EP1055144B1 - Systeme optique a element spectroselectif - Google Patents

Systeme optique a element spectroselectif Download PDF

Info

Publication number
EP1055144B1
EP1055144B1 EP99915483.4A EP99915483A EP1055144B1 EP 1055144 B1 EP1055144 B1 EP 1055144B1 EP 99915483 A EP99915483 A EP 99915483A EP 1055144 B1 EP1055144 B1 EP 1055144B1
Authority
EP
European Patent Office
Prior art keywords
laser scanning
scanning microscope
spectrally selective
confocal laser
selective element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99915483.4A
Other languages
German (de)
English (en)
Other versions
EP1055144A1 (fr
Inventor
Johann Engelhardt
Joachim Bradl
Heinrich Ulrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Microsystems CMS GmbH
Original Assignee
Leica Microsystems CMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Microsystems CMS GmbH filed Critical Leica Microsystems CMS GmbH
Publication of EP1055144A1 publication Critical patent/EP1055144A1/fr
Application granted granted Critical
Publication of EP1055144B1 publication Critical patent/EP1055144B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders

Definitions

  • the invention relates to a confocal laser scanning microscope with an optical arrangement which is arranged in the beam path of a light source suitable for fluorescence excitation and in the beam path of the confocal laser scanning microscope, wherein the optical arrangement at least one spectrally selective element for coupling the excitation light at least a light source in the microscope and to hide the scattered at the object and reflected excitation light or the excitation wavelength from the light coming from the object via the detection beam path.
  • color beam splitters with a very special transmission and reflection characteristic are used in the beam path of a light source suitable for fluorescence excitation. Most of these are dichroic beam splitters. With such an element, the fluorescence excitation wavelength ⁇ ill1 (or ⁇ ill2 , ⁇ ill3 ..., ⁇ illn when using multiple lasers) is reflected in the illumination beam path to excite the fluorescence distribution in the object and then along with the scattered at the object reflected excitation light to pass through the beam path up to the color beam splitter.
  • the excitation light having the wavelengths ⁇ ill1 , ⁇ ill2 , ⁇ ill3 ,..., ⁇ illn is reflected back to the laser beam at the color beam splitter , namely out of the detection beam path .
  • the fluorescent light with the wavelengths ⁇ fluo1 , ⁇ fluo2 , ⁇ fluo3 , ...., ⁇ fluon passes through the color beam splitter and is detected - possibly after further spectral splitting.
  • Color beam splitters are usually realized by an interference filter and are selectively vaporized depending on the wavelengths used for the excitation or for the detection.
  • color beam splitters In practice, the use of color beam splitters is initially disadvantageous insofar as this involves expensive and therefore expensive optical components in the production. Furthermore, it is disadvantageous that color beam splitters have a fixed wavelength characteristic and therefore can not be used with any flexibility with regard to the wavelength of the excitation light. When changing the wavelength of the excitation light and the color beam splitter must be replaced, such as in an arrangement of multiple color beam splitter in a filter wheel. This is again consuming and therefore expensive and, moreover, requires a very special adjustment of the individual color beam splitter.
  • a color beam splitter entails the further disadvantage that light losses caused by reflection occur, in particular light losses of fluorescent light which is just to be detected.
  • the spectral transmission / reflection range is quite wide in the case of color beam splitters ( ⁇ ill ⁇ 20 nm) and by no means ideally "steep". Consequently, the fluorescent light from this spectral range can not be detected ideally.
  • the number of simultaneously injectable laser is limited, namely, for example, on the number of arranged in a filter wheel and combinable color beam splitter.
  • a maximum of three lasers are coupled into the beam path.
  • all color beam splitters, including the color beam splitters arranged in a filter wheel have to be precisely adjusted, which involves a considerable outlay in terms of handling.
  • suitable neutral beam splitters can be used which efficiently guide the fluorescent light to the detector together with the excitation light scattered / reflected by the object.
  • the losses in the laser coupling are significant.
  • a luminescent system for examining skin tissue is known. This system is used to chemically analyze the tissue, producing no image of the tissue. This is done by first illuminating the sample to be examined with excitation light for a certain period of time and then, with the illumination switched off, detecting the luminescence light emanating from the sample and having a different wavelength than the excitation light. Excitation and detection alternate in time.
  • a spectral detector which can also be used in a confocal fluorescence microscope.
  • a beam splitter For coupling of illumination light is a beam splitter.
  • the present invention is based on the object, a confocal laser scanning microscope to design and further develop that the Coupling of the excitation light of different excitation wavelengths is possible without having to make a change or a special adjustment of the optical elements used there when changing the wavelength of the excitation light. Furthermore, the number of required optical elements should be reduced as much as possible. Finally, an ideal detection of the fluorescent light should be possible.
  • the spectrally selective element is adjustable to the excitation wavelength trainees.
  • excitation light of different wavelengths can be masked out and correspondingly coupled in by the spectrally selective element.
  • the color beam splitter previously used there can be replaced by an active spectrally selective element, namely by a spectrally selective element which is suitable for hiding or displaying excitation light of different wavelengths or couple.
