EP0661371B1 - Procédé d'obtention d'une base pour carburant pour moteur à combustion interne par hydrotraitement et extraction - Google Patents

Procédé d'obtention d'une base pour carburant pour moteur à combustion interne par hydrotraitement et extraction Download PDF

Info

Publication number
EP0661371B1
EP0661371B1 EP94403024A EP94403024A EP0661371B1 EP 0661371 B1 EP0661371 B1 EP 0661371B1 EP 94403024 A EP94403024 A EP 94403024A EP 94403024 A EP94403024 A EP 94403024A EP 0661371 B1 EP0661371 B1 EP 0661371B1
Authority
EP
European Patent Office
Prior art keywords
product
solvent
weight
boiling point
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94403024A
Other languages
German (de)
English (en)
Other versions
EP0661371A1 (fr
Inventor
Frédéric Morel
Massimo Zuliani
Paul Mikitenko
Marc Boulet
Roben Loutaty
Jean Claude Company
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Total Marketing Services SA
Original Assignee
IFP Energies Nouvelles IFPEN
TotalFinaElf France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN, TotalFinaElf France SA filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0661371A1 publication Critical patent/EP0661371A1/fr
Application granted granted Critical
Publication of EP0661371B1 publication Critical patent/EP0661371B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0409Extraction of unsaturated hydrocarbons
    • C10G67/0418The hydrotreatment being a hydrorefining
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Definitions

