EP1063275A1 - Procédé d'hydrotraitement d'un distillat moyen dans deux zones comprenant une zone intermédiaire de stripage - Google Patents
Procédé d'hydrotraitement d'un distillat moyen dans deux zones comprenant une zone intermédiaire de stripage Download PDFInfo
- Publication number
- EP1063275A1 EP1063275A1 EP00401673A EP00401673A EP1063275A1 EP 1063275 A1 EP1063275 A1 EP 1063275A1 EP 00401673 A EP00401673 A EP 00401673A EP 00401673 A EP00401673 A EP 00401673A EP 1063275 A1 EP1063275 A1 EP 1063275A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stripping
- hydrogen
- zone
- effluent
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
- C10G69/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/007—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 in the presence of hydrogen from a special source or of a special composition or having been purified by a special treatment
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
- C10G65/08—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
Definitions
- the present invention relates to the hydrotreatment of hydrocarbon fractions and by example of middle distillates for producing low-carbon hydrocarbon fractions sulfur, nitrogen and aromatic compounds which can be used in particular in the field of fuels for internal combustion engines.
- These hydrocarbon fractions include the jet fuel, diesel fuel, kerosene and diesel.
- the invention relates more particularly the manufacture of a fuel for a compression ignition engine.
- the invention relates to a process for transforming a middle distillate and more particularly a diesel cut in order to produce a fuel with a high index of cetane, flavored and desulfurized.
- diesel fuel of class II must not contain more than 50 ppm of sulfur and more than 10% by volume of aromatic compounds and that of class I more than 10 ppm sulfur and 5% by volume of aromatic compounds.
- Class III diesel fuel must contain less than 500 ppm sulfur and less than 25% by volume of aromatic compounds. Similar limits must also be observed for the sale of this type of fuel in California.
- the starting the unit is easier when using an oven to adjust the temperature of the charge entering the second reactor.
- US-A-5,114,562 describes a process for hydrotreating a middle distillate in at at least two consecutive stages in order to produce hydrocarbon cuts desulphurized and de-aromatized comprising a first hydrodesulphurization step of which the effluent is sent to a stripping zone by hydrogen for the elimination of the hydrogen sulfide it contains, then the desulfurized liquid fraction obtained is sent in a second so-called hydrogenation zone comprising at least two reactors operating in series in which the aromatic compounds are hydrogenated.
- the hydrogen used in the stripping zone is the extra hydrogen necessary for the process, and the hydrocarbon compounds entrained during stripping are, after condensation by cooling, reintroduced in the first stage hydrodesulfurization.
- the gas, separated from the hydrocarbon compounds at the stage of condensation is treated by washing with an amine solution to remove the hydrogen sulfide it contains and is then sent to the second so-called zone hydrogenation, then the effluent leaving the hydrogenation zone is separated into a liquid fraction sought and in a gaseous fraction which is sent as a mixture with the fresh charge at the entrance to the first hydrodesulfurization stage.
- This way of operating has several drawbacks. This is how the hydrocarbons entrained at the head of the stripper which are light compounds and which are recycled in the hydrodesulfurization step will vaporize in this step and therefore cause a decrease in partial pressure of hydrogen which is not favorable for good hydrodesulfurization.
- a another disadvantage is the need to have a recycling pump which increases the cost investment and operation of the whole.
- Patent document US-A-5 110 444 describes a process comprising hydrotreatment of a middle distillate in at least three distinct stages.
- the effluent from the first stage hydrodesulfurization is sent to a hydrogen stripping zone to remove the hydrogen sulfide it contains, then the desulfurized liquid fraction obtained is sent in a first hydrogenation zone, the effluent of which is in turn sent to a second stripping zone separate from the stripping zone following the step hydrodesulfurization. Finally, the liquid part from the second stripping zone is sent to a second hydrogenation zone.
- Light hydrocarbons entrained in head of the first hydrogen stripper are recycled in the hydrodesulfurization stage which is unfavorable to the good efficiency of this step since these compounds are vaporizing decrease the partial pressure of hydrogen.
- this recycling involves the compulsory use of a recycling compressor which increases the cost of the investment and the functioning of the whole.
- the present invention presents a solution making it possible to largely overcome disadvantages of the prior art methods.
- teaching of interior art and in particular that of the documents cited in the text of the present invention is part part of the knowledge of a person skilled in the art, all of whose characteristics must be considered to be included in this description.
- the present invention therefore relates to a process hydrotreating a hydrocarbon fraction such as for example a middle distillate and especially transforming a diesel cut to produce a high fuel cetane number, flavored and desulphurized in at least two successive stages. She also relates to the fuel obtained by said process.
- the middle distillate term denotes hydrocarbon fractions boiling in the range from about 130 ° C to about 385 ° C, often about 140 ° C to about 375 ° C and most often about 150 ° C to about 370 ° C determined by the appropriate ASTM method.
- the method of the present invention can also find application in the treatment hydrocarbon fractions having a boiling point in the range of naphtha.
- This process can be used to produce hydrocarbon cuts usable as solvent, as an additive or as a fuel preferably containing a content reduced in aromatic compounds.
- kerosene designates within the meaning of this description a boiling hydrocarbon fraction in the range 130 ° C to 250 ° C.
- diesel fuel means, within the meaning of this description, a hydrocarbon fraction boiling in the range 230 ° C to 385 ° C.
- naphtha designates within the meaning of this description a hydrocarbon fraction ranging from C5 to a final boiling point of about 210 ° C.
- diesel denotes within the meaning of this description a fraction hydrocarbon boiling in the range 230 ° C to 420 ° C or heavier fractions boiling in the range 420 ° C to 525 ° C.
- jet fuel means in the sense of present description a hydrocarbon fraction boiling in the range 130 ° C to 290 ° C.
- the hydrocarbon fraction which is preferably used in the present process is a fraction of initial boiling point above about 150 ° C and having a boiling point at 90% of the distilled fraction most often less than around 370 ° C. This fraction contains usually nitrogen in the form of organo-nitrogen compounds in the most amount often from about 1 ppm to about 1% by weight.
- It also contains sulfur under as organic sulfur compounds in an amount usually greater than about 0.1% by weight and often from about 0.15 to about 5% by weight and most often from about 0.5 to about 3.5% by weight.
- the content of mono and / or aromatic compounds polymorphonuclear is usually greater than about 10% by volume and often greater than about 20% by volume and usually less than about 60% by volume and often less than about 50% by volume.
- Said method being characterized in that the gaseous effluent formed in the stripping step containing gaseous hydrocarbons under the conditions of said stripping zone, hydrogen and hydrogen sulfide is cooled to a temperature sufficient to form a liquid fraction of hydrocarbons which is sent to the stripping zone and a fraction gaseous depleted in hydrocarbons that is sent to an elimination zone of the hydrogen sulfide it contains and from which hydrogen is recovered purified.