  • This spectrally selective element serves on the one hand for coupling the excitation light of at least one light source into the microscope and on the other hand for masking the excitation light scattered and reflected at the object or the corresponding excitation wavelength from the light coming from the object via the detection beam path.
  • the spectrally selective element has a dual function, with both functions being virtually positively coupled.
  • the spectrally selective element may be a passive element for facilitating the dual function discussed above.
  • the spectrally selective element could be designed as a transparent optical grating or as a holographic element. It is likewise conceivable to carry out the spectrally selective element as a passive AOD (Acousto-Optical-Deflecor) or as a passive AOTF (Acousto-Optical-Tunable-Filter).
  • the spectrally selective element is an active component, for example an acousto-optically and / or electro-optically operating element.
  • an AOD Acoustic-Optical-Deflector
  • an AOTF Acoustic-Optical-Tunable-Filter
  • an active spectrally selective element is used here, for example an AOD or an AOTF.
  • the object of these active components is to couple the excitation light of the light source or of the laser or the laser ⁇ ill1, ⁇ ill2 ⁇ ill3 ,..., ⁇ illn into the illumination beam path and thus into the microscope, and then by beam scanning to stimulate the fluorescence distribution in the object.
  • the fluorescent light coming from the object can pass through the active spectrally selective element almost undisturbed. In this case, the light scattered or reflected by the object is largely reflected out with the excitation wavelengths of the light source or the laser or the laser from the detection beam path.
  • the fluorescent light to be detected with a spectral distribution around the wavelengths ⁇ fluo1 , ⁇ fluo2 , ..., ⁇ fuon together with the scattered at the object or reflected excitation light with the wavelengths ⁇ ill1 , ⁇ ill2 , ..., ⁇ illn now passes through the AOD in the reverse direction.
  • the excitation light having the wavelengths ⁇ ill1 , ⁇ ill2 , ..., ⁇ illn is deflected out of the detection beam path toward the laser (1st order) because of the specific adjustment of the AOD.
  • the "spectrally remaining" fluorescent light can be detected in an improved manner by the wavelengths ⁇ fluo1 , ⁇ fluo2 ,..., ⁇ fluor compared to a conventional color beam splitter (0th order). This makes it possible in any case the adjustment of the coupling of different laser easier than in the prior art (there using conventional color beam splitter in a filter wheel) make.
  • a subsequent switching of further AOTFs could selectively regulate the individual wavelengths in their power after the beam merging.
  • an AOTF with corresponding frequencies ⁇ 1 , ⁇ 2 ,..., ⁇ n can be connected simultaneously, so that the different wavelengths vary in their excitation power and are optimized for the application.
  • the supply of the laser light can be effected by means of optical fiber.
  • the light source or the laser is coupled coaxially from the direction of the first order of the crystal.
  • the fluorescent light to be detected with a spectral distribution around the wavelengths ⁇ fluo1 , ⁇ fluo2 ,..., ⁇ fluon together with the excitation light scattered or reflected at the object with the wavelengths ⁇ fill1 , ⁇ fill2 ,..., ⁇ filln now pass through the AOTF in the opposite direction.
  • the excitation light having the wavelengths ⁇ fill1 , ⁇ fill2 ,..., ⁇ filln is deflected out of the detection beam path in the direction of the light source or the laser due to the specific setting of the OTF.
  • the "spectrally remaining" fluorescent light around the wavelengths ⁇ fluo1 , ⁇ fluo2 ,..., ⁇ fluon can be detected in an improved manner (0th order) compared to the conventional color beam splitter .
  • the fluorescence light will spectrally fan out after passing through the respective active element due to the dispersion that occurs.
  • the excitation pinhole is arranged, which is identical to the detection pinhole.
  • the property of the crystal, the light beam of the 0th order spectrally convincedfächem by the prism effect, is used for detection.
  • the dispersive element of the multiband detector is combined with the color beam splitter to form a component, whereby all other, the conventional detection beam path downstream and attributable to further losses in the fluorescence intensity color beam splitter omitted.
  • the technique discussed above can be used in combination with a wavelength tunable laser light source - e.g. Dye laser, OPO (optically parameterized oscillator).
  • Electron beam collision light source - enabling extremely flexible fluorescence microscopy applications.
  • the adjustment or control of the excitation wavelength can be coupled directly to the drive unit of one of the previously described spectrally selective elements, so that only this excitation wavelength coaxially coupled into the excitation beam path of the microscope and again only this wavelength is hidden from the detection beam path.
  • the coupling or forced coupling of the light source with the beam-splitting element can be done either manually or automatically or even according to a predefinable rule, this possibility being adapted to the respective requirement profile.
  • the excitation wavelength and the beam splitter can be changed in a suitable manner after each scanned image plane.
  • multi-color fluorescence objects can be detected.
  • a line-by-line switching is also conceivable.
  • Multi-Color FISH fluorescence in situ hybridization
  • different light sources can be used as long as they are suitable for fluorescence excitation.
  • a white light source a light source for using an optically parameterized oscillator, an electron beam collision light source or a laser light source come into question, wherein the laser light source can be variably tunable in wavelength.
