726 A1 EP 1064726A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transistors
- circuit
- threshold voltage
- circuit arrangement
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000758 substrate Substances 0.000 claims description 21
- 239000004065 semiconductor Substances 0.000 claims 5
- 229910017171 MNH2 Inorganic materials 0.000 claims 1
- 101150105005 MNP1 gene Proteins 0.000 claims 1
- 101100243367 Phlebia radiata mnp2 gene Proteins 0.000 claims 1
- 101100184488 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mrpl12 gene Proteins 0.000 claims 1
- 101100316510 Schizosaccharomyces pombe (strain 972 / ATCC 24843) usb1 gene Proteins 0.000 claims 1
- 102100036109 Dual specificity protein kinase TTK Human genes 0.000 abstract description 6
- 101000659223 Homo sapiens Dual specificity protein kinase TTK Proteins 0.000 abstract description 6
- 101100076863 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mnh1 gene Proteins 0.000 abstract description 6
- 230000000694 effects Effects 0.000 description 5
- 238000004377 microelectronic Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 101100024083 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) MPH2 gene Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0008—Arrangements for reducing power consumption
- H03K19/0016—Arrangements for reducing power consumption by using a control or a clock signal, e.g. in order to apply power supply
Definitions
- the invention relates to a circuit arrangement with circuit parts consisting of transistors of low threshold voltage (NV transistors).
- NV transistors low threshold voltage
- a low current consumption of microelectronic circuit arrangements is desirable, since the service life is correspondingly prolonged for a given battery or accumulator capacity.
- the current consumption is reduced, for example, by reducing the supply voltage, which, however, leads to reduced switching speeds in the case of MOS transistors.
- the threshold voltage of the transistors must be reduced in addition to the supply voltage.
- a supply voltage of, for example, 1 volt threshold voltages of the transistors of typically 0.3 to 0.2 volt (corresponding to a value of a quarter of the supply voltage) are required, compared with 0.6 to approximately 0.4 volt threshold voltage at a supply voltage of 3 , 3 volts.
- Such low operating voltages lead to greatly increased leakage currents with closed, i.e. uncontrolled transistors, which leads to a load on the battery or the accumulator, particularly in the case of long idle phases ("standby") of the circuit arrangements.
- these transistors are activated (the gate voltages of VDD and VSS are at the NMOS or PMOS transistor), the local supply lines VDDL and VSSL are thus at VDD or VSS.
- the transistors are closed (there are gate voltages from VSS and VDD at the NMOS or PMOS transistor), and the current consumption is then reduced to the low leakage currents due to the high threshold voltages of the switching transistors.
- circuit parts that store the data retain their information. If the high-voltage switching transistors are closed, the high leakage currents of the NV transistors (transistors of low threshold voltage) of the circuit arrangement lead to an equalization of all voltages within the circuit arrangement after some time, as a result of which the information of the storing elements in the circuit parts is lost.
- One way to prevent the loss of information is to use transistors with a high threshold voltage in the storing circuit parts. However, this basically requires new circuit designs because of the adaptation of the storing circuit parts.
- the disadvantage of this measure is that two additional voltages are required and that regardless of the duration of the standby If the circuit parts are only to be deactivated, only the threshold voltages of the transistors in the wells can be influenced (in the case of n-well processes, these are the PMOS transistors), and the substrate potential is the same for all circuit parts.
- the invention has for its object to provide a microelectronic circuit arrangement, in particular for portable applications with a low current consumption, in which, in addition to a low current consumption, a high switching speed of the transistors is guaranteed at the same time, and in which the leakage currents when the transistor is closed are not 4 controlled transistors of the circuit parts and thus the
- Load on the battery or accumulator capacity can in particular be reduced during long periods of rest of the circuit arrangement.
- the circuit part is coupled to a supply voltage (VDD, VSS) by interposing a switching transistor with a high threshold voltage (HV transistor), an NV control transistor being connected in parallel with the HV switching transistor.
- VDD supply voltage
- VSS supply voltage
- HV transistor high threshold voltage
- the invention enables the leakage current of circuits and circuit parts consisting of transistors with low threshold voltages (LV transistors) to be reduced, the solution according to the invention having the following advantages over the previously known measures:
- Figure 1A shows a circuit arrangement according to the invention according to a first embodiment
- FIG. 1B shows a schematic curve over time of the supply voltage VDDL of the circuit arrangement according to the first exemplary embodiment
- Figure 2A shows a circuit arrangement according to the invention according to a second embodiment
- FIG. 2B shows a schematic course of the curve over time
- Figure 3A shows a circuit arrangement according to the invention according to a third embodiment
- FIG. 3B shows a schematic course of the curve over time
- FIG. 4A shows a circuit arrangement according to the invention in accordance with a fourth exemplary embodiment
- FIG. 4B shows a schematic course of the curve over time
- FIG. 5A shows a circuit arrangement according to the invention in accordance with a fifth exemplary embodiment
- FIG. 5B shows a schematic course of the curve over time
- FIG. 6 shows a schematic diagram of the PMOS leakage current versus the supply voltage Vds.
