EP1849850B1 - Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration - Google Patents

Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration Download PDF

Info

Publication number
EP1849850B1
EP1849850B1 EP07290436.0A EP07290436A EP1849850B1 EP 1849850 B1 EP1849850 B1 EP 1849850B1 EP 07290436 A EP07290436 A EP 07290436A EP 1849850 B1 EP1849850 B1 EP 1849850B1
Authority
EP
European Patent Office
Prior art keywords
gasoline
fraction
hydrogen
hydrodesulfurization
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07290436.0A
Other languages
German (de)
English (en)
Other versions
EP1849850A1 (fr
Inventor
Annick Pucci
Quentin Debuisschert
Florent Picard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1849850A1 publication Critical patent/EP1849850A1/fr
Application granted granted Critical
Publication of EP1849850B1 publication Critical patent/EP1849850B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline

Definitions

  • the invention relates to a process for the production of gasolines with a low sulfur and mercaptan content which comprises at least two hydrodesulphurization stages carried out in parallel on two distinct cuts of the gasoline.
  • This process optionally includes a single hydrogen purification and recycling section.
  • a hydrodesulfurization step corresponds to one or more hydrodesulfurization sections.
  • a hydrodesulfurization section corresponds to one or more beds.
  • the feedstock to be treated is generally a sulfur-containing gasoline cut such as, for example, a gasoline cut from a coking, visbreaking, steam cracking or cracking unit.
  • catalyst FCC
  • Said feed preferably consists of a gasoline cut from a catalytic cracking unit, the distillation range of which is between 0°C and 300°C and preferably between 0°C and 250°C.
  • Catalytic cracked gasolines can constitute 30% to 50% by volume of the gasoline pool and generally have high mono-olefin and sulfur contents.
  • the sulfur present in reformulated gasoline is attributable, at nearly 90%, to gasoline resulting from catalytic cracking.
  • the desulphurization of gasolines, and mainly FCC gasolines is therefore of crucial importance for compliance with current and future standards.
  • the mono-olefins contained in gasoline contribute significantly to their octane rating.
  • the desulphurized gasolines must also meet the specifications in terms of corrosiveness.
  • the corrosive power of gasoline is essentially due to the presence of acid sulfur compounds such as mercaptans.
  • Desulphurized gasolines must therefore contain few mercaptans to limit their corrosiveness.
  • the H 2 S present in the reactor can react with non-hydrogenated mono-olefins to form mercaptans.
  • the fraction of mercaptans in the gasoline produced is generally higher the lower the sulfur content of the gasoline.
  • the present invention presents a solution making it possible to limit the energy consumption of the compressor, while reducing the mercaptan content and increasing the octane number for a constant sulfur content of the desulfurized gasoline.
  • the present invention proposes a new solution to respond economically to the triple problem of reducing the sulfur content in fuels, limiting the mercaptan content in gasolines with a low sulfur content, and flexibility in orienting fuel production towards gasoline or middle distillate cuts according to market needs. Furthermore, in the current context of reducing greenhouse gas emissions, it is important to integrate the problem of controlling energy consumption into any new idea.
  • the process diagram described in the context of this invention is innovative because it makes it possible to simultaneously deal with the triple problem described above, while limiting the energy consumption due to the necessary compression of the hydrogen which is recycled in the steps of hydrodesulfurization.
  • each torque will be associated with an engine octane number (MON) such as MON• 79.45, preferably such as MON• 79.50, even more preferably such as MON• 79.55.
  • MON engine octane number
  • the patent application EP0725126-A1 describes a method for desulfurizing gasolines from catalytic cracking while limiting the loss of octane by hydrogenation of mono-olefins.
  • This method consists in distilling the gasoline into several fractions, including at least a fraction rich in compounds which are difficult to desulphurize chosen from thiophene and alkylthiophenes, and a fraction rich in compounds which are easy to desulphurize chosen from thiacyclopentane, alkylthiacyclopentanes, benzothiophene and alkylbenzothiophenes. At least one of these two fractions is treated by a hydrodesulphurization process and is then mixed with the untreated fraction.
  • This method has the disadvantage of requiring an analysis of the various fractions before treatment, and does not describe how to choose the fractions to limit the quantity of mercaptans in the final desulfurized product.
  • the patent US 6596157 B2 describes a process for the desulphurization of gasoline cuts from cracking units based on the treatment, in parallel, of the heavy fraction of gasoline called HCN (Heavy Cat Naphtha according to the Anglo-Saxon terminology), under non-selective hydrodesulphurization conditions and of the intermediate gasoline fraction called ICN (Intermediate Cat Naphtha according to the Anglo-Saxon terminology) under selective hydrodesulphurization conditions, for which the intermediate gasoline (ICN) is heated by the hydrotreated heavy fraction (HCN) stream.
  • HCN Heavy Cat Naphtha according to the Anglo-Saxon terminology
  • ICN Intermediate Cat Naphtha according to the Anglo-Saxon terminology
  • the patent application US 2003/0042175 describes a method for desulphurizing cracked gasolines comprising different treatment steps to reduce the sulfur content.
  • This process comprises a stage of hydrogenation of the diolefins, a stage of transformation of the light sulfur compounds by weighting, a stage of distillation of the gasoline into several cuts and at least one stage of desulphurization of at least part of the heavy fraction gasoline produced.
  • this patent does not teach how to treat the gasolines to minimize the mercaptan content of the desulfurized gasoline, nor how to treat the hydrogen resulting from the hydrodesulfurization stages.
  • the invention is based on the differentiated treatment of different cuts constituting the gasoline cut.
  • the invention relates to a process for the production of gasolines with a low sulfur and mercaptan content according to the subject of claim 1.
  • the light ends are rich in mono-olefins and in saturated sulfur compounds such as mercaptans and sulphides.
  • light fraction is meant the gasoline fractions whose boiling point is below 100°C, preferably below 80°C and very preferably below 65°C.
  • the heavy fraction of gasoline is rich in sulfur compounds of the benzothiophene type such as benzothiophene and alkylbenzothiophenes and to a lesser degree is rich in alkylthiophenes. In addition, it is rich in aromatic compounds and low in olefinic compounds.
  • the heavy fraction of gasoline consists of hydrocarbons whose boiling point is above 160°C, preferably above 180°C and very preferably above 207°C.
  • This heavy fraction of gasoline is generally the one that contains the most sulphur.
  • the heavy gasoline fraction can be incorporated either into the gasoline pool or into the middle distillate fraction to produce kerosene or gas oil.
  • the heart fraction corresponds to the intermediate fraction between the light fraction and the heavy fraction.
  • the core fraction of the gasoline is rich in mono-olefins and sulfur compounds of thiophene types, including thiophene, methyl-thiophenes and other alkylthiophenes.
  • the various gasoline fractions are obtained by distillation of the effluent from the catalytic cracking unit.
  • the mixture consisting of the light gasoline fraction and the intermediate fraction or the intermediate fraction alone is treated in a first hydrodesulfurization stage called HDS1.
  • This step consists of bringing the gasoline to be treated into contact with hydrogen, in one or more hydrodesulphurization reactors in series, containing one or more catalysts suitable for carrying out the hydrodesulphurization selectively, i.e. say with a degree of hydrogenation of the mono-olefins of less than 60%, preferably less than 50% and very preferably less than 40%.
  • the operating pressure for this step is between 0.5 MPa and 5 MPa, and preferably between 1 MPa and 3 MPa.
  • the temperature is between 200°C and 400°C and preferably between 220°C and 380°C.
  • the average operating temperature of each reactor will be higher by at least 5°C, preferably by at least 10°C and very preferably by at least 15 °C at the operating temperature of the reactor which precedes it.
  • the quantity of catalyst used in each reactor is such that the ratio between the flow rate of gasoline to be treated, expressed in m 3 per hour at standard conditions, per m 3 of catalyst (also called space velocity) is between 0.5 h -1 and 20 h -1 and preferably between 1 h -1 and 15 h -1 .
  • the first reactor will be operated with a space velocity of between 2 h -1 and 8 h -1 .
  • the hydrogen flow rate is such that the ratio between the hydrogen flow rate expressed in normal m 3 per hour (Nm 3 /h) and the feed rate to be treated expressed in m 3 per hour at standard conditions is between 50 Nm 3 /m 3 and 1000 Nm 3 /m 3 , preferably between 70 Nm 3 /m 3 and 800 Nm 3 /m 3 .
  • the degree of desulphurization reached during stage HDS1 is greater than 80% and preferably greater than 90%.
  • the reaction mixture is cooled to a temperature below 60° C. in order to condense the hydrocarbons.
  • the gas and liquid phases are separated in a separator.
  • the liquid fraction which contains the desulfurized gasoline as well as a fraction of the dissolved H 2 S is sent to a stripping section, the gaseous fraction consisting mainly of hydrogen and which contains the majority of the H 2 S is sent to a purification section.
  • the heavy gasoline fraction is treated in a separate hydrodesulfurization step called HDS2.
  • This step consists of bringing the gasoline to be treated into contact with hydrogen, in one or more series hydrodesulphurization reactors containing one or more catalysts suitable for carry out hydrodesulphurization.
  • the hydrodesulfurization of the heavy gasoline will be carried out in a single step, in a single reactor.
  • the hydrodesulphurization can be carried out selectively or non-selectively.
  • the degree of hydrogenation of the mono-olefins is less than 90%, preferably less than 80% and very preferably less than 60%.
  • the operating pressure for this step is between 0.5 MPa and 10 MPa, and preferably between 1 MPa and 8 MPa.
  • the temperature is between 220°C and 450°C and preferably between 250°C and 380°C.
  • the average operating temperature of each reactor will be higher by at least 5° C., preferably by at least 10° C. and very preferably by at least minus 15°C at the operating temperature of the reactor which precedes it.
  • the quantity of catalyst used in each reactor is such that the ratio between the flow rate of gasoline to be treated, expressed in m3 per hour at standard conditions, per m3 of catalyst (also called space velocity) is between 0.3 h - 1 and 8:00 p.m. and preferably between 0.5: 00 a.m. and 3:00 p.m. Very preferably, the first reactor will be operated with a space velocity of between 1 h -1 and 8 h -1 .
  • the hydrogen flow rate is such that the ratio between the hydrogen flow rate expressed in normal m 3 per hour (Nm 3 /h) and the feed rate to be treated expressed in m 3 per hour at standard conditions is between 30 Nm 3 /m 3 and 800 Nm 3 /m 3 , preferably between 50 Nm 3 /m 3 and 500 Nm 3 /m 3 .
  • This ratio will be less than 80% of the ratio of the flow rates used to desulfurize in the HDS1 hydrodesulfurization step, preferably less than 60%, very preferably less than 50% and even more preferably less than 40 % of the flow rate ratio used to desulphurize in the HDS1 hydrodesulphurization step.
  • the reaction mixture is cooled to a temperature below 60° C. in order to condense the hydrocarbons.
  • the gas and liquid phases are separated in a separator.
  • the liquid fraction which contains the desulfurized gasoline as well as a fraction of the dissolved H 2 S is sent to a stripping section, the gaseous fraction consisting mainly of hydrogen and which contains the majority of the H 2 S is sent to a purification section.
  • catalysts comprising an amorphous and porous mineral support chosen from the group consisting of aluminas, silicon carbide, silica, silica-aluminas or even titanium or magnesium oxides used alone or mixed with alumina or silica-alumina. It is preferably chosen from the group consisting of silica, the family of transition aluminas and silica-aluminas.
  • the support consists essentially of at least one transition alumina, that is to say it comprises at least 51% by weight, preferably at least 60% by weight, very preferably at least 80 % by weight, or even at least 90% by weight of transition alumina. It may optionally consist solely of a transition alumina.
  • the specific surface of the support is generally less than 200 m2/g and preferably less than 150 m2/g.
  • the porosity of the catalyst before sulfurization is such that it has an average pore diameter greater than 20 nm, preferably greater than 25 nm or even 30 nm and often between 20 and 140 nm, preferably between 20 and 100 nm, and very preferably between 25 and 80 nm.
  • the pore diameter was measured by mercury porosimetry according to the ASTM D4284-92 standard with a wetting angle of 140°.
  • the hydrodesulfurization catalyst contains at least one Group VI metal and/or at least one Group VIII metal on a support.
  • Group VI metal is usually molybdenum or tungsten the Group VIII metal is usually nickel or cobalt.
  • the surface density of the group VI metal is comprised according to the invention between 2.10 -4 and 4.0.10 -3 grams of oxide of said metal per m2 of support, preferably between 4.10 -4 and 1.6.10 -3 g/m 2 .
  • the process comprises a succession of hydrodesulphurization stages, such that the activity of the catalyst of a stage n+1 is between 1% and 90% of the activity of the catalyst of step n.
  • catalysts will be used comprising an amorphous and porous mineral support chosen from the group consisting of aluminas, silicon carbide, silica, silica-aluminas or even titanium or magnesium oxides used alone or mixed with alumina or silica-alumina. It is preferably chosen from the group consisting of silica, the family of transition aluminas and silica-aluminas. Very preferably, the support consists essentially of at least one transition alumina, that is to say it comprises at least 51% by weight, preferably at least 60% by weight, very preferably at least 80 % by weight, or even at least 90% by weight of transition alumina.
  • the hydrodesulfurization catalyst contains at least one Group VI metal and/or at least one Group VIII metal on a support.
  • Group VI metal is usually molybdenum or tungsten and Group VIII metal is usually nickel or cobalt.
  • the selective nature or not of the hydrodesulfurization catalyst in the sense defined above in the description of the invention, generally depends on the composition and the method of preparation of said catalyst. Simple ways to vary the selectivity consist, for example, in modifying the contents of metals of group VIII and of group VI or possibly the molar ratio between the quantities of metals of group VIII and of group VI for a given support or to make vary the specific surface of the support for constant metal contents.
  • the excess hydrogen from the HDS1 and HDS2 hydrodesulfurization steps can be collected and treated in a single purification section.
  • the hydrogen thus purified is then recycled to at least one of the hydrodesulphurization stages HDS1 and HDS2 after a compression stage to compensate for pressure drops through the process.
  • a make-up of fresh hydrogen is carried out, either before or after the compression stage in order to compensate for the consumption of hydrogen in the hydrodesulphurization reactors.
  • the sulfur compounds which it is sought to convert are mainly mercaptans and sulphides.