  • Laser light sources with different wavelengths or a multi-laser light source is or are usable.
  • Fig. 1 documents the state of the art and shows a conventional optical arrangement in the beam path of a suitable for fluorescence excitation light source, which is an optical arrangement in the beam path of a confocal laser scanning microscope.
  • the laser scanner 1 is shown only symbolically.
  • a total of three lasers 2 are provided as light sources, which couple with their excitation light 3 via spectrally selective elements 4 into the illumination beam path 5 of the microscope.
  • the excitation light 3 is coupled into the illumination beam path 5 and arrives via a further mirror 8 as an excitation light 9 to the laser scanner 1.
  • the spectral selective elements 4 are a mirror 6 and a color beam splitter 7.
  • the light coming back from the object 10, which is also only symbolically represented-this is the excitation light 9 scattered and reflected on the object, on the one hand, and the fluorescent light 11 emitted by the object 10-passes through the mirror 8 to the spectrally selective element 4, where Here is the color beam divider 7. From there, the excitation light 9 or the excitation wavelength is masked out of the light 13 coming from the object 10 via the detection beam path 12 and returns to the lasers 2 as the returning excitation light 9.
  • the detection light 14, which is not deflected by the color beam splitter 7, arrives directly at the detector 15th
  • excitation light 3 of different wavelengths coming back through the spectrally selective element 4 can be masked out. This is especially in Fig. 3 shown.
  • the spectrally selective element 4 can be set to the excitation wavelength to be blanked out. This can be the embodiments of the Fig. 2 . 3 and 8th . 9 especially good.
  • the excitation light 3 may have different wavelengths.
  • the excitation light 3 passes through a mirror 6 and over additional optical element, namely via a lens 16 to an AOTF 17, which operates as a spectrally selective element. From there, the excitation light 3 again passes through an additional optical element - in the exemplary embodiment chosen here, a lens 18 - and via a mirror 8 to the laser scanner 1.
  • the returning light-reflected excitation light 9 and detection light 11 - passes through the mirror 8 and the lens 18 back into the AOTF 17 and is partially hidden there according to the wiring of the AOTF 17.
  • the detection light or fluorescent light 11 is guided via the detection beam path 12 to the detector 15 (0th order).
  • the returning excitation light 9 is guided back to the laser 2 via the lens 16 and the mirror 6 and is thus hidden from the detection beam path 12.
  • the light 13 coming from the object comprises fluorescent light 11 and returning excitation light 9, where the AOD 19 leads the returning fluorescent light as detection light 14 to the detector 15.
  • the returning excitation light 9 is hidden and passes through lenses 16 to the respective lasers 2.
  • Fig. 4 shown example which does not belong to the invention comprises as a spectrally selective element 4, a transparent grid 20, via the transparent grid 20 simultaneously three lasers 2 couple their excitation light 3 in the illumination beam path 5 of the microscope.
  • the transparent grid 20 blankes out the excitation light 9 coming back from the object 10 from the detection beam path, so that this light passes back to the lasers 2.
  • the fluorescent light 11 to be detected passes via the detection beam path 12 to the detector 15.
  • Fig. 5 shows the possibility of a dispersion correction, wherein the object returning light 13 in the AOTF 17 or AOD 19 passes. There, the returning detection light 14 is - compulsorily - spectrally fanned out and over downstream elements - AOD / AOTF - parallelized and finally converged. The spectrally combined detection light 14 passes from there to the in Fig. 5 not shown detector 15.
  • the light coming from the object 13 is fanned out by AOD 17 / AOTF 19, wherein the fanned detection light 14 via another passive spectrally selective element 4-AOTF 17 or AOD 19 - converted via a lens 21 with field correction and by a detection pinhole 22 or passes through a detection gap to the detector 15.
  • the spectrally selective element 4 is an AOTF 17 or an AOD 19, these elements comprise a special crystal with dispersion-free 0th order.
  • This crystal or this spectrally selective element is excited or acted upon via a piezoelectric element 23.
  • Fig. 7 shows particularly clearly that the light coming from the object 13 is split in the AOTF 17 and AOD 19, wherein the detection light 14 as a dispersion-free light 0th order passes through the crystal unhindered.
  • the excitation light 9 returning from the object is deflected as first order light and guided back to the lasers (not shown here).
  • Fig. 8 shows a special detection taking advantage of the spectral fanning of the spectrally selective element 4, wherein here in the concrete, an AOTF 17 is used.
  • the light 13 coming from the object 10 is spectrally split in the AOTF 17, whereby the detection light 14 passes via a lens 16 and a mirror 6 to a multiband detector 24 or spectrometer.
  • the mirror 6 leads to an extension of the distance, so that a fanning of the returning detection light 14 up to the multi-band detector 24 is favored.
  • the excitation light 9 hidden in the AOTF 17 passes back to the laser 2 via the lens 16 and the mirror 8.
  • Fig. 9 in a schematic representation of the embodiment Fig. 8 , where - in addition - in the detection beam path in front of the multiband detector 24, a variable gap filter 25 is arranged.
  • This slit filter 25 is arranged in the detection beam path 12 immediately in front of the detector 15 and can be positioned in the detection beam path.
  • the gap 26 of the slit filter 25 is variable, so that a spectral selection of the detection light 14 is also possible in this respect.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Claims (17)

