EP1048074A1 - Leistungs-mosfet - Google Patents

Leistungs-mosfet

Info

Publication number
EP1048074A1
EP1048074A1 EP98966510A EP98966510A EP1048074A1 EP 1048074 A1 EP1048074 A1 EP 1048074A1 EP 98966510 A EP98966510 A EP 98966510A EP 98966510 A EP98966510 A EP 98966510A EP 1048074 A1 EP1048074 A1 EP 1048074A1
Authority
EP
European Patent Office
Prior art keywords
power mosfet
mosfet according
conductivity type
zone
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98966510A
Other languages
English (en)
French (fr)
Inventor
Jenö Tihanyi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1048074A1 publication Critical patent/EP1048074A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/4175Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a power MOSFET with a semiconductor layer of the other conductivity type arranged on a highly doped semiconductor substrate of one conductivity type, in which a highly doped source zone of the other conductivity type and a highly doped drain zone of the other conductivity type are formed, and with one over a semiconductor zone of the a gate type provided conductivity type.
  • This object is achieved according to the invention in a power MOSFET of the type mentioned at the outset by a highly conductive connection between the source zone and the semiconductor substrate.
  • This highly conductive connection can in particular be a metallic conductive connection.
  • a metallically conductive connection is created between the source zone provided on one surface side of the power MOSFET to the opposite surface of the semiconductor substrate, so that the semiconductor substrate and with it the source zone, for example, by means of a cooling vane on a support, such as a car body , can be screwed on, the semiconductor substrate and thus the source zone being at 0 volts.
  • the source zone is guided “downwards" with the semiconductor substrate, which is why it is referred to as a "source-down" FET.
  • the actual MOSFET in the semiconductor layer can be of conventional construction, in which the gate electrode is embedded in an insulator layer provided on the semiconductor layer.
  • the gate electrode in a trench in the semiconductor layer, for example such a trench being lined at its edge with an insulating layer made of silicon dioxide or silicon nitride and filled inside with doped polycrystalline silicon.
  • the conductive connection between the source zone and the semiconductor substrate can be formed from a highly doped semiconductor zone of the one conductivity type.
  • a trench for this conductive connection from which dopant of one conductivity type is then diffused and which is filled with polycrystalline or monocrystalline silicon.
  • Another possibility for designing the conductive connection consists of a trench which is at least partially filled with metal or a highly conductive layer. Titanium nitride can preferably be used for such a layer. Otherwise, the interior of the trench can be covered with polycrystalline silicon. be filled, which is doped with dopant of the other conductivity type.
  • the semiconductor substrate itself can be provided directly with a cooling device, such as a cooling lug, which can be screwed onto a base. A particularly effective heat dissipation is thus achieved.
  • the semiconductor layer between the drain zone and the gate electrode is preferably less doped than in the drain zone. This enables the MOSFET to operate at higher voltages. Such an operation is also favored if the distance between the drain zone and the edge of the gate electrode is at least 0.1 ⁇ m to about 5 ⁇ m.
  • the thickness of the insulator layer should preferably increase too steadily or in steps in the direction of the drain zone.
  • the contact between the highly doped source zone and the conductive connection can take place by means of a buried metal, such as, for example, a suicide or another conductive layer made of, for example, titanium nitride.
  • a buried metal such as, for example, a suicide or another conductive layer made of, for example, titanium nitride.
  • the silicon dioxide insulator layer is deposited over the short circuit between the heavily doped source zone and the conductive connection. It is also possible to interrupt the metallization there for the drain zone, for example an aluminum layer.
  • the gate electrodes can be arranged in a grid-like manner and a “network” is formed from polycrystalline silicon of the other conductivity type, which is embedded in the insulator layer made of silicon dioxide or another material, such as silicon nitride.
  • the highly doped drain zones of the other conductivity type are preferably contacted with an all-over metal layer made of, for example, aluminum, which can be designed in a lattice shape if the individual source zones have an aluminum short circuit extending to their surface.
  • a distance of a few tenths to 5 .mu.m should exist in the insulator layer between the highly doped drain zone of the other conductivity type and the edge of the gate electrode made of polycrystalline silicon in order to achieve a high dielectric strength. This is also promoted if the thickness of the insulating layer in the region of the gate electrode increases too gradually or continuously in the direction of the drain zone.
  • the drain zone can also be located higher or lower than the source zone with respect to the semiconductor surface.
  • a highly doped zone of the one conductivity type is used for the conductive connection, then this zone can be produced in a manner similar to that used for insulation diffusion or for integrated circuits insulated with a pn junction.
  • the conductive connection can also be made via a trench, from which dopant of one conductivity type has diffused out, and which is then filled with polycrystalline or single-crystal silicon or with an insulator, such as silicon dioxide.
  • the arrangement of the drain connections and the source zones can be strip-shaped or cell-like.
  • this is implanted in a trench which surrounds the drain zone.
  • the source zone which is connected to the conductive connection, which preferably consists of a deep Trench with a conductive wall consists of titanium nitride, for example, to which the semiconductor substrate is electrically connected.
  • the conductive connections can be arranged in any way; they can be provided, for example, in the form of cells between strip-shaped drain zones or even in strip form.