  • the main transformation reaction of mercaptans consists of a thioetherification of mono-olefins by mercaptans. This reaction is illustrated below by the addition of propane-2-thiol to pent-2-ene to form a propyl pentyl sulfide.
  • the transformation of the sulfur compounds can also go through the intermediate formation of hydrogen sulphide which can then add to the unsaturated compounds present in the charge.
  • this route is in the minority under the preferred reaction conditions.
  • the compounds capable of being thus transformed and made heavier are the sulphides and mainly dimethyl sulphide, methyl ethyl sulphide, diethyl sulphide, CS 2 , COS, thiophane and methyl thiophane.
  • This pretreatment step consists of bringing the charge to be treated into contact with a flow of hydrogen and with a catalyst containing at least one metal from group VIb (group 6 according to the new notation of the periodic table of the elements: Handbook of Chemistry and Physics, 76th edition, 1995-1996 ) and at least one metal from group VIII (groups 8, 9 and 10) of said classification, deposited on a porous support.
  • the catalyst according to the invention can be prepared by means of any technique known to those skilled in the art, and in particular by impregnation of the elements of groups VIII and VIb on the selected support.
  • This impregnation can for example be carried out according to the method of preparation known to those skilled in the art under the terminology of dry impregnation, in which just the quantity of desired elements is introduced in the form of soluble salts in a chosen solvent, by example of demineralized water, so as to fill as exactly as possible the porosity of the support.
  • the support thus filled with the solution is preferably dried.
  • the preferred support is alumina, which can be prepared from any type of precursors and shaping tools known to those skilled in the art.
  • the catalyst is usually used in a sulphide form obtained after temperature treatment in contact with a decomposable organic sulfur compound and generator of hydrogen sulphide (H 2 S) or directly in contact with a gas stream of dilute H 2 S in H2 .
  • This step can be carried out in situ or ex situ (i.e. inside or outside the hydrodesulphurization reactor) at temperatures between 200 and 600° C. and more preferably between 300 and 500° C. .
  • the charge to be treated is mixed with hydrogen before being brought into contact with the catalyst.
  • the quantity of hydrogen injected is such that the molar ratio between the hydrogen and the diolefins to be hydrogenated is greater than 1 (stoichiometry) and less than 10, and preferably between 1 and 5 mole/mole. Too much excess hydrogen can lead to strong hydrogenation of mono-olefins and consequently a decrease in the octane number of gasoline.
  • the entire feed is generally injected at the reactor inlet. However, it may be advantageous, in certain cases, to inject a fraction or all of the charge between two consecutive catalytic beds placed in the reactor. This embodiment makes it possible in particular to continue to operate the reactor if the inlet of the reactor is clogged by deposits of polymers, particles, or gums present in the charge.
  • the mixture consisting of gasoline and hydrogen is brought into contact with the catalyst at a temperature between 80°C and 250°C, and preferably between 90°C and 220°C, with a liquid space velocity ( LHSV) between 1 h -1 and 10 h -1 , the unit of the liquid space velocity being the liter of charge per liter of catalyst and per hour (II -1 .h -1 ).
  • LHSV liquid space velocity
  • the pressure is adjusted so that the reaction mixture is mainly in liquid form in the reactor.
  • the pressure is between 0.5 MPa and 5 MPa and preferably between 1 and 4 MPa.
  • the gasoline treated under the conditions stated above has a reduced content of diolefins and mercaptans.
  • the gasoline produced contains less than 1% by weight of diolefins, and preferably less than 0.5% by weight of diolefins.
  • Light sulfur compounds whose boiling point is lower than that of thiophene (84°C) are generally converted at more than 50%. It is therefore possible to separate the light fraction from the gasoline by distillation and to send this fraction directly to the gasoline pool without additional treatment.
  • FIG. 1 Preferred embodiments of the process of the present invention are illustrated in figure 1 , the figure 2 and the picture 3 .
  • a core gasoline, gasoline A circulating via line 1 is mixed with hydrogen from the recycle compressor P1, via line 20.
  • the mixture thus formed is injected into the reaction section R1.
  • the effluent circulating via line 4 is cooled in the exchanger section E1 in order to condense the hydrocarbons then the mixture is injected into the separation section S1 via line 6.
  • the separation section S1 produces a fraction gas extracted by line 8, which essentially consists of hydrogen, of H 2 S and light hydrocarbons and a liquid fraction extracted via line 9.
  • the liquid fraction is then injected into a stabilization section C2 which extracts via line 15, at the top, the H 2 S dissolved in the hydrocarbons.
  • the gasoline recovered at the bottom of column C2 via line 16 can be sent directly to the gasoline pool.
  • a heavy gasoline, gasoline B circulating via line 3 is mixed with fresh hydrogen supplied via line 2.
  • the mixture thus formed is injected into the reaction section R2.
  • the effluent circulating via line 5 is cooled in the exchanger section E2 in order to condense the hydrocarbons then the mixture is injected into the separation section S2 via line 7.
  • the separation section S2 produces a fraction gas extracted by line 10, which essentially consists of hydrogen, H 2 S and light hydrocarbons and a liquid fraction extracted by line 11.
  • the liquid fraction is then injected into a stabilization section C3 which extracts by line 17, at the top, the H 2 S dissolved in the hydrocarbons.
  • the desulfurized heavy gasoline recovered via line 18 can be sent either to the gasoline pool or to a middle distillate pool.
  • the stabilization sections C2 and C3 each comprise a distillation column. It is advantageous, in order to limit the operating and investment costs, to combine the distillates from these two columns before cooling them in order to condense them, and to send them jointly to the reflux drum. Both columns can thus be operated with a common reflux section.
  • the hydrogens from separators S1 and S2 via lines 8 and 10 respectively are mixed before being treated in a common purification section C1 which consists of washing with an aqueous amine solution according to a technique well known to man. of career.
  • a common purification section C1 which consists of washing with an aqueous amine solution according to a technique well known to man. of career.
  • the make-up hydrogen is injected via line 12 upstream of purification section C1.
  • the hydrogen needed for treatment of gasoline B is then injected via line 19 into the hydrodesulphurization stage of reaction section R2.
  • FIG. 2 Another variant of the invention is presented on the figure 2 .
  • a fraction of the hydrogen from the separation section S1 via line 8 is injected, without purification treatment, into the reaction section R2 via line 21.
  • the picture 3 illustrates the sequences of the pretreatment stage consisting mainly of hydrogenating the diolefins and making the light sulfur compounds heavier and of the selective hydrodesulphurization stage.
  • the pretreatment stage R3 can be implemented either on the total gasoline injected via line 1, or on the gasoline recovered at the distillation head in column C4 via line 3. In the latter case, the gasoline A is sent directly to column C4 without pretreatment.
  • the hydrogen is injected via line 10, upstream of the pretreatment stage R3 which corresponds to the stage of selective hydrogenation and weighting of the saturated light sulfur compounds.
  • the gasoline produced is then distilled in two cuts in column C4, a heavy cut extracted by line 4 which corresponds to the heavy gasoline described in the text, and a lighter fraction recovered by line 3 which corresponds to the mixture of heart essence and light essence described in the text.
  • the light fraction is then distilled in a second column, C5 which makes it possible to separate the core gasoline which leaves via line 6 from the light gasoline which leaves via line 7.
  • the light gasoline recovered by line 7 is generally low in sulfur and can be sent directly to the gasoline pool without additional treatment.
  • the core and heavy gasolines recovered by lines 6 and 4 respectively are treated in one or more hydrodesulphurization sections in accordance with the invention and making it possible to recover a gasoline H via line 8 and a gasoline J via line 9 sent respectively to the gasoline pool and to the middle distillate pool.
  • the distillation column for the total gasoline injected via line 1 can be a single column with an internal wall.
  • This embodiment has the advantage of only sending into the pretreatment stage R3 a fraction of gasoline corresponding to the fraction freed from heavy gasoline, which reduces the quantities of gasoline to be treated, as well as the presence of potential contaminants from catalysts such as arsenic or silicon which are generally concentrated in the heavy fractions of gasoline.
  • Table 1 characteristics of distilled cuts at a1 a2 a3 a4 100% 85% 15% 92% 8% S ppm weight 390 253 1173 250 1875 BrN g/100g 41 46.5 11 43 6 RON 91.7 91.5 94.5 92.1 94.3 MY 80 81.3 82.8 81.9 82.9 Chopped off °C 6-236 6-188 188-235 6-209 209-235 -ppm weight is the weight content of sulfur in parts per million measured according to the ASTM method ASTM D-5453. -BrN (Bromine Number according to the Anglo-Saxon terminology) is the bromine index measured according to the ASTM D-1159 method.
  • HR806S catalyst sulfur catalyst based on cobalt and molybdenum
  • This catalyst has the particularity of being presulfided and preactivated ex situ. It therefore does not require an additional sulfurization step.
  • Gasoline a is mixed with hydrogen before being injected into the reactor.
  • the fuel flow is 400 ml/h and the hydrogen flow is 116 normal liters per hour.
  • the hydrogen flow is such that the H2/HC ratio in normal liters of hydrogen per liter of charge is equal to 290 NI/I.
  • the temperature is adjusted to 260° C. and the pressure to 2 MPa.
  • the gasoline produced, called c1 is cooled and stripped by a flow of hydrogen in order to eliminate dissolved H 2 S.
  • this gasoline contains 38 ppm of sulfur of which 14.0 ppm are in the form of mercaptans. Its Research Octane Number (RON) is 90.60 and its Motor Octane Number (MON) is 79.40.
  • 340 ml/h of a1 gasoline are mixed with 98 normal liters per hour of hydrogen and injected into a volume of 85 ml of HR806S catalyst.
  • the hydrogen flow is such that the H2/HC ratio in normal liters of hydrogen per liter of charge is equal to 300 NI/I.
  • the reactor temperature is adjusted to 260° C. and the pressure to 2 MPa.
  • the gasoline produced, called b1 contains 19 ppm of sulfur, including 8 ppm in the form of mercaptans.
  • 60 ml/h of a2 gasoline are mixed with 14.4 normal liters per hour of hydrogen and injected into a volume of 15 ml of HR806S catalyst.
  • the hydrogen flow rate is such that the H2/HC ratio in normal liters of hydrogen per liter of charge is equal to 240 NI/I.
  • the reactor temperature is adjusted to 260° C. and the pressure to 2 MPa.
  • the gasoline produced, called b2 contains 90 ppm of sulfur, including 4 ppm in the form of mercaptans.
  • the hydrogen flow rate is such that the H2/HC ratio in normal liters of hydrogen per liter of charge is equal to 290 NI/I.
  • the essences b1 and b2 are mixed up to 85% weight of essence b1 and 15% weight of essence b2.
  • the mixture thus formed, called c2 is analyzed. It contains 30 ppm of sulfur of which 8.0 ppm in the form of mercaptans. His its research octane number (RON) is 90.80 and its engine octane number (MON) is 79.50. Fraction b2 can also be sent to the very low sulfur middle distillate pool.
  • Gasoline b1 is obtained according to the preparatory mode described in example 2.
  • 60 ml/h of a2 gasoline are mixed with 6.3 normal liters per hour of hydrogen and injected into a volume of 15 ml of HR806S catalyst.
  • the hydrogen flow is such that the H2/HC ratio in normal liters of hydrogen per liter of charge is equal to 105 NI/I.
  • the reactor temperature is adjusted to 260° C. and the pressure to 2 MPa.
  • the gasoline produced, called b5 contains 135 ppm of sulfur, including 6 ppm in the form of mercaptans.
  • the essences b1 and b5 are mixed up to 85% weight of essence b1 and 15% weight of essence b5.
  • the mixture thus formed, called c4, is analyzed. It contains 36 ppm of sulfur including 8.0 ppm in the form of mercaptans. Its Research Octane Number (RON) is 90.90 and its Motor Octane Number (MON) is 79.60. Fraction b5 can also be sent to the very low sulfur middle distillate pool.
  • the hydrogen flow rate is such that the H2/HC ratio in normal liters of hydrogen per liter of charge is equal to 270 NI/I.
  • 368 ml/h of a3 gasoline are mixed with 108.2 normal liters per hour of hydrogen and injected into a volume of 92 ml of HR806S catalyst.
  • the hydrogen flow rate is such that the H2/HC ratio in normal liters of hydrogen per liter of charge is equal to 294 NI/I.
  • the reactor temperature is adjusted to 260°C.
  • the gasoline produced, called b3 contains 20 ppm of sulfur, including 7 ppm in the form of mercaptans.
  • the reactor temperature is adjusted to 260°C.
  • the gasoline produced, called b4 contains 140 ppm of sulfur, including 3 ppm in the form of mercaptans.
  • the b3 and b4 gasolines are mixed up to 92% by weight of b3 gasoline and 8% by weight of b4 gasoline.
  • the mixture thus formed, called c3 is analyzed. It contains 30 ppm of sulfur including 7.0 ppm in the form of mercaptans. Its Research Octane Number (RON) is 91.00 and its Motor Octane Number (MON) is 79.70. Fraction b4 can also be sent to the very low sulfur middle distillate pool.
  • the hydrogen flow rate is such that the H2/HC ratio in normal liters of hydrogen per liter of charge is equal to 290 NI/I.
  • 340 ml/h of gasoline a1 are mixed with 98.6 normal liters per hour of hydrogen and injected into a volume of 85 ml of HR806S catalyst.
  • the hydrogen flow rate is such that the H2/HC ratio in normal liters of hydrogen per liter of charge is equal to 290 NI/I.
  • the reactor temperature is adjusted to 260° C. and the pressure to 2 MPa.
  • the gasoline produced, called b6 contains 22 ppm of sulfur, including 9 ppm in the form of mercaptans.
  • 60 ml/h of a2 gasoline are mixed with 17.4 normal liters per hour of hydrogen and injected into a volume of 15 ml of HR806S catalyst.
  • the hydrogen flow is such that the H2/HC ratio in normal liters of hydrogen per liter of charge is equal to 290 NI/I.
  • the reactor temperature is adjusted to 260° C. and the pressure to 2 MPa.
  • the gasoline produced, called b7 contains 80 ppm of sulfur, including 4 ppm in the form of mercaptans.
  • the hydrogen flow rate is such that the H2/HC ratio in normal liters of hydrogen per liter of charge is equal to 290 NI/I.
  • the b6 and b7 gasolines are mixed up to 85% weight of b6 gasoline and 15% weight of b7 gasoline.
  • the mixture thus formed called c5 , is analyzed. It contains 31 ppm of sulfur including 8.3 ppm in the form of mercaptans. Its Research Octane Number (RON) is 90.65 and its Motor Octane Number (MON) is 79.40.
  • H2/HC (HDS2) relative to H2/HC (HDS1) in % ratio between the hydrogen flow rate expressed in normal m 3 per hour and the feed flow rate to be treated expressed in m 3 per hour at standard conditions as a percentage of ratio of flow rates used to desulphurize in the HDS1 hydrodesulphurization step
  • the hydrogen flow rate in the HDS2 hydrodesulfurization step is such that the ratio between the hydrogen flow rate expressed in normal m 3 per hour and the feed rate to be treated expressed in m 3 per hour at the conditions standards is less than 80% of the ratio of the flow rates used to desulphurize in the HDS1 hydrodesulphurization step (examples 2 and 4 a significant reduction in the sulfur and mercaptans 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