  1. Microscope à balayage à laser confocal comportant un dispositif optique qui est disposé sur le chemin de faisceau d'une source lumineuse appropriée pour la stimulation de la fluorescence, et est disposée sur le chemin de faisceau du microscope à balayage à laser confocal, dans lequel le dispositif optique comprend au moins un élément spectralement sélectif (4) destiné à injecter la lumière de stimulation (3) d'au moins une source lumineuse (2) dans le microscope et à éliminer la lumière de stimulation (3) diffusée et réfléchie sur un objet (10) ou la longueur d'onde de stimulation de la lumière (13) provenant de l'objet (10) par l'intermédiaire du chemin du faisceau de détection (12), caractérisé en ce que l'élément spectralement sélectif (4) peut être réglé sur la longueur d'onde de stimulation devant être éliminée et en ce que l'élément spectralement sélectif (4) est un composant actif.
  2. Microscope à balayage à laser confocal selon la revendication 1, caractérisé en ce qu'une lumière de stimulation (3, 9) ayant des longueurs d'onde différentes peut être éliminée par l'élément spectralement sélectif (4).
  3. Microscope à balayage à laser confocal selon la revendication 1, caractérisé en ce que l'élément spectralement sélectif (4) fonctionne de manière acousto-optique et/ou électro-optique, ou en ce que l'élément spectralement sélectif (4) est réalisé sous la forme d'un AOD (Acousto-Optical Deflector, déflecteur acousto-optique) (19), ou en ce que l'élément spectralement sélectif (4) est réalisé sous la forme d'un AOTF (Acousto-Optical-Tunable-Filter, pour filtre acousto-optique accordable) (17).
  4. Microscope à balayage à laser confocal selon la revendication 3, dans lequel une source de lumière ayant des longueurs d'onde différentes peut être injectée, caractérisé en ce que l'AOTF (17) peut simultanément être câblé avec des fréquences correspondantes.
  5. Microscope à balayage à laser confocal selon l'une quelconque des revendications 1 à 4, caractérisé en ce que, pour une régulation spécifique de la puissance de longueurs d'ondes individuelles, au moins un autre élément actif ou spectralement sélectif est connecté en aval de l'élément spectralement sélectif (4).
  6. Microscope à balayage à laser confocal selon la revendication 5, caractérisé en ce que l'autre élément spectralement sélectif est un AOD (19) ou un AOTF (17).
  7. Microscope à balayage à laser confocal selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la stimulation de la source lumineuse (2) par l'élément spectralement sélectif (4) s'effectue manuellement ou automatiquement ou conformément à une instruction pouvant être librement définie.
  8. Microscope à balayage à laser confocal selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'au moins un autre élément optique est connecté en amont et/ou en aval de l'élément spectralement sélectif (4).
  9. Microscope à balayage à laser confocal selon la revendication 8, caractérisé en ce qu'il est prévu en tant qu'autre élément optique un diviseur de faisceau coloré destiné à une décomposition spectrale supplémentaire.
  10. Microscope à balayage à laser confocal selon l'une quelconque des revendications 1 à 9, caractérisé en ce que des moyens destinés à effectuer une réflexion multiple et qui produisent un grossissement angulaire de la dispersion du faisceau de détection sont disposés sur le chemin du faisceau de détection (12).
  11. Microscope à balayage à laser confocal selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'un filtre séparateur (25) est disposé sur le chemin du faisceau de détection (12), de préférence immédiatement avant le détecteur (15).
  12. Microscope à balayage à laser confocal selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'un spectromètre destiné à détecter la dispersion spectrale est disposé sur le chemin du faisceau de détection (12) après l'élément spectralement actif (4).
  13. Microscope à balayage à laser confocal selon l'une quelconque des revendications 1 à 12, caractérisé en ce que les longueurs d'onde de stimulation éliminées sont déviées dans la direction des sources lumineuses (2) en dehors du chemin du faisceau de détection (12).
  14. Microscope à balayage à laser confocal selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la source lumineuse (2) est réalisée sous la forme d'une source de lumière blanche, ou en ce que la source lumineuse (2) est réalisée sous la forme d'un oscillateur paramétrique optique (OPO), ou en ce que la source lumineuse (2) est réalisée sous la forme d'une source lumineuse à collision de faisceaux d'électrons, ou en ce que la source lumineuse (2) est réalisée sous la forme d'une source de lumière laser.
  15. Microscope à balayage à laser confocal selon la revendication 14, caractérisé en ce que la source lumineuse est accordable à des longueurs d'onde variables.
  16. Microscope à balayage à laser confocal selon la revendication 15, caractérisé en ce que la source de lumière laser comprend un laser ayant des longueurs d'onde différentes.
  17. Microscope à balayage à laser confocal selon l'une quelconque des revendications 1 à 16, caractérisé en ce que l'élément spectralement sélectif (4) est conçu de manière à ce qu'une dispersion spectrale de la lumière de détection (11) soit au moins évitée dans une large mesure.
EP99915483.4A 1998-02-19 1999-02-19 Systeme optique a element spectroselectif Expired - Lifetime EP1055144B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19806867 1998-02-19
DE19806867 1998-02-19
PCT/DE1999/000459 WO1999042884A1 (fr) 1998-02-19 1999-02-19 Systeme optique a element spectroselectif