- HV transistors high Vth transistors
- NV transistors enieder- Vth transistors
- the exemplary embodiments shown represent schematic example circuits which have been checked on the basis of simulations, the storage circuit parts and the combinatorial circuit parts each being referred to collectively as block circuits which are connected to local supply voltage lines VDDL and / or VSSL.
- All the transistors in these storing and combinatorial circuit parts combined to form the block mentioned have a low threshold voltage of IowVthn, IowVthp ⁇ 0.25 volts for MOS or PMOS transistors.
- HV transistors with the threshold voltages highVthn, highVthp ⁇ 0.5 volts are used for the switching transistors.
- the active phase extends to 0.5 ⁇ s, after which a stand-by phase begins, which lasts up to 65 ⁇ s. This is followed by another active phase. 7
- the following connections are uniformly designated as follows:
- circuit block 2 storing circuit part
- a V-NMOS transistor MNH1 is connected in parallel to the HV-PMOS switching transistor gate MPl, the gate 19 of which is driven by the global supply voltage VDD.
- the NV transistor MNH1 thus represents a diode connected in parallel with the HV switching transistor MPl, consisting of an NV transistor MNH1 of opposite polarity.
- the transistor MP1 When the circuit arrangement is active, the transistor MP1 is conductive, the local supply voltage line VDDL is at the supply voltage VDD. If the transistor MPl is closed, the potential of VDDL drops in FIG. 1 due to the higher leakage currents of the NV transistors of the circuit parts 2 and 3 (FIG. IB).
- VDDL If the potential of VDDL reaches the value VDD - IowVthn *, the transistor MNH1 begins To conduct electricity. As a result, the potential VDDL is kept at this value, as a result of which the storing circuit parts 2 can hold their data.
- the value IowVthn * is the threshold voltage of the low voltage transistors which is increased by the substrate control effect, since the substrate is at a lower potential than the source node of the transistor M ⁇ H1.
- the transistors MPl and M ⁇ 1 are conductive, the potential lines VDDL and VSSL are at the potentials VDD and VSS. If the transistor MP1 is closed, the potential of VDDL drops due to the higher leakage current of the NV transistors of block 1 (FIG. 2B). If the potential of VDDL reaches the value VDD - IowVthn *, the transistor M ⁇ H1 begins to conduct current.
- the values IowVthn * and IowVthp * are the threshold voltages of the NV transistors which are increased due to the substrate control effect (well and substrate are at a higher or lower potential than the respective source nodes).
- the drain-source voltage for the closed transistors in the circuit parts 2 and 3 is reduced to significantly below VDD, which results in a lower leakage current.
- the effective threshold voltage of the NV transistors in block 1 is increased, since the substrate potential and the well potential remain at VSS and VDD, respectively. This corresponds, however, without an additional voltage source, a pretensioning of the substrate (back-biasing) and trough.
- the thereby increased threshold voltage leads to a further reduction in the leakage currents of the circuit parts 2 and 3, which is supplied by the voltage supply VDD. Using simulations, the leakage current was reduced to 1/15 compared to 1 volt.
- FIG. 3A shows a modified, third exemplary embodiment, in which only one (number word) HV switching transistor M ⁇ 1 with an NV transistor MPH1 connected in parallel as a diode is used in comparison with the second exemplary embodiment explained above.
- the advantage here is that the area requirement is halved due to the switching transistor M ⁇ 1 and the "diode transistor" MPH1 compared to the aforementioned embodiments.
- the threshold voltage increase due to the substrate control effect.
- the leakage currents are only reduced by the lower drain-source voltage. Using simulations, the leakage current was reduced to 1/10 compared to 1 volt.
- 3B shows the 10 course of VDDL and VSSL during a standby phase
- NV transistors of opposite polarity compared to the HV switching transistors connected as diodes are used. This leads to the lowering or raising of the potential of VDDL or VSSL by IowVthp * or IowVthn *, the higher threshold voltages of the NV transistors due to the substrate control effect.
- the potential of VDDL and VSSL is shifted by IowVthp and IowVthn, i.e. the operating voltages of the NV transistors with substrate and well potential of VSS or VDD (no substrate control effect with M ⁇ H1 and MPHl).
- 4B shows the course of VDDL and VSSL during a standby phase.
- the fifth exemplary embodiment according to FIG. 5A offers the following solution: This is achieved by connecting NV transistors connected in series as diodes (with the same polarity as the HV transistors) Potential of VDDL and VSSL shifted by the corresponding multiple of IowVthp and IowVthn, respectively.