- the present invention also relates to the partially hydrocarbon fraction desulfurized and partially de-aromatized obtained according to the process of the invention.
- the gas of stripping is a fraction of the make-up hydrogen used in the process of the invention.
- This fraction of make-up hydrogen usually represents less than 90% by volume of total make-up hydrogen used in the process, often less than 60% and most often from about 1% to about 50%.
- At least part of purified hydrogen, recovered from the hydrogen sulfide elimination zone contained in the gas fraction depleted in hydrocarbons obtained at the end of the zone stripping, is sent to a drying-desulfurizing zone from which recovers substantially pure and substantially dry hydrogen and the other part is recovered without further treatment.
- Purification of hydrogen from the gaseous mixture containing hydrogen and hydrogen sulfide from the stripping zone is usually carried out according to one or other of the conventional techniques well known to those skilled in the art and in particular by prior treatment of this gaseous mixture with a solution of at least an amine under conditions allowing the elimination of hydrogen sulfide by absorption, said amine being most often chosen from the group formed by monoethanolamine, diethanolamine, diglycolamine, diisopropylamine, and methyldiethanolamine.
- the gas mixture will be brought into contact with a basic solution, preferably a solution aqueous of an amine chosen from the group mentioned above, which forms with hydrogen sulfide an addition compound which makes it possible to obtain a purified gas containing proportions of hydrogen sulfide well below 500 ppm by weight and often less than about 100 ppm by weight. Most often the amount of hydrogen sulfide remaining is less than about 50 ppm by weight and very often less than about 10 ppm by weight.
- This method of purifying the gas mixture is a method classic well known to those skilled in the art and widely described in the literature.
- treatment with an aqueous solution amine is usually carried out at a temperature of about 10 ° C to about 100 ° C and often from about 20 to about 70 ° C.
- the amount of amine used is such that the hydrogen sulfide to amine molar ratio is from about 0.1: 1 to about 1: 1 and often from about 0.3: 1 to about 0.8: 1 and for example from about 0.5: 1.
- the absorption by the amine solution of hydrogen sulfide is carried out is usually from about 0.1 MPa to about 50 MPa, often from about 1 MPa to about 25 MPa and most often from about 1 MPa to about 10 Mpa.
- the regeneration of the solution amine is conventionally carried out by variation of pressure.
- a hydrogen sulfide adsorption zone comprising at least one reactor and often at least two adsorption reactors containing for example a sieve preferably regenerable or for example zinc oxide and operating for example at a temperature from about 10 ° C to about 400 ° C, and often from about 10 ° C to about 100 ° C and most often from about 20 ° C to about 50 ° C under a total pressure of about 0.1 MPa to about 50 MPa, often from about 1 MPa to about 25 MPa and preferably from about 1 MPa to about 10 MPa.
- the adsorption zone has two reactors
- one reactor is used to treat the gas while the other is in course of regeneration or replacement of the material it contains allowing the drying and desulfurization of the gas mixture entering said zone.
- the content of hydrogen sulfide in the gas is usually less than 1 ppm by weight and often of the order of a few tens of ppb by weight.
- the gaseous effluent formed in the stripping step is cooled by at least one cooling means located inside the stripping zone at near the outlet of said gaseous effluent from said stripping zone.
- the gaseous effluent formed in the step of stripping is cooled by at least one cooling means located outside the zone stripping and is at least partially condensed, the liquid obtained is then at least in part returned to the stripping zone.
- the gaseous effluent formed in the stripping step is cooled by at least one cooling means, at least part of the fraction hydrocarbon liquid obtained is returned to the stripping zone and possibly at least one other part is sent as a mixture with the hydrocarbon charge in step a) of hydrodesulfurization.
- the substantially pure hydrogen recovered after the stripping step is recycled in the area stripping at at least one point of introduction located between the point of introduction of a part of the hydrogen-containing gas used for stripping and the point of introduction of the effluent from step a) of hydrodesulfurization in said stripping zone.
- the substantially pure hydrogen, recovered after the stripping step, is recycled directly and / or after mixing with the feed in the hydrodesulfurization zone of step a).
- step c) hydrotreatment if one does not wish to carry out the drying over all of the substantially pure hydrogen recovered from the zone elimination of hydrogen sulfide it is advantageous to carry out the drying and deep desulfurization of the hydrogen that is to be recycled in step c) hydrotreatment.
- the operating conditions of the steps a) and c) are chosen according to the characteristics of the load which can be a cut direct distillation diesel, a diesel cut from catalytic cracking or a diesel cut from coking or visbreaking of residues or a mixture of two or more of these cuts .. They are usually chosen so as to obtain a product at the leaving stage a) containing less than 100 ppm of sulfur and less than 200 ppm of nitrogen, preferably less than 100 ppm nitrogen and most often less than 50 ppm nitrogen and the conditions of step c) are chosen so as to obtain a product, on leaving said step c), containing less than 20% by volume of aromatic compounds.
- the conditions of step a) include a temperature from about 300 ° C to about 450 ° C, a total pressure from about 2 MPa to about 20 MPa and an overall hourly space velocity of liquid charge of about 0.1 to about 4 and that from step b) a temperature of about 200 ° C to about 400 ° C, a total pressure from about 3 MPa to about 15 MPa and an overall hourly space velocity of liquid charge from about 0.5 to about 10.
- the catalyst used in step a) contains on a mineral support at least one metal or composed of metal of group VIB of the periodic table of the elements in one quantity expressed by weight of metal relative to the weight of the finished catalyst usually from about 0.5 to 40%, at least one metal or metal compound of group VIII of the said periodic classification in an amount expressed by weight of metal relative to weight finished catalyst usually about 0.1-30%.
- the catalyst used will contain at least one element chosen from the group formed by silicon, phosphorus and boron or compounds of this or these elements.
- the catalyst will for example contain phosphorus or at least one phosphorus compound in quantity expressed by weight of phosphorus pentoxide relative to the weight of the support of approximately 0.001 to 20%.
- the quantity of metal or group VIB metal compound expressed by weight of metal per relative to the weight of the finished catalyst will preferably be approximately 2 to 30% and most often from about 5 to 25% and that of the metal or of the group VIII metal compound will be preferably about 0.5 to 15% and most often about 1 to 10%.
- step a1) When one wishes to remain in a relatively low pressure range while wishing to obtain excellent results it is possible to carry out a first step a1) under conditions allowing the sulfur content of the product to be reduced to a value about 500 to 800 ppm and then send this product in a subsequent step a2) in which conditions will be chosen to reduce the sulfur content to a value less than about 100 ppm, preferably less than about 50 ppm and the product from this step a2) is then sent to step b).
- the conditions of step a2) are milder than when for a given load we operate in a single step a) since the product sent in this step a2) already has a content strongly reduced in sulfur.
- the catalyst of step a1) can be a conventional catalyst of the prior art such as for example that described in the text of the patent applications in the name of the applicant FR-A-2197966 and FR-A-2538813 and that of step a2) is that described above for step a). We wouldn't go out of the scope of the present invention using the same catalyst in steps a1) and a2).