  • FIG. 1 is a sectional view through a first embodiment of the MOSFET according to the invention
  • FIG. 2 shows a sectional view through a second exemplary embodiment of the MOSFET according to the invention
  • FIG. 3 shows a plan view to illustrate the position of source zones and drain zones in a cell arrangement with a plurality of power MOSFETs
  • Fig. 4 is a sectional view through a third embodiment of the present invention.
  • FIG. 1 shows a sectional view of a silicon semiconductor substrate 1 which is p ++ -conducting, that is to say has a high boron doping, for example.
  • An n-type semiconductor layer 2 is epitaxially applied to this semiconductor substrate 1, in which n + -conductive drain zones 3 and n + -conductive source zones 4 are provided.
  • a p-conducting channel zone 5 is located between the source zones 4 and the drain zones 3.
  • Zones 3, 4 and 5 can each have an annular shape.
  • An insulator layer 6 made of silicon dioxide is provided on the surface of the semiconductor layer 2, in which gate electrodes 7 made of polycrystalline silicon are embedded.
  • the drain zones 3 are contacted with a metallization 8 made of aluminum.
  • this zone 9 with the source zone 4 via a metal
  • An electrode 11 made of, for example, aluminum is applied to the semiconductor substrate 1 on the “underside”, and is connected to a cooling vane 12 made of a relatively thick metal layer, with which the MOSFET can be screwed onto, for example, a car body.
  • the metal 10 causes a short circuit between the source zone 4 and the p + -conducting zone 9.
  • a silicide or, for example, titanium nitride can be used for this metal 10.
  • the insulator layer 6 is deposited over this short-circuit point. Another possibility is to interrupt the metallization 8 via the short-circuit point.
  • the metal 10 extends to the outer surface of the semiconductor layer 2.
  • the gate electrodes 7 are arranged in a grid-like manner and preferably consist of n + -conducting polycrystalline silicon which is embedded in the insulator layer 6 made of silicon dioxide or another suitable insulating material.
  • the n + -conducting drain zones 3 are contacted with the metal metallization 8 made of aluminum.
  • the distance between the zones 3 and the edge of the gate electrode 7 should range from a few 0.1 ⁇ m to about 5 ⁇ m in order to achieve a high dielectric strength. For the same reason, it is also possible to allow the thickness of the insulator layer 6 to grow gradually or continuously below the gate electrode in the direction of the drain zone 3, although this is not shown in FIG. 1.
  • the drain zone 3 can also be located higher or lower than the source zone 4.
  • FIG. 2 shows a further exemplary embodiment of the power MOSFET according to the invention, which differs from the exemplary embodiment in FIG. 1 in that the conductive connection consists of a trench 13 into which p + -conducting polycrystalline or monocrystalline silicon 14 is filled , from which a p + -conducting zone 15 has diffused into the semiconductor layer 2.
  • a dashed line 22 indicates how the thickness of the insulator layer 6 below the gate electrode 7, the underside of which is given by this dashed line 22, can continuously increase in the direction of the drain zone 3.
  • FIG. 3 shows a plan view of a large number of power MOSFETs, it being indicated here how the respective source zones 4 or drain zones 3 can be arranged, and the edge of this arrangement being designed as a source strip.
  • FIGS. 1 and 2 show a power MOSFET in which the gate electrodes are used in "traditional" Are arranged.
  • FIG. 4 shows a sectional view of a power MOSFET in which the gate electrodes 7 are accommodated in trenches 16 which are filled with insulating material 17, for example silicon dioxide, in which n + -doped polycrystalline silicon is contained. These grooves 16 extend up to a p ⁇ -lei- Tenden layer 18, the p + -type between the silicon substrate 1 and the n "-type silicon layer 2 is arranged.
  • the conductive connection between the source zones 4 and the semiconductor substrate 1 takes place here via trenches 19 which are filled with highly conductive material, such as, for example, titanium nitride 20 at their edge and in their interior with n + -conducting polycrystalline silicon 21.
  • highly conductive material such as, for example, titanium nitride 20 at their edge and in their interior with n + -conducting polycrystalline silicon 21.
  • an insulator for example silicon dioxide or silicon nitride, which can have a cavity, can also be used.
  • a metal such as tungsten, can also be introduced into the trench for the conductive connection.
  • the layer thicknesses are for example, 0.2 mm for the semiconductor substrate 1, 2 micron layer 18 for the p ⁇ -type, 3 microns for the "height" of the gate electrodes 7 and 4 microns for the n ⁇ - type semiconductor layer 2 having a resistivity of, for example, 0.5 ohm / cm.
  • the distance between the trenches 16 can be approximately 4 ⁇ m, each trench 16 having a width of approximately 1 ⁇ m.
  • the trenches 19 can also have a width of approximately 1 ⁇ m.
  • the course of the current I is indicated in FIG. 4 by a broken line: it leads from the electrode 11 through the semiconductor substrate 1, the p " -type layer 18 into the n " -line layer 2 and from there around the gate electrode 7 around to the drain zone 3.
  • the trenches 19 with the short circuit between the semiconductor substrate 1 and the source zones 4 can be arranged as desired. They can be provided, for example, in a cell-like manner between strip-shaped drain zones 3 and, if appropriate, can also be designed in the form of strips.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Die Erfindung betrifft einen Leistungs-MOSFET mit einer auf einem hochdotierten Halbleitersubstrat (1) des einen Leitfähigkeitstyps angeordneten Halbleiterschicht (2) des anderen Leitfähigkeitstyps, in der eine hochdotierte Sourcezone (4) des anderen Leitfähigkeitstyps und eine hochdotierte Drainzone (3) des anderen Leitfähigkeitstyps ausgebildet sind, und mit einer Gateelektrode (7). Zwischen der Sourcezone (4) und dem Halbleitersubstrat (1) verläuft eine metallisch leitende Verbindung (9), so dass der Leistungs-MOSFET als Source-Down-MOSFET gestaltet ist und die Wärme über das Halbleitersubstrat (1) bzw. eine dort angebrachte Kühlfahne (12) abgeführt werden kann.