- two ⁇ V transistors MPH1, MPH2 or M ⁇ H1 and M ⁇ H2 are connected in parallel to the switching transistors MPl and MN1.
- 5B again shows the course of VDDL and VSSL during a standby phase.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Logic Circuits (AREA)
- Semiconductor Integrated Circuits (AREA)
- Control Of Electrical Variables (AREA)
- Electronic Switches (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19811353 | 1998-03-16 | ||
DE19811353A DE19811353C1 (de) | 1998-03-16 | 1998-03-16 | Schaltungsanordnung zur Reduzierung des Leckstromes |
PCT/DE1999/000677 WO1999048208A1 (de) | 1998-03-16 | 1999-03-11 | Schaltungsanordnung zur reduzierung des leckstromes |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1064726A1 true EP1064726A1 (de) | 2001-01-03 |
Family
ID=7861059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99919067A Withdrawn EP1064726A1 (de) | 1998-03-16 | 1999-03-11 | Schaltungsanordnung zur reduzierung des leckstromes |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1064726A1 (ko) |
JP (1) | JP2002507852A (ko) |
KR (1) | KR20010041927A (ko) |
CN (1) | CN1301430A (ko) |
BR (1) | BR9909652A (ko) |
DE (1) | DE19811353C1 (ko) |
RU (1) | RU2000125907A (ko) |
WO (1) | WO1999048208A1 (ko) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6166985A (en) * | 1999-04-30 | 2000-12-26 | Intel Corporation | Integrated circuit low leakage power circuitry for use with an advanced CMOS process |
JP3727838B2 (ja) * | 2000-09-27 | 2005-12-21 | 株式会社東芝 | 半導体集積回路 |
DE10128732C1 (de) * | 2001-06-13 | 2002-05-29 | Infineon Technologies Ag | Verfahren und Vorrichtung zur Abschätzung der Stromaufnahme von Schaltungsteilen |
US6515935B1 (en) * | 2001-10-19 | 2003-02-04 | Hewlett-Packard Company | Method and apparatus for reducing average power in memory arrays by switching a diode in or out of the ground path |
FR2838256A1 (fr) * | 2002-04-08 | 2003-10-10 | St Microelectronics Sa | Procede de mise en veille d'un composant et circuit integre associe |
US6611451B1 (en) * | 2002-06-28 | 2003-08-26 | Texas Instruments Incorporated | Memory array and wordline driver supply voltage differential in standby |
WO2004075406A1 (en) * | 2003-02-19 | 2004-09-02 | Koninklijke Philips Electronics, N.V. | Leakage power control |
US7227383B2 (en) | 2004-02-19 | 2007-06-05 | Mosaid Delaware, Inc. | Low leakage and data retention circuitry |
CN102055439B (zh) * | 2004-02-19 | 2015-04-15 | 考文森智财管理公司 | 低漏电及数据保持电路 |
WO2009144661A1 (en) * | 2008-05-27 | 2009-12-03 | Nxp B.V. | Integrated circuit and integrated circuit control method |
DE102008053533A1 (de) * | 2008-10-28 | 2010-04-29 | Atmel Automotive Gmbh | Schaltung, Verfahren zur Steuerung und Verwendung einer Schaltung für einen Ruhemodus und einen Betriebsmodus |
DE102014107545A1 (de) | 2014-05-28 | 2015-12-03 | Phoenix Contact Gmbh & Co. Kg | Energieversorgungsgerät |
US11599185B2 (en) * | 2015-07-22 | 2023-03-07 | Synopsys, Inc. | Internet of things (IoT) power and performance management technique and circuit methodology |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5274601A (en) * | 1991-11-08 | 1993-12-28 | Hitachi, Ltd. | Semiconductor integrated circuit having a stand-by current reducing circuit |
JPH08138381A (ja) * | 1994-11-07 | 1996-05-31 | Mitsubishi Electric Corp | 半導体集積回路装置およびその製造方法および内部電圧発生回路 |
EP0928068A1 (en) * | 1997-12-31 | 1999-07-07 | STMicroelectronics S.r.l. | Low consumption TTL-CMOS input buffer stage |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5614847A (en) * | 1992-04-14 | 1997-03-25 | Hitachi, Ltd. | Semiconductor integrated circuit device having power reduction mechanism |
US5596286A (en) * | 1993-11-12 | 1997-01-21 | Texas Instruments Incorporated | Current limiting devices to reduce leakage, photo, or stand-by current in an integrated circuit |
JP3725911B2 (ja) * | 1994-06-02 | 2005-12-14 | 株式会社ルネサステクノロジ | 半導体装置 |