    Champ de l'invention
  • L'invention est relative à un procédé de production d'essences à faible teneur en soufre et en mercaptans qui comprend au moins deux étapes d'hydrodésulfuration opérées en parallèle sur deux coupes distinctes de l'essence. Ce procédé comprend éventuellement une section unique de purification et de recyclage de l'hydrogène. Une étape d'hydrodésulfuration correspond à une ou plusieurs sections d'hydrodésulfuration. Une section d'hydrodésulfuration correspond à un ou plusieurs lits.
  • Description de la problématique
  • La production de carburants pour les moteurs essences ou diesel répondant aux nouvelles normes d'environnement nécessite notamment que l'on diminue de façon importante leur teneur en soufre. En effet, les normes environnementales contraignent les raffineurs à abaisser la teneur en soufre dans le pool essence et gazole à des valeurs inférieures ou au plus égales à 50 ppm en 2005, et qui devront être ramenées à 10 ppm au premier janvier 2009 au sein de la communauté européenne.
  • La charge à traiter est généralement une coupe essence contenant du soufre telle que par exemple une coupe essence issue d'une unité de cokéfaction (coking), de viscoréduction (visbreaking), de vapocraquage ou de craquage catalytique (FCC). Ladite charge est de préférence constituée d'une coupe essence issue d'une unité de craquage catalytique dont l'intervalle de distillation est compris entre 0°C et 300°C et de préférence entre 0°C et 250°C. Dans la suite du texte on parlera de manière générale d'essence de craquage catalytique en élargissant cette définition à des essences pouvant contenir en plus d'une partie d'essence de craquage catalytique, des fractions d'essence issues d'autres unités de conversion.
  • Les essences de craquage catalytique peuvent constituer 30% à 50 % en volume du pool essence et présentent généralement des teneurs en mono-oléfines et en soufre élevées. Or le soufre présent dans les essences reformulées est imputable, à près de 90%, à l'essence issue du craquage catalytique. La désulfuration des essences, et principalement des essences de FCC, est donc d'une importance cruciale pour le respect des normes en vigueur et à venir. Toutefois, les mono-oléfines contenues dans l'essence contribuent de façon important à leur indice d'octane. Afin de maintenir l'indice d'octane des essences de craquage oléfinique à des valeurs élevées, il est nécessaire de limiter le taux d'hydrogénation des mono-oléfines lors du traitement des essences par hydrodésulfuration. Pour cela, des procédés dits d'hydrodésulfuration sélective ont été mis au point.
  • De plus, les essences désulfurées doivent également satisfaire aux spécifications en terme de pouvoir corrosif. Le pouvoir corrosif des essences est essentiellement dû à la présence de composés soufrés acides tels que les mercaptans. Les essences désulfurées doivent donc contenir peu de mercaptans pour limiter leur corrosivité. Or, il est maintenant connu que dans les unités d'hydrodésulfuration sélective des essences oléfiniques I'H2S présent dans le réacteur peut réagir avec les mono-oléfines non hydrogénées pour former des mercaptans. La fraction de mercaptans dans l'essence produite est généralement d'autant plus élevée que la teneur en soufre de l'essence est faible. Pour minimiser la teneur en mercaptans, il est en général préférable de travailler avec un fort débit d'hydrogène. Toutefois ceci induit des coûts important au niveau du compresseur, du recyclage et de la purification de l'hydrogène. Afin de répondre à ce problème, la présente invention présente une solution permettant de limiter la consommation énergétique du compresseur, tout en diminuant la teneur en mercaptans et en augmentant l'indice d'octane pour une teneur en soufre de l'essence désulfurée constante.
  • Par ailleurs l'évolution contrastée des marchés automobiles dans le monde pousse les raffineurs à rechercher la flexibilité maximale et donc la possibilité de maximiser la production de coupe gazole pour les véhicules à moteur diesel ou la production d'essence selon les circonstances. Ainsi, il peut être très avantageux, pour un raffineur, de disposer de la possibilité la plus économique possible d'envoyer la fraction lourde de l'essence, soit vers le pool essence, soit vers le pool distillats moyens en fonction de ses besoins.
  • En résumé, la présente invention propose une nouvelle solution pour répondre de manière économique à la triple problématique de la réduction de la teneur en soufre dans les carburants, de la limitation de la teneur en mercaptans dans les essences à faible teneur en soufre, et de la souplesse d'orientation de la production de carburants vers les coupes essences ou distillats moyens selon les besoins du marché. Par ailleurs, dans le contexte actuel de réduction des émissions de gaz à effet de serre, il est important d'intégrer à toute nouvelle idée la problématique du contrôle de la consommation énergétique. Le schéma de procédé décrit dans le cadre de cette invention est innovant car il permet de traiter, simultanément la triple problématique décrite ci-dessus, tout en limitant la consommation énergétique due à la nécessaire compression de l'hydrogène qui est recyclé dans les étapes d'hydrodésulfuration. On vise à obtenir des essences dont les couples indice d'octane recherche (RON), teneur en soufre [S] sont tels que RON• 90,70 et [S]• 50ppm, de préférence RON• 90,70 et [S]• 37ppm, de manière plus préférée RON• 90,75 et [S]• 35ppm et de manière très préférée RON• 90,80 et [S]<31ppm. De préférence, chaque couple sera associé à un indice d'octane moteur (MON) tel que MON• 79,45, de préférence tel que MON• 79,50, de manière encore plus préférée tel que MON• 79,55.
  • Examen de l'art antérieur.
  • La demande de brevet EP0725126-A1 décrit une méthode pour désulfurer les essences de craquage catalytique tout en limitant la perte d'octane par hydrogénation des mono-oléfines. Cette méthode consiste à distiller l'essence en plusieurs fractions, incluant au moins une fraction riche en composés difficiles à désulfurer choisis parmi les thiophène et alkylthiophènes, et une fraction riche en composés faciles à désulfurer choisis parmi le thiacyclopentane, les alkylthiacyclopentanes, le benzothiophène et les alkylbenzothiophènes. Au moins une de ces deux fractions est traitée par un procédé d'hydrodésulfuration puis est mélangée avec la fraction non traitée. Cette méthode présente l'inconvénient de nécessiter une analyse des différentes fractions avant traitement, et ne décrit pas comment choisir les fractions pour limiter la quantité de mercaptans dans le produit final désulfuré.
  • Le brevet US 6596157 B2 décrit un procédé de désulfuration de coupes essences issues d'unités de craquage basé sur le traitement, en parallèles de la fraction lourde de l'essence appelée HCN (Heavy Cat Naphta selon la terminologie anglosaxonne), dans des conditions d'hydrodésulfuration non sélective et de la fraction intermédiaire de l'essence appelée ICN (Intermediate Cat Naphta selon la terminologie anglosaxonne) dans des conditions d'hydrodésulfuration sélective, pour lequel l'essence intermédiaire (ICN) est chauffée par le flux de fraction lourde (HCN) hydrotraité.
  • Ce brevet ne décrit pas comment traiter les différentes coupes pour limiter la fraction de composés soufrés sous forme de mercaptans dans l'essence désulfurée. Par ailleurs, selon l'enseignement de ce brevet, la fraction légère de l'essence appelée LCN (Light Cat Naphta selon la terminologie anglosaxonne), doit généralement subir un traitement complémentaire de désulfuration, par exemple une extraction des mercaptans par lavage au moyen d'une solution contenant de la soude.
  • Concernant la problématique d'extraction des mercaptans dans les essences de craquage désulfurées, les solutions couramment envisagées décrites dans le brevet US 6960291 consistent à post traiter les essences issues d'hydrotraitement sélectif afin de les appauvrir en mercaptans. Les méthodes envisagées sont multiples. Citons par exemple, le brevet WO 01/79391 qui décrit des méthodes de traitement des essences partiellement désulfurées pour en diminuer la teneur en mercaptans sur la bases de différentes méthodes telles que l'adsorption, l'extraction par la soude, les traitements thermiques, etc ... Toutefois, ces méthodes présentent l'inconvénient qu'elles nécessitent la mise en œuvre d'une étape supplémentaire de traitement de l'essence et n'offrent pas la flexibilité d'envoyer certaines coupes, soit dans le pool essence, soit dans le pool distillats moyens.
  • La demande de brevet US 2003/0042175 décrit une méthode de désulfuration des essences de craquage comprenant différentes étapes de traitement pour diminuer la teneur en soufre. Ce procédé comprend une étape d'hydrogénation des dioléfines, une étape de transformation des composés soufrés légers par alourdissement, une étape de distillation de l'essence en plusieurs coupes et au moins une étape de désulfuration d'au moins une partie de la fraction lourde de l'essence produite. Toutefois, ce brevet n'enseigne pas comment traiter les essences pour minimiser la teneur en mercaptans de l'essence désulfurée, ni comment traiter l'hydrogène issu des étapes d'hydrodésulfuration.
  • Description de l'invention :
  • L'invention est basée sur le traitement différencié de différentes coupes constituant la coupe essence.
  • L'invention concerne un procédé de production d'essences à faible teneur en soufre et en mercaptans selon l'objet de la revendication 1.
  • Il est connu que dans les essences de craquage catalytique, les fractions légères sont riches en mono-oléfines et en composés soufrés saturés tels que les mercaptans et les sulfures. Par fraction légère, on entend les fractions essences dont le point d'ébullition est inférieur à 100°C, de préférence à 80°C et de façon très préférée à 65°C. La fraction lourde de l'essence est quant à elle riche en composés soufrés de type benzothiophèniques tels que le benzothiophène et les alkylbenzothiophènes et à un degré moindre est riche en alkylthiophéniques. Par ailleurs, elle est riche en composés aromatiques et pauvre en composés oléfiniques. La fraction lourde de l'essence est constituée des hydrocarbures dont la température d'ébullition est supérieure à 160°C, de préférence à 180°C et de façon très préférée à 207°C. Cette fraction lourde de l'essence est généralement celle qui contient le plus de soufre. La fraction lourde de l'essence peut être incorporée, soit dans le pool essence, soit dans la fraction distillats moyens pour produire des kérosènes ou des gazoles. La fraction de cœur correspond à la fraction intermédiaire entre la fraction légère et la fraction lourde. La fraction de cœur de l'essence est riche en mono-oléfines et en composés soufrés de types thiophéniques parmi lesquels, le thiophène, les méthyl-thiophènes et autres alkylthiophènes.