Publications (2)

Publication Number Publication Date
EP1055144A1 EP1055144A1 (fr) 2000-11-29
EP1055144B1 true EP1055144B1 (fr) 2015-01-14

Family

ID=7858228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99915483.4A Expired - Lifetime EP1055144B1 (fr) 1998-02-19 1999-02-19 Systeme optique a element spectroselectif

Country Status (4)

Country Link
US (2) US6510001B1 (fr)
EP (1) EP1055144B1 (fr)
JP (2) JP4435977B2 (fr)
WO (1) WO1999042884A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022033663A1 (fr) 2020-08-11 2022-02-17 Leica Microsystems Cms Gmbh Dispositif de division de faisceau

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4435977B2 (ja) * 1998-02-19 2010-03-24 ライカ ミクロジュステムス ツェーエムエス ゲーエムベーハー スペクトル選択素子を有する光学装置
AUPP548298A0 (en) * 1998-08-27 1998-09-17 Optiscan Pty Limited Compact confocal endoscope and endomicroscope method and apparatus
DE19858206C2 (de) * 1998-12-17 2001-10-11 Leica Microsystems Verfahren zur Anpassung von Anregungsintensitäten bei einem Multiband-Fluoreszenz-Mikroskop und Multiband-Fluoreszenz-Mikroskop zur Durchführung des Verfahrens
DE19936573A1 (de) * 1998-12-22 2001-02-08 Zeiss Carl Jena Gmbh Anordnung zur Separierung von Anregungs- und Emissionslicht in einem Mikroskop
DE19944355B4 (de) * 1999-09-16 2004-11-18 Leica Microsystems Heidelberg Gmbh Optische Anordnung
DE20122783U1 (de) * 2000-06-17 2007-11-15 Leica Microsystems Cms Gmbh Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop und Beleuchtungseinrichtung für ein Scanmikroskop
DE10038049A1 (de) * 2000-08-02 2002-02-14 Leica Microsystems Optische Anordnung zur Selektion und Detektion des Spektalbereichs eines Lichtstrahls
US6765220B2 (en) * 2001-01-10 2004-07-20 Lockheed Martin Corporation Infrared scene generator using fluorescent conversion material
ATE493683T1 (de) * 2001-04-07 2011-01-15 Zeiss Carl Microimaging Gmbh Verfahren und anordnung zur tiefenaufgelösten optischen erfassung einer probe
DE10137154A1 (de) * 2001-07-30 2003-02-20 Leica Microsystems Scanmikroskop und optisches Element
DE10137155B4 (de) * 2001-07-30 2006-11-30 Leica Microsystems Cms Gmbh Optische Anordnung und Scanmikroskop
WO2003021240A1 (fr) * 2001-08-28 2003-03-13 Gnothis Holding Sa Analyse de correlation a plusieurs couleurs et a un canal
US6963398B2 (en) 2001-10-03 2005-11-08 Olympus Optical Co., Ltd. Laser scanning microscope
DE10156695B4 (de) 2001-11-17 2004-07-15 Leica Microsystems Heidelberg Gmbh Scanmikroskop, Verfahren zur Scanmikroskopie und Bandpassfilter
DE10241472B4 (de) * 2002-09-04 2019-04-11 Carl Zeiss Microscopy Gmbh Verfahren und Anordnung zur einstellbaren Veränderung von Beleuchtungslicht und/oder Probenlicht bezüglich seiner spektralen Zusammensetzung und/oder Intensität
DE10257120B4 (de) * 2002-12-05 2020-01-16 Leica Microsystems Cms Gmbh Rastermikroskop zum Abbilden eines Objekts
JP2004239627A (ja) * 2003-02-03 2004-08-26 Olympus Corp 分光器及びこれを備えた共焦点顕微鏡
GB0308072D0 (en) * 2003-04-08 2003-05-14 Visitech Internat Ltd Fast multi-line laser confocal scanning microscope