- the mineral support of the catalyst is preferably chosen from the group formed by alumina, silica, silica-aluminas, zeolites and mixtures at least two of these mineral compounds.
- Alumina is very commonly used.
- the catalyst for these steps a), a1), a2) will include at least one metal or a metal compound chosen from the group formed by molybdenum and tungsten and at least one metal or a metal compound chosen from the group formed by nickel, cobalt and iron. Most often this catalyst contains molybdenum or a molybdenum compound and at least one metal or a metal compound chosen from the group formed by nickel and cobalt.
- the catalyst for these steps a), a1), a2) will include boron or at least one boron compound preferably in an amount expressed by weight of boron trioxide relative to the weight of the support of approximately 0 to 10%.
- the catalyst will for example comprise silicon or a silicon compound, or alternatively a association of silicon and boron or of compounds of each of these elements optionally combined with phosphorus or a phosphorus compound.
- Ni-Mo-P Ni-Mo-P, Ni-Mo-P-B, Ni-Mo-Si, Ni-Mo-Si-B, Ni-Mo-P-Si Ni-Mo-Si-BP, Co-Mo-P, Co-Mo-PB, Co-Mo-Si, Co-Mo -If-B, Co-Mo-P-Si, Co-Mo-Si-BP, Ni-WP, Ni-WPB, Ni-W-Si, Ni-W-Si-B, Ni-WW-P-Si, Ni-W- Si-BP, Co-W-P, Co-W-P-B, Co-W-Si, Co-W-Si-B, Co-W-P-Si, Co-W-Si-B-P, Ni-Co-Mo-P, Ni-Co-Mo-P-B, Ni-Co-Mo-Si, Ni-Co-Si, Ni-Co-Si, Ni-Co-M
- the catalyst used in step c) contains on a mineral support at least one metal noble or a compound of noble metal from group VIII of the periodic table elements in an amount expressed by weight of metal relative to the weight of the catalyst about 0.01 to 20% finished and preferably at least one halogen.
- the mineral support of catalyst used in step c) is chosen independently of the support used for the catalyst of step a). Most often the catalyst of step c) comprises at least one metal or a noble metal compound selected from the group consisting of palladium and platinum.
- the mineral support of the catalyst used in step c) is usually chosen from the group formed by alumina, silica, silica-aluminas, zeolites and mixtures of at minus two of these mineral compounds.
- This support will preferably include at least a halogen chosen from the group formed by chlorine, fluorine, iodine and bromine and preferably in the group formed by chlorine and fluorine. In an advantageous form of realization, this support will include chlorine and fluorine.
- the amount of halogen will be the most often from about 0.5 to about 15% by weight relative to the weight of the support.
- the support the most often used is alumina.
- the halogen is usually introduced on the support to from the corresponding acid halides and platinum or palladium from aqueous solutions of their salts or compounds such as for example acid hexachloroplatinic in the case of platinum.
- the amount of metal of this catalyst in step c) will preferably be approximately 0.01 to 10 %, often around 0.01 to 5% and most often around 0.03 to 3% expressed by weight of metal relative to the weight of the finished catalyst.
- FIG. 1 and 2 briefly explain, by way of illustration, two modes of implementation of the process according to the invention and FIG. 3 illustrates a process according to the prior art. Sure these figures, similar bodies are designated by the same numbers and letters of reference.
- the hydrocarbon feedstock arriving via line 1 is mixed with hydrogen substantially pure arriving via lines 42, 42a and 26, then this mixture is introduced by the line 6 in reactor R1 after exchanging heat with the effluent from reactor R1 in the exchanger EC1 and have been preheated in the oven F1.
- Hydrogen arriving through lines 42 and 42a is introduced into reactor R1 via line 27 as cooling (quench).
- the effluent leaving the reactor R1 is sent after exchange of heat in exchanger EC1 with the hydrocarbon charge via line 7 in the extractor S1 (called by those skilled in the art by the English term stripper) in which it is purified by part of the extra hydrogen arriving via lines 2 and 4.
- the substantially pure hydrogen for recycling is also introduced into the extractor S1 by lines 42 and 25.
- the gaseous effluent leaving extractor S1 via line 28 exchanges the heat in the EC4 exchanger located on line 5 with a mixture of recycled hydrogen by line 24 and make-up hydrogen introduced by lines 2, 3 and 5. Said mixture is then introduced via line 9 into reactor R2.
- the liquid hydrocarbon fraction condensate entering through line 28 in the separator flask B1 exits through line 29 and is returned using pump P1 via line 30 partly in extractor S1 and possibly via line 36 through valve V36 and line 6 partly in the reactor R1.
- the liquid fraction leaving the extractor S1 passes through the valve V1 for regulating level, then is sent via lines 8 and 9, after mixing with hydrogen arriving via line 5, having exchanged heat in the EC2 exchanger with the effluent leaving the reactor R2 via line 10 and after being heated in the furnace F2 enters the R2 reactor. If the pressure of the fluid leaving extractor S1 via line 8 is less than that prevailing in the reactor R2 we will use a pump to adjust this pressure at a level at least equal to that of the pressure prevailing in the reactor R2. Of the hydrogen arriving via lines 22, 22a, 22b and 23 is introduced into the reactor R2 by as cooling gas (quench).
- lines 22 and 22a we recover at least part purified hydrogen which can be sent through the flow control valve V3 in the drying-desulfurizing zone SE1 then recycled into the reactor R2 by lines 22b and 23.
- Another part of the purified hydrogen recovered by line 22 is sent by the lines 42 and 25 through the flow control valve V4 in the extractor S1 and / or by lines 42, 42a, 26 and 6 in reactor R1.
- line 42a usually includes a valve V40 (not shown on the figures) for regulating the flow rate of the purified hydrogen which is sent to the reactor R1.
- the possible recycling of hydrogen leaving the adsorber S2 to be sent to the reactor R2 by lines 22, 22a, 22b and 23 and / or 22, 22a, 24 and 5 requires the use of a compressor to adjust the pressure at a level at least equal to the pressure level prevailing in this reactor R2. he the same is true for the hydrogen leaving the absorber S2 which is optionally recycled in the extractor S1 and / or in the reactor R1. So we have the option of using a single compressor making it possible to obtain a gas at the pressure required for the various recycling operations considered. In this case, this compressor will be located near the adsorber S2 on the line 22. It is also possible to provide for the use of two compressors, one located on line 22b and the other located on line 42.
- FIG. 2 illustrates the case where only part of the effluent leaving the reactor R2 via the line 10 is cooled in the heat exchanger EC2 another part is sent by line 31 after mixing with the part which has exchanged heat via line 32 in the hot separator B3 from which a gas is recovered via line 34 which is mixed gas arriving via line 11 and via line 33 a hydrocarbon liquid fraction constituting part of the partially desulphurized and flavored effluent sought after mixing with the hydrocarbon fraction leaving the separator flask B2 via line 16 to obtain the desired partially desulfurized and flavored effluent which is recovered by line 35.