  • Généralement, les différentes fractions de l'essence sont obtenues par distillation de l'effluent de l'unité de craquage catalytique.
  • Le mélange constitué de la fraction légère de l'essence et de la fraction intermédiaire ou la fraction intermédiaire seule est traité dans une première étape d'hydrodésulfuration appelée HDS1. Cette étape consiste à mettre en contact l'essence à traiter avec de l'hydrogène, dans un ou plusieurs réacteurs d'hydrodésulfuration en série, contenant un ou plusieurs catalyseurs adaptés pour réaliser l'hydrodésulfuration de façon sélective, c'est-à-dire avec un taux d'hydrogénation des mono-oléfines inférieur à 60%, de préférence inférieur à 50% et de façon très préférée inférieure à 40%.
  • La pression d'opération de cette étape est comprise entre 0,5 MPa et 5 MPa, et de préférence entre 1 MPa et 3 MPa. La température est comprise entre 200°C et 400°C et de préférence entre 220°C et 380°C. Dans le cas où le traitement est effectué dans plusieurs réacteurs en série, la température moyenne d'opération de chaque réacteur sera supérieure d'au moins 5°C, de préférence d'au moins 10°C et de façon très préférée d'au moins 15°C à la température d'opération du réacteur qui le précède.
  • La quantité de catalyseur mise en œuvre dans chaque réacteur est telle que le rapport entre le débit d'essence à traiter exprimé en m3 par heure aux conditions standards, par m3 de catalyseur (également appelé vitesse spatiale) est compris entre 0,5 h-1 et 20 h-1 et de préférence entre 1 h-1 et 15 h-1. De façon très préférée, le premier réacteur sera opéré avec une vitesse spatiale comprise entre 2 h-1 et 8 h-1.
  • Le débit d'hydrogène est tel que le rapport entre le débit d'hydrogène exprimé en normaux m3 par heure (Nm3/h) et le débit de charge à traiter exprimé en m3 par heure aux conditions standards est compris entre 50 Nm3/m3 et 1000 Nm3/m3, de préférence entre 70 Nm3/m3 et 800 Nm3/m3.
  • Le taux de désulfuration atteint au cours de l'étape HDS1 est supérieur à 80% et de préférence supérieur à 90%.
  • Après l'étape d'hydrodésulfuration, le mélange réactionnel est refroidi, à une température inférieure à 60°C afin de condenser les hydrocarbures. Les phases gaz et liquide sont séparées dans un séparateur. La fraction liquide qui contient l'essence désulfurée ainsi qu'une fraction de I'H2S dissout est envoyée vers une section de strippage, la fraction gazeuse constituée principalement d'hydrogène et qui contient la majorité de I'H2S est envoyée vers une section de purification.
  • La fraction lourde de l'essence est traitée dans une étape distincte d'hydrodésulfuration appelée HDS2. Cette étape consiste à mettre en contact l'essence à traiter avec de l'hydrogène, dans un ou plusieurs réacteurs en série d'hydrodésulfuration contenant un ou plusieurs catalyseurs adaptés pour réaliser l'hydrodésulfuration. De façon préférée, on réalisera l'hydrodésulfuration de l'essence lourde en une seule étape, sur un seul réacteur. L'hydrodésulfuration peut être réalisée de façon sélective ou non sélective. Dans le premier cas, le taux d'hydrogénation des mono-oléfines est inférieur à 90%, de préférence inférieur à 80% et de façon très préférée inférieure à 60%.
  • La pression d'opération de cette étape est comprise entre 0,5 MPa et 10 MPa, et de préférence entre 1 MPa et 8 MPa. La température est comprise entre 220°C et 450°C et de préférence entre 250°C et 380°C. Dans le cas où le traitement est effectué dans plusieurs réacteurs en série, la température moyenne d'opération de chaque réacteur sera supérieure d'au moins 5°C, de préférence d'au moins 10°C et de façon très préférée d'au moins 15°C à la température d'opération du réacteur qui le précède.
  • La quantité de catalyseur mis en œuvre dans chaque réacteur est tel que le rapport entre le débit d'essence à traiter exprimé en m3 par heure aux conditions standards, par m3 de catalyseur (également appelé vitesse spatiale) est compris entre 0,3 h-1 et 20 h-1 et de préférence entre 0,5 h-1 et 15 h-1. De façon très préférée, le premier réacteur sera opéré avec une vitesse spatiale comprise entre 1 h-1 et 8 h-1.
  • Le débit d'hydrogène est tel que le rapport entre le débit d'hydrogène exprimé en normaux m3 par heure (Nm3/h) et le débit de charge à traiter exprimé en m3 par heure aux conditions standards est compris entre 30 Nm3/m3 et 800 Nm3/m3, de préférence entre 50 Nm3/m3 et 500 Nm3/m3. Ce rapport sera inférieur à 80% du rapport des débits mis en œuvre pour désulfurer dans l'étape d'hydrodésulfuration HDS1, de façon préféré inférieur à 60%, de façon très préféré inférieur à 50 % et de manière encore plus préférée inférieur à 40% du rapport des débits mis en œuvre pour désulfurer dans l'étape d'hydrodésulfuration HDS1.
  • Après l'étape d'hydrodésulfuration, le mélange réactionnel est refroidi, à une température inférieure à 60°C afin de condenser les hydrocarbures. Les phases gaz et liquide sont séparées dans un séparateur. La fraction liquide qui contient l'essence désulfurée ainsi qu'une fraction de I'H2S dissout est envoyée vers une section de stripage, la fraction gazeuse constituée principalement d'hydrogène et qui contient la majorité de I'H2S est envoyée vers une section de purification.
  • Tout catalyseur présentant une bonne sélectivité vis-à-vis des réactions d'hydrodésulfuration peut être utilisé dans les étapes HDS1 ou HDS2. A titre d'exemple, on utilisera des catalyseurs comprenant un support minéral amorphe et poreux choisi dans le groupe constitué par les alumines, le carbure de silicium, la silice, les silice-alumines ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l'alumine ou la silice-alumine. Il est de préférence choisi dans le groupe constitué par la silice, la famille des alumines de transition et les silice-alumines. De manière très préférée, le support est essentiellement constitué par au moins une alumine de transition, c'est-à-dire qu'il comprend au moins 51 % poids, de préférence au moins 60 % poids, de manière très préféré au moins 80 % poids, voire au moins 90 % poids d'alumine de transition. Il peut éventuellement être constitué uniquement d'une alumine de transition.
  • La surface spécifique du support est généralement inférieure à 200 m2/g et de manière préférée inférieure à 150 m2/g. La porosité du catalyseur avant sulfuration est telle que celui-ci possède un diamètre moyen de pores supérieur à 20 nm, de manière préférée supérieur à 25 nm voire 30 nm et souvent compris entre 20 et 140 nm, de préférence entre 20 et 100 nm, et très préférentiellement entre 25 et 80 nm. Le diamètre de pore a été mesuré par porosimétrie au mercure selon la norme ASTM D4284-92 avec un angle de mouillage de 140°.
  • Le catalyseur d'hydrodésulfuration contient au moins un métal du groupe VI et/ou au moins un métal du groupe VIII sur un support. Le métal du groupe VI est généralement le molybdène ou le tungstène le métal du groupe VIII généralement le nickel ou le cobalt. La densité surfacique du métal du groupe VI est comprise selon l'invention entre 2.10-4 et 4,0.10-3 gramme d'oxyde dudit métal par m2 de support, de préférence entre 4.10-4 et 1,6.10-3 g/m2.
  • Dans le cas éventuel d'un enchaînement de catalyseur, le procédé comprend une succession d'étapes d'hydrodésulfuration, telle que l'activité du catalyseur d'une étape n+1 est comprise entre 1% et 90% de l'activité du catalyseur de l'étape n.
  • Il est toutefois possible d'utiliser un catalyseur non sélectif dans l'étape HDS2. A titre d'exemple, on utilisera des catalyseurs comprenant un support minéral amorphe et poreux choisi dans le groupe constitué par les alumines, le carbure de silicium, la silice, les silice-alumines ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l'alumine ou la silice-alumine. Il est de préférence choisi dans le groupe constitué par la silice, la famille des alumines de transition et les silice-alumines. De manière très préférée, le support est essentiellement constitué par au moins une alumine de transition, c'est-à-dire qu'il comprend au moins 51 % poids, de préférence au moins 60 % poids, de manière très préféré au moins 80 % poids, voire au moins 90 % poids d'alumine de transition. Il peut éventuellement être constitué uniquement d'une alumine de transition. Le catalyseur d'hydrodésulfuration contient au moins un métal du groupe VI et/ou au moins un métal du groupe VIII sur un support. Le métal du groupe VI est généralement le molybdène ou le tungstène et le métal du groupe VIII est généralement le nickel ou le cobalt. Le caractère sélectif ou non du catalyseur d'hydrodésulfuration, au sens défini précédemment dans la description de l'invention, dépend généralement de la composition et du mode de préparation dudit catalyseur. Des manières simples de faire varier la sélectivité consistent, par exemple, à modifier les teneurs en métaux du groupe VIII et du groupe VI ou éventuellement le rapport molaire entre les quantités de métaux du groupe VIII et du groupe VI pour un support donné ou à faire varier la surface spécifique du support pour des teneurs en métaux constantes.
  • Selon un mode de réalisation préféré de l'invention, l'hydrogène en excès issu des étapes d'hydrodésulfuration HDS1 et HDS2 peut être rassemblé et traité dans une section de purification unique. L'hydrogène ainsi purifié est alors recyclé vers au moins une des étapes d'hydrodésulfuration HDS1 et HDS2 après une étape de compression pour compenser les pertes de charge à travers le procédé. Un appoint d'hydrogène frais est réalisé, soit avant, soit après l'étape de compression afin de compenser la consommation d'hydrogène dans les réacteurs d'hydrodésulfuration.
  • Il est possible d'envisager d'admettre au moins tout l'hydrogène nécessaire aux réactions intervenant dans les deux étapes d'hydrodésulfurations à travers l'une seule des étapes d'hydrodésulfurations, de préférence HDS2. A ces fins, la totalité de l'alimentation en hydrogène nécessaire aux étapes HDS1 et HDS2 est alors envoyé dans une seule de ces étapes, de préférence HDS2 et la purge gaz de cette étape est envoyée au traitement de purification dont le produit gazeux purifié n'est recyclé qu'à l'autre étape d'hydrodésulfuration. Ce type de schéma permet de minimiser le débit d'hydrogène recyclé passant par le compresseur dans le cas où tout l'hydrogène consommé dans les deux étapes d'hydrodésulfurations est envoyé à travers l'unité HDS2 et la purge gaz de cette unité est envoyée au traitement de purification dont le produit gaz purifié n'est recyclé qu'à l'étape HDS1. En effet, l'unité HDS1 nécessitant un débit d'hydrogène moindre par rapport à l'unité HDS2, moins d'hydrogène a besoin d'être recyclé par le compresseur et ainsi la consommation énergétique du compresseur est moindre.
  • Il est possible d'envisager un traitement combiné sur les fractions vapeurs issues des deux colonnes de stripage dédiées à chaque étape d'hydrodésulfuration (refroidissement, recyclage du liquide condensé vers chacune des colonnes de stripage et purge combinée de gaz riche en H2S envoyé vers une étape de purification.