  • the invention relates to a method for obtaining of a petroleum product which can possibly be used for the formulation of a fuel for internal combustion engine and the product obtained by the process.
  • gas oils that are currently on the market are most often products from refining which contain sulfur in an amount (expressed by weight of sulfur) about 0.3%. They are usually obtained after treatment hydrodesulfurization from a feed which can come from the direct distillation of crude oil or special treatment of a crude oil (e.g. pyrolysis or distillation followed by pyrolysis of the fraction recovered during distillation, or cracking thermal or catalytic) generally containing at least 0.8% by weight sulfur.
  • sulfur content standards and cetane are in place or are going to be in place in a very close to come up. These standards are becoming more and more stringent, particularly for diesel fuels intended to be used as fuel for engines. It is as well as in France, in particular from 1995, the sulfur content of these gas oils must not be more than 0.05% by weight (500 ppm) while diesel in accordance with current standards have a sulfur content that can reach 0.3%.
  • diesel oils used in France as fuel for engines internal combustion must currently have a cetane number at less than 48 and the gas oils used as fuel an index of cetane at least 40. We can expect in the near future a tightening of these standards and in particular those concerning diesel used as fuel in engines.
  • the present invention therefore relates to a simple implementation method, consuming little hydrogen.
  • This process uses industrial units hydrotreating (hydrodesulfurization in particular). It improves qualities of the diesel produced and meet future standards and in particular that concerning the sulfur content.
  • the method of the invention allows in in addition, to improve the cetane engine index of diesel, to reduce its content aromatic compounds not containing a sulfur heteroatom in their molecule, reduce its content of nitrogen compounds, improve its color and its smell and finally to decrease the formation of solid particles during its use in an internal combustion engine.
  • the present invention provides a solution to the specific problem of obtaining, in the most quantity significant possible compared to the starting product, of a petroleum product used in the composition of engine grade diesel or diesel engine from a particular hydrocarbon cut having characteristics which makes it difficult to recover in the form of engine diesel.
  • the invention further relates to the process for obtaining a petroleum product. used in the composition of a fuel oil.
  • hydrodesulfurization instead of hydrotreatment.
  • polyaromatic compounds compounds having at least two aromatic cycles, sulfur or not.
  • the initial and final boiling point temperatures are TBP cut.
  • the hydrocarbon feedstock which is treated according to the process of the invention is most often referred to as a diesel cutter and it preferably has a point initial boiling point of approximately 150 ° C and a final boiling point of approximately 400 ° C, its sulfur content is usually more than 0.1% and the most often greater than 0.5% by weight, its content of n- and iso-alkanes is about 30 to 45% by weight, its content of aromatic compounds is usually from about 15% to about 65% by weight.
  • This charge is the more often a direct distillation diesel, a pyrolysis diesel or a mixture of the two. This charge can advantageously be mixed with a L.C.O.
  • the color of this load measured according to the ASTM D 1500 method is usually greater than or equal to 2.
  • the cetane number according to ISO 5165 standard of this charge is most often less than about 60 and it is for example from about 50 to about 55.
  • the nitrogen content of this feed is very often from about 100 to about 1000 ppm expressed by weight of nitrogen relative to the load weight.
  • the product Q1 obtained is a particularly interesting product taking into account all of its characteristics (cut point, cetane, paraffin content and sulfur) to obtain by formulation with other diesel cuts of quality fuels.
  • the product (Q1) obtained by the process of the present invention has usually a nitrogen content expressed by weight of nitrogen 2 times less than that of the initial charge and often 4 to 5 times less.
  • This product (Q1) has most often a color measured according to the ASTM 1500 standard less than 1 and the cetane number of this product is generally at least 3 higher points and often at least 5 points at the cetane number of the initial charge (for example from 3 to 14 points).
  • Its sulfur content compared to that of the load is usually less than or equal to 5% by weight.
  • Its net content iso-alkanes generally increases by at least 4 points, advantageously by 5 to 20 points and most often 6 to 11 points, compared to that of the charge.
  • the content of aromatic compounds containing no atom sulfur in their molecule in this product (Q1) is usually reduced by at least at least 10% by weight compared to that of the initial charge and often at least minus 30% by weight.
  • the odor of this product is less strong than that of initial charge.
  • the invention advantageously relates to a petroleum product characterized in that that the distillation cut corresponds to 95% by weight distilled between 320 ° C and 460 ° C, its cetane number is greater than 60, its content of n- and iso-alkanes is at least equal to 48% by weight, and its sulfur content less than or equal to 500 ppm (weight).
  • the hydrodesulfurization is advantageously carried out in a hydrodesulfurization unit under mild conditions making it possible to desulfurize the sulfur molecules by hydrogenating as little as possible.
  • This approach is not obvious to a person skilled in the art of the 1990s, who is rather led to the solution of severifying the conditions of a hydrotreatment in order to simultaneously decrease the sulfur content and increase the cetane of the charges.
  • the temperature is 320 to 370 ° C
  • the hourly space velocity is 1 to 5
  • the pressure from 1 to 5 MPa the volume ratio H2 on load from 50 to 350 m 3 / m 3 measured under conditions normal.
  • the charge dearomatization rate is then at most equal to around 15%. We can thus distinguish two particularly advantageous cases of implementation of this hydrodesulfurization making it possible to obtain an excellent charge for the following extraction step.
  • one operates in the presence of a selective catalyst for the hydrodesulfurization of sulfur molecules compared to the hydrogenation of aromatics, adapted to limit hydrogenation, for example one of those marketed by PROCATALYSE, under pressure partial hydrogen at the outlet of the hydrodesulfurization reactor advantageously between approximately 1.0 MPa and approximately 3.0 MPa and recovers a product (P) containing an amount of sulfur from 2 to 30 times less, ie between 0.1 and 0.3% by weight depending on the charge, for example, and most often 3 to 10 times less than that of the initial charge.
  • the charge deflavor rate is then significantly less than 10%.
  • the other conditions for implementing this hydrodesulfurization step are conventional conditions of a hydrodesulfurization qualified by those skilled in the art of hydrodesulfurization simple and sweet.
  • one operates in the presence of a conventional catalyst suitable for limiting hydrogenation, for example one of those sold by the company PROCATALYSE, under partial pressure of hydrogen in hydrodesulfurization reactor outlet advantageously between about 2 MPa and about 5 MPa and recover a product (P) containing 5 to 60 times less sulfur, less than 0.1% by weight, per example between 0.02 and 0.05%, and most often 10 to 40 times less than that of the initial charge.
  • P product
  • the rate of disaromatization of the load is at most equal to approximately 15%.
  • the other conditions of implementation work of this hydrodesulfurization step are conventional conditions more severe hydrodesulfurization.
  • This hydrodesulfurization is carried out using a larger volume of catalyst than in the case of simple hydrodesulfurization, for example a volume of catalyst 2 times more important, as well as a higher hydrogen pressure, calculated for perform further hydrodesulfurization.
  • the separation step generally comprises a steam stripping of the total liquid hydrotreatment effluent, followed or not by an additional distillation step. This last step is generally required when it is desired to send to the extraction a fraction P2 whose initial boiling point is higher than that of the hydrotreatment effluent once stripped.
  • the liquid / liquid extraction step is a step carried out under conditions classics. This extraction could for example be carried out against the current in a conventional device, for example a filling column, with plates or with mechanical agitation (R.D.C.: rotating dise contactor) having in general an efficiency from 3 to 20 theoretical stages and preferably from 5 to 10 theoretical stages, at a temperature generally between 0 ° C and 140 ° C, advantageously between 30 ° C and 80 ° C and under pressure allowing operation in the liquid phase and therefore between 0.1 and 1 MPa, preferably between 0.1 and 0.6 MPa.
  • R.D.C. rotating dise contactor
  • the volume ratio of the solvent (S1) to volume of the product (P2), obtained in step b), is preferably about 0.2: 1 to about 5: 1, preferably 0.5: 1 to 2: 1 and most often about 1: 1.
  • the solvent is preferably chosen from the group of solvents making it possible to also extract at least part of the compounds aromatic, not containing a sulfur atom in their molecule, present in the product (P2) obtained in step b). Extraction conditions are preferably chosen so as to obtain a raffinate (R1) containing by weight at most 90% and preferably at most 70% of the total weight of aromatic compounds, not containing a sulfur atom in their molecule, present in the product (P2) obtained in step b).
  • the extract (E1) in these conditions will contain at least 10% and often at least 30% by weight of the total weight of the aromatic compounds, not containing a sulfur atom in their molecule, present in the product (P2) obtained in step b), thus that preferably at least 30% and often at least 50% and frequently at least 80% by weight of the total weight of the sulfur-containing compounds, most often dibenzothiophenics and naphthobenzothiophenics initially contained in the product (P2).
  • the product (Q1) thus obtained usually contains 2 to 10 times less sulfur than the product (P2) from step b) and the most often 4 to 10 times less.
  • the extraction solvent is most often a single solvent, but it is possible to also use solvent mixtures.
  • This solvent contains generally less than 20% and often less than 10% by weight of water.
  • This solvent may be an anhydrous solvent. He is often chosen from the group formed by methanol, acetonitrile, monomethylformamide, dimethylformamide, dimethylacetamide, furfural, N-methylpyrrolidone and dimethyl sulfoxide. We very often use a solvent containing no nitrogen and most often a non-nitrogenous solvent oxygen. The preferred solvent is furfural.
  • At least one cosolvent which may be an alcohol of 1 to 6 carbon atoms, for example an alcohol linear or branched, or furfuryl alcohol.
  • the feed to be treated has a high final boiling point and is particularly rich in nitrogen compounds, especially basic, it can be advantageous to introduce with the extraction solvent alone or as a mixture, a minor amount of acids, especially carboxylic acids (less than 1% by weight per solvent, for example).
  • carboxylic acids from 1 to 6 carbon atoms and more especially acids with a boiling point below 250 ° C, in particular formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, maleic acid, crotonic acid, isobutyric acid, valeric acid, trimethylacetic acid, acid benzoic, and 2-furoic acid.
  • the solvent can be recovered from the raffinate by a stripping or distillation, preferably by steam stripping whose conditions have been described above.
  • the raffinate (R1) obtained in step c) is then sent to step d) by example in a steam stripping zone in which it is separated under conditions making it possible to recover an enriched head fraction, and preferably highly enriched, in solvent (S1) and a bottoms product (Q1) preferably highly depleted in solvent (S1).
  • conditions for this separation are chosen so as to obtain a overhead fraction containing almost all of the solvent, that is to say by example, more than 95% by weight of the amount of solvent contained in the raffinate (R1) and introduced into this stripping zone.
  • the extract (E1) obtained at step c) is then sent to a solvent recovery zone (S1) used in step c) in which a product enriched in solvent is recovered (S1) and a product (Q2) depleted in solvent (S1).
  • S1 solvent recovery zone
  • the separation of the solvent from the extract is generally produced by distillation and / or stripping with steam and preferably by distillation followed by steam stripping under the conditions set out above.
  • This extract is therefore separated in conditions for recovering a fraction of enriched head, and preferably highly enriched, in solvent (S1) and a bottoms product (Q2) depleted in solvent (S1).
  • this separation Most often the conditions of this separation are chosen so as to obtain a fraction of head containing the quasi all of the solvent, that is to say for example more than 95% by weight of the amount of solvent contained in the extract (E1) and introduced into this zone of separation. At least about 99% by weight is thus preferably recovered. the quantity of solvent contained in the extract (E1).
  • step a) When operating in step a) under hydrodesulfurization conditions significantly more severe, that is to say in particular in the presence of a very significant amount of catalyst, the product (Q2) which is obtained by distillation of the extract (E1) will most often have a sulfur content less than or equal to about 0.3% by weight.
  • This product (Q2) will be fine heard not usable as fuel for engines, since it contains most often a quantity of sulfur higher than the future standard; through however we can probably use it as fuel.
  • the top product (s), obtained by separation of the raffinate (R1) and optionally extract (E1), enriched in solvent, are recycled in step c) liquid / liquid extraction.
  • At least part of the product (Q2) obtained from the extract (E1) after solvent separation (S1) can be sent to an area hydrodesulfurization separate from the feed hydrodesulfurization zone initial or even be returned to the hydrodesulfurization zone of the stage at).
  • the part of the product (Q2) is subjected to hydrodesulfurization in conditions for obtaining a product (P3) having a sulfur content less than or equal to 0.3% by weight and preferably less than or equal to 0.2% by weight.
  • the charge hydrocarbon having an initial boiling point of at least 150 ° C and a boiling point of at most 500 ° C
  • the charge hydrocarbon is sent to a zone of distillation in which a fraction (F1) having a point is separated at the head boiling point of at least 250 ° C and at the bottom a fraction (F2) having a initial boiling point of at least 250 ° C.
  • the fraction (F2) is treated according to the process described above for the charge hydrocarbon 150-500 ° C steps a) to d).
  • the fraction (F1) is sent to a hydrodesulfurization zone distinct from that of step a) in which it is hydrodesulfurized under conventional conditions and for example in the simple conditions described above, then the hydrodesulfurized product (P ') obtained is sent to a separation zone, for example by stripping or by distillation of the product (P ') into a fraction (P10) having a point final boiling point below 150 ° C, and in a fraction (P20) having a point initial boiling point above the final boiling point of the fraction (P10).
  • This product (P20) can, at least in part, be mixed with the product (Q1) obtained from fraction (F2) to form a product (Q10) having the qualities required as engine fuel.
  • the fraction (P10) is essentially formed of compounds resulting from side reactions during hydrodesulfurization. This fraction (P10) generally represents less than 2% by volume relative to the total volume of the fraction (F1).
  • the main advantages of the invention are as follows: a higher n- and iso-alkane content is obtained in the raffinate (table) than according to the hydrocracking or hydrodesaromatization processes, a higher cetane number, despite an aromatic hydrocarbon content greater than 10%.
  • the consumption of hydrogen in hydrotreatment is lower. It can be reduced for example to 0.15% by weight with respect to the charge, when the hydrogenation is limited to the maximum.
  • hydrocracking hydrodesaromatisation HDS and extraction density 0.815 to 0.825 0.820 to 0.850 0.815 to 0.840 cetane 53-63 45-60 62-71 n- and iso-alkanes 42-47 35-45 49-56 naphthenes 49-55 25-55 30-41 aromatic 3-7 10.20 10-20 Consumption in hydrogen% > 2 0.6-1.1 ⁇ 0.5
  • FIGS 1 and 2 schematically represent the main variants for the implementation of the method according to the present invention.
  • similar bodies are designated by the same numbers and letters reference.
  • the hydrocarbon charge to be treated is sent by the line (1) in the hydrodesulfurization zone (HDS1) at the outlet of which retrieve by line 2 a product (P) which is sent to an area of separation (SEP. 1) from which a product is recovered via line 3 (P1) and by line 4 a product (P2) whose initial boiling point is higher than the final boiling point of the product (P1).
  • This product (P2) is sent via line 4 to an extraction zone (EXT.) in which also introduces an extraction solvent (S1) via line 5 and from which we recover an extract (E1) by line 7 and a raffinate (R1) by the line 6.
  • This raffinate (R1) is sent by line 6 to an area (D1) of recovery of the solvent (S1) via line 8 and of a petroleum product (Q1) possibly being used as a base in the composition of a diesel engine of improved qualities, by line 9.
  • the extract (E1) is sent by the line 7 in a zone (D2) for recovering the solvent (S1) via line 10 and of a product (Q2) by line 11.
  • This product (Q2) can be, at least in part, recovered by line 11a when valve V4 is open, or be, at less in part, sent by line 11b when the valve V1 is open either in a hydrodesulfurization zone (HDS3) not shown diagrammatically, either in the zone hydrodesulfurization (HDS1).
  • HDS3 hydrodesulfurization zone
  • the hydrocarbon charge to be treated is sent by the line (100) in a zone (TOP) from which a fraction (F2) is recovered heavy with initial boiling point above about 250 ° C which is treated as the hydrocarbon feed according to the description above made in link with figure 1.
  • TOP zone
  • the product (Q1) can be. at less partially recovered by line 9 and line 9a when valve V2 is open, or be, at least in part sent by line 9b in line 140 when valve V3 is open.
  • this petroleum product partially forms a base used in the composition of improved quality diesel fuel.