Description

Leistungs-MOSFET
Die vorliegende Erfindung bezieht sich auf einen Leistungs- MOSFET mit einer auf einem hochdotierten Halbleitersubstrat des einen Leitfähigkeitstyps angeordneten Halbleiterschicht des anderen Leitfähigkeitstyps, in der eine hochdotierte Sourcezone des anderen Leitfähigkeitstyps und eine hochdotierte Drainzone des anderen Leitfähigkeitstyps ausgebildet sind, und mit einer über einer Halbleiterzone des einen Leitfähigkeitstyps vorgesehenen Gateelektrode.
Bei Leistungs-MOSFETs spielt deren Kühlung bzw. die Wärmeabführung aus dem Halbleiterkörper eine herausragende Rolle. Diese wäre sehr einfach, wenn beispielsweise bei einem n- Kanal-MOSFET dessen Halbleitersubstrat, das gegebenenfalls mit einer Kühlfahne ausgestattet ist, direkt auf einen die Wärme aufnehmenden Körper, wie beispielsweise eine Autokarosserie, aufgeschraubt werden könnte. Voraussetzung hierfür ist, daß das Halbleitersubstrat und mit diesem die Sourcezone auf 0 Volt liegen können und der MOSFET in seinen sonstigen Eigenschaften nicht beeinträchtigt ist, also beispielsweise keinen zu hohen Einschaltwiderstand aufweist.
Es ist daher Aufgabe der vorliegenden Erfindung, einen Leistungs-MOSFET zu schaffen, dessen Halbleitersubstrat auf 0 Volt Spannung kühlbar ist, und der keinen zu hohen Einschaltwiderstand zeigt.
Diese Aufgabe wird bei einem Leistungs-MOSFET der eingangs genannten Art erfindungsgemäß gelöst durch eine gut leitende Verbindung zwischen Sourcezone und Halbleitersubstrat. Diese gut leitende Verbindung kann insbesondere eine metallisch leitende Verbindung sein. Bei der vorliegenden Erfindung wird also eine metallisch leitende Verbindung zwischen der an der einen Oberflächenseite des Leistungs-MOSFETs vorgesehenen Sourcezone zu der gegenüberliegenden Oberfläche des Halbleitersubstrates geschaffen, so daß das Halbleitersubstrat und mit diesem die Sourcezone beispielsweise mittels einer Kühlfahne auf eine Unterlage, wie eine Autokarosserie, aufgeschraubt werden kann, wobei das Halbleitersubstrat und damit die Sourcezone auf 0 Volt liegen. Mit dem Halbleitersubstrat ist bei einer solchen Struktur die Sourcezone "nach unten" geführt, weshalb von einem "Source-Down"-FET gesprochen wird.
Der eigentliche MOSFET in der Halbleiterschicht kann von üblichem Aufbau sein, bei dem die Gateelektrode in eine auf der Halbleiterschicht vorgesehene Isolatorschicht eingebettet ist. Es ist aber auch möglich, die Gateelektrode in einem