- FIG. 3 illustrating the prior art is to be compared directly to the diagram of the Figure 1 illustrating the present invention which it differs in two essential points.
- the extractor S1 used does not include a recovery cylinder for a liquid fraction and so we do not reintroduce into this extractor the heavy hydrocarbons that are entrained in the gas leaving the head of the extractor S1. Since there is no recovery of heavy hydrocarbons entrained at the head of the extractor S1 there is consequently no of introducing a fraction of these heavy hydrocarbons into reactor R1.
- the charge arriving via line 1 is mixed with the recycling gas from line 26, the whole being introduced into the reactor R1 via line 6, under a pressure of 6.6 Mpa and a temperature of 330 °. C, after having been heated in the exchanger EC1 and the furnace F1.
- the increase in temperature in the reactor is limited to an interval of 20 ° C. using the cooling hydrogen gas (quench) arriving by line 27.
- the effluent from reactor R1 is sent by line 7, after cooling. in the exchanger EC1, towards the head plate of the hydrogen stripper S1.
- the overhead product of the hydrogen extractor is cooled, the cooling interval is 55 ° C, and is sent via line 28 to the flask B1.
- the liquid from this balloon is returned, by lines 29 and 30 and the pump P1, to the head plate of the hydrogen extractor while the vapor is sent by line 11, through the pressure control valve V2 , to flask B2 after mixing in line 12 with the effluent from reactor R2.
- This overhead vapor contains approximately 2295 kg / h of product from the diesel cut which will not be treated in the hydrogenation reactor.
- stripping hydrogen is injected through line 25 to extract most of the hydrogen sulfide and make-up hydrogen, through line 4, at the bottom extractor to complete the extraction of hydrogen sulphide in the liquid feed which is sent to the hydrogenation reactor R2 by line 8.
- this liquid charge is controlled by the level control valve V1, then it is mixed with the make-up hydrogen from line 3 and the recycle hydrogen from the line 24.
- This mixture is sent to the reactor R2 through the exchanger EC2 and the furnace F2 via line 9 to reach the required temperature at the inlet of the reactor.
- the temperature increase in the R2 reactor is controlled by the injection of a gas hydrogen cooling (quench) via line 23.
- the vapor phase of the balloon B3, line 34 is mixed in line 12 with the top product of the hydrogen extractor, line 11. In this mixture, before the exchanger EC3, a certain amount of wash water to remove ammonium sulfide formed in the reactors. After partial condensation in the exchanger EC3, the three phases present are separated in the tank B2.
- the hydrocarbon phase, line 16 is mixed in line 35 with the liquid from the flask B3, line 33, to constitute the product of the process which is sent to a subsequent treatment for extraction of the residual hydrogen sulfide and elimination of the fractions. light.
- the aqueous phase is drawn off via line 15 to be sent to the water treatment.
- the vapor phase leaves the balloon B2 via line 17 it is treated according to the description made in connection with Figure 1 above.
- the final product has the following properties: Debit t / h 98.6 Density at 15 ° C kg / m3 823 sulfur content % mass ⁇ 0.0010 nitrogen content % mass ⁇ 0.0010 aromatic content % mass 1.8 distillation 5% volume ° C 240 50% volume ° C 294 95% volume ° C 376
- Example 3 For the flows in the different flows, see the summary table after the description of the three examples. According to the diagram in FIG. 3 without condensation of the heavy hydrocarbons at the head of the hydrogen extractor S1, the diagram is identical to that of Example 1, except for the recovery of the condensates at the head of the extractor at hydrogen this recovery does not exist in Example 3. Referring to the table indicating the flow rates in the different flows, it will be noted that, for this example, 3659 kg / h of heavy products are not recovered compared to example 1. These heavy products cannot be treated in the reactor R2, therefore, to obtain the same quality for the final product, the treatment in reactor R2 must be more severe in Example 3 than in Example 1.
- the final product has the following properties: Debit t / h 98.6 Density at 15 ° C kg / m3 830 Sulfur content % mass ⁇ 0.0010 Nitrogen content % mass ⁇ 0.0010 Aromatic content % mass 2 Distillation 5% volume ° C 240 50% volume ° C 294 95% volume ° C 376 Flow rates of the different flows: Stream name flux example 1 example 2 example 3 kg / h kg / h kg / h Charge R1 1 100,000 100,000 100,000 H2 to R1 recycling 26 3452 4281 3451 Quench H2 to R1 27 3380 3772 3379 Add H2 to S1 3 277 277 277 H2 to S1 recycling 25 556 556 556 Steam to B2 tank 11 12355 13470 16150 Of which heavy towards balloon B2 11 2294 2333 5953 Bottom S1 (load R2) 8 95310 95416 91513 Adding H2 to R2 3 1079 1144 1063 H2 to R2 recycling 24 2239 2667 2318
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
Description
Les données communes aux trois exemples sont extraites de simulations informatiques crées à partir du logiciel PGGC à partir de résultats d'unités pilotes:
Charge : | ||
Débit | t/h | 100 |
Masse volumique à 15°C | kg/m3 | 852 |
teneur en soufre | % masse | 1,44 |
teneur en azote | % masse | 0,011 |
teneur en aromatiques | % masse | 30 |
distillation | ||
5 % volume | °C | 253 |
50 % volume | °C | 306 |
95 % volume | °C | 386 |
Composition de l'appoint : | |
Hydrogène | 99,9 % vol |
Méthane | 0,1 % vol |
Conditions opératoires : | ||
Pression absolue | Température | |
MPa | °C | |
Sortie réacteur R1 | 6,4 | 350 |
Alimentation S1 | 255 | |
Sortie réacteur R2 | 5,7 | 310 |
Ballon B2 | 5,5 | 40 |
Vitesse spatiale | |
Réacteur R1 | 1 m3/(m3/h) |
Réacteur R2 | 2 m3/(m3/h) |
Selon schéma de la figure 1, la charge arrivant par la ligne 1 est mélangée au gaz de recyclage de la ligne 26, le tout étant introduit dans le réacteur R1 par la ligne 6, sous une pression de 6.6 Mpa et une température de 330°C, après avoir été chauffé dans l'échangeur EC1 et le four F1. L'accroissement de température dans le réacteur est limité à un intervalle de 20 °C à l'aide du gaz hydrogène de refroidissement (quench) arrivant par la ligne 27. L'effluent du réacteur R1 est envoyé par la ligne 7, après refroidissement dans l'échangeur EC1, vers le plateau de tête de l'extracteur à hydrogène (hydrogen stripper) S1. Le produit de tête de l'extracteur à hydrogène est refroidi, l'intervalle de refroidissement est de 55°C, et est envoyé par la ligne 28 dans le ballon B1. Le liquide de ce ballon est renvoyé, par les lignes 29 et 30 et la pompe P1, vers le plateau de tête de l'extracteur à hydrogène tandis que la vapeur est envoyée par la ligne 11, à travers la vanne de régulation de pression V2, vers le ballon B2 après mélange dans la ligne 12 avec l'effluent du réacteur R2. Cette vapeur de tête contient environ 2295 kg/h de produit de la coupe gazole qui ne sera pas traité dans le réacteur d'hydrogénation.