  • From the (TOP) area we recover on line 110 a slight fraction (F1) of final boiling point greater than about 250 ° C.
  • This fraction (F1) is sent by line 110 in a hydrodesulfurization zone (HDS2) at the outlet of which recovers via line 120 a hydrodesulfurized product (P ') which is sent in a separation zone (SEP. 2) from which we recover by line 130 a product (P10) and by line 140 a product (P20) whose point initial boiling point is higher than the product's final boiling point (P10).
  • This product (P20) is optionally mixed with the product (Q1) arriving via the driving 9b.
  • This mixture or the product (P20) forms a base entering the composition of an improved quality diesel fuel which is recovered by the line 149.
  • the feed used in this example is a diesel distillation cut direct (straight-run) with a cetane number of 55, a total content of aromatic compounds, sulfur and non-sulfur, 30% by weight, one content in n and iso-alkanes of 39% by weight, a naphthene content of 31%, a sulfur content of 1.22% by weight, a nitrogen content expressed by weight 255 ppm nitrogen and a color measured according to ASTM D 1500 equal à 2.
  • This diesel cut has an initial distillation point of 150 ° C and a point final distillation of 400 ° C.
  • This charge is introduced via line 1 into a hydrodesulfurization zone in which it is subjected to a hydrodesulfurization treatment under a partial hydrogen pressure of 2.0 MPa in the presence of an industrial catalyst containing cobalt and molybdenum on an alumina support sold by the company PROCATALYSE under the reference HR 306C, the temperature is maintained at 330 ° C., the quantity of hydrogen introduced is equal to 200 liters per liter of charge and the hourly space speed is 2, 5 h -1 . The amount of hydrogen consumed is 0.25% by weight relative to the charge.
  • a product (P) containing 0.2% by weight of sulfur is recovered via line 2, 28% by weight of sulfur and non-sulfur aromatics and a content in n- and iso-alkanes of 40%.
  • This product has a color measured according to the ASTM D-1500 method less than 1 and a nitrogen content of 175 ppm in weight.
  • the cetane number of the product (P) is 56.
  • This product has an end point distillation of 400 ° C. It is sent to a steam stripping zone of water (SEP1) from which a product (P1) is recovered via line 3 having a final distillation point of 220 ° C and through line 4 a product (P2) having an initial distillation point of 220 ° C and an end distillation point 400 ° C.
  • SEP1 steam stripping zone of water
  • This zone is an extraction column comprising a padding formed of Pall rings with an overall efficiency appreciably equal to three theoretical stages. The extraction is carried out against the current, under atmospheric pressure and at a temperature of 70 ° C.
  • a raffinate (R1) which is sent via line 6 to the steam stripping zone (D1) in which the furfural which is recovered by the line 8 for possible recycling to the extraction zone and in tail a raffinate (Q1) containing less than 5 ppm of furfural for example, having a sulfur content of 0.04% by weight, a cetane number of 67, a content by weight of aromatic sulfur and non-sulfur compounds of 12%, a n- and iso-alkane content of 49%, a nitrogen content of 40 ppm and a Saybolt color of 30 and which can be introduced into the tank (pool) diesel.
  • This product Q2 can be sent via lines 11 and 11b to a hydrodesulfurization zone (HDS3) distinct from that into which the initial charge has been introduced.
  • This hydrodesulfurization is carried out in the presence of the HR 306C catalyst, under a partial hydrogen pressure of 2.5 MPa, at a temperature of 330 ° C. with a recycling of hydrogen of 200 liters per liter of charge and an hourly space velocity of 2.5 h -1 .
  • a product is obtained having a sulfur content of 0.2% by weight. Its other characteristics are practically unchanged.
  • This product can be mixed with domestic fuel, that is to say introduced into what those skilled in the art call the domestic fuel pool.
  • the charge used in this example is the same as that used in Example 1.
  • This charge is introduced via line 1 into a hydrodesulfurization zone in which it is subjected to a hydrodesulfurization treatment under a partial hydrogen pressure of 2.5 MPa in the presence of an industrial catalyst containing cobalt and molybdenum on an alumina support sold by the company PROCATALYSE under the reference HR 306C, the temperature is maintained at 330 ° C, the quantity of hydrogen is equal to 200 liters per liter of charge and the hourly space speed is 1 h - 1 . The amount of hydrogen consumed is 0.4% by weight relative to the charge.
  • This product has a color measured according to the ASTM D-1500 method less than 1 and a nitrogen content of 130 ppm by weight.
  • the cetane number of the product (P) is 57.
  • This product has a final distillation point of 400 ° C. He is sent to an area of steam steam stripping (SEP1) from which it is recovered by line 3 a product (P1) having a final distillation point of 220 ° C and by the line 4 a product (P2) having an initial distillation point of 220 ° C and a 400 ° C final distillation point.
  • SEP1 steam steam stripping
  • This area is an extraction column comprising a packing formed by Pall rings with an efficiency roughly equivalent to three theoretical stages. The extraction is carried out against the current, at atmospheric pressure and at temperature of 70 ° C.
  • raffinate (R1) which we send by line 6 in the steam stripping zone (D1) in which we separate at the head the furfural which is recovered by line 8 with a view to its recycling possible at the extraction zone and at the back a raffinate (Q1) containing practically more furfural, having a sulfur content of 0.01% by weight, a cetane number of 69, a content by weight of compounds aromatic sulfur and non-sulfur of 10%, a content of n- and iso-alkanes 50% by weight, a nitrogen content of 20 ppm and a Saybolt color of 30.
  • This raffinate is sent by line 9 to the diesel pool.
  • This product Q2 can be sent via lines 11 and 11a to the fuel pool domesticated.
  • the charge used in this example is the same as that used in Example 1.
  • This charge is introduced via line 1 into a hydrodesulfurization zone in which it is subjected to a hydrodesulfurization treatment under a partial hydrogen pressure of 2.5 MPa in the presence of an industrial catalyst containing cobalt and molybdenum on an alumina support sold by the company PROCATALYSE under the reference HR 306C, the temperature is maintained at 330 ° C, the quantity of hydrogen introduced is equal to 200 liters per liter of charge and the hourly space speed is 1 h -1 . The amount of hydrogen consumed is 0.4% by weight relative to the charge.
  • This product has a color measured by ASTM D-1500 less than 1 and a nitrogen content of 130 ppm by weight.
  • the cetane number of the product (P) is 57.
  • This product has a final distillation point of 400 ° C.
  • the product P is steam stripped to remove light fractions ( ⁇ 150 ° C) and hydrogen sulfide formed in the hydrodesulfurization reactor (less than 2% of the initial charge). It is then sent to a distillation zone at from which we recover by line 3 a product (P1) having a point final distillation of 300 ° C and through line 4 a product (P2) having a point initial distillation of 300 ° C.
  • the product (P2) after being cooled to 70 ° C, is sent to an extraction zone (EXT.) by line 4 in which we also introduces by line 5 an amount of furfural equal in volume the quantity of product (P2) introduced into this zone.
  • This area is a extraction column comprising a packing formed by Pall rings with an efficiency roughly equivalent to three theoretical stages.
  • the extraction is carried out against the current, at atmospheric pressure and at temperature of 70 ° C.
  • a raffinate (R1) which we send by line 6 in the distillation zone D1 in which the head is separated furfural which is recovered by line 8 for recycling possible at the extraction zone and at the tail, by line 9, a raffinate (Q1) does not containing practically more furfural.
  • At least part of this product (Q1) is mixed with at least part of the product (P1) free of its light fraction and a fraction (F) having a content of sulfur of 0.01% by weight, a cetane number of 62, a content by weight of 15% sulfur and non-sulfur aromatic compounds, its content of n- and iso-alkanes is 49% by weight, a nitrogen content of 30 ppm and a color Saybolt of 20.
  • This fraction (F) is mixed with the diesel pool.
  • This product Q2 can be treated as described above in Example 1.
  • the charge used in this example is the same as that used in Example 1. It is introduced via line 100 into a distillation zone from which a fraction (F1) having a point of recovery is recovered via line 110. initial boiling point of 150 ° C and a final boiling point of 300 ° C. This fraction is introduced via line 110 into a hydrodesulfurization zone in which it is subjected to a hydrodesulfurization treatment under a partial hydrogen pressure of 2.0 MPa in the presence of an industrial catalyst containing cobalt and molybdenum on an alumina support sold by the company PROCATALYSE under the reference HR 306C, the temperature is maintained at 330 ° C, the quantity of hydrogen introduced is equal to 150 liters per liter of charge and the hourly space speed is 4 h -1 .
  • a product (P ') containing 0.005% by weight of sulfur, 20% by weight of sulfur and non-sulfur aromatic compounds is recovered via line 120.
  • This product has a color measured according to the ASTM D-1500 method less than 1 and a nitrogen content of 20 ppm by weight.
  • the cetane number of the product (P ') is 57.
  • This product has a final distillation point of 300 ° C. It is sent to a stripping zone with water vapor (SEP2) from which a product (P10) is recovered by line 130 having an end point of distillation of 150 ° C. and by product 140 a product ( P20) having an initial distillation point of 150 ° C and a final distillation point of 300 ° C.
  • This product (P20) is sent by line 140 and line 149 to the engine fuel pool.
  • a fraction (F2) is recovered via line 1 having an initial boiling point of 300 ° C and a final boiling point of 400 ° C. Its aromatic hydrocarbon content is 37% by weight and its n- and iso-alkane content is 34% by weight.
  • This charge is introduced via line 1 into a hydrodesulfurization zone in which it is subjected to a hydrodesulfurization treatment under a partial hydrogen pressure of 3.0 MPa in the presence of an industrial catalyst containing cobalt and molybdenum on an alumina support sold by the company PROCATALYSE under the reference HR 316C, the temperature is maintained at 350 ° C., the quantity of hydrogen introduced is equal to 200 liters per liter of charge and the hourly space speed is 1 hour - 1 . The amount of hydrogen consumed is 0.45% compared to the load.
  • This product has a color measured according to the ASTM D-1500 method less than 2 and a nitrogen content of 300 ppm in weight.
  • the cetane number of the product (P) is 56.
  • This product has an end point distillation of 400 ° C. It is sent to a steam stripping zone of water (SEP1) from which a product (P1) is recovered via line 3 having a final distillation point of 300 ° C and through line 4 a product (P2) having an initial distillation point of 300 ° C and an end distillation point 400 ° C.
  • SEP1 steam stripping zone of water
  • This product after being cooled to 70 ° C, (P2) is sent to an extraction zone (EXT.) by line 4 into which we introduce also by line 5 an amount of furfural equal in volume to the quantity of product (P2) introduced into this zone.
  • This area is a column extraction comprising a packing formed of Pall rings of a efficiency substantially equivalent to three theoretical stages. extraction is carried out against the current, at atmospheric pressure and at temperature 70 ° C.
  • raffinate (R1) which we send via line 6 in the steam stripping zone D1 in which the furfural is separated at the head which is recovered by line 8 for possible recycling to the area extraction and at the end a raffinate (Q1) containing practically no more furfural, having a sulfur content of 0.04% by weight, a cetane number 67, a content by weight of sulfur and non-sulfur aromatics of 20%, an n- and iso-alkane content of 48% by weight, a nitrogen content of 30 ppm and a Saybolt color of 20.
  • the product (Q1) is sent by lines 9, 9b, and 149 to the fuel pool engine.
  • the mixture of P20 and Q1 is a product with a cetane number of 61, a content by weight of sulfur and non-sulfur aromatic compounds of 23%, a sulfur content of 0.02% by weight, a nitrogen content of 30 ppm and a Saybolt color of 25.
  • This mixture can also be mixed, at least in part, with a part at less of product P1, once stripped.
  • a charge of direct distillation diesel fuel with an initial distillation point of 150 ° C. and a final distillation point of 400 ° C. containing 35% by weight of aromatics and sulfur compounds and 10% of di- and polyaromatics is treated according to the Example 1 under hydrotreatment conditions defined below.
  • Hydrogen partial pressure (MPa) Product P Aromatics + sulfur compounds% by weight
  • Product P Di- and polyaromatics% by weight Cetane gain after extraction between products Q 1 and P (at isorientation) 3.0 34 7 + 12 5.0 32 4 + 10 7.0 (comparison) 23 1 + 6
  • the feed used in this example is a diesel cut mixture of direct distillation and diesel cut from catalytic cracking, LCO type.
  • the direct distillation diesel cut has a density at 15 ° C of 857, an index of refraction at 60 ° C. of 1.4617, a cetane number of 55, a total content of aromatic, sulfur and non-sulfur compounds, 35.4% by weight, one content in n- and iso-alkanes and naphthenes of 64.6% by weight, a sulfur content 1.33% by weight and a nitrogen content expressed by weight of nitrogen of 124 ppm.
  • the LCO diesel cutter has a density at 15 ° C of 944.1 a refractive index at 60 ° C 1.5245, cetane number 23, total content of compounds aromatic, sulfur and non-sulfur of 67.4% by weight, a content of n- and iso-alkanes and naphthenes of 32.6% by weight, a sulfur content of 3.13% by weight and a nitrogen content expressed by weight of nitrogen of 930 ppm.
  • load C 1 the load containing 80% of diesel fraction for direct distillation and 20% of LCO cut
  • load C 2 the load containing 50% of diesel fraction for direct distillation and 50% of LCO cut.
  • the cuts C 1 and C 2 have an initial distillation point of 200 ° C and a final distillation point of 400 ° C.
  • the feed C 1 is introduced via line 1 into a hydrodesulfurization zone in which it is subjected to a hydrodesulfurization treatment under a partial pressure of hydrogen of 2.0 MPa in the presence of an industrial catalyst containing cobalt and molybdenum on an alumina support sold by the company PROCATALYSE under the reference HR 306C, the temperature is maintained at 330 ° C., the quantity of hydrogen introduced is equal to 200 liters of charge and the hourly space speed is 2, 5 h -1 . The amount of hydrogen consumed is 0.25% by weight relative to the charge.
  • a product (P ') with a density at 15 ° C of 862.2 is recovered via line 2 and containing 0.051% sulfur, 31% by weight of sulfur aromatic compounds and non-sulfur, 61% by weight of n- and iso-alkanes and 285 ppm of nitrogen.
  • the cetane number of the product (P ') is 53 and its final point of distillation is 400 ° C. It is sent to a steam stripping zone (SEP1) at from which we recover by line 3 a product (P'1) having a point final distillation of 230 ° C, and by line 4 a product (P'2) having a point initial distillation of 230 ° C and a final distillation point of 400 ° C.
  • SEP1 steam stripping zone
  • P'2 having a point initial distillation of 230 ° C and a final distillation point of 400 ° C.
  • This product (P'2) after cooling to 70 ° C, that is to say at the temperature of the extraction zone is sent to an extraction zone (EXT.) by line 4 in which we also introduce through line 5 a quantity of furfural equal in volume to the quantity of product (P'2) introduced into this zone.
  • This zone is an extraction column comprising a formed packing of Pall rings with an overall efficiency substantially equal to three stages theoretical. Extraction is carried out against the current, under pressure atmospheric and at a temperature of 70 ° C.
  • a raffinate (R'1) that it is sent via line 6 to the steam stripping zone (D1) in which separates at the head the furfural which is recovered by line 8 in view of its possible recycling to the extraction area and at the end a raffinate (Q'1) containing less than 5 ppm of furfural for example, having a content in sulfur of 0.02% by weight, a cetane number of 67.3, a content by weight of sulfur-containing and non-sulfur-containing aromatic compounds of 19.1, a content of n- and iso-alkanes and naphthenes of 80.9% by weight, a nitrogen content of 54 ppm and a density at 15 ° C of 826.5 and which can be introduced into the tank (pool) diesel.
  • the load C 2 undergoes the same treatment as the load C1.
  • Line 2 is used to recover a product (P ") with a density at 15 ° C. of 888.1 and containing 0.067% by weight of sulfur, 44.6% by weight of aromatic sulfur and non-sulfur compounds, 47.4 % by weight of n- and iso-alkanes and naphthenes and 527 ppm of nitrogen.
  • the cetane number of the product (P ") is 43 and its final point of distillation is 400 ° C.
  • the product (P "1) recovered by line 3 has an end point of distillation of 230 ° C
  • the product (P "2) recovered by line 4 has an initial point of 230 ° C distillation and a 400 ° C final distillation point.
  • the raffinate (R "1) obtained after extraction is sent via line 6 to the steam stripping zone (D1) in the same way as the raffinate (R'1).
  • the raffinate (Q "1) obtained at the tail contains less than 5 ppm of furfural per example, 0.02% by weight of sulfur, a cetane number of 66.1, 17% by weight of sulfur and non-sulfur aromatic compounds, 83% by weight of n- and iso-alkanes and naphthenes, 150 ppm nitrogen and a density at 15 ° C of 883.9.
  • the extract (E''1) obtained after extraction is sent to the distillation zone (D2) followed by steam stripping.
  • the extract (Q "2) obtained at the tail does not contains practically more furfural, 0.12% by weight of sulfur, 87.9% by weight of sulfur and non-sulfur aromatics, 900 ppm nitrogen, 12.1% by weight of n- and iso-alkanes and naphthenes, and a density at 15 ° C of 985.3.
  • Products Q'2 and Q "2 can be sent via lines 11 and 11b to a hydrodesulfurization zone (HDS3) distinct from that into which the initial charge has been introduced.
  • This hydrodesulfurization is carried out in the presence of the HR 306C catalyst , under partial pressure of hydrogen of 2.5 MPa, at a temperature of 330 ° C. with a recycling of hydrogen of 200 liters per liter of charge and an hourly space speed of 2.5 h -1 .
  • This hydrodesulfurization produces a product having a sulfur content of 0.2% by weight. Its other characteristics are practically unchanged.
  • This product can be mixed with household fuel, that is to say introduced into what those skilled in the art call the domestic fuel pool.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