  • Dans le cas ou le produit de l'étape d'hydrodésulfuration HDS2 est envoyé au pool diesel, le fait de disposer d'une étape HDS2 dédiée à l'essence lourde permet de ne pas co-mélanger cette essence avec des coupes distillats moyens dans un autre hydrotraitement donc de libérer de la capacité dans le dit hydrotraitement et par voie de conséquence d'augmenter la capacité de production de la raffinerie.
  • Il est possible, tout en restant dans le cadre de l'invention, de mettre en œuvre un prétraitement de la charge dont le but est principalement :
    • d'hydrogéner sélectivement les dioléfines en mono-oléfines
    • de transformer les composés soufrés légers saturés et principalement les mercaptans, en sulfures ou mercaptans plus lourds par réaction avec les mono-oléfines
  • Les réactions d'hydrogénation des dioléfines en mono-oléfines sont illustrées ci-dessous par la transformation du 1,3 pentadiène, composé instable qui peut facilement polymériser, en pent-2-ène par réaction d'addition d'hydrogène. Toutefois, on cherche à limiter les réactions secondaires d'hydrogénation des mono-oléfines qui dans l'exemple ci-dessous conduiraient à la formation de n-pentane.
    Figure imgb0001
  • Les composés soufrés que l'on cherche à transformer sont principalement les mercaptans et sulfures. La réaction principale de transformation des mercaptans consiste en une thioéthérification des mono-oléfines par les mercaptans. Cette réaction est illustrée ci-dessous par l'addition du propane-2-thiol sur le pent-2-ène pour former un propyl pentyl sulfure.
    Figure imgb0002
  • En présence d'hydrogène, la transformation des composés soufrés peut également passer par la formation intermédiaire de sulfure d'hydrogène qui peut ensuite s'additionner sur les composés insaturés présents dans la charge. Cette voie est toutefois minoritaire dans les conditions préférées de la réaction. Outre les mercaptans, les composés susceptibles d'être ainsi transformés et alourdis sont les sulfures et principalement le diméthyl sulfure, le méthyl éthyl sulfure, le diéthyl sulfure, le CS2, le COS, le thiophane et le méthyl thiophane.
  • Dans certains cas, on peut également observer des réactions d'alourdissement des composés azotés légers, et principalement des nitriles, du pyrrole et de ses dérivés.
  • Cette étape de prétraitement consiste à mettre en contact la charge à traiter avec un flux d'hydrogène et avec un catalyseur contenant au moins un métal du groupe VIb (groupe 6 selon la nouvelle notation de la classification périodique des éléments : Handbook of Chemistry and Physics, 76ième édition, 1995-1996) et au moins un métal du groupe VIII, (groupes 8, 9 et 10) de ladite classification, déposés sur un support poreux.
  • Le catalyseur selon l'invention peut être préparé au moyen de toute technique connue de l'homme du métier, et notamment par imprégnation des éléments des groupes VIII et VIb sur le support sélectionné. Cette imprégnation peut par exemple être réalisée selon le mode de préparation connu de l'homme du métier sous la terminologie d'imprégnation à sec, dans lequel on introduit juste la quantité d'éléments désirés sous forme de sels solubles dans un solvant choisi, par exemple de l'eau déminéralisée, de façon à remplir aussi exactement que possible la porosité du support. Le support ainsi rempli par la solution est de préférence séché. Le support préféré est l'alumine qui peut être préparée à partir de tout type de précurseurs et outils de mise en forme connus de l'homme de métier.
  • Le catalyseur est habituellement utilisé sous une forme sulfurée obtenue après traitement en température au contact d'un composé organique soufré décomposable et générateur de sulfure d'hydrogène (H2S) ou directement au contact d'un flux gazeux d'H2S dilué dans H2. Cette étape peut être réalisée in situ ou ex situ (c'est à dire à l'intérieur ou à l'extérieur du réacteur d'hydrodésulfuration) à des températures comprises entre 200 et 600°C et plus préférentiellement entre 300 et 500°C.
  • La charge à traiter est mélangée à de l'hydrogène avant d'être mise en contact avec le catalyseur. La quantité d'hydrogène injectée est telle que le rapport molaire entre l'hydrogène et les dioléfines à hydrogéner soit supérieur à 1 (stoechiométrie) et inférieure à 10, et de préférence compris entre 1 et 5 mole/mole. Un trop large excès d'hydrogène peut entraîner une forte hydrogénation des mono-oléfines et par voie de conséquence, une diminution de l'indice d'octane de l'essence. La totalité de la charge est généralement injectée à l'entrée du réacteur. Toutefois, il peut être avantageux, dans certains cas d'injecter une fraction ou la totalité de la charge entre deux lits catalytiques consécutifs placés dans le réacteur. Ce mode de réalisation permet notamment de continuer à opérer le réacteur si l'entrée du réacteur se trouve bouchée par dépôts de polymères, de particules, ou de gommes présentes dans la charge.
  • Le mélange constitué de l'essence et de l'hydrogène est mis en contact avec le catalyseur à une température comprise entre 80°C et 250°C, et de préférence entre 90°C et 220°C, avec une vitesse spatiale liquide (LHSV) comprise entre 1h-1 et 10 h-1, l'unité de la vitesse spatiale liquide étant le litre de charge par litre de catalyseur et par heure (I.I-1.h-1). La pression est ajustée afin que le mélange réactionnel soit majoritairement sous forme liquide dans le réacteur. La pression est comprise entre 0,5 MPa et 5 MPa et de préférence entre 1 et 4 MPa.
  • L'essence traitée dans les conditions énoncées ci-dessus, présente une teneur en dioléfines et en mercaptans réduite. Généralement, l'essence produite contient moins de 1 % poids de dioléfines, et de préférence moins de 0,5 % poids de dioléfines. Les composés soufrés légers dont la température d'ébullition est inférieure à celle du thiophène (84°C) sont généralement convertis à plus de 50%. Il est donc possible de séparer la fraction légère de l'essence par distillation et d'envoyer directement cette fraction au pool essence sans traitement complémentaire.
  • Les modes de réalisation préférés du procédé de la présente invention sont illustrés sur la figure 1, la figure 2 et la figure 3.
  • Description de la figure 1 :
  • Une essence de cœur, l'essence A circulant par la ligne 1 est mélangée à de l'hydrogène issu du compresseur de recycle P1, par la ligne 20. Le mélange ainsi constitué est injecté dans la section réactionnelle R1. L'effluent circulant par la ligne 4 est refroidi dans la section d'échangeurs E1 afin de condenser les hydrocarbures puis le mélange est injecté dans la section de séparation S1 par l'intermédiaire de la ligne 6. La section de séparation S1 produit une fraction gazeuse extraite par la ligne 8, qui est essentiellement constituée d'hydrogène, d'H2S et d'hydrocarbures légers et une fraction liquide extraite par la ligne 9. La fraction liquide est ensuite injectée dans une section de stabilisation C2 qui extrait par la ligne 15, en tête, I'H2S dissout dans les hydrocarbures. L'essence récupérée en fond de colonne C2 par la ligne 16 peut être envoyée directement au pool essence.
  • Une essence lourde, l'essence B circulant par la ligne 3 est mélangée à de l'hydrogène frais apporté par la ligne 2. Le mélange ainsi constitué est injecté dans la section réactionnelle R2. L'effluent circulant par la ligne 5 est refroidi dans la section d'échangeurs E2 afin de condenser les hydrocarbures puis le mélange est injecté dans la section de séparation S2 par l'intermédiaire de la ligne 7. La section de séparation S2 produit une fraction gazeuse extraite par la ligne 10, qui est essentiellement constituée d'hydrogène, d'H2S et d'hydrocarbures légers et une fraction liquide extraite par la ligne 11. La fraction liquide est ensuite injectée dans une section de stabilisation C3 qui extrait par la ligne 17, en tête, I'H2S dissout dans les hydrocarbures. L'essence lourde désulfurée récupérée par la ligne 18 peut être envoyée, soit vers le pool essence, soit vers un pool de distillats moyens.
  • Les sections de stabilisation C2 et C3 comprennent chacune une colonne de distillation. Il est avantageux, pour limiter les coûts opératoires et d'investissement, de rassembler les distillats de ces deux colonnes avant de les refroidir pour les condenser, et de les envoyer conjointement vers le ballon de reflux. Les deux colonnes peuvent ainsi être opérés avec une section de reflux commune.
  • Les hydrogènes issus des séparateurs S1 et S2 respectivement par les lignes 8 et 10 sont mélangés avant d'être traités dans une section commune de purification C1 qui consiste en un lavage par une solution aqueuse d'amine selon une technique bien connue de l'homme du métier. Après purification, l'hydrogène débarrassé de I'H2S et circulant par la ligne 13 et compressée dans un compresseur de recycle P1 et est ensuite mélangé à l'essence A par la ligne 20.
  • Selon une autre variante de l'invention, l'hydrogène d'appoint est injecté par la ligne 12 en amont de la section de purification C1. L'hydrogène nécessaire au traitement de l'essence B est alors injecté par la ligne 19 dans l'étape d'hydrodésulfuration de la section réactionnelle R2.
  • Description de la figure 2
  • Les chiffres utilisés sur cette figure correspondent à ceux utilisés pour la figure 1.
  • Une autre variante de l'invention est présentée sur la figure 2. Selon cette variante, une fraction de l'hydrogène issu de la section de séparation S1 via la ligne 8 est injecté, sans traitement de purification, dans la section réactionnelle R2 par l'intermédiaire de la ligne 21.
  • Description de la figure 3
  • La figure 3 illustre les enchaînements de l'étape de prétraitement consistant principalement à hydrogéner les dioléfines et alourdir les composés soufrés légers et de l'étape d'hydrodésulfuration sélective.
  • L'étape de prétraitement R3 peut être mise en œuvre, soit sur l'essence totale injectée par la ligne 1, soit sur l'essence récupérée en tête de distillation dans la colonne C4 par la ligne 3. Dans ce dernier cas, l'essence A est envoyée directement dans la colonne C4 sans prétraitement.
  • Lorsque le prétraitement est appliqué sur l'essence totale, l'hydrogène est injecté par la ligne 10, en amont de l'étape de prétraitement R3 qui correspond à l'étape d'hydrogénation sélective et d'alourdissement des composés soufrés légers saturés. L'essence produite est alors distillée en deux coupes dans la colonne C4, une coupe lourde extraite par la ligne 4 qui correspond à l'essence lourde décrite dans le texte, et une fraction plus légère récupérée par la ligne 3 qui correspond au mélange de l'essence de cœur et de l'essence légère décrit dans le texte. La fraction légère est ensuite distillée dans une deuxième colonne, C5 qui permet de séparer l'essence de cœur qui sort via la ligne 6 de l'essence légère qui sort via la ligne 7. L'essence légère récupérée par la ligne 7 est généralement pauvre en soufre et peut être envoyée directement au pool essence sans traitement complémentaire.