Vers le milieu de l'extracteur à hydrogène, on injecte de l'hydrogène de stripage par la ligne 25 pour extraire la plus grande partie de l'hydrogène sulfuré et de l'hydrogène d'appoint, par la ligne 4, dans le fond de l'extracteur pour parfaire l'extraction de l'hydrogène sulfuré dans la charge liquide que l'on envoie vers le réacteur d'hydrogénation R2 par la ligne 8.
La phase hydrocarbures, constituant le produit du procédé, est envoyée par la ligne 16 vers un traitement ultérieur d'extraction de l'hydrogène sulfuré résiduel et d'élimination des fractions légères.
La phase aqueuse est soutirée par la ligne 15 pour être envoyée vers le traitement des eaux.
La phase vapeur sort du ballon B2 par la ligne 17 est envoyée vers un lavage aux amines S2 par la ligne 19 tandis que l'excès d'hydrogène peut être purgé par la ligne 18. Une partie du gaz hydrogène, purifié de l'hydrogène sulfuré par le lavage aux amines, est séparé en différents flux :
- recyclage vers R1, ligne 26,
- refroidissement (quench) vers R1, ligne 27,
- gaz de stripage vers S1, ligne 25,
- recyclage vers R2, ligne 24,
- refroidissement vers R2, ligne 23.
Le produit final a les propriétés suivantes : | ||
Débit | t/h | 98,6 |
Masse volumique à 15°C | kg/m3 | 822 |
teneur en soufre | % masse | <0,0010 |
teneur en azote | % masse | <0,0010 |
teneur en aromatiques | % masse | 1,5 |
distillation | ||
5 % volume | °C | 240 |
50 % volume | °C | 294 |
95 % volume | °C | 376 |
Selon le schéma de la figure 2, la description est identique à la description correspondante de la figure 1 jusqu'à la sortie de l'effluent du réacteur R2, ligne 10, après refroidissement dans l'échangeur EC2. Cet effluent est envoyé, par la ligne 32, dans le ballon séparateur chaud B3, à une pression de 5.5 Mpa et une température de 270 °C.
La phase hydrocarbures, ligne 16, est mélangée dans la ligne 35 au liquide du ballon B3, ligne 33, pour constituer le produit du procédé qui est envoyé vers un traitement ultérieur d'extraction de l'hydrogène sulfuré résiduel et d'élimination des fractions légères.
La phase aqueuse est soutirée par la ligne 15 pour être envoyée vers le traitement des eaux.
La phase vapeur sort du ballon B2 par la ligne 17 elle est traitée selon la description faite en liaison avec la figure 1 ci devant.
Le produit final a les propriétés suivantes : | ||
Débit | t/h | 98,6 |
Masse volumique à 15°C | kg/m3 | 823 |
teneur en soufre | % masse | <0,0010 |
teneur en azote | % masse | <0,0010 |
teneur en aromatiques | % masse | 1,8 |
distillation | ||
5 % volume | °C | 240 |
50 % volume | °C | 294 |
95 % volume | °C | 376 |
Selon le schéma de la figure 3 sans condensation des hydrocarbures lourds en tête de l'extracteur à hydrogène S1, le schéma est identique à celui de l'exemple 1, à l'exception de la récupération des condensats en tête de l'extracteur à hydrogène cette récupération n'existe pas dans l'exemple 3.
En se référant au tableau indiquant les débits dans les différents flux, on notera que, pour cet exemple, 3659 kg/h de produits lourds ne sont pas récupérés par rapport à l'exemple 1. Ces produits lourds ne peuvent pas être traités dans le réacteur R2, donc, pour obtenir la même qualité pour le produit final, le traitement dans le réacteur R2 devra être plus sévère dans l'exemple 3 que dans l'exemple 1.
Le produit final a les propriétés suivantes: | ||
Débit | t/h | 98,6 |
Masse volumique à 15°C | kg/m3 | 830 |
Teneur en soufre | % masse | <0,0010 |
Teneur en azote | % masse | <0,0010 |
Teneur en aromatiques | % masse | 2 |
Distillation | ||
5 % volume | °C | 240 |
50 % volume | °C | 294 |
95 % volume | °C | 376 |
Débits des différents flux : | ||||
Nom du flux | flux | exemple 1 | exemple 2 | exemple 3 |
kg/h | kg/h | kg/h | ||
Charge R1 | 1 | 100000 | 100000 | 100000 |
Recyclage H2 versR1 | 26 | 3452 | 4281 | 3451 |
Quench H2 vers R1 | 27 | 3380 | 3772 | 3379 |
Appoint H2 vers S1 | 3 | 277 | 277 | 277 |
Recyclage H2 vers S1 | 25 | 556 | 556 | 556 |
Vapeur vers ballon B2 | 11 | 12355 | 13470 | 16150 |
Dont lourds vers ballon B2 | 11 | 2294 | 2333 | 5953 |
Fond S1 (charge R2) | 8 | 95310 | 95416 | 91513 |
Appoint H2 vers R2 | 3 | 1079 | 1144 | 1063 |
Recyclage H2 vers R2 | 24 | 2239 | 2667 | 2318 |
Quench H2 vers R2 | 23 | 1740 | 1933 | 1659 |
Vapeur B3 | 34 | n.a. | 10345 | n.a. |
Liquide B3 | 33 | n.a. | 90815 | n.a. |
Alimentation B2 | 14 | 112723 | 23815 | 112704 |
Eau de lavage | 13 | 1585 | 1585 | 1585 |
Eau acide ballon B2 | 15 | 1651 | 1651 | 1651 |
Hydrogène purge | 18 | 158 | 185 | 158 |
Hydrocarbures ballon B2 | 16 | 99664 | 8652 | 99648 |
Produit | 35 | 99664 | 99467 | 99648 |
Claims (20)
- Procédé d'hydrotraitement d'une charge hydrocarbonée, contenant des composés soufrés, des composés azotés et des composés aromatiques, comprenant les étapes suivantes :a) au moins une première étape dans laquelle on fait passer ladite charge et de l'hydrogène dans une zone d'hydrodésulfuration contenant au moins un catalyseur d'hydrodésulfuration comprenant sur un support minéral au moins un métal ou composé de métal du groupe VIB de la classification périodique des éléments et au moins un métal ou composé de métal du groupe VIII de ladite classification périodique, la dite zone étant maintenue dans des conditions d'hydrodésulfuration comprenant une température d'environ 260 °C à environ 450 °C et une pression d'environ 2 MPa à environ 20 MPa ,b) au moins une deuxième étape dans laquelle la charge partiellement désulfurée issu de l'étape d'hydrodésulfuration est envoyée dans une zone de stripage dans laquelle elle est purifié par stripage à contre-courant par au moins un gaz contenant de l'hydrogène sous une pression sensiblement identique à celle régnant dans la première étape et à une température d'environ 100 °C à environ 350 °C dans des conditions de formation d'un effluent gazeux de stripage contenant de l'hydrogène et de l'hydrogène sulfuré et d'une charge liquide ne contenant sensiblement plus d'hydrogène sulfuré,c) au moins une troisième étape dans laquelle la charge liquide issu de l'étape de stripage est, après addition d'hydrogène d'appoint sensiblement pur et d'hydrogène de recyclage, envoyé dans une zone d'hydrotraitement contenant un catalyseur d'hydrotraitement comprenant sur un support minéral au moins un métal noble ou composé de métal noble, du groupe VIII, la dite zone étant maintenue dans des conditions d'hydrotraitement permettant d'obtenir un effluent partiellement désaromatisé,
- Procédé selon la revendication 1 dans lequel l'effluent liquide issu de l'étape de stripage est, après addition d'hydrogène d'appoint sensiblement pur et d'hydrogène de recyclage, envoyé dans une zone d'hydrotraitement contenant un catalyseur d'hydrotraitement comprenant sur un support minéral au moins un métal noble ou composé de métal noble, du groupe VIII après avoir été porté par échange direct de chaleur à une température d'environ 220 °C à environ 360 °C et une pression d'environ 2 MPa à environ 20 MPa la dite zone étant maintenue dans des conditions d'hydrotraitement permettant d'obtenir un effluent partiellement désaromatisé.