L'invention concerne un procédé d'obtention d'un produit pétrolier pouvant éventuellement servir à la formulation d'un carburant pour moteur à combustion interne et le produit obtenu par le procédé. Les gazoles que l'on trouve actuellement sur le marché, soit sous forme de carburants pour moteurs à combustion interne, soit sous forme de combustible, sont le plus souvent des produits issus du raffinage qui contiennent du soufre en une quantité (exprimée en poids de soufre) d'environ 0,3 %. Ils sont habituellement obtenus à la suite d'un traitement d'hydrodésulfuration à partir d'une charge pouvant provenir de la distillation directe d'un pétrole brut ou d'un traitement particulier d'un pétrole brut (par exemple une pyrolyse ou une distillation suivie d'une pyrolyse de la fraction récupérée lors de la distillation, ou un craquage thermique ou catalytique) contenant généralement au moins 0,8 % en poids de soufre.
L'art antérieur est illustré par le brevet US 5 059 303 qui décrit un procédé pour stabiliser des fractions hydrocarbonées (syncrude oils) très sensibles aux effets de la lumière, de la chaleur et de l'oxygène par exemple. Ces hydrocarbures sont généralement des huiles de schistes dont la principale caractéristique, qui les rend inacceptables en tant que charges de procédés de traitement conventionnels, est leur haute teneur en composés azotés, particulièrement basiques (teneur en azote comprise entre 1 et 3% au moins). Ces fractions hydrocarbonées particulières doivent donc être prétraitées avant leur utilisation, dans des conditions sévères d'hydrotraitement.
Dans un certain nombre de pays industriels, des normes de teneur en soufre et de cétane sont en place ou vont être mises en place dans un très proche avenir. Ces normes sont de plus en plus sévères particulièrement pour les gazoles destinés à être employés comme carburant pour les moteurs. C'est ainsi qu'en France, en particulier dès 1995, la teneur en soufre de ces gazoles devra être au plus égale à 0,05 % en poids (500 ppm) alors que les gazoles conformes aux normes en vigueur ont une teneur en soufre pouvant atteindre 0,3 %.
De même les gazoles employés en France comme carburant pour les moteurs à combustion interne doivent actuellement avoir un indice de cétane au moins égal à 48 et les gazoles employés comme combustible un indice de cétane au moins égal à 40. On peut s'attendre dans un proche avenir à une sévérisation de ces normes et en particulier de celles concernant les gazoles utilisés comme carburant dans les moteurs.
Par ailleurs, étant donné la diversité des charges à traiter (bruts de différentes origines, de viscoréduction, de cokage, d'hydroconversion, de distillation ou de craquage catalytique) pour produire du gazole. il est souhaitable de pouvoir proposer au raffineur un procédé flexible, susceptible d'adapter les produits formés à la demande et de répondre aux futures spécifications aussi bien au niveau du soufre, de l'azote, de l'indice de cétane, de la couleur que de la teneur en aromatiques.
Enfin tous les procédés existants tels que l'hydrodésaromatisation ou l'hydrocraquage qui permettent d'obtenir des produits pétroliers à basse teneur en soufre et à indice de cétane relativement élevés consomment des quantités d'hydrogène importantes. Par exemple, le procédé d'hydrodésaromatisation d'une charge de distillation directe dont les intervalles de distillation (ASTM D86) sont 180°C < T 5% < 300°C, 260°C < T 50% < 350 , 350°C < T 95% < 460°C, consomme de 0,6 à 1,1 % d'hydrogène par rapport à la charge tandis que le procédé d'hydrocraquage nécessite plus de 2% d'hydrogène par rapport à sa charge. Or, la charge d'hydrogène de la raffinerie qui est généralement l'unité de reformage catalytique tendra à devenir insuffisante dans le contexte actuel de sévérisation des normes gazoles qui ont pour conséquence une augmentation des hydrotraitements.
De plus, ces procédés existants conduisent à l'obtention d'un produit pétrolier dont l'indice de cétane ne dépasse pas 63, ce dernier n'étant atteint qu'au prix d'une hydrogénation des hydrocarbures aromatiques de la charge, réaction qui est consommatrice d'hydrogène. (voir tableau).
Il est donc souhaitable de proposer au raffineur un procédé qui lui permette de produire un produit pétrolier répondant aux diverses normes qui entreront en application dans un avenir très proche et dès 1995, pour ce qui est de la teneur en soufre. Il est de même souhaitable de pouvoir produire un produit pétrolier ayant une odeur la moins prononcée possible.
La présente invention concerne donc un procédé de mise en oeuvre simple, consommant peu d'hydrogène. Ce procédé utilise les unités industrielles d'hydrotraitement (hydrodésulfuration notamment). Il permet d'améliorer les qualités du gazole produit et de respecter les futures normes et en particulier celle qui concerne la teneur en soufre. Le procédé de l'invention permet en outre, d'améliorer l'indice de cétane moteur du gazole, de réduire sa teneur en composés aromatiques ne contenant pas d'hétéroatome de soufre dans leur molécule, de réduire sa teneur en composés azotés, d'améliorer sa couleur et son odeur et enfin de diminuer la formation de particules solides lors de son utilisation dans un moteur à combustion interne. La présente invention propose une solution au problème spécifique d'obtention, en une quantité la plus importante possible par rapport au produit de départ, d'un produit pétrolier entrant dans la composition d'un gazole de qualité moteur ou gazole moteur à partir d'une coupe hydrocarbonée particulière ayant des caractéristiques qui la rende difficile à valoriser sous forme de gazole moteur.
L'invention concerne, en outre, le procédé d'obtention d'un produit pétrolier entrant dans la composition d'un fuel domestique.
Plus particulièrement, l'invention concerne un procédé d'obtention d'une base entrant dans la composition d'un carburant pour moteur à combustion interne à allumage par compression présentant notamment un indice de cétane et une teneur en soufre améliorés, à partir d'une charge hydrocarbonée ayant un point initial d'ébullition d'au moins 150°C et de point final d'ébullition d'au plus 500 °C, contenant 0,05 % à 5 % en poids de soufre, 10 à 60 % en poids de net iso-alcanes, 10 % à 85 % en poids d'hydrocarbures aromatiques au moins en partie sous forme de composés polyaromatiques soufrés ou non, ayant un indice de cétane de 20 à 60 et ayant une teneur en azote de 50 à 5 000 ppm en poids, ledit procédé étant caractérisé en ce qu'il comprend les étapes suivantes :
  • une étape a) d'hydrotraitement dans laquelle on effectue l'hydrotraitement de ladite charge dans des conditions permettant d'obtenir un produit (P) contenant une quantité de soufre de 2 à 50 fois moindre que celle de la charge initiale, ledit hydrotraitement étant effectué sous une pression partielle d'hydrogène en sortie de réacteur de 0,5 MPa (mégapascal) à 6 MPa, telle que le taux de désaromatisation de la charge est au plus égale à 30%,
  • une étape b) de séparation du produit (P) en un produit (P2) ayant un point d'ébullition initial supérieur à la température d'ébullition du solvant d'extraction de l'étape suivante c) et de préférence au moins supérieur de 20°C, et en un produit (P1) ayant un point d'ébullition final inférieur au point d'ébullition initial du produit P2,
  • une étape c) d'extraction liquide/liquide dans laquelle on met en contact, à une température d'extraction au plus égale à 140°C, dans des conditions d'extraction des composés polyaromatiques, le produit (P2) obtenu à l'étape b) avec un solvant ou un mélange de solvant (S1) permettant d'extraire au moins en partie les composé polyaromatiques qu'il contient, ledit solvant ayant un point initial d'ébullition inférieur au point initial d'ébullition du produit (P2) obtenu à l'étape b), et au cours de laquelle on récupère un extrait (E1) enrichi en composés polyaromatiques, soufrés ou non et un raffinat (R1) et,
  • une étape d) de récupération du solvant (S1) employé à l'étape c) à partir du raffinat (R1) obtenu à l'étape c) dans laquelle on récupère un produit enrichi en solvant (S1) et un produit (Q1) appauvri en solvant (S1) ayant un indice de cétane amélioré et contenant moins de 500 ppm en poids de soufre.
Par souci de simplicité, on utilisera dans la suite de la description, le terme d'hydrodésulfuration (HDS) à la place d'hydrotraitement.
Par composés polyaromatiques, on entend des composés ayant au moins deux cycles aromatiques, soufrés ou non.
Les températures de points d'ébullition initial et final sont des points de coupe TBP.
La charge hydrocarbonée que l'on traite selon le procédé de l'invention est le plus souvent dénommée coupe gazole et elle a, de préférence, un point d'ébullition initial d'environ 150 °C et un point d'ébullition final d'environ 400 °C, sa teneur en soufre est habituellement supérieure à 0,1 % et le plus souvent supérieure à 0,5 % en poids, sa teneur en n- et iso-alcanes est d'environ 30 à 45 % en poids, sa teneur en composés aromatiques est habituellement d'environ 15 % à environ 65 % en poids. Cette charge est le plus souvent un gazole de distillation directe, un gazole de pyrolyse ou un mélange des deux. Cette charge peut être avantageusement mélangée à une coupe L.C.O. (light cycle oil) provenant d'une unité de craquage catalytique et préférentiellement dans un rapport LCO/gazole de 1:4 à 1:1. La couleur de cette charge mesurée selon la méthode ASTM D 1500 est habituellement supérieure ou égale à 2. L'indice de cétane selon la norme ISO 5165 de cette charge est le plus souvent inférieur à environ 60 et il est par exemple d'environ 50 à environ 55. La teneur en azote de cette charge est très souvent d'environ 100 à environ 1000 ppm exprimée en poids d'azote par rapport au poids de la charge.
Le produit Q1 obtenu est un produit particulièrement intéressant compte-tenu de l'ensemble de ses caractéristiques (point coupe, cétane, teneur en paraffine et teneur en soufre) pour obtenir par formulation avec d'autres coupes gazoles des carburants de qualité.
Le produit (Q1) obtenu par le procédé de la présente invention a habituellement une teneur en azote exprimée en poids d'azote 2 fois moindre que celle de la charge initiale et souvent 4 à 5 fois moindre. Ce produit (Q1) a le plus souvent une couleur mesurée selon la norme ASTM 1500 inférieure à 1 et l'indice de cétane de ce produit est en général supérieur d'au moins 3 points et souvent d'au moins 5 points à l'indice de cétane de la charge initiale (par exemple de 3 à 14 points). Sa teneur en soufre par rapport à celle de la charge est habituellement inférieure ou égale à 5% en poids. Sa teneur en net iso-alcanes augmente en général d'au moins 4 points, avantageusement de 5 à 20 points et le plus souvent de 6 à 11 points, par rapport à celle de la charge. La teneur en composés aromatiques ne contenant pas d'atome de soufre dans leur molécule dans ce produit (Q1) est habituellement réduite d'au moins 10 % en poids par rapport à celle de la charge initiale et souvent d'au moins 30 % en poids. L'odeur de ce produit est moins forte que celle de la charge initiale.
L'invention concerne avantageusement un produit pétrolier caractérisé en ce que la coupe de distillation correspond à 95% poids distillés entre 320° C et 460° C, son indice de cétane est supérieur à 60, sa teneur en n- et iso-alcanes est au moins égale à 48 % poids, et sa teneur en soufre inférieure ou égale à 500 ppm (poids).
Selon la présente invention, l'hydrodésulfuration est avantageusement effectuée dans une unité d'hydrodésulfuration sous des conditions douces permettant de désulfurer les molécules soufrées en hydrogénant le moins possible. Cette démarche n'est pas évidente pour l'homme du métier des années 1990 qui est plutôt conduit à la solution de sévériser les conditions d'un hydrotraitement pour simultanément diminuer la teneur en soufre et augmenter le cétane des charges. Dans ces conditions, la température est de 320 à 370°C, la vitesse spatiale horaire est de 1 à 5, la pression de 1 à 5 MPa et le rapport volumique H2 sur charge de 50 à 350 m3/m3 mesurée aux conditions normales. Le taux de désaromatisation de la charge est alors au plus égal à 15% environ. On peut ainsi distinguer deux cas particulièrement avantageux de mise en oeuvre de cette hydrodésulfuration permettant d'obtenir une excellente charge pour l'étape d'extraction suivante.
Selon la première possibilité qui est préférée, on opère en présence d'un catalyseur sélectif de l'hydrodésulfuration des molécules soufrées par rapport à l'hydrogénation des aromatiques, adapté à limiter l'hydrogénation, par exemple l'un de ceux commercialisés par la société PROCATALYSE, sous une pression partielle d'hydrogène en sortie de réacteur d'hydrodésulfuration avantageusement comprise entre environ 1,0 MPa et environ 3,0 MPa et on récupère un produit (P) contenant une quantité de soufre de 2 à 30 fois moindre soit entre 0,1 et 0,3% poids en fonction de la charge, par exemple, et le plus souvent de 3 à 10 fois moindre que celle de la charge initiale. Le taux de désaromatisation de la charge est alors sensiblement inférieur à 10%. Les autres conditions de mise en oeuvre de cette étape d'hydrodésulfuration sont des conditions classiques d'une hydrodésulfuration qualifiée par les hommes de métier d'hydrodésulfuration simple et douce.
Selon la deuxième possibilité, on opère en présence d'un catalyseur classique adapté à limiter l'hydrogénation, par exemple l'un de ceux commercialisés par la société PROCATALYSE, sous une pression partielle d'hydrogène en sortie de réacteur d'hydrodésulfuration avantageusement comprise entre environ 2 MPa et environ 5 MPa et on récupère un produit (P) contenant une quantité de soufre de 5 à 60 fois moindre, soit inférieure à 0,1% poids, par exemple entre 0,02 et 0,05%, et le plus souvent de 10 à 40 fois moindre que celle de la charge initiale. Par ailleurs, le taux de désaromatisation de la charge est au plus égal à 15% environ. Les autres conditions de mise en oeuvre de cette étape d'hydrodésulfuration sont des conditions classiques d'une hydrodésulfuration plus sévère. Cette hydrodésulfuration est effectuée en utilisant un volume de catalyseur plus important que dans le cas de l'hydrodésulfuration simple, par exemple un volume de catalyseur 2 fois plus important, ainsi qu'une pression d'hydrogène plus élevée, calculée pour effectuer une hydrodésulfuration plus poussée.
Une description de plusieurs catalyseurs commerciaux d'hydrodésulfuration et des conditions industrielles de mise en oeuvre des hydrodésulfurations peut par exemple être trouvée dans le volume 1 du livre de P. WUITHIER, édité par les éditions TECHNIP sous le titre Le PÉTROLE, RAFFINAGE ET GÉNIE CHIMIQUE, pages 816 à 831. On peut choisir avantageusement par exemple un catalyseur contenant du molybdène et du cobalt, connu pour limiter l'hydrogénation.
L'étape de séparation, bien connue de l'homme de l'art comprend en règle générale un strippage à la vapeur de l'effluent liquide total d'hydrotraitement, suivi ou non d'une étape de distillation complémentaire. Cette dernière étape est en général requise lorsqu'on veut envoyer à l'extraction une fraction P2 dont le point d'ébullition initial est supérieur à celui de l'effluent d'hydrotraitement une fois strippé. Les conditions opératoires sont en général : pression réduite inférieure à 1 bar, avantageusement 10 à 100 mbar, de préférence 20 à 50 mbar (1 bar = 105Pa) et température comprise entre 80 et 250°C.
L'étape d'extraction liquide/liquide est une étape réalisée dans des conditions classiques. Cette extraction pourra par exemple être effectuée à contre-courant dans un dispositif classique par exemple une colonne à remplissage, à plateaux ou à agitation mécanique (R.D.C. : rotating dise contactor) ayant en général une efficacité de 3 à 20 étages théoriques et de préférence de 5 à 10 étages théoriques, à une température généralement comprise entre 0 °C et 140 °C, avantageusement entre 30 °C et 80 °C et sous une pression permettant d'opérer en phase liquide et donc comprise entre 0,1 et 1 MPa, de préférence entre 0,1 et 0,6 MPa. Le rapport en volume du solvant (S1) au volume du produit (P2), obtenu à l'étape b), est de préférence d'environ 0,2 : 1 à environ 5:1, avantageusement 0,5 : 1 à 2 : 1 et le plus souvent d'environ 1 : 1. Le solvant est de préférence choisi dans le groupe des solvants permettant d'extraire également au moins une partie des composés aromatiques, ne contenant pas d'atome de soufre dans leur molécule, présents dans le produit (P2) obtenu à l'étape b). Les conditions d'extraction sont de préférence choisies de manière à obtenir un raffinat (R1) contenant en poids au plus 90% et de préférence au plus 70% du poids total des composés aromatiques, ne contenant pas d'atome de soufre dans leur molécule, présents dans le produit (P2) obtenu à l'étape b). L'extrait (E1) dans ces conditions contiendra au moins 10 % et souvent au moins 30 % en poids du poids total des composés aromatiques, ne contenant pas d'atome de soufre dans leur molécule, présents dans le produit (P2) obtenu à l'étape b), ainsi que de préférence au moins 30 % et souvent au moins 50 % et fréquemment au moins 80 % en poids du poids total des composés soufrés, le plus souvent dibenzothiophéniques et naphtobenzothiophéniques contenus initialement dans le produit (P2). Le produit (Q1) ainsi obtenu contient habituellement de 2 à 10 fois moins de soufre que le produit (P2) issu de l'étape b) et le plus souvent de 4 à 10 fois moins .