JP2005010296A (ja) * 2003-06-17 2005-01-13 Olympus Corp 蛍光顕微鏡
DE10334145A1 (de) * 2003-07-26 2005-02-24 Leica Microsystems Heidelberg Gmbh Rastermikroskop
ES2237319B1 (es) * 2003-11-27 2006-12-16 Universidad De Barcelona Metodo de identificacion de pigmentos de una sola celula mediante espectrofotometria de imagen confocal en comunidades fototroficas.
JP4869562B2 (ja) * 2004-03-26 2012-02-08 オリンパス株式会社 走査型共焦点顕微鏡
JP4804727B2 (ja) * 2004-06-24 2011-11-02 オリンパス株式会社 光走査型共焦点顕微鏡
DE102004031048A1 (de) * 2004-06-25 2006-01-12 Leica Microsystems Cms Gmbh Mikroskop
JP4740562B2 (ja) * 2004-07-26 2011-08-03 オリンパス株式会社 レーザ走査顕微鏡および分光データ取得プログラム
JP4987225B2 (ja) * 2004-12-07 2012-07-25 オリンパス株式会社 顕微鏡装置
DE102005020003B4 (de) * 2005-04-27 2007-10-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Fluoreszenzmikroskop
DE102005020545A1 (de) * 2005-05-03 2006-11-09 Carl Zeiss Jena Gmbh Vorrichtung zur Steuerung von Lichtstrahlung
DE102005020543A1 (de) 2005-05-03 2006-11-09 Carl Zeiss Jena Gmbh Verfahren und Vorrichtung zur einstellbaren Veränderung von Licht
US7397561B2 (en) * 2005-11-07 2008-07-08 Wafermasters, Incorporated Spectroscopy system
JP4899648B2 (ja) * 2006-06-05 2012-03-21 株式会社ニコン スペクトル観察方法及びスペクトル観察システム
US8409081B2 (en) * 2007-04-27 2013-04-02 Olympus Medical Systems Corp. Illumination light application structure and endoscope provided with the same
DE102007047467A1 (de) * 2007-09-28 2009-04-02 Carl Zeiss Microimaging Gmbh Anordnung zur optischen Erfassung von in einer Probe angeregter und/oder rückgestreuter Lichtstrahlung
US8975572B2 (en) 2008-04-04 2015-03-10 Cvi Laser, Llc Compact, thermally stable fiber-optic array mountable to flow cell
US10114213B2 (en) 2008-04-04 2018-10-30 Cvi Laser, Llc Laser systems and optical devices for manipulating laser beams
US9413130B2 (en) 2012-12-12 2016-08-09 Cvi Laser, Llc Optical systems
US7903706B2 (en) * 2008-04-04 2011-03-08 O'shaughnessy John Compact, thermally stable multi-laser engine
US7848106B2 (en) * 2008-04-17 2010-12-07 Teradyne, Inc. Temperature control within disk drive testing systems
DE102010033722A1 (de) 2010-08-07 2012-02-09 Carl Zeiss Microimaging Gmbh Anordnung und/oder Verfahren zur Eliminierung unerwünschter Strahlungsanteile aus detektiertem Licht von einer beleuchteten Probe
DE102013227105A1 (de) * 2013-09-03 2015-03-05 Leica Microsystems Cms Gmbh Mikroskop und akustooptischer Strahlvereiniger für ein Mikroskop
EP3153906A1 (fr) 2015-10-07 2017-04-12 Deutsches Krebsforschungszentrum Instrument de microscope à fluorescence comprenant un séparateur de chemin de faisceau activement commuté
US10234694B2 (en) 2016-07-15 2019-03-19 Canon U.S.A., Inc. Spectrally encoded probes
US11378808B2 (en) 2018-07-18 2022-07-05 Idex Health & Science Llc Laser systems and optical devices for laser beam shaping
EP3614130B1 (fr) * 2018-08-22 2021-11-24 Berthold Technologies GmbH & Co. KG Dispositif pour la détermination de caractéristiques optiques d'échantillons