  • Les essences de cœur et lourde récupérée respectivement par les lignes 6 et 4 sont traités dans une ou plusieurs sections d'hydrodésulfuration conforme à l'invention et permettant de récupérer une essence H via la ligne 8 et une essence J via la ligne 9 envoyées respectivement vers le pool essence et vers le pool distillat moyen.
  • Il peut être avantageux de produire les trois coupes essences décrites dans une seule colonne munie d'un soutirage latéral duquel on extrait l'essence de cœur. Selon un autre mode de réalisation de l'invention, la colonne de distillation de l'essence totale injectée par la ligne 1 peut être une colonne unique à paroi interne.
  • Lorsque l'étape de prétraitement R3 est appliquée sur l'essence de la ligne 3, l'hydrogène est injecté par la ligne 11. Ce mode de réalisation présente l'avantage de n'envoyer dans l'étape de prétraitement R3 qu'une fraction de l'essence correspondant à la fraction débarrassée de l'essence lourde, ce qui diminue les quantités d'essence à traiter, ainsi que la présence de contaminants potentiels des catalyseurs tels que l'arsenic ou le silicium qui sont généralement concentrées dans les fractions lourdes de l'essence.
  • Exemples : Préparation des charges:
  • Une essence a, dont les températures d'ébullition sont comprises entre 6°C et 236°C issue d'une unité de craquage catalytique est distillée dans une colonne de distillation en discontinu afin de produire quatre coupes :
    • Une coupe a1 correspondant à la fraction 6°C - 188°C
    • Une coupe a2 correspondant à la fraction 188°C - 236°C
    • Une coupe a3 correspondant à la fraction 6°C - 209°C
    • Une coupe a4 correspondant à la fraction 209°C - 236°C
  • Les caractéristiques des différentes coupes sont rassemblées dans le tableau 1. Tableau 1: caractéristiques des coupes distillées
    a a1 a2 a3 a4
    100% 85% 15% 92% 8%
    S ppm poids 390 253 1173 250 1875
    BrN g/100g 41 46,5 11 43 6
    RON 91,7 91,5 94,5 92,1 94,3
    MON 80 81,3 82,8 81,9 82,9
    Coupe °C 6-236 6-188 188-235 6-209 209-235
    -ppm poids est la teneur pondérale en soufre en partie part millions mesurée selon la méthode ASTM ASTM D-5453.
    -BrN (Bromine Number selon la terminologie anglo-saxonne) est l'indice de brome mesuré selon la méthode ASTM D-1159.
  • Exemple 1 (comparatif):
  • Un volume de 100 ml de catalyseur HR806S (catalyseur soufré à base de cobalt et de molybdène) commercialisé pas la société Axens est chargé dans le réacteur d'une unité pilote. Ce catalyseur présente la particularité d'être présulfuré et préactivé ex situ. Il ne nécessite donc pas d'étape complémentaire de sulfuration.
  • L'essence a est mélangée à de l'hydrogène avant d'être injectée dans le réacteur. Le débit d'essence est de 400 ml/h et le débit d'hydrogène est de 116 normaux litres par heure. Le débit d'hydrogène est tel que le rapport H2/HC en normaux litres d'hydrogènes par litre de charge est égal à 290 NI/I. La température est ajustée à 260°C et la pression à 2 MPa. L'essence produite appelée c1 est refroidie et strippée par un flux d'hydrogène afin d'éliminer I'H2S dissout.
  • Après analyse, cette essence contient 38 ppm de soufre dont 14,0 ppm sont sous forme de mercaptans. Son indice d'octane recherche (RON) est de 90,60 et son indice d'octane moteur (MON) est de 79,40.
  • Exemple 2 (comparatif):
  • 340 ml/h d'essence a1 sont mélangés à 98 normaux litres par heure d'hydrogène et injectés sur un volume de 85 ml de catalyseur HR806S. Le débit d'hydrogène est tel que le rapport H2/HC en normaux litres d'hydrogènes par litre de charge est égal à 300 NI/I. La température du réacteur est ajustée à 260°C et la pression à 2MPa. L'essence produite appelée b1 contient 19 ppm de soufre dont 8 ppm sous forme de mercaptans.
  • 60 ml/h d'essence a2 sont mélangés à 14,4 normaux litres par heure d'hydrogène et injectés sur un volume de 15 ml de catalyseur HR806S. Le débit d'hydrogène est tel que le rapport H2/HC en normaux litres d'hydrogènes par litre de charge est égal à 240 NI/I. La température du réacteur est ajustée à 260°C et la pression à 2MPa. L'essence produite appelée b2 contient 90 ppm de soufre dont 4 ppm sous forme de mercaptans.
  • Au global, pour le traitement des coupes a1 et a2, le débit d'hydrogène est tel que le rapport H2/HC en normaux litres d'hydrogènes par litre de charge est égal à 290 NI/I.
  • Les essences b1 et b2 sont mélangées à hauteur de 85% poids d'essence b1 et 15% poids d'essence b2. Le mélange ainsi constitué appelé c2 est analysé. Il contient 30 ppm de soufre dont 8,0 ppm sous forme de mercaptans. Son indice d'octane recherche (RON) est de 90,80 et son indice d'octane moteur (MON) est de 79,50. La fraction b2 peut également être envoyée au pool distillat moyen à très basse teneur en soufre.
  • En comparant les essences c1 et c2 produites dans les exemples 1 et 2, il apparaît que le traitement en parallèle des essences séparées en deux coupes distinctes tout en maintenant, au global, le même débit d'hydrogène permet d'améliorer l'indice d'octane de l'essence désulfurée, mais surtout de diminuer significativement la teneur en mercaptans.
  • Exemple 3 (selon l'invention):
  • L'essence b1 est obtenue selon le mode préparatoire décrit dans l'exemple 2.
  • 60 ml/h d'essence a2 sont mélangés à 6,3 normaux litres par heure d'hydrogène et injectés sur un volume de 15 ml de catalyseur HR806S. Le débit d'hydrogène est tel que le rapport H2/HC en normaux litres d'hydrogènes par litre de charge est égal à 105 NI/I. La température du réacteur est ajustée à 260°C et la pression à 2MPa. L'essence produite appelée b5 contient 135 ppm de soufre dont 6 ppm sous forme de mercaptans.
  • Les essences b1 et b5 sont mélangées à hauteur de 85% poids d'essence b1 et 15% poids d'essence b5. Le mélange ainsi constitué appelé c4 est analysé. Il contient 36 ppm de soufre dont 8,0 ppm sous forme de mercaptans. Son indice d'octane recherche (RON) est de 90,90 et son indice d'octane moteur (MON) est de 79,60. La fraction b5 peut également être envoyée au pool distillat moyen à très basse teneur en soufre.
  • Au global, pour le traitement des coupes a1 et a2, le débit d'hydrogène est tel que le rapport H2/HC en normaux litres d'hydrogènes par litre de charge est égal à 270 NI/I.
  • Exemple 4 (comparatif):
  • 368 ml/h d'essence a3 sont mélangés à 108,2 normaux litres par heure d'hydrogène et injectés sur un volume de 92 ml de catalyseur HR806S. Le débit d'hydrogène est tel que le rapport H2/HC en normaux litres d'hydrogènes par litre de charge est égal à 294 NI/I.La température du réacteur est ajustée à 260°C. L'essence produite appelée b3 contient 20 ppm de soufre dont 7 ppm sous forme de mercaptans.
  • 32 ml/h d'essence a4 sont mélangés à 7,5 normaux litres par heure d'hydrogène et injectés sur un volume de 8 ml de catalyseur HR806S. Le débit d'hydrogène est tel que le rapport H2/HC en normaux litres d'hydrogènes par litre de charge est égal à 234 NI/I.
  • La température du réacteur est ajustée à 260°C. L'essence produite appelée b4 contient 140 ppm de soufre dont 3 ppm sous forme de mercaptans.
  • Les essences b3 et b4 sont mélangées à hauteur de 92% poids d'essence b3 et 8% poids d'essence b4. Le mélange ainsi constitué appelé c3 est analysé. Il contient 30 ppm de soufre dont 7,0 ppm sous forme de mercaptans. Son indice d'octane recherche (RON) est de 91,00 et son indice d'octane moteur (MON) est de 79,70. La fraction b4 peut également être envoyée au pool distillat moyen à très basse teneur en soufre.
  • Au global, pour le traitement des coupes a3 et a4, le débit d'hydrogène est tel que le rapport H2/HC en normaux litres d'hydrogènes par litre de charge est égal à 290 NI/I.
  • En comparant les exemples 2 et 4, il est clair qu'il est avantageux de séparer de l'essence une fraction lourde dont la température d'ébullition est supérieur à 209°C pour la traiter dans une section d'hydrodésulfuration indépendante, car cela permet d'améliorer l'indice d'octane de l'essence désulfurée et d'en diminuer la teneur en mercaptans.
  • Exemple 5 (comparatif):
  • 340 ml/h d'essence a1 sont mélangés à 98,6 normaux litres par heure d'hydrogène et injectés sur un volume de 85 ml de catalyseur HR806S. Le débit d'hydrogène est tel que le rapport H2/HC en normaux litres d'hydrogènes par litre de charge est égal à 290 NI/I.La température du réacteur est ajustée à 260°C et la pression à 2MPa. L'essence produite appelée b6 contient 22 ppm de soufre dont 9 ppm sous forme de mercaptans.
  • 60 ml/h d'essence a2 sont mélangés à 17,4 normaux litres par heure d'hydrogène et injectés sur un volume de 15 ml de catalyseur HR806S. Le débit d'hydrogène est tel que le rapport H2/HC en normaux litres d'hydrogènes par litre de charge est égal à 290 NI/I. La température du réacteur est ajustée à 260°C et la pression à 2MPa. L'essence produite appelée b7 contient 80 ppm de soufre dont 4 ppm sous forme de mercaptans.
  • Au global, pour le traitement des coupes a1 et a2, le débit d'hydrogène est tel que le rapport H2/HC en normaux litres d'hydrogènes par litre de charge est égal à 290 NI/I.
  • Les essences b6 et b7 sont mélangées à hauteur de 85% poids d'essence b6 et 15% poids d'essence b7. Le mélange ainsi constitué appelé c5 est analysé. Il contient 31 ppm de soufre dont 8,3 ppm sous forme de mercaptans. Son indice d'octane recherche (RON) est de 90,65 et son indice d'octane moteur (MON) est de 79,40. Tableau 2: comparaison des performances obtenues
    Exemple 1 comparatif 2 comparatif 3 invention 4 comparatif 5 comparatif
    Point de coupe (°C) Non 188 188 209 188
    H2/HC (HDS2) par rapport H2/HC (HDS 1) en % Non 80 35 80 100
    teneur en soufre (en ppm) 38 30 36 30 31
    teneur en mercaptans (en ppm) 14,0 8,0 8,0 7,0 8,3
    RON 90,60 90,80 90,90 91,00 90,65
    MON 79,40 79,50 79,60 79,70 79,40
  • H2/HC (HDS2) par rapport H2/HC (HDS1) en %: rapport entre le débit d'hydrogène exprimé en normaux m3 par heure et le débit de charge à traiter exprimé en m3 par heure aux conditions standards en pourcentage du rapport des débits mis en œuvre pour désulfurer dans l'étape d'hydrodésulfuration HDS1
  • La comparaison des exemples 1, 2, 4 et 5 montre que le traitement en parallèle des essences séparées en deux coupes distinctes tout en maintenant, au global, le même débit d'hydrogène permet d'améliorer l'indice d'octane de l'essence désulfurée, et surtout de diminuer significativement les teneurs en soufre et en mercaptans.
  • Par ailleurs, quand le débit d'hydrogène dans l'étape d'hydrodésulfuration HDS2 est tel que le rapport entre le débit d'hydrogène exprimé en normaux m3 par heure et le débit de charge à traiter exprimé en m3 par heure aux conditions standards est inférieur à 80% du rapport des débits mis en œuvre pour désulfurer dans l'étape d'hydrodésulfuration HDS1 (exemple 2 et 4 une diminution significative des teneurs en soufre et en mercaptans 1.