Le solvant d'extraction est le plus souvent un solvant unique, mais on peut également employer des mélanges de solvant. Ce solvant contient généralement moins de 20 % et souvent moins de 10 % en poids d'eau. Ce solvant peut être un solvant anhydre. Il est souvent choisi dans le groupe formé par le méthanol, l'acétonitrile, la monométhylformamide, la diméthylformamide, la diméthylacétamide, le furfural, la N-méthylpyrrolidone et le diméthylsulfoxyde. On emploie très souvent un solvant ne contenant pas d'azote et le plus souvent un solvant non azoté oxygéné. Le solvant préféré est le furfural.
On peut également ajouter au solvant d'extraction au moins un cosolvant qui peut être, un alcool de 1 à 6 atomes de carbone, par exemple un alcool linéaire ou ramifié, ou le furfuryl alcool.
Si la charge à traiter a un point d'ébullition final élevé et est particulièrement riche en composés azotés, surtout basiques, il peut être avantageux d'introduire avec le solvant d'extraction seul ou en mélange, une quantité mineure d'acides, notamment carboxyliques (moins de 1% poids par rapport au solvant par exemple). Parmi ceux-ci, on peut avantageusement citer les acides carboxyliques de 1 à 6 atomes de carbone et plus particulièrement, les acides ayant une température d'ébullition inférieure à 250°C, notamment l'acide formique, l'acide acétique, l'acide propionique, l'acide butanoïque, l'acide pentanoïque, l'acide maléïque, l'acide crotonique, l'acide isobutyrique, l'acide valérique, l'acide triméthylacétique, l'acide benzoïque, et l'acide 2-furoïque.
La récupération du solvant à partir du raffinat peut être faite par un strippage ou une distillation, de préférence par un strippage à la vapeur dont les conditions ont été décrites ci-avant.
Le raffinat (R1) obtenu à l'étape c) est ensuite envoyé à l'étape d) par exemple dans une zone de strippage à la vapeur dans laquelle il est séparé dans des conditions permettant de récupérer une fraction de tête enrichie, et de préférence fortement enrichie, en solvant (S1) et un produit de queue (Q1) de préférence fortement appauvri en solvant (S1). Le plus souvent, les conditions de cette séparation sont choisies de manière à obtenir une fraction de tête contenant la quasi totalité du solvant, c'est-à-dire par exemple, plus de 95 % en poids de la quantité de solvant contenu dans le raffinat (R1) et introduit dans cette zone de strippage. On récupère ainsi, de préférence, au moins environ 99 % en poids de la quantité de solvant contenu dans le raffinat (R1).
De même dans une forme de réalisation particulière, l'extrait (E1) obtenu à l'étape c) est ensuite envoyé dans une zone de récupération du solvant (S1) employé à l'étape c) dans laquelle on récupère un produit enrichi en solvant (S1) et un produit (Q2) appauvri en solvant (S1). La séparation du solvant de l'extrait est réalisée en général par une distillation et/ou un strippage à la vapeur et de préférence par une distillation suivie d'un strippage à la vapeur dans des conditions énoncées ci-avant. Cet extrait est donc séparé dans des conditions permettant de récupérer une fraction de tête enrichie, et de préférence fortement enrichie, en solvant (S1) et un produit de queue (Q2) appauvri en solvant (S1). Le plus souvent les conditions de cette séparation sont choisies de manière à obtenir une fraction de tête contenant la quasi totalité du solvant c'est-à-dire par exemple plus de 95 % en poids de la quantité de solvant contenu dans l'extrait (E1) et introduit dans cette zone de séparation. On récupère ainsi de préférence au moins environ 99 % en poids de la quantité de solvant contenu dans l'extrait (E1).
Lorsqu'on opère dans l'étape a) dans des conditions d'hydrodésulfuration sensiblement plus sévères, c'est-à-dire en particulier en présence d'une très importante quantité de catalyseur, le produit (Q2) que l'on obtient par distillation de l'extrait (E1) aura une teneur en soufre le plus souvent inférieure ou égale à environ 0,3 % en poids. Ce produit (Q2) sera bien entendu non utilisable comme carburant pour les moteurs, puisqu'il contient le plus souvent une quantité de soufre supérieure à la future norme ; par contre on pourra vraisemblablement l'utiliser comme combustible.
Dans une forme particulièrement avantageuse de réalisation de l'invention, le ou les produits de tête, obtenus par séparation du raffinat (R1) et éventuellement de l'extrait (E1), enrichis en solvant, sont recyclés à l'étape c) d'extraction liquide/liquide.
Selon une forme particulière de mise en oeuvre du procédé selon l'invention, au moins une partie du produit (Q2) obtenu à partir de l'extrait (E1) après séparation du solvant (S1) peut être envoyée dans une zone d'hydrodésulfuration distincte de la zone d'hydrodésulfuration de la charge initiale ou même être renvoyée dans la zone d'hydrodésulfuration de l'étape a). Dans cette zone, distincte de la zone d'hydrodésulfuration de l'étape a), la partie du produit (Q2) est soumise à une hydrodésulfuration dans des conditions permettant d'obtenir un produit (P3) ayant une teneur en soufre inférieure ou égale à 0,3 % en poids et de préférence inférieure ou égale à 0,2 % en poids.
Selon une variante du procédé selon la présente invention, la charge hydrocarbonée, ayant un point initial d'ébullition d'au moins 150 °C et un point final d'ébullition d'au plus 500 °C, est envoyée dans une zone de distillation dans laquelle on sépare en tête une fraction (F1) ayant un point final d'ébullition d'au moins 250 °C et en queue une fraction (F2) ayant un point initial d'ébullition d'au moins 250 °C. Selon la présente variante, la fraction (F2) est traitée selon le procédé décrit ci-devant pour la charge hydrocarbonée 150-500 °C étapes a) à d). La fraction (F1) est envoyée dans une zone d'hydrodésulfuration distincte de celle de l'étape a) dans laquelle elle est hydrodésulfurée dans des conditions classiques et par exemple dans les conditions simples décrites ci-devant, puis le produit (P') hydrodésulfuré obtenu est envoyé dans une zone de séparation, par exemple par strippage ou par distillation, du produit (P') en une fraction (P10) ayant un point d'ébullition final inférieur à 150 °C, et en une fraction (P20) ayant un point d'ébullition initial supérieur au point d'ébullition final de la fraction (P10). Ce produit (P20) peut, au moins en partie être mélangé au produit (Q1) obtenu à partir de la fraction (F2) pour former un produit (Q10) ayant les qualités requises comme carburant moteur. La fraction (P10) est essentiellement formée de composés résultant de réactions secondaires au cours de l'hydrodésulfuration. Cette fraction (P10) représente en général moins de 2 % en volume par rapport au volume total de la fraction (F1).
Les principaux avantages de l'invention sont les suivants : on obtient dans le raffinat (tableau) une teneur en n- et iso-alcanes plus élevée que selon les procédés d'hydrocraquage ou d'hydrodésaromatisation, un indice de cétane plus élevé, en dépit d'une teneur en hydrocarbures aromatiques supérieure à 10%. Par ailleurs, la consommation en hydrogène dans l'hydrotraitement est moindre. Elle peut être réduite par exemple à 0,15% poids par rapport à la charge, lorsque l'hydrogénation est limitée au maximum.
hydrocraquage hydrodésaromatisation HDS et extraction
densité 0,815-0,825 0,820-0,850 0,815-0,840
cétane 53-63 45-60 62-71
n- et iso-alcanes 42-47 35-45 49-56
Naphtènes 49-55 25-55 30-41
Aromatiques 3-7 10.20 10-20
Consommation en hydrogène % >2 0,6-1,1 <0,5
La comparaison des profils de chromatogrammes des composés soufrés (détecteur spécifique de chromatographie en phase gazeuse : Sievers) montre que pour le schéma HDS et extraction (raffinat) les composés soufrés recueillis dans le raffinat sont sous forme essentiellement benzothiophénique, les composés dibenzothiophéniques et naphtobenzothiophéniques se retrouvant essentiellement dans l'extrait alors que pour les schémas conventionnels, que ce soit par hydrodésulfuration profonde ou hydrodésaromatisation les composés soufrés restant dans le produit pétrolier sont essentiellement sous forme dibenzothiophénique et naphtobenzothiophénique.
Les figures 1 et 2 représentent schématiquement les principales variantes pour la mise en oeuvre du procédé selon la présente invention. Sur ces figures les organes similaires sont désignés par les mêmes chiffres et lettres de référence.
Selon la figure 1 la charge hydrocarbonée à traiter est envoyée par la ligne (1) dans la zone d'hydrodésulfuration (HDS1) à la sortie de laquelle on récupère par la ligne 2 un produit (P) que l'on envoie dans une zone de séparation (SEP. 1) à partir de laquelle on récupère par la ligne 3 un produit (P1) et par la ligne 4 un produit (P2) dont le point initial d'ébullition est supérieur au point final d'ébullition du produit (P1). Ce produit (P2) est envoyé par la conduite 4 dans une zone d'extraction (EXT.) dans laquelle on introduit également un solvant (S1) d'extraction par la ligne 5 et à partir de laquelle on récupère un extrait (E1) par la ligne 7 et un raffinat (R1) par la ligne 6. Ce raffinat (R1) est envoyé par la ligne 6 dans une zone (D1) de récupération du solvant (S1) par la ligne 8 et d'un produit pétrolier (Q1) pouvant servir éventuellement de base dans la composition d'un gazole moteur de qualités améliorées, par la ligne 9. L'extrait (E1) est envoyé par la ligne 7 dans une zone (D2) de récupération du solvant (S1) par la ligne 10 et d'un produit (Q2) par la ligne 11. Ce produit (Q2) peut être, au moins en partie, récupéré par la ligne 11a lorsque la vanne V4 est ouverte, ou être, au moins en partie, envoyé par la ligne 11b lorsque la vanne V1 est ouverte soit dans une zone d'hydrodésulfuration (HDS3) non schématisée soit dans la zone d'hydrodésulfuration (HDS1). Lorsque ce produit (Q2) est récupéré par la ligne 11a il peut être valorisé comme combustible mais ne répondant pas aux futures normes sur les gazoles moteur il ne pourra pas être utilisé tel quel comme carburant.
Selon la figure 2, la charge hydrocarbonée à traiter est envoyée par la ligne (100) dans une zone (TOP) à partir de laquelle on récupère une fraction (F2) lourde de point d'ébullition initial supérieur à environ 250 °C qui est traitée comme la charge hydrocarbonée selon la description ci-devant faite en liaison avec la figure 1. A partir de la zone (D1) le produit (Q1) peut être. au moins en partie récupéré par la ligne 9 et la ligne 9a lorsque la vanne V2 est ouverte, ou être, au moins en partie envoyé par la ligne 9b dans la ligne 140 lorsque la vanne V3 est ouverte. Lorsqu'il est récupéré par la ligne 9a ce produit pétrolier forme partiellement une base entrant dans la composition d'un gazole moteur de qualités améliorées. A partir de la zone (TOP) on récupère par la ligne 110 une fraction (F1) légère de point d'ébullition final supérieur à environ 250 °C. Cette fraction (F1) est envoyée par la ligne 110 dans une zone d'hydrodésulfuration (HDS2) à la sortie de laquelle on récupère par la ligne 120 un produit (P') hydrodésulfuré que l'on envoie dans une zone de séparation (SEP. 2) à partir de laquelle on récupère par la ligne 130 un produit (P10) et par la ligne 140 un produit (P20) dont le point initial d'ébullition est supérieur au point final d'ébullition du produit (P10). Ce produit (P20) est éventuellement mélangé au produit (Q1) arrivant par la conduite 9b. Ce mélange ou le produit (P20) forme d'une base entrant dans la composition d'un gazole moteur de qualités améliorées qui est récupéré par la ligne 149.
Les exemples suivants illustrent l'invention sans en limiter la portée.
EXEMPLE 1
La charge utilisée dans cet exemple est une coupe gazole de distillation directe (straight-run) ayant un indice de cétane de 55, une teneur totale en composés aromatiques, soufrés et non soufrés, de 30 % en poids, une teneur en n et iso-alcanes de 39% en poids, une teneur en naphtènes de 31%, une teneur en soufre de 1,22 % en poids, une teneur en azote exprimée en poids d'azote de 255 ppm et une couleur mesurée selon la norme ASTM D 1500 égale à 2. Cette coupe gazole a un point initial de distillation de 150°C et un point final de distillation de 400 °C.
Cette charge est introduite par la conduite 1 dans une zone d'hydrodésulfuration dans laquelle elle est soumise à un traitement d'hydrodésulfuration sous une pression partielle d'hydrogène de 2,0 MPa en présence d'un catalyseur industriel contenant du cobalt et du molybdène sur un support d'alumine vendu par la société PROCATALYSE sous la référence HR 306C, la température est maintenue à 330 °C, la quantité d'hydrogène introduit est égale à 200 litres par litre de charge et la vitesse spatiale horaire est de 2,5 h-1. La quantité d'hydrogène consommé est de 0,25% poids par rapport à la charge.
On récupère par la ligne 2 un produit (P) contenant 0,2% en poids de soufre, 28 % en poids de composés aromatiques soufrés et non soufrés et une teneur en n- et iso-alcanes de 40%. Ce produit a une couleur mesurée selon la méthode ASTM D-1500 inférieure à 1 et une teneur en azote de 175 ppm en poids. L'indice de cétane du produit (P) est de 56. Ce produit a un point final de distillation de 400°C. Il est envoyé dans une zone de strippage à la vapeur d'eau (SEP1) à partir de laquelle on récupère par la ligne 3 un produit (P1) ayant un point final de distillation de 220°C et par la ligne 4 un produit (P2) ayant un point initial de distillation de 220 °C et un point final de distillation de 400°C. Ce produit (P2) après avoir refroidi à 70°C, c'est-à-dire à la température de la zone d'extraction, est envoyé dans une zone d'extraction (EXT.) par la ligne 4 dans laquelle on introduit également par la ligne 5 une quantité de furfural égale en volume à la quantité de produit (P2) introduite dans cette zone. Cette zone est une colonne d'extraction comportant un garnissage formé d'anneaux de Pall d'une efficacité globale sensiblement égale à trois étages théoriques. L'extraction s'effectue à contre-courant, sous pression atmosphérique et à la température de 70 °C. On obtient un raffinat (R1) que l'on envoie par la conduite 6 dans la zone de strippage à la vapeur (D1) dans laquelle on sépare en tête le furfural qui est récupéré par la conduite 8 en vue de son recyclage éventuel à la zone d'extraction et en queue un raffinat (Q1) contenant moins de 5 ppm de furfural par exemple, ayant une teneur en soufre de 0,04 % en poids, un indice de cétane de 67, une teneur en poids de composés aromatiques soufrés et non soufrés de 12 %, une teneur en n- et iso-alcanes de 49%, une teneur en azote de 40 ppm et une couleur Saybolt de 30 et qui peut être introduit dans le réservoir (pool) gazole. A partir de cette zone d'extraction on récupère également un extrait (E1) que l'on envoie dans une zone de distillation (D2) suivie d'une zone de strippage à la vapeur dans lesquelles on sépare en tête le furfural qui est récupéré par la conduite 10 en vue de son recyclage éventuel à la zone d'extraction et en queue un extrait (Q2) ne contenant pratiquement plus de furfural, ayant une teneur en soufre de 0,6 % en poids, un indice de cétane de 25, une teneur en poids de composés aromatiques soufrés et non soufrés de 77 % et une teneur en azote de 500 ppm.
Ce produit Q2 peut être envoyé par les conduites 11 et 11b dans une zone (HDS3) d'hydrodésulfuration distincte de celle dans laquelle on a introduit la charge initiale. Cette hydrodésulfuration est effectuée en présence du catalyseur HR 306C, sous une pression partielle d'hydrogène de 2,5 MPa, à une température de 330 °C avec un recyclage d'hydrogène de 200 litres par litre de charge et une vitesse spatiale horaire de 2,5 h-1. A la sortie de cette hydrodésulfuration on obtient un produit ayant une teneur en soufre de 0,2 % en poids. Ses autres caractéristiques sont pratiquement inchangées. Ce produit peut être mélangé au fuel domestique, c'est à dire introduit dans ce que les hommes du métier appellent le pool fuel domestique.
EXEMPLE 2
La charge utilisée dans cet exemple est la même que celle utilisée dans l'exemple 1.
Cette charge est introduite par la conduite 1 dans une zone d'hydrodésulfuration dans laquelle elle est soumise à un traitement d'hydrodésulfuration sous une pression partielle d'hydrogène de 2,5 MPa en présence d'un catalyseur industriel contenant du cobalt et du molybdène sur un support d'alumine vendu par la société PROCATALYSE sous la référence HR 306C, la température est maintenue à 330 °C, la quantité d'hydrogène est égale à 200 litres par litre de charge et la vitesse spatiale horaire est de 1 h-1. La quantité d'hydrogène consommé est de 0,4% poids par rapport à la charge.
On récupère par la ligne 2 un produit (P) contenant 0,05 % en poids de soufre, 27 % en poids de composés aromatiques soufrés et non soufrés et une teneur en n- et iso-alcanes de 40% en poids. Ce produit a une couleur mesurée selon la méthode ASTM D-1500 inférieure à 1 et une teneur en azote de 130 ppm en poids. L'indice de cétane du produit (P) est de 57. Ce produit a un point final de distillation de 400 °C. Il est envoyé dans une zone de strippage à la vapeur d'eau (SEP1) à partir de laquelle on récupère par la ligne 3 un produit (P1) ayant un point final de distillation de 220 °C et par la ligne 4 un produit (P2) ayant un point initial de distillation de 220 °C et un point final de distillation de 400 °C. Ce produit (P2) après avoir été refroidi à 70°C, est envoyé dans une zone d'extraction (EXT.) par la ligne 4 dans laquelle on introduit également par la ligne 5 une quantité de furfural égale en volume à la quantité de produit (P2), introduite dans cette zone. Cette zone est une colonne d'extraction comportant un garnissage formé d'anneaux de Pall d'une efficacité sensiblement équivalente à trois étages théoriques. L'extraction s'effectue à contre-courant, sous pression atmosphérique et à la température de 70 °C. On obtient un raffinat (R1) que l'on envoie par la conduite 6 dans la zone de strippage à la vapeur (D1) dans laquelle on sépare en tête le furfural qui est récupéré par la conduite 8 en vue de son recyclage éventuel à la zone d'extraction et en queue un raffinat (Q1) ne contenant pratiquement plus de furfural, ayant une teneur en soufre de 0,01 % en poids, un indice de cétane de 69, une teneur en poids de composés aromatiques soufrés et non soufrés de 10%, une teneur en n- et iso-alcanes de 50% en poids, une teneur en azote de 20 ppm et une couleur Saybolt de 30. Ce raffinat est envoyé par la ligne 9 vers le pool gazole. A partir de cette zone d'extraction on récupère également un extrait (E1) que l'on envoie dans une zone de distillation suivie d'une zone de strippage à la vapeur D2 dans lesquelles on sépare en tête le furfural qui est récupéré par la conduite 10 en vue de son recyclage éventuel à la zone d'extraction et en queue un extrait (Q2) ne contenant pratiquement plus de furfural, ayant une teneur en soufre de 0.15 % en poids, un indice de cétane de 26, une teneur en poids de composés aromatiques soufrés et non soufrés de 77 % et une teneur en azote de 500 ppm.