- Procédé selon la revendication 1 ou 2 dans lequel une fraction de l'hydrogène d'appoint est utilisée comme gaz de stripage contenant de l'hydrogène dans l'étape b) de stripage.
- Procédé selon l'une des revendications 1 à 3 dans lequel les conditions opératoires de l'étape a) sont choisies de manière à obtenir un produit contenant moins de 100 ppm de soufre et moins de 200 ppm d'azote et les conditions de l'étape c) sont choisies de manière à obtenir un produit contenant moins de 20 % en volume de composés aromatiques.
- Procédé selon l'une des revendications 1 à 4 dans lequel l'effluent gazeux formé dans l'étape de stripage est refroidi par au moins un moyen de refroidissement situé à l'intérieur de la zone de stripage à proximité de la sortie dudit effluent gazeux de ladite zone de stripage.
- Procédé selon l'une des revendications 1 à 5 dans lequel l'effluent gazeux formé dans l'étape de stripage est refroidi par au moins un moyen de refroidissement situé à l'extérieur de la zone de stripage et est au moins partiellement condensé, le liquide obtenu est renvoyé dans la zone de stripage.
- Procédé selon l'une des revendications 1 à 6 dans lequel au moins une partie de l'hydrogène purifié obtenu à la sortie de la zone d'élimination de l'hydrogène sulfuré qu'elle contient est envoyée dans une zone de séchage-désulfurant.
- Procédé selon l'une des revendications 1 à 7 dans lequel au moins une partie de l'hydrogène sensiblement pur récupéré après l'étape de stripage est recyclée dans la zone de stripage en au moins un point d'introduction situé entre le point d'introduction d'une partie du gaz contenant de l'hydrogène employé pour le stripage et le point d'introduction de l'effluent de l'étape a) d'hydrodésulfuration dans ladite zone de stripage.
- Procédé selon l'une des revendications 1 à 8 dans lequel au moins une partie de l'hydrogène sensiblement pur récupéré après l'étape de stripage est recyclée directement et/ou après mélange avec la charge dans la zone d'hydrodésulfuration de l'étape a).
- Procédé selon l'une des revendications 1 à 9 dans lequel au moins une partie de l'hydrogène sensiblement pur récupéré après l'étape de stripage est recyclée directement et/ou après mélange avec l'effluent liquide de la zone de stripage et avec l'hydrogène d'appoint dans la zone d'hydrotraitement de l'étape c).
- Procédé selon l'une des revendications 1 à 10 dans lequel le catalyseur de l'étape a) comprend au moins un métal ou un composé de métal choisi dans le groupe formé par le molybdène et le tungstène et au moins un métal ou un composé de métal choisi dans le groupe formé par le nickel le cobalt et le fer
- Procédé selon l'une des revendications 1 à 11 dans lequel le catalyseur de l'étape a) comprend en outre au moins un élément choisi dans le groupe formé par le silicium, le phosphore et le bore ou un ou plusieurs composés de ce ou ces éléments.
- Procédé selon l'une des revendications 1 à 12 dans lequel le catalyseur de l'étape a) comprend en outre du phosphore ou au moins un composé de phosphore
- Procédé selon l'une des revendications 1 à 13. dans lequel le catalyseur de l'étape a) comprend en outre du bore ou au moins un composé de bore.
- Procédé selon l'une des revendications 1 à 14 dans lequel le catalyseur de l'étape a) comprend en outre du silicium ou au moins un composés de silicium.
- Procédé selon l'une des revendications 1 à 15 dans lequel le support des catalyseurs employés dans l'étape a) et dans l'étape c) sont choisis indépendamment l'un de l'autre dans le groupe formé par l'alumine, la silice, les silices-alumines, les zéolites et les mélanges d'au moins deux de ces composés minéraux
- Procédé selon l'une des revendications 1 à 16 dans lequel le support du catalyseur de l'étape c) comprend au moins un halogène de préférence choisi dans le groupe formé par le chlore et le fluor.
- Procédé selon l'une des revendications 1 à 17 dans lequel le catalyseur de l'étape c) comprend au moins un métal ou un composé de métal noble choisi dans le groupe formé par le palladium et le platine.
- Procédé selon l'une des revendications 1 à 18 dans lequel au moins une partie de la fraction liquide d'hydrocarbures obtenue par refroidissement de l'effluent gazeux issu de la zone de stripage est envoyée en mélange avec la charge hydrocarbonée dans l'étape a) d'hydrodésulfuration.