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827125A (en) 1987-04-29 1989-05-02 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Confocal scanning laser microscope having no moving parts
JP2915919B2 (ja) * 1989-03-21 1999-07-05 聡 河田 レーザ走査蛍光顕微鏡
US4955978A (en) * 1989-05-17 1990-09-11 Swift Instruments, Inc. Microscope base illuminator
GB9015793D0 (en) 1990-07-18 1990-09-05 Medical Res Council Confocal scanning optical microscope
DE69229777T3 (de) 1991-04-10 2010-12-30 Mayo Foundation For Medical Education And Research, Rochester Konfokales abbildungssystem für sichtbares und uv-licht
US5418371A (en) 1993-02-01 1995-05-23 Aslund; Nils R. D. Apparatus for quantitative imaging of multiple fluorophores using dual detectors
US5410371A (en) 1993-06-07 1995-04-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Display system employing acoustro-optic tunable filter
JPH0727980A (ja) * 1993-07-14 1995-01-31 Hamamatsu Photonics Kk 蛍光顕微鏡用のストロボ光源
DE4330347C2 (de) 1993-09-08 1998-04-09 Leica Lasertechnik Verwendung einer Vorrichtung zur Selektion und Detektion mindestens zweier Spektralbereiche eines Lichtstrahls
JP3076715B2 (ja) * 1994-03-03 2000-08-14 浜松ホトニクス株式会社 共焦点走査型顕微鏡
DE69530072T2 (de) 1994-12-08 2004-03-04 Molecular Dynamics, Sunnyvale System zur fluoreszenzabbildung unter verwendung eines objektivs mit makroabtastung
US5535293A (en) * 1994-12-09 1996-07-09 Buchin; Michael P. High-speed electro-optical modulator, chopper, and multiplexer/demultiplexer
US5863504A (en) 1995-03-16 1999-01-26 Bio-Rad Laboratories, Inc. Fluorescence imaging instrument utilizing fish
JP4194118B2 (ja) * 1996-04-16 2008-12-10 ライカ ミクロジュステムス ツェーエムエス ゲーエムベーハー レーザ走査顕微鏡の点光源および波長の異なる少なくとも2つのレーザをレーザ走査顕微鏡に入射結合する方法
JPH09318879A (ja) * 1996-05-29 1997-12-12 Komatsu Ltd 共焦点光学装置
DE19627568A1 (de) * 1996-07-09 1998-01-15 Zeiss Carl Jena Gmbh Anordnung und Verfahren zur konfokalen Mikroskopie
JP4435977B2 (ja) * 1998-02-19 2010-03-24 ライカ ミクロジュステムス ツェーエムエス ゲーエムベーハー スペクトル選択素子を有する光学装置
US6433929B1 (en) * 2000-06-12 2002-08-13 Olympus Optical Co., Ltd. Scanning optical microscope and method of acquiring image