Ce produit Q2 peut être envoyé par les conduites 11 et 11a au pool fuel domestique.
EXEMPLE 3
La charge utilisée dans cet exemple est la même que celle utilisée dans l'exemple 1.
Cette charge est introduite par la conduite 1 dans une zone d'hydrodésulfuration dans laquelle elle est soumise à un traitement d'hydrodésulfuration sous une pression partielle d'hydrogène de 2,5 MPa en présence d'un catalyseur industriel contenant du cobalt et du molybdène sur un support d'alumine vendu par la société PROCATALYSE sous la référence HR 306C, la température est maintenue à 330 °C, la quantité d'hydrogène introduit est égale à 200 litres par litre de charge et la vitesse spatiale horaire est de 1 h-1. La quantité d'hydrogène consommé est de 0,4% poids par rapport à la charge.
On récupère par la ligne 2 un produit (P) contenant 0,05 % en poids de soufre, 27 % en poids de composés aromatiques soufrés et non soufrés. Ce produit a une couleur mesurée selon la méthode ASTM D-1500 inférieure à 1 et une teneur en azote de 130 ppm en poids. L'indice de cétane du produit (P) est de 57. Ce produit a un point final de distillation de 400°C. Le produit P est strippé à la vapeur d'eau pour éliminer les fractions légères (< 150°C) et l'hydrogène sulfuré formés dans le réacteur d'hydrodésulfuration (moins de 2% de la charge initiale). Il est envoyé ensuite dans une zone de distillation à partir de laquelle on récupère par la ligne 3 un produit (P1) ayant un point final de distillation de 300°C et par la ligne 4 un produit (P2) ayant un point initial de distillation de 300°C. Le produit (P2) après avoir été refroidi à 70°C, est envoyé dans une zone d'extraction (EXT.) par la ligne 4 dans laquelle on introduit également par la ligne 5 une quantité de furfural égale en volume à la quantité de produit (P2) introduite dans cette zone. Cette zone est une colonne d'extraction comportant un garnissage formé d'anneaux de Pall d'une efficacité sensiblement équivalente à trois étages théoriques. L'extraction s'effectue à contre-courant, sous pression atmosphérique et à la température de 70 °C. On obtient un raffinat (R1) que l'on envoie par la conduite 6 dans la zone de distillation D1 dans laquelle on sépare en tête le furfural qui est récupérée par la conduite 8 en vue de son recyclage éventuel à la zone d'extraction et en queue, par la ligne 9, un raffinat (Q1) ne contenant pratiquement plus de furfural. Une partie au moins de ce produit (Q1) est mélangé à une partie au moins du produit (P1) débarrassé de sa fraction légère et on obtient alors une fraction (F) ayant une teneur en soufre de 0,01% en poids, un indice de cétane de 62, une teneur en poids de composés aromatiques soufrés et non soufrés de 15 %, sa teneur en n- et iso-alcanes est 49 % en poids, une teneur en azote de 30 ppm et une couleur Saybolt de 20. Cette fraction (F) est mélangée au pool gazole. A partir de cette zone d'extraction, on récupère également un extrait (E1) que l'on envoie dans une zone de distillation D2 dans laquelle on sépare en tête le furfural qui est récupéré par la conduite 10 en vue de son recyclage éventuel à la zone d'extraction et en queue un extrait (Q2) ne contenant pratiquement plus de furfural, ayant une teneur en soufre de 0,25 % en poids, un indice de cétane de 25, une teneur en poids de composés aromatiques soufrés et non soufrés de 82 % et une teneur en azote de 700 ppm.
Ce produit Q2 peut être traité comme décrit ci-devant dans l'exemple 1.
EXEMPLE 4
La charge utilisée dans cet exemple est la même que celle utilisée dans l'exemple 1. Elle est introduite par la ligne 100 dans une zone de distillation à partir de laquelle on récupère par la ligne 110 une fraction (F1) ayant un point d'ébullition initial de 150 °C et un point d'ébullition final de 300 °C. Cette fraction est introduite par la conduite 110 dans une zone d'hydrodésulfuration dans laquelle elle est soumise à un traitement d'hydrodésulfuration sous une pression partielle d'hydrogène de 2,0 MPa en présence d'un catalyseur industriel contenant du cobalt et du molybdène sur un support d'alumine vendu par la société PROCATALYSE sous la référence HR 306C, la température est maintenue à 330 °C, la quantité d'hydrogène introduit est égale à 150 litres par litre de charge et la vitesse spatiale horaire est de 4 h-1. La quantité d'hydrogène consommé est de 0,05% poids par rapport à la charge. On récupère par la ligne 120 un produit (P') contenant 0,005 % en poids de soufre, 20 % en poids de composés aromatiques soufrés et non soufrés. Ce produit a une couleur mesurée selon la méthode ASTM D-1500 inférieure à 1 et une teneur en azote de 20 ppm en poids. L'indice de cétane du produit (P') est de 57. Ce produit a un point final de distillation de 300°C. Il est envoyé dans une zone de strippage à la vapeur d'eau (SEP2) à partir de laquelle on récupère par la ligne 130 un produit (P10) ayant un point final de distillation de 150 °C et par la ligne 140 un produit (P20) ayant un point initial de distillation de 150 °C et un point final de distillation de 300°C. Ce produit (P20) est envoyé par la ligne 140 et la ligne 149 au pool carburant moteur.
A partir de la zone de distillation (TOP) on récupère par la ligne 1 une fraction (F2) ayant un point d'ébullition initial de 300 °C et un point d'ébullition final de 400 °C. Sa teneur en hydrocarbures aromatiques est de 37% en poids et sa teneur en n- et iso-alcanes est de 34% en poids. Cette charge est introduite par la conduite 1 dans une zone d'hydrodésulfuration dans laquelle elle est soumise à un traitement d'hydrodésulfuration sous une pression partielle d'hydrogène de 3,0 MPa en présence d'un catalyseur industriel contenant du cobalt et du molybdène sur un support d'alumine vendu par la société PROCATALYSE sous la référence HR 316C, la température est maintenue à 350 °C, la quantité d'hydrogène introduit est égale à 200 litres par litre de charge et la vitesse spatiale horaire est de 1h-1. La quantité d'hydrogène consommé est de 0.45 % par rapport à la charge.
On récupère par la ligne 2 un produit (P) contenant 0,15 % en poids de soufre, 34 % en poids de composés aromatiques soufrés et non soufrés et une teneur en n et iso-alcanes de 35%. Ce produit a une couleur mesurée selon la méthode ASTM D-1500 inférieure à 2 et une teneur en azote de 300 ppm en poids. L'indice de cétane du produit (P) est de 56. Ce produit a un point final de distillation de 400 °C. Il est envoyé dans une zone de strippage à la vapeur d'eau (SEP1) à partir de laquelle on récupère par la ligne 3 un produit (P1) ayant un point final de distillation de 300 °C et par la ligne 4 un produit (P2) ayant un point initial de distillation de 300 °C et un point final de distillation de 400 °C. Ce produit, après avoir été refroidi à 70°C, (P2) est envoyé dans une zone d'extraction (EXT.) par la ligne 4 dans laquelle on introduit également par la ligne 5 une quantité de furfural égale en volume à la quantité de produit (P2) introduite dans cette zone. Cette zone est une colonne d'extraction comportant un garnissage formé d'anneaux de Pall d'une efficacité sensiblement équivalente à trois étages théoriques. L'extraction s'effectue à contre-courant, sous pression atmosphérique et à la température de 70°C. On obtient un raffinat (R1) que l'on envoie par la conduite 6 dans la zone de strippage à la vapeur D1 dans laquelle on sépare en tête le furfural qui est récupéré par la conduite 8 en vue de son recyclage éventuel à la zone d'extraction et en queue un raffinat (Q1) ne contenant pratiquement plus de furfural, ayant une teneur en soufre de 0,04 % en poids, un indice de cétane de 67, une teneur en poids de composés aromatiques soufrés et non soufrés de 20 %, une teneur en n- et iso-alcanes de 48 % en poids, une teneur en azote de 30 ppm et une couleur Saybolt de 20. A partir de cette zone d'extraction on récupère également un extrait (E1) que l'on envoie dans une zone de distillation D2 dans laquelle on sépare en tête le furfural qui est récupéré par la conduite 10 en vue de son recyclage éventuel à la zone d'extraction et en queue un extrait (Q2) ne contenant pratiquement plus de furfural, ayant une teneur en soufre de 0,5 % en poids, un indice de cétane de 25, une teneur en poids de composés aromatiques soufrés et non soufrés de 80 % et une teneur en azote de 1 000 ppm.
Le produit (Q1) est envoyé par les lignes 9, 9b, et 149 au pool carburant moteur. Le mélange de P20 et Q1 est un produit ayant un indice de cétane de 61, une teneur en poids de composés aromatiques soufrés et non soufrés de 23 %, une teneur en soufre de 0,02 % en poids, une teneur en azote de 30 ppm et une couleur Saybolt de 25. Ce mélange peut aussi être mélangé, en partie au moins, avec une partie au moins du produit P1, une fois strippé.
EXEMPLE 5
Une charge de gazole de distillation directe de point initial de distillation de 150°C et de point final de distillation de 400°C contenant 35% poids d'aromatiques et composés soufrés et 10% de di- et polyaromatiques, est traitée selon l'exemple 1 dans des conditions d'hydrotraitement définies ci-dessous.
Pression partielle en hydrogène (MPa) Produit P Aromatiques + composés soufrés % poids Produit P Di- et polyaromatiques % poids Gain en cétane après extraction entre les produits Q1 et P (à isorendement)
3,0 34 7 + 12
5,0 32 4 + 10
7,0 (comparatif) 23 1 + 6
Sachant que l'on a observé un gain en indice de cétane de 14 points par extraction directe liquide-liquide, on montre par cet exemple que les performances de l'unité aval d'extraction dépendent de la sévérité de l'étape d'hydrotraitement.
En particulier, elles sont d'autant plus importantes que la teneur en hydrocarbures aromatiques de l'effluent d'hydrotraitement est sensiblement identique à celle de la charge initiale et que l'étape d'hydrogénation des hydrocarbures di- et polyaromatiques est limitée.
On montre ainsi qu'une sélection des conditions de l'étape d'hydrotraitement du procédé selon l'invention conditionne les performances de l'étape d'extraction.
EXEMPLE 6
La charge utilisée dans cet exemple est un mélange de coupe gazole de distillation directe et de coupe gazole issue du craquage catalytique, type LCO.
La coupe gazole de distillation directe a une densité à 15°C de 857, un indice de réfraction à 60°C de 1,4617, un indice de cétane de 55, une teneur totale en composés aromatiques, soufrés e non soufrés, de 35,4% en poids, une teneur en n- et iso-alcanes et en naphtènes de 64,6 % en poids, une teneur en soufre de 1,33% en poids et une teneur en azote exprimée en poids d'azote de 124 ppm.
La coupe gazole LCO a une densité à 15°C de 944,1 un indice de réfraction à 60°C de 1,5245, un indice de cétane de 23, une teneur totale en composés aromatiques, soufrés et non soufrés de 67,4% en poids, une teneur en n- et iso-alcanes et naphtènes de 32,6% en poids, une teneur en soufre de 3,13% en poids et une teneur en azote exprimée en poids d'azote de 930 ppm.
On note charge C1, la charge contenant 80% de coupe gazole de distillation directe et 20% de coupe LCO, et charge C2, la charge contenant 50% de coupe gazole de distillation directe et 50% de coupe LCO. Les coupes C1 et C2 ont un point initial de distillation de 200°C et un point final de distillation de 400°C. La charge C1 est introduite par la conduite 1 dans une zone d'hydrodésulfuration dans laquelle elle est soumise à un traitement d'hydrodésulfuration sous une pression partielle d'hydrogène de 2,0 MPa en présence d'un catalyseur industriel contenant du cobalt et du molybdène sur un support d'alumine vendu par la société PROCATALYSE sous la référence HR 306C, la température est maintenue à 330°C, la quantité d'hydrogène introduit est égale à 200 litre de charge et la vitesse spatiale horaire est de 2,5 h-1. La quantité d'hydrogène consommé est de 0,25% poids par rapport à la charge.
On récupère par la ligne 2 un produit (P') d'une densité à 15°C de 862,2 et contenant 0,051% de soufre, 31% en poids de composés aromatiques soufrés et non soufrés, 61% en poids de n- et iso-alcanes et 285 ppm d'azote.
L'indice de cétane du produit (P') est de 53 et son point final de distillation est de 400°C. Il est envoyé dans une zone de strippage à la vapeur d'eau (SEP1) à partir de laquelle on récupère par la ligne 3 un produit (P'1) ayant un point final de distillation de 230°C, et par la ligne 4 un produit (P'2) ayant un point initial de distillation de 230°C et un point final de distillation de 400°C. Ce produit (P'2) après avoir refroidi à 70°C, c'est-à-dire à la température de la zone d'extraction, est envoyé dans un zone d'extraction (EXT.) par la ligne 4 dans laquelle on introduit également par la ligne 5 une quantité de furfural égale en volume à la quantité de produit( P'2) introduite dans cette zone. Cette zone est une colonne d'extraction comportant un garnissage formé d'anneaux de Pall d'une efficacité globale sensiblement égale à trois étapes théoriques. L'extraction s'effectue à contre-courant, sous pression atmosphérique et à la température de 70°C. On obtient un raffinat (R'1) que l'on envoie par la conduite 6 dans la zone de strippage à la vapeur (D1) dans laquelle on sépare en tête le furfural qui est récupéré par la conduite 8 en vue de son recyclage éventuel à la zone d'extraction et en queue un raffinat (Q'1) contenant moins de 5 ppm de furfural par exemple, ayant une teneur en soufre de 0,02% en poids, un indice de cétane de 67,3, une teneur en poids de composés aromatiques soufrés et non soufrés de 19,1, une teneur en n- et iso-alcanes et naphtènes de 80,9% en poids, une teneur en azote de 54 ppm et une densité à 15°C de 826,5 et qui peut être introduit dans le réservoir (pool) gazole. A partir de cette zone d'extraction on récupère également un extrait (E'1) que l'on envoie dans une zone de distillation (D2) suivie d'une zone de strippage à la vapeur dans lesquelles on sépare en tête le furfural qui est récupéré par la conduite 10 en vue de son recyclage éventuel à la zone d'extraction et en queue un extrait (Q'2) ne contenant pratiquement plus de furfural, ayant une teneur en soufre de 0,14% en poids, une teneur en poids de composé aromatiques soufrés et non soufrés de 87,2%, une teneur en azote de 800 ppm, une teneur en n- et iso-alcanes et naphtènes de 12,8% en poids et une densité à 15°C de 1002,8.
La charge C2 subit le même traitement que la charge C1.
On récupère par la ligne 2 un produit (P") d'une densité à 15°C de 888,1 et contenant 0,067% en poids du soufre, 44,6% en poids de composés aromatiques soufrés et non soufrés, 47,4% en poids de n- et iso-alcanes et de naphtènes et 527 ppm d'azote.
L'indice de cétane du produit (P") est de 43 et son point final de distillation et de 400°C.
Le produit (P"1) récupéré par la ligne 3 a un point final de distillation de 230°C, et le produit (P"2) récupéré par la ligne 4 a un point initial de distillation de 230°C et un point final de distillation de 400°C.
Le raffinat (R"1) obtenu après extraction est envoyé par la conduite 6 dans la zone de strippage à la vapeur (D1) de la même manière que le raffinat (R'1). Le raffinat (Q"1) obtenu en queue contient moins de 5 ppm de furfural par exemple, 0,02% en poids de soufre, un indice de cétane de 66,1, 17% en poids de composés aromatiques soufrés et non soufrés, 83% en poids de n- et iso-alcanes et de naphtènes, 150 ppm d'azote et une densité à 15°C de 883,9.
L'extrait (E''1) obtenu après extraction est envoyé dans la zone de distillation (D2) suivie de strippage à la vapeur. L'extrait (Q"2) obtenu en queue ne contient pratiquement plus de furfural, 0,12% en poids de soufre, 87,9% en poids de composés aromatiques soufrés et non soufrés, 900 ppm d'azote, 12,1% en poids de n- et iso-alcanes et de naphtènes, et une densité à 15°C de 985,3.
Les produits Q'2 et Q"2 peuvent être envoyés par les conduites 11 et 11 b dans une zone (HDS3) d'hydrodésulfuration distincte de celle dans laquelle on a introduit la charge initiale. Cette hydrodésulfuration est effectuée en présence du catalyseur HR 306C, sous pression partielle d'hydrogène de 2,5 MPa, à une température de 330°C avec un recyclage d'hydrogène de 200 litres par litre de charge et une vitesse spatiale horaire de 2,5 h-1. A la sortie de cette hydrodésulfuration on obtient un produit ayant une teneur en soufre de 0,2% en poids. Ses autres caractéristiques sont pratiquement inchangées. Ce produit peut être mélangé au fuel domestique, c'est-à-dire introduit dans ce que les hommes du métier appellent le pool fuel domestique.