- Fraction hydrocarbonée partiellement désulfurée et partiellement désaromatisée obtenue selon le procédé de l'une quelconque des revendications 1 à 19.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9908277A FR2795420B1 (fr) | 1999-06-25 | 1999-06-25 | Procede d'hydrotraitement d'un distillat moyen dans deux zones successives comprenant une zone intermediaire de stripage de l'effluent de la premiere zone avec condensation des produits lourds sortant en tete du strippeur |
FR9908277 | 1999-06-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1063275A1 true EP1063275A1 (fr) | 2000-12-27 |
EP1063275B1 EP1063275B1 (fr) | 2006-08-02 |
Family
ID=9547412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00401673A Expired - Lifetime EP1063275B1 (fr) | 1999-06-25 | 2000-06-14 | Procédé d'hydrotraitement d'un distillat moyen dans deux zones comprenant une zone intermédiaire de stripage |
Country Status (9)
Country | Link |
---|---|
US (1) | US6623628B1 (fr) |
EP (1) | EP1063275B1 (fr) |
JP (1) | JP2001031981A (fr) |
KR (1) | KR100730969B1 (fr) |
AR (1) | AR024445A1 (fr) |
BR (1) | BR0002861B1 (fr) |
DE (1) | DE60029686T2 (fr) |
ES (1) | ES2269079T3 (fr) |
FR (1) | FR2795420B1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003002692A2 (fr) * | 2001-02-08 | 2003-01-09 | Bp Corporation North America Inc. | Hydrotraitement de composants pour le melange de raffinerie de carburants de transport |
WO2003044132A1 (fr) * | 2001-11-22 | 2003-05-30 | Institut Francais Du Petrole | Procede d'hydrotraitement de distillats moyens en deux etapes comprenant deux boucles de recyclage d'hydrogene |
WO2013067323A1 (fr) * | 2011-11-04 | 2013-05-10 | Saudi Arabian Oil Company | Procédé d'hydrotraitement et de saturation aromatique avec séparation et purification intermédiaires intégrées de l'hydrogène |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003299027A1 (en) * | 2002-09-23 | 2004-04-08 | Shell Internationale Research Maatschappij B.V. | Catalyst particles and its use in desulphurisation |
US7247235B2 (en) | 2003-05-30 | 2007-07-24 | Abb Lummus Global Inc, | Hydrogenation of middle distillate using a counter-current reactor |
AU2006206280B2 (en) * | 2005-01-21 | 2010-10-28 | Exxonmobil Research And Engineering Company | Two stage hydrotreating of distillates with improved hydrogen management |
US20090120839A1 (en) * | 2005-01-21 | 2009-05-14 | Sabottke Craig Y | Hydrogen Management for Hydroprocessing Units |
CN101163536B (zh) * | 2005-01-21 | 2011-12-07 | 埃克森美孚研究工程公司 | 采用精炼工艺单元如加氢处理、加氢裂化的快速循环压力摆动吸附的改进的集成 |
WO2009088454A1 (fr) * | 2007-12-31 | 2009-07-16 | Exxonmobil Research And Engineering Company | Désulfuration/déparaffinage en deux étapes intégrées avec un séparateur à haute température de stripage |
EP2196260A1 (fr) * | 2008-12-02 | 2010-06-16 | Research Institute of Petroleum Industry (RIPI) | Nanocatalyseur d'hydrodésulfuration, son utilisation et son procédé de fabrication |
KR101767375B1 (ko) | 2009-04-21 | 2017-08-11 | 알베마를 유럽 에스피알엘 | 인 및 붕소를 함유하는 수소처리 촉매 |
US20120103873A1 (en) * | 2010-11-01 | 2012-05-03 | Axens | Procede d'hydrotraitement et/ou d'hydrocraquage de charges azotees avec stripage a l'hydrogene |
RU2497585C2 (ru) * | 2012-02-06 | 2013-11-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный технический университет" | Катализатор гидроочистки масляных фракций и рафинатов селективной очистки и способ его приготовления |
US9902912B2 (en) | 2014-01-29 | 2018-02-27 | Uop Llc | Hydrotreating coker kerosene with a separate trim reactor |
CN103897731B (zh) * | 2014-02-24 | 2016-01-20 | 中国海洋石油总公司 | 一种催化裂化柴油和c10+馏分油混合生产轻质芳烃的方法 |
US10273420B2 (en) | 2014-10-27 | 2019-04-30 | Uop Llc | Process for hydrotreating a hydrocarbons stream |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5110444A (en) * | 1990-08-03 | 1992-05-05 | Uop | Multi-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons |
US5114562A (en) * | 1990-08-03 | 1992-05-19 | Uop | Two-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons |
EP0849350A1 (fr) * | 1996-12-20 | 1998-06-24 | Institut Français du Pétrole | Procédé de transformation d'une coupe gazole pour produire un carburant à haut indice de cétane, désaromatisé et désulfuré |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788976A (en) * | 1970-03-04 | 1974-01-29 | Sun Oil Co Pennsylvania | Multi-stage process for producing high ur oil by hydrogenation |
US4954241A (en) * | 1988-02-26 | 1990-09-04 | Amoco Corporation | Two stage hydrocarbon conversion process |
US5498810A (en) * | 1991-11-21 | 1996-03-12 | Uop | Selective isoparaffin synthesis from naphtha |
FR2736063B1 (fr) * | 1995-06-27 | 1997-08-14 | Inst Francais Du Petrole | Procede d'hydrogenation d'aromatiques avec injection de chlore sur des catalyseurs a base de metal noble |
US5705052A (en) * | 1996-12-31 | 1998-01-06 | Exxon Research And Engineering Company | Multi-stage hydroprocessing in a single reaction vessel |
US5846405A (en) * | 1997-07-18 | 1998-12-08 | Exxon Research And Engineering Company | Process oils and manufacturing process for such using aromatic enrichment and two pass hydrofinishing |
DE69810201T2 (de) * | 1997-07-18 | 2003-05-28 | Exxonmobil Research And Engineering Co., Annandale | Verfahren zur Herstellung der Produktölen mit Aromaten-anreichung und Zweistüfen- Hydrorraffinierung |
US5948243A (en) * | 1998-02-24 | 1999-09-07 | Phillips Petroleum Company | Catalyst comprising aluminum borate and zirconium borate and use thereof in a hydrotreating process |
US6036844A (en) * | 1998-05-06 | 2000-03-14 | Exxon Research And Engineering Co. | Three stage hydroprocessing including a vapor stage |
-
1999
- 1999-06-25 FR FR9908277A patent/FR2795420B1/fr not_active Expired - Fee Related
-
2000
- 2000-06-14 ES ES00401673T patent/ES2269079T3/es not_active Expired - Lifetime
- 2000-06-14 DE DE60029686T patent/DE60029686T2/de not_active Expired - Lifetime
- 2000-06-14 EP EP00401673A patent/EP1063275B1/fr not_active Expired - Lifetime
- 2000-06-22 AR ARP000103131A patent/AR024445A1/es not_active Application Discontinuation
- 2000-06-23 BR BRPI0002861-4A patent/BR0002861B1/pt not_active IP Right Cessation
- 2000-06-24 KR KR1020000035098A patent/KR100730969B1/ko not_active IP Right Cessation
- 2000-06-26 US US09/604,060 patent/US6623628B1/en not_active Expired - Lifetime
- 2000-06-26 JP JP2000190999A patent/JP2001031981A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5110444A (en) * | 1990-08-03 | 1992-05-05 | Uop | Multi-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons |
US5114562A (en) * | 1990-08-03 | 1992-05-19 | Uop | Two-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons |