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022033663A1 (fr) 2020-08-11 2022-02-17 Leica Microsystems Cms Gmbh Dispositif de division de faisceau

Also Published As

Publication number Publication date
JP4435977B2 (ja) 2010-03-24
JP2002504708A (ja) 2002-02-12
EP1055144A1 (fr) 2000-11-29
US20030133189A1 (en) 2003-07-17
WO1999042884A1 (fr) 1999-08-26
US6654165B2 (en) 2003-11-25
US6510001B1 (en) 2003-01-21
JP2009139969A (ja) 2009-06-25

Similar Documents

Publication Publication Date Title
EP1055144B1 (fr) Systeme optique a element spectroselectif
DE19906757B4 (de) Mikroskop
EP1714187B1 (fr) Microscope comprenant une source de lumiere comprenant plusieurs elements optiques microstructures
EP2158513B1 (fr) Concentrateur de faisceaux et source lumineuse présentant un tel concentrateur de faisceaux
EP1795938B1 (fr) Procédé et agencement destinés à l'analyse d'échantillons
EP1058101B1 (fr) Sélection de zones spectrales par un diaphragme réfléchissant
EP2149070B1 (fr) Élément filtrant acousto-optique ajustable
EP3042169B1 (fr) Microscope à balayage et combinateur de faisceau acousto-optique pour microscope à balayage
EP1421427B1 (fr) Systeme optique et microscope a balayage
DE19835072A1 (de) Anordnung zur Beleuchtung und/oder Detektion in einem Mikroskop
EP3042232B1 (fr) Microscope à balayage et séparateur de faisceaux principaux pour microscope à balayage
WO2013007591A1 (fr) Microscope à balayage à éclairage incident à foyer commun
DE10038049A1 (de) Optische Anordnung zur Selektion und Detektion des Spektalbereichs eines Lichtstrahls
EP1591825B2 (fr) Dispositif de couplage de la lumière dans le parcours de la lumière d'un microscope
DE20216583U1 (de) Mikroskop und Durchflusszytometer
DE10227111B4 (de) Spektralmikroskop und Verfahren zur Datenaufnahme mit einem Spektralmikroskop
DE10247247A1 (de) Optische Anordnung und Mikroskop
DE10137158B4 (de) Verfahren zur Scanmikroskopie und Scanmikroskop
DE102013227103B4 (de) Mikroskop mit einer akustooptischen Vorrichtung
DE10150542B4 (de) Verfahren zur Fluoreszenzmikroskopie
WO2015032819A1 (fr) Microscpe doté d'un élément de modification de la forme du point focale de la lumière d'éclairage
DE102004031048A1 (de) Mikroskop

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000826

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI

17Q First examination report despatched

Effective date: 20010313

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEICA MICROSYSTEMS CMS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141020

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 59915419

Country of ref document: DE

Effective date: 20150226

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 59915419

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151015

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180227

Year of fee payment: 20

Ref country code: CH

Payment date: 20180223

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180430

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59915419

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20190218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20190218