Claims (11)

  1. Procédé d'obtention d'un produit pétrolier pouvant servir de base dans la composition d'un carburant pour moteur à combustion interne à allumage par compression présentant un indice de cétane et une teneur en soufre améliorés, à partir d'une charge hydrocarbonée ayant un point initial d'ébullition d'au moins 150 °C et de point final d'ébullition d'au plus 500 °C, contenant 0,05 % à 5 % en poids de soufre, 10 à 60 % en poids de n- et iso-alcanes, 10 % à 85 % en poids d'hydrocarbures aromatiques au moins en partie sous forme de composés polyaromatiques soufrés ou non, ayant un indice de cétane de 20 à 60 et ayant une teneur en azote de 50 à 5 000 ppm en poids, ledit procédé étant caractérisé en ce qu'il comprend les étapes suivantes :
    une étape a) d'hydrotraitement dans laquelle on effectue l'hydrotraitement de ladite charge dans des conditions permettant d'obtenir un produit (P) contenant une quantité de soufre de 2 à 50 fois moindre que celle de la charge initiale, ledit hydrotraitement étant effectué sous une pression partielle d'hydrogène en sortie de réacteur de 0,5 MPa (mégapascal) à 6 MPa, telle que le taux de désaromatisation de la charge est au plus égale à 30%,
    une étape b) de séparation du produit (P) en un produit (P2) ayant un point d'ébullition initial supérieur à la température d'ébullition du solvant d'extraction de l'étape suivante c) et de préférence au moins supérieur de 20°C, et en un produit (P1) ayant un point d'ébullition final inférieur au point d'ébullition initial du produit P2,
    une étape c) d'extraction liquide/liquide dans laquelle on met en contact, à une température d'extraction au plus égale à 140°C, dans des conditions d'extraction des composés polyaromatiques, le produit (P2) obtenu à l'étape b) avec un solvant ou un mélange de solvant (S1) permettant d'extraire au moins en partie les composés polyaromatiques qu'il contient, ledit solvant ayant un point initial d'ébullition inférieur au point initial d'ébullition du produit (P2) obtenu à l'étape b), et au cours de laquelle on récupère un extrait (E1) enrichi en composés polyaromatiques, soufrés ou non et un raffinat (R1) et,
    une étape d) de récupération du solvant (SI) employé à l'étape c) à partir du raffinat (R1) obtenu à l'étape c) dans laquelle on récupère un produit enrichi en solvant (S1) et un produit (Q1) appauvri en solvant (S1) ayant un indice de cétane amélioré et contenant moins de 500 ppm en poids de soufre ;
    le procédé étant en outre caractérisé en ce qu'au moins une partie du produit (P1) résultant de l'étape b) est débarrassée de sa fraction légère et est mélangée à une partie au moins du produit (Q1) résultant de l'étape d).
  2. Procédé selon la revendication 1, dans lequel la pression en hydrogène en sortie du réacteur est de 1 à 5 MPa, de telle façon que le taux de désaromatisation de la charge est au plus égal à 15%.
  3. Procédé selon l'une des revendications 1 à 2 dans lequel l'étape c) est effectuée dans des conditions permettant d'obtenir un raffinat (R1) contenant au plus 90 % en poids du poids total des hydrocarbures aromatiques, ne contenant pas d'atome de soufre dans leur molécule, présents dans le produit (P2) obtenu à l'étape b).
  4. Procédé selon l'une des revendications 1 à 3 dans lequel l'extrait (E1) obtenu à l'étape c) est envoyé dans une zone de récupération du solvant (S1) employé à l'étape c) dans laquelle on récupère un produit enrichi en solvant (S1) et un produit (Q2) appauvri en solvant (S1).
  5. Procédé selon la revendication 4 dans lequel le produit de queue (Q2) est envoyé dans une zone d'hydrotraitement distincte de la zone d'hydrotraitement de l'étape a), dans laquelle il est soumis à un hydrotraitement dans des conditions permettant d'obtenir un produit (P3) ayant une teneur en soufre inférieure ou égale à 0,3 % en poids.
  6. Procédé selon l'une des revendications 1 à 5 dans lequel le ou les produits de tête, obtenus par séparation du raffinat (R1) et éventuellement de l'extrait (E1) enrichi(s) en solvant (S1), sont recyclés à l'étape c) d'extraction liquide/liquide.
  7. Procédé selon l'une des revendications 1 à 6 dans lequel le solvant est choisi dans le groupe formé par le méthanol, l'acétonitrile, la monométhylformamide, la diméthylformamide, la diméthylacétamide, le furfural, la N-méthylpyrrolidone et le diméthylsulfoxyde.
  8. Procédé selon l'une des revendications 1 à 7 dans lequel le solvant utilisé est un solvant non azoté oxygéné.
  9. Procédé selon l'une des revendications 1 à 8 dans lequel à l'étape a) d'hydrotraitement on introduit dans le réacteur d'hydrotraitement, outre la charge hydrocarbonée à traiter, au moins une partie du produit de queue (Q2) obtenu à partir de l'extrait (E1) de l'étape c) après séparation du solvant (S1).
  10. Procédé selon l'une des revendications 1 à 9 dans lequel la charge hydrocarbonée ayant un point initial d'ébullition d'au moins 150 °C et un point final d'ébullition d'au plus 500 °C est envoyée dans une zone de distillation dans laquelle on sépare en tête une fraction (F1) ayant un point final d'ébullition d'au moins 250 °C et en queue une fraction (F2) ayant un point initial d'ébullition d'au moins 250 °C, ledit procédé étant caractérisé en ce que la fraction (F2) est traitée selon le procédé de l'une des revendications 1 à 9 et en ce que la fraction (F1) est envoyée dans une zone d'hydrotraitement distincte de celle de l'étape a) à partir de laquelle on récupère un produit (P') hydrotraité que l'on envoie dans une zone de séparation à partir de laquelle on récupère une fraction (P10) ayant un point d'ébullition final inférieur à 150 °C, et une fraction (P20) ayant un point d'ébullition initial supérieur au point d'ébullition final de la fraction (P10).
  11. Procédé selon les revendications 9 et 10 dans lequel la fraction (P20) est au moins en partie mélangée au produit (Q1) obtenu à l'étape d) ou au mélange du produit (Q1) et du produit (P1) débarrassé de sa fraction légère.
EP94403024A 1993-12-28 1994-12-26 Procédé d'obtention d'une base pour carburant pour moteur à combustion interne par hydrotraitement et extraction Expired - Lifetime EP0661371B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9315857A FR2714387B1 (fr) 1993-12-28 1993-12-28 Procédé d'obtention d'une base pour carburant pour moteur à combustion interne par hydrotraitement et extraction et le produit obtenu.
FR9315857 1993-12-28