EP0849350A1 (fr) * | 1996-12-20 | 1998-06-24 | Institut Français du Pétrole | Procédé de transformation d'une coupe gazole pour produire un carburant à haut indice de cétane, désaromatisé et désulfuré |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003002692A2 (fr) * | 2001-02-08 | 2003-01-09 | Bp Corporation North America Inc. | Hydrotraitement de composants pour le melange de raffinerie de carburants de transport |
WO2003002692A3 (fr) * | 2001-02-08 | 2003-11-27 | Bp Corp North America Inc | Hydrotraitement de composants pour le melange de raffinerie de carburants de transport |
WO2003044132A1 (fr) * | 2001-11-22 | 2003-05-30 | Institut Francais Du Petrole | Procede d'hydrotraitement de distillats moyens en deux etapes comprenant deux boucles de recyclage d'hydrogene |
US7384540B2 (en) | 2001-11-22 | 2008-06-10 | Institut Francais Du Petrole | Two-step method for middle distillate hydrotreatment comprising two hydrogen recycling loops |
WO2013067323A1 (fr) * | 2011-11-04 | 2013-05-10 | Saudi Arabian Oil Company | Procédé d'hydrotraitement et de saturation aromatique avec séparation et purification intermédiaires intégrées de l'hydrogène |
CN104011181A (zh) * | 2011-11-04 | 2014-08-27 | 沙特阿拉伯石油公司 | 具有集成中间氢分离和纯化的加氢处理和芳烃饱和方法 |
US8968552B2 (en) | 2011-11-04 | 2015-03-03 | Saudi Arabian Oil Company | Hydrotreating and aromatic saturation process with integral intermediate hydrogen separation and purification |
CN104011181B (zh) * | 2011-11-04 | 2017-02-15 | 沙特阿拉伯石油公司 | 具有集成中间氢分离和纯化的加氢处理和芳烃饱和方法 |
Also Published As
Publication number | Publication date |
---|---|
BR0002861A (pt) | 2001-01-30 |
BR0002861B1 (pt) | 2010-10-05 |
JP2001031981A (ja) | 2001-02-06 |
ES2269079T3 (es) | 2007-04-01 |
EP1063275B1 (fr) | 2006-08-02 |
KR100730969B1 (ko) | 2007-06-22 |
FR2795420A1 (fr) | 2000-12-29 |
FR2795420B1 (fr) | 2001-08-03 |
KR20010066873A (ko) | 2001-07-11 |
DE60029686D1 (de) | 2006-09-14 |
AR024445A1 (es) | 2002-10-02 |
DE60029686T2 (de) | 2006-12-21 |
US6623628B1 (en) | 2003-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0849350B1 (fr) | Procédé de transformation d'une coupe gazole pour produire un carburant à haut indice de cétane, désaromatisé et désulfuré | |
EP1063275B1 (fr) | Procédé d'hydrotraitement d'un distillat moyen dans deux zones comprenant une zone intermédiaire de stripage | |
EP1451269B1 (fr) | Procede d'hydrotraitement de distillats moyens en deux etapes comprenant deux boucles de recyclage d'hydrogene | |
EP2106431B1 (fr) | Procede de conversion de charges issues de sources renouvelables pour produire des bases carburants gazoles de faible teneur en soufre et de cetane ameliore | |
EP2256179B1 (fr) | Procédé de production d'une coupe hydrocarbonnée à haut indice d'octane et faible teneur en soufre | |
JP3564578B2 (ja) | 炭化水素仕込物の抽出および水素化処理による発動機燃料の取得方法、および得られたガスオイル | |
EP1849850B1 (fr) | Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration | |
WO2003044131A1 (fr) | Procede d'hydrotraitement d'une charge hydrocarbonee en deux etapes comprenant un fractionnement intermediaire par stripage avec rectification | |
WO2015078674A1 (fr) | Procédé d'hydrotraitement d'un gazole dans des réacteurs en série avec recyclage d'hydrogène. | |
EP1217061B1 (fr) | Procédé de traitement d'une charge Hydrocarbonée comprenant une étape d'hydrotraitement en lit fixe à contre-courant | |
WO2019134811A1 (fr) | Procede d'hydrocraquage deux etapes comprenant au moins une etape de separation haute pression a chaud | |
EP0661371B1 (fr) | Procédé d'obtention d'une base pour carburant pour moteur à combustion interne par hydrotraitement et extraction | |
FR2847260A1 (fr) | Procede de desulfuration comprenant une etape d'hydrogenation selective des diolefines et une etape d'extraction des composes soufres | |
EP1436362B1 (fr) | Procede d'hydrodesulfuration comprenant une section de stripage et une section de fractionnement sous vide | |
WO2015078675A1 (fr) | Procédé d'hydrotraitement d'un gazole dans des réacteurs en parallèle avec recyclage d'hydrogène | |
FR2804967A1 (fr) | Procede et installation utilisant plusieurs lits catalytiques en serie pour la production de gazoles a faible teneur en soufre | |
FR2823216A1 (fr) | Procede et installation utilisant plusieurs lits catalytiques en serie pour la production de gazoles a faible teneur en soufre | |
EP1310544B1 (fr) | Procédé de conversion de fractions lourdes pétrolières pour produire une charge de craquage catalytique et des distillats moyens de faible teneur en soufre | |
EP1312661B1 (fr) | Procédé de conversion de fractions lourdes petrolieres incluant un lit bouillonnant pour produire des distillats moyens de faible teneur en soufre | |
EP1508609B1 (fr) | Procédé de traitement d'une fraction intermédiaire issue d'effluents de vapocraquage | |
CA2937194A1 (fr) | Optimisation de l'utilisation d'hydrogene pour l'hydrotraitement de charges hydrocarbonees | |
FR3126423A1 (fr) | Procédé d’hydroconversion de charges hydrocarbonées | |
FR3104606A1 (fr) | Procédé intégré d’hydrocraquage en lit fixe et d’hydroconversion en lit bouillonnant avec un recyclage de l’hydrogène optimisé | |
FR2804966A1 (fr) | Procede et installation utilisant plusieurs lits catalytiques en serie pour la production de gazoles a faible teneur en souffre | |
WO2015161937A1 (fr) | Procédé d'hydrotraitement dans des reacteurs co-courant ascendant presentant un contre-courant d'ensemble |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES IT NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010627 |
|
AKX | Designation fees paid |
Free format text: DE ES IT NL |
|
17Q | First examination report despatched |
Effective date: 20031111 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060802 |
|
REF | Corresponds to: |
Ref document number: 60029686 Country of ref document: DE Date of ref document: 20060914 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2269079 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070503 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 60029686 Country of ref document: DE Owner name: IFP ENERGIES NOUVELLES, FR Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR Effective date: 20110331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20160621 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20160628 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160704 Year of fee payment: 17 Ref country code: IT Payment date: 20160630 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60029686 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20170701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170614 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170615 |