Claims (6)

  1. Procédé de production d'essences à faible teneur en soufre et en mercaptans et présentant un couple indice d'octane recherche (RON), teneur en soufre (S) tel que RON ≥ 90,70 et [S] ≤ 50 ppm comprenant au moins deux étapes d'hydrodésulfuration HDS1 et HDS2 opérées en paralléle sur deux coupes distinctes de l'essence constituant la charge la charge correspondant à une essence issue d'une unité de craquage catalytique dont l'intervalle de distillation est compris entre 0 et teneur en soufre 300°C, ladite essence étant distillée en trois fractions:
    - une fraction légère correspondant à une fraction essence dont le point d'ébullition est inférieur à 100°C, ladite fraction légère étant riche en mono-oléfines et en composés soufrés saturés ;
    - une fraction lourde de l'essence correspondant à une fraction essence dont la température d'ébullition est supérieure à 180°C, ladite fraction lourde étant riche en composés soufrés de type benzothiophèniques, riche en composés aromatiques, à un degré moindre riche en alkylthiophéniques, et pauvre en composés oléfiniques.
    - une fraction de cœur correspondant à la fraction intermédiaire entre la fraction légère et la fraction lourde, la dite fraction de cœur étant riche en mono-oléfines et en composés soufrés de types thiophéniques,
    ledit procédé comprenant au moins deux étapes d'hydrodésulfuration HDS1 et HDS2 opérées en parallèle sur deux coupes distinctes de l'essence constituant la charge :
    l'étape HDS1 traitant le mélange constitué de la fraction légère de l'essence et de ladite fraction intermédiaire ou la fraction intermédiaire seule et consistant à mettre en contact l'essence à traiter avec de l'hydrogène à une température comprise entre 200°C et 400°C, une pression comprise entre 0.5 et 5 MPa, et à une vitesse spatiale, définie comme étant le rapport entre le débit d'essence à traiter exprimé en m3 par heure, aux conditions standards, par m3 de catalyseur, comprise 0,5 h-1 et 20 h-1, dans un ou plusieurs réacteurs en série, contenant un ou plusieurs catalyseurs adaptés pour réaliser l'hydrodésulfuration de façon sélective avec un taux d'hydrogénation des mono-oléfines inférieur à 60%, ledit catalyseur contenant au moins un métal du groupe VI et/ou au moins un métal du groupe VIII sur un support, la porosité du catalyseur avant sulfuration présentant un diamètre moyen de pores supérieur à 20 nm mesuré par porosimétrie au mercure selon la norme ASTM D4284-92 avec un angle de mouillage de 140°, la densité surfacique du métal du groupe VI est comprise selon l'invention entre 2.10-4 et 4,0.10-3 gramme d'oxyde dudit métal par m2 de support, étant entendu que lors d'un enchaînement de catalyseur, le procédé comprend une succession d'étapes d'hyrodésulfuration, telle que l'activité du catalyseur d'une étape n+1 est comprise entre 1% et 90% de l'activité du catalyseur de l'étape n,
    et dans lequel le débit d'hydrogène dans l'unité d'hydrodésulfuration HDS1 est tel que le rapport entre le débit d'hydrogène exprimé en normaux m3 par heure et le débit de charge à traiter exprimé en m3 par heure aux conditions standards est compris entre 50 Nm3m3 et 1000 Nm3/m3, le taux de désulfuration atteint au cours de l'étape HDS1 étant supérieur à 80%,
    puis après l'hydrodésulfuration HDS1, le mélange réactionnel est refroidi, à une température inférieure à 60°C afin de condenser les hydrocarbures, les phases gaz et liquide étant séparées dans un séparateur, ladite fraction liquide contenant l'essence désulfurée ainsi qu'une fraction de I'H2S dissout est envoyée vers une section de strippage, ladite fraction gazeuse constituée principalement d'hydrogène et qui contient la majorité de I'H2S est envoyée vers une section de purification,
    et l'étape HDS2 traitant la fraction lourde de l'essence en mettant en contact l'essence à traiter avec de l'hydrogène à une température comprise entre 220°C et 450°C, une pression comprise entre 0,5 et 10 MPa, et à une vitesse spatiale, définie comme étant le rapport entre le débit d'essence à traiter exprimé en m3 par heure aux conditions standards, par m3 de catalyseur, comprise 0,3 h-1 et 20 h-1, dans un ou plusieurs réacteurs en série contenant un ou plusieurs catalyseurs adaptés pour réaliser l'hydrodésulfuration de façon sélective ou non sélective, le taux d'hydrogénation des mono-oléfines étant inférieur à 90% dans le cas de l'hydrodésulfuration sélective, ledit catalyseur contenant au moins un métal du groupe VI et/ou au moins un métal du groupe VIII sur un support, la porosité du catalyseur avant sulfuration présentant un diamètre moyen de pores supérieur à 20 nm mesuré par porosimétrie au mercure selon la norme ASTM D4284-92 avec un anale de mouillage de 140°, la densité surfacique du métal du groupe VI est comprise selon l'invention entre 2.10-4 et 4,0. le gramme d'oxyde dudit métal par m2 de support, étant entendu que lors d'un enchaînement de catalyseur, le procédé comprend une succession d'étapes d'hydrodésulfuration, telle que l'activité du catalyseur d'une étape n+1 est comprise entre 1% et 90% de l'activité du catalyseur de l'étape n.
    et dans lequel le débit d'hydrogène dans l'unité d'hydrodésulfuration HDS2 est tel que le rapport entre le débit d'hydrogène exprimé en normaux m3 par heure et le débit de charge à traiter exprimé en m3 par heure, aux conditions standards est compris entre 30 Nm3/m3 et 800 Nm3/m3 dans lequel le débit d'hydrogène dans l'unité d'hydrodésulfuration HDS1 est tel que le rapport entre le débit d'hydrogène exprimé en normaux m3 par heure et le débit de charge à traiter exprimé en m3 par heure aux conditions standards est compris entre 50 Nm3/m3 et 1000 Nm3/m3 et dans lequel de débit d'hydrogène dans l'unité d'hydrodésulfuration HDS2 est tel que le rapport entre le débit d'hydrogène exprimé en normaux m3 par heure et le débit de charge à traiter exprimé en m3 par heure aux conditions standards est compris entre 30 Nm3/m3 et 800 Nm3/m3.
    puis après l'hydrodésulfuration HDS2, le mélange réactionnél est refroidi à une température inférieure à 60°C afin de condenser les hydrocarbures, les phases gaz et liquide sont séparées dans un séparateur, ladite fraction liquide contenant l'essence désulfurée ainsi qu'une fraction de l'H2S dissout est envoyée vers une section de stripage, ladite fraction gazeuse constituée principalement d'hydrogène et qui contient la majorité de l'H2S est envoyée vers une section de purification
    et dans lequel le débit d'hydrogène dans l'étape d'hydrodésulfuration HDS2 est tel que le rapport entre le débit d'hydrogène exprimé en normaux m3 par heure et le débit de charge à traiter exprimé en m3 par heure aux conditions standards est inférieur à 80% du rapport des débits mis en œuvre pour désulfurer dans l'étape d'hydrodésulfuration HDS1.
  2. Procédé selon la revendication 1 comprenant une section unique de purification et recyclage de l'hydrogène en excès issu des étapes d'hydrodésulfuration HDS1 et HDS2.
  3. Procédé selon l'une des revendications 1 ou 2 dans lequel au moins tout l'hydrogène nécessaire aux réactions intervenant dans les deux étapes d'hydrodésulfurations est admis à travers l'une seule des étapes d'hydrodésulfurations et dans lequel la purge gaz de cette étape d'hydrodésulfuration est envoyée au traitement de purification dont le produit gazeux purifié n'est recyclé qu'à l'autre unité d'hydrodésulfuration.
  4. Procédé selon la revendication 3 dans lequel au moins tout l'hydrogène nécessaire aux réactions intervenant dans les deux étapes d'hydrodésulfurations est admis à travers l'étape d'hydrodésulfuration HDS2.
  5. Procédé selon l'une des revendications 1 à 4 dans lequel la charge est prétraitée de façon à:
    - hydrogéner sélectivement les dioléfines en mono-oléfines
    - transformer les composés soufrés légers saturés en sulfures ou mercaptans plus lourds par réaction avec les mono-oléfines.
  6. Procédé selon l'une des revendications 1 à 5 dans lequel le catalyseur utilisé dans les étapes d'hydrodésulfuration HDS1 et HDS2 est un catalyseur ou un enchainement de catalyseurs comprenant un support, un métal du groupe VI promu ou non par un métal du groupe VIII et ayant un diamétre moyen de pores supérieur à 22 nm. 7. Procédé sel on l'une des revendications 1 à 6 dans lequel le catalyseur utilisé dans le étapes d'hydrodésulfuration HDS1 et HDS2 comprend un support minéral amorphe et poreux, au moins un métal du groupe VI et/ou au moins un métal du groupe VIII, la porosité du catalyseur avant sulfuration étant telle que celui-ci possède un diamètre moyen de pores supérieur à 20nm et la densité surfacique du métal du groupe VI étant comprise entre 2.10-4 et 4,0.10-3 gramme d'oxyde dudit métal par m2 de support. 8. Procédé selon l'une des revendications 6 ou 7 dans lequel le métal du groupe VI est le molybdène ou le tungstène et le métal du groupe VIII est le nickel ou le cobalt.
EP07290436.0A 2006-04-24 2007-04-10 Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration Active EP1849850B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0603630A FR2900157B1 (fr) 2006-04-24 2006-04-24 Procede de desulfuration d'essences olefiniques comprenant au moins deux etapes distinctes d'hydrodesulfuration