Publications (2)

Publication Number Publication Date
EP0661371A1 EP0661371A1 (fr) 1995-07-05
EP0661371B1 true EP0661371B1 (fr) 2003-08-20

Family

ID=9454561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94403024A Expired - Lifetime EP0661371B1 (fr) 1993-12-28 1994-12-26 Procédé d'obtention d'une base pour carburant pour moteur à combustion interne par hydrotraitement et extraction

Country Status (7)

Country Link
US (2) US5925234A (fr)
EP (1) EP0661371B1 (fr)
AT (1) ATE247703T1 (fr)
DE (1) DE69433053T2 (fr)
ES (1) ES2206464T3 (fr)
FR (1) FR2714387B1 (fr)
NO (1) NO313420B1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE246237T1 (de) 1998-05-08 2003-08-15 Sasol Tech Pty Ltd Entfernung von kontaminanten aus einem kohlenwasserstoffkomponent oder -fraktion
US6110358A (en) * 1999-05-21 2000-08-29 Exxon Research And Engineering Company Process for manufacturing improved process oils using extraction of hydrotreated distillates
KR100813773B1 (ko) * 2001-11-22 2008-03-13 아이에프피 2개의 수소 재순환 루우프를 포함하는 중간 증류물의수소화처리 2 단계 방법
FR2900157B1 (fr) * 2006-04-24 2010-09-24 Inst Francais Du Petrole Procede de desulfuration d'essences olefiniques comprenant au moins deux etapes distinctes d'hydrodesulfuration
US8424181B2 (en) * 2009-04-17 2013-04-23 Exxonmobil Research And Engineering Company High pressure revamp of low pressure distillate hydrotreating process units
SG11201500626XA (en) * 2012-07-31 2015-02-27 Cetamax Ventures Ltd Methods and systems for combined oxidative and hydrotreatment of hydrocarbon fuel
FR3015514B1 (fr) 2013-12-23 2016-10-28 Total Marketing Services Procede ameliore de desaromatisation de coupes petrolieres
CA3024409A1 (fr) * 2016-05-17 2017-11-23 Exxonmobil Research And Engineering Company Hydrocraquage selectif du carbureacteur et du diesel
WO2017205200A1 (fr) * 2016-05-25 2017-11-30 Exxonmobil Research And Engineering Company Production d'extrait et de raffinat affinés
WO2018051334A1 (fr) 2016-09-19 2018-03-22 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University Nouveaux procédés respectueux de l'environnement hautement efficaces permettant de convertir des flux riches en co2 ou en co en combustibles liquides et en produits chimiques
US10711208B2 (en) * 2017-06-20 2020-07-14 Saudi Arabian Oil Company Process scheme for the production of optimal quality distillate for olefin production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621334A1 (fr) * 1993-04-23 1994-10-26 Institut Français du Pétrole Procédé d'obtention d'un carburant par extraction et hydrotraitement d'une charge hydrocarbonée et le gazole obtenu

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990242A (en) * 1989-06-14 1991-02-05 Exxon Research And Engineering Company Enhanced sulfur removal from fuels
US5059303A (en) * 1989-06-16 1991-10-22 Amoco Corporation Oil stabilization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0621334A1 (fr) * 1993-04-23 1994-10-26 Institut Français du Pétrole Procédé d'obtention d'un carburant par extraction et hydrotraitement d'une charge hydrocarbonée et le gazole obtenu

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Procédés de pétrochimie, Edition Technip, Paris, 1985, A. Chauvel, G. Lefebre, L. Castex, p. 198. *

Also Published As

Publication number Publication date
NO945004L (no) 1995-06-29
DE69433053T2 (de) 2004-04-01
FR2714387A1 (fr) 1995-06-30
EP0661371A1 (fr) 1995-07-05
FR2714387B1 (fr) 1996-02-02
US5925234A (en) 1999-07-20
DE69433053D1 (de) 2003-09-25
NO945004D0 (no) 1994-12-23
NO313420B1 (no) 2002-09-30
ATE247703T1 (de) 2003-09-15
US6165348A (en) 2000-12-26
ES2206464T3 (es) 2004-05-16

Similar Documents

Publication Publication Date Title
EP0621334B1 (fr) Procédé d&#39;obtention d&#39;un carburant par extraction et hydrotraitement d&#39;une charge hydrocarbonée et le gazole obtenu
EP2256179B1 (fr) Procédé de production d&#39;une coupe hydrocarbonnée à haut indice d&#39;octane et faible teneur en soufre
EP2333031B1 (fr) Procédé de production de carburants kérosène et diesel de haute qualité et de coproduction d&#39;hydrogène à partir de coupes saturées légères
EP1175471B1 (fr) Procede d&#39;obtention de produits petroliers a faible taux de soufre par desulfuration d&#39;extraits
EP1849850B1 (fr) Procédé de désulfuration d&#39;essences oléfiniques comprenant au moins deux étapes distinctes d&#39;hydrodésulfuration
WO2015091033A1 (fr) Nouveau procede integre de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre et en sediments
EP0354826B1 (fr) Procédé de fractionnement et d&#39;extraction d&#39;hydrocarbures permettant l&#39;obtention d&#39;une essence à indice d&#39;octane amélioré et d&#39;un kérosène à point de fumée amélioré
FR2964388A1 (fr) Procede de conversion de residu integrant une etape de desasphaltage et une etape d&#39;hydroconversion avec recyclage de l&#39;huile desasphaltee
EP0661371B1 (fr) Procédé d&#39;obtention d&#39;une base pour carburant pour moteur à combustion interne par hydrotraitement et extraction
FR2964386A1 (fr) Procede de conversion de residu integrant une etape de desashphaltage et une etape d&#39;hydroconversion
EP0773981B1 (fr) Carbureacteur et procede de preparation de ce carbureacteur
EP1369468B1 (fr) Procédé de production d&#39;hydrocarbures à faible teneur en soufre et en azote
EP1063275B1 (fr) Procédé d&#39;hydrotraitement d&#39;un distillat moyen dans deux zones comprenant une zone intermédiaire de stripage
CA2215594C (fr) Procede catalytique de conversion d&#39;un residu petrolier impliquant une hydrodemetallisation en lit fixe de catalyseur
FR2895417A1 (fr) Procede de desulfurisation comprenant une etape de transformation et une etape d&#39;extraction des composes soufres
FR2847260A1 (fr) Procede de desulfuration comprenant une etape d&#39;hydrogenation selective des diolefines et une etape d&#39;extraction des composes soufres
WO2012085406A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique et extraction liquide/liquide de la fraction lourde.
WO2012085408A1 (fr) Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique
EP1699905A1 (fr) Procede de traitement d&#39;une charge hydrocarbonee incluant un enlevement des resines
CA2440189C (fr) Procede de production d&#39;une essence desulfuree a partir d&#39;une coupe essence contenant de l&#39;essence de craquage
EP1310544B1 (fr) Procédé de conversion de fractions lourdes pétrolières pour produire une charge de craquage catalytique et des distillats moyens de faible teneur en soufre
EP1508609B1 (fr) Procédé de traitement d&#39;une fraction intermédiaire issue d&#39;effluents de vapocraquage
EP1123961A1 (fr) Procédé et installation utilisant plusieurs lits catalytiques en série pour la production de gazoles à faible teneur en soufre
FR2857370A1 (fr) Procede de production de distillats et d&#39;huiles lubrifiantes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19960105

17Q First examination report despatched

Effective date: 19981111

RTI1 Title (correction)

Free format text: PROCESS FOR THE PRODUCTION OF AN INTERNAL COMBUSTION ENGINE FUEL BY HYDROTREATMENT AND EXTRACTION

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TOTALFINALELF FRANCE

Owner name: INSTITUT FRANCAIS DU PETROLE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030820

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 69433053

Country of ref document: DE

Date of ref document: 20030925

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031120

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040120

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2206464

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040524

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69433053

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNERS: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR; TOTALFINAELF FRANCE, LEVALLOIS PERRET, FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 69433053

Country of ref document: DE

Owner name: TOTALFINAELF FRANCE, FR

Free format text: FORMER OWNERS: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR; TOTALFINAELF FRANCE, LEVALLOIS PERRET, FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 69433053

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, TOTALFINAELF FRANCE, , FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 69433053

Country of ref document: DE

Owner name: TOTALFINAELF FRANCE, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, TOTALFINAELF FRANCE, , FR

Effective date: 20110329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131002

Year of fee payment: 20

Ref country code: GB

Payment date: 20131224

Year of fee payment: 20

Ref country code: DE

Payment date: 20131223

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20131219

Year of fee payment: 20

Ref country code: IT

Payment date: 20131220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20131227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20131219

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69433053

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69433053

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20141226

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20141225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141225

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141227