DE19515417C2 (de) * | 1995-04-26 | 1998-10-15 | Siemens Ag | Schaltungsanordnung zum Ansteuern eines Leistungs-MOSFET |
-
1998
- 1998-03-16 DE DE19811353A patent/DE19811353C1/de not_active Expired - Fee Related
-
1999
- 1999-03-11 KR KR1020007010235A patent/KR20010041927A/ko not_active Application Discontinuation
- 1999-03-11 EP EP99919067A patent/EP1064726A1/de not_active Withdrawn
- 1999-03-11 JP JP2000537311A patent/JP2002507852A/ja not_active Withdrawn
- 1999-03-11 RU RU2000125907/09A patent/RU2000125907A/ru not_active Application Discontinuation
- 1999-03-11 BR BR9909652-8A patent/BR9909652A/pt not_active IP Right Cessation
- 1999-03-11 CN CN99806255A patent/CN1301430A/zh active Pending
- 1999-03-11 WO PCT/DE1999/000677 patent/WO1999048208A1/de not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5274601A (en) * | 1991-11-08 | 1993-12-28 | Hitachi, Ltd. | Semiconductor integrated circuit having a stand-by current reducing circuit |
JPH08138381A (ja) * | 1994-11-07 | 1996-05-31 | Mitsubishi Electric Corp | 半導体集積回路装置およびその製造方法および内部電圧発生回路 |
EP0928068A1 (en) * | 1997-12-31 | 1999-07-07 | STMicroelectronics S.r.l. | Low consumption TTL-CMOS input buffer stage |
Non-Patent Citations (1)
Title |
---|
See also references of WO9948208A1 * |
Also Published As
Publication number | Publication date |
---|---|
RU2000125907A (ru) | 2002-09-10 |
CN1301430A (zh) | 2001-06-27 |
WO1999048208A1 (de) | 1999-09-23 |
BR9909652A (pt) | 2000-11-21 |
JP2002507852A (ja) | 2002-03-12 |
DE19811353C1 (de) | 1999-07-22 |
KR20010041927A (ko) | 2001-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4231415C1 (de) | Ein Schnittstellen-Schaltkreis zur Kopplung eines logischen Niedrigspannungs-Schaltkreises mit einem Hochspannungs-Ausgang, realisiert in einer Standard-CMOS-Technologie | |
DE4039524C2 (de) | Substratspannungserzeuger für eine Halbleitereinrichtung und Verfahren zum Erzeugen einer Substratspannung | |
DE102014118167B4 (de) | Analogschalter und Verfahren zum Steuern von Analogschaltern | |
DE69808244T2 (de) | Hochspannungs-cmos-pegelumsetzer | |
DE69113399T2 (de) | Integrierte Ladungspumpenschaltung mit reduzierter Substratvorspannung. | |
DE3300239C2 (de) | Schaltungsanordnung zur Pegelumsetzung digitaler Signale | |
DE69616726T2 (de) | Spannungsregelumsetzer | |
DE19618752C2 (de) | Einschaltrücksetzsignal-Erzeugungsschaltkreis einer Halbleitervorrichtung | |
DE3342336A1 (de) | Schnittstellenschaltung | |
EP0504470A1 (de) | Pegelumsetzschaltung | |
DE2534181A1 (de) | Schaltungsanordnung zur anpassung von spannungspegeln | |
EP1064726A1 (de) | Schaltungsanordnung zur reduzierung des leckstromes | |
DE3806951A1 (de) | Verhinderung von latch-up in einer mit zwei versorgungen versehenen, integrierten cmos-schaltung mit hilfe eines einzigen, integrierten mos-transistors | |
DE3705140A1 (de) | In mos-technologie ausgefuehrte einschalt-rueckstellschaltung fuer logische schaltungsanordnungen, insbesondere fuer peripherien von mikroprozessoren | |
DE69320505T2 (de) | Schaltung zum automatischen Rücksetzen mit verbesserter Prüfbarkeit | |
DE2510604A1 (de) | Integrierte digitalschaltung | |
DE69517287T2 (de) | Pegelumsetzer | |
DE19937829A1 (de) | Schaltung, Verfahren und Vorrichtung zum Ausgeben, Eingeben bzw. Empfangen von Daten | |
DE60309675T2 (de) | Leistungsschaltkreis mit gesteuertem Sperrstrom | |
DE2446028C2 (de) | Statisches Speicherelement | |
DE2802595A1 (de) | Schaltungsanordnung mit feldeffekttransistoren zur spannungspegelumsetzung | |
DE2754987A1 (de) | Leistungslose halbleiter-speichervorrichtung | |
EP0127015B1 (de) | Integrierte digitale MOS-Halbleiterschaltung | |
DE2925331A1 (de) | Schaltung mit doppelzweckanschluss | |
DE19637013A1 (de) | Treiberschaltung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000908 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE ES FR GB IT LI |
|
17Q | First examination report despatched |
Effective date: 20010115 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20021001 |