Publications (2)

Publication Number Publication Date
EP1849850A1 EP1849850A1 (fr) 2007-10-31
EP1849850B1 true EP1849850B1 (fr) 2022-03-30

Family

ID=37670933

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07290436.0A Active EP1849850B1 (fr) 2006-04-24 2007-04-10 Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration

Country Status (7)

Country Link
US (1) US7651606B2 (fr)
EP (1) EP1849850B1 (fr)
JP (1) JP5448305B2 (fr)
KR (1) KR101441122B1 (fr)
CN (1) CN101294106B (fr)
BR (1) BRPI0701633B1 (fr)
FR (1) FR2900157B1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940154B2 (en) * 2007-11-09 2015-01-27 Ranfeng Ding System and process for producing high quality gasoline by catalytic hydrocarbon recombination
WO2011119807A1 (fr) * 2010-03-26 2011-09-29 Saudi Arabian Oil Company Procédé de désulfuration à l'aide d'un liquide ionique incorporé dans un séparateur basse pression
US8992767B2 (en) * 2010-03-26 2015-03-31 Saudi Arabian Oil Company Ionic liquid desulfurization process incorporated in a contact vessel
CA2719054A1 (fr) 2010-10-27 2012-04-27 Intelligent Devices Inc. Trousse de surveillance de l'utilisation d'un contenu jetable equipee d'une carte de circuits electroniques amovible reutilisable
US10144883B2 (en) 2013-11-14 2018-12-04 Uop Llc Apparatuses and methods for desulfurization of naphtha
FR3013722B1 (fr) 2013-11-28 2015-12-04 Ifp Energies Now Procede d'hydrotraitement d'un gazole dans des reacteurs en serie avec recyclage d'hydrogene.
FR3013724B1 (fr) * 2013-11-28 2017-12-15 Ifp Energies Now Procede d'hydrotraitement d'un gazole dans des reacteurs en parallele avec recyclage d'hydrogene.
FR3049955B1 (fr) * 2016-04-08 2018-04-06 IFP Energies Nouvelles Procede de traitement d'une essence
KR102279996B1 (ko) 2016-10-18 2021-07-20 모에탈 엘엘씨 환경 친화적 선박 연료
SG11201807108PA (en) 2016-10-18 2018-09-27 Mawetal Llc Fuel compositions from light tight oils and high sulfur fuel oils
EP3528938A4 (fr) * 2016-10-18 2020-04-15 Mawetal LLC Combustible de turbine poli
FR3057578B1 (fr) * 2016-10-19 2018-11-16 IFP Energies Nouvelles Procede d'hydrodesulfuration d'une essence olefinique.
RU2753042C2 (ru) * 2016-11-23 2021-08-11 Хальдор Топсёэ А/С Способ десульфуризации углеводородов
WO2019173208A1 (fr) * 2018-03-05 2019-09-12 Chevron Phillips Chemical Company Lp Synthèse de sulfure de méthyle éthyle et systèmes de production associés
CN112745925A (zh) * 2019-10-30 2021-05-04 中国石油化工股份有限公司 一种处理汽油的方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1962305A (en) * 1934-03-08 1934-06-12 Hi Voltage Equipment Company Switch
US2833698A (en) * 1954-04-27 1958-05-06 Kellogg M W Co Hydrocarbon hydroconversion where petroleum fractions are treated in parallel reactions while passing hydrogen serially through the reactors
US2938857A (en) * 1956-11-08 1960-05-31 Sun Oil Co Split hydrorefining of feed to catalytic cracking operation
US3050457A (en) * 1958-11-24 1962-08-21 Phillips Petroleum Co Hydrocarbon conversion with the hydrogenation of the cracked products
US3157589A (en) * 1961-05-12 1964-11-17 California Research Corp Process for upgrading petroleum naphthas
US3224958A (en) * 1962-08-07 1965-12-21 Texaco Inc Hydroconversion of light and heavy hydrocarbon fractions in separate reaction zones and contacting of the liquid portion of the heavy fraction hydroconversion product with the light fraction hydroconversion product
US3265610A (en) * 1963-12-18 1966-08-09 Inst Francais Du Petrole Combined process for hydrocracking of hydrocarbons
JPS526711B1 (fr) * 1971-02-01 1977-02-24
US3830731A (en) * 1972-03-20 1974-08-20 Chevron Res Vacuum residuum and vacuum gas oil desulfurization
US4006076A (en) * 1973-04-27 1977-02-01 Chevron Research Company Process for the production of low-sulfur-content hydrocarbon mixtures
US3902991A (en) * 1973-04-27 1975-09-02 Chevron Res Hydrodesulfurization process for the production of low-sulfur hydrocarbon mixture
US3968026A (en) * 1975-04-28 1976-07-06 Gulf Research & Development Company Hydrodesulfurization process with parallel first stages in series with a unified second stage
US4017380A (en) * 1975-07-18 1977-04-12 Gulf Research & Development Company Sequential residue hydrodesulfurization and thermal cracking operations in a common reactor
US4062762A (en) * 1976-09-14 1977-12-13 Howard Kent A Process for desulfurizing and blending naphtha
US4116816A (en) * 1977-03-01 1978-09-26 Phillips Petroleum Company Parallel hydrodesulfurization of naphtha and distillate streams with passage of distillate overhead as reflux to the naphtha distillation zone
US4131537A (en) * 1977-10-04 1978-12-26 Exxon Research & Engineering Co. Naphtha hydrofining process
FR2476118B1 (fr) * 1980-02-19 1987-03-20 Inst Francais Du Petrole Procede de desulfuration d'un effluent de craquage catalytique ou de craquage a la vapeur
US4576710A (en) * 1982-09-03 1986-03-18 Hri, Inc. Catalyst desulfurization of petroleum residua feedstocks
US4844791A (en) * 1984-08-07 1989-07-04 Union Oil Company Of California Hydroprocessing with a catalyst containing non-hydrolyzable halogen
US4844792A (en) * 1984-08-07 1989-07-04 Union Oil Company Of California Hydroprocessing with a specific pore sized catalyst containing non-hydrolyzable halogen
US4885080A (en) * 1988-05-25 1989-12-05 Phillips Petroleum Company Process for demetallizing and desulfurizing heavy crude oil
US4990242A (en) * 1989-06-14 1991-02-05 Exxon Research And Engineering Company Enhanced sulfur removal from fuels
FR2714387B1 (fr) * 1993-12-28 1996-02-02 Inst Francais Du Petrole Procédé d'obtention d'une base pour carburant pour moteur à combustion interne par hydrotraitement et extraction et le produit obtenu.
TW358120B (en) * 1994-08-24 1999-05-11 Shell Int Research Hydrocarbon conversion catalysts
FR2753717B1 (fr) * 1996-09-24 1998-10-30 Procede et installation pour la production d'essences de craquage catalytique a faible teneur en soufre
US5837130A (en) * 1996-10-22 1998-11-17 Catalytic Distillation Technologies Catalytic distillation refining
DK29598A (da) * 1998-03-04 1999-09-05 Haldor Topsoe As Fremgangsmåde til afsvovlning af FCC-tung benzin
FR2784687B1 (fr) * 1998-10-14 2000-11-17 Inst Francais Du Petrole Procede d'hydrotraitement d'une fraction lourde d'hydrocarbures avec reacteurs permutables et introduction d'un distillat moyen
FR2785908B1 (fr) * 1998-11-18 2005-12-16 Inst Francais Du Petrole Procede de production d'essences a faible teneur en soufre
FR2803596B1 (fr) * 2000-01-11 2003-01-17 Inst Francais Du Petrole Procede de conversion de fractions petrolieres comprenant une etape d'hydroconversion lit bouillonnant, une etape de separation, une etape d'hydrodesulfuration et une etape de craquage
FR2807061B1 (fr) * 2000-03-29 2002-05-31 Inst Francais Du Petrole Procede de desulfuration d'essence comprenant une desulfuration des fractions lourde et intermediaire issues d'un fractionnement en au moins trois coupes
US6596157B2 (en) * 2000-04-04 2003-07-22 Exxonmobil Research And Engineering Company Staged hydrotreating method for naphtha desulfurization
FR2812302B1 (fr) * 2000-07-31 2003-09-05 Inst Francais Du Petrole Procede d'hydrocraquage en 2 etapes de charges hydrocarbonees
US6623627B1 (en) * 2001-07-09 2003-09-23 Uop Llc Production of low sulfur gasoline

Also Published As

Publication number Publication date
JP2007291392A (ja) 2007-11-08
CN101294106B (zh) 2013-03-27
JP5448305B2 (ja) 2014-03-19
US7651606B2 (en) 2010-01-26
BRPI0701633B1 (pt) 2016-12-13
CN101294106A (zh) 2008-10-29
FR2900157B1 (fr) 2010-09-24
BRPI0701633A (pt) 2007-12-11
EP1849850A1 (fr) 2007-10-31
US20070246399A1 (en) 2007-10-25
KR20070104843A (ko) 2007-10-29
KR101441122B1 (ko) 2014-09-17
FR2900157A1 (fr) 2007-10-26

Similar Documents

Publication Publication Date Title
EP1849850B1 (fr) Procédé de désulfuration d&#39;essences oléfiniques comprenant au moins deux étapes distinctes d&#39;hydrodésulfuration
EP1174485B1 (fr) Procédé comprenant deux étapes d&#39;hydrodesulfuration d&#39;essence avec élimination intermediaire de L&#39;H2S
EP1923452B1 (fr) Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d&#39;octane
EP3018188B1 (fr) Procede de conversion de charges petrolieres comprenant une etape d&#39;hydrotraitement en lit fixe, une etape d&#39;hydrocraquage en lit bouillonnant, une etape de maturation et une etape de separation des sediments pour la production de fiouls a basse teneur en sediments
EP2169032B1 (fr) Catalyseur permettant de décomposer ou d&#39;hydrogéner au moins partiellement les composes soufres insaturés
WO2015091033A1 (fr) Nouveau procede integre de traitement de charges petrolieres pour la production de fiouls a basse teneur en soufre et en sediments
EP3299441B1 (fr) Procede de traitement d&#39;une essence par separation en trois coupes
WO2014013153A1 (fr) Procede de production d&#39;une essence legere basse teneur en soufre
EP1369468B1 (fr) Procédé de production d&#39;hydrocarbures à faible teneur en soufre et en azote
EP1330505B1 (fr) Procede de production de diesel par hydrocraquage a pression moderee
EP2886629B1 (fr) Procédé d&#39;hydrodesulfuration de coupes d&#39;hydrocarbures
EP3228683B1 (fr) Procede de traitement d&#39;une essence
WO2014013154A1 (fr) Procede de desulfuration d&#39;une essence
FR2895417A1 (fr) Procede de desulfurisation comprenant une etape de transformation et une etape d&#39;extraction des composes soufres
EP3312260A1 (fr) Procede d&#39;hydrodesulfuration d&#39;une essence olefinique
WO2014108612A1 (fr) Procede de production d&#39;une essence basse teneur en soufre
EP1370627B1 (fr) Procede de production d&#39;essence a faible teneur en soufre
FR2997415A1 (fr) Procede de production d&#39;une essence a basse teneur en soufre
EP1370630B1 (fr) Procede de production d&#39;une essence desulfuree a partir d&#39;une coupe essence contenant de l&#39;essence de craquage
FR2823216A1 (fr) Procede et installation utilisant plusieurs lits catalytiques en serie pour la production de gazoles a faible teneur en soufre
EP1370629B1 (fr) Procede de production d&#39;essence a faible teneur en soufre
EP2880126A1 (fr) Procede d&#39;hydrotraitement et d&#39;hydroisomerisation de charges issues de la biomasse dans lequel l&#39;effluent a hydrotraiter et le flux d&#39;hydrogene contiennent une teneur limitee en monoxyde de carbone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080502

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080624

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: IFP ENERGIES NOUVELLES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211008

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007061467

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: IFP, RUEIL-MALMAISON, FR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007061467

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1479195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1479195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220701

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220801

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007061467

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220730

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220410

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

26N No opposition filed

Effective date: 20230103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240425

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240423

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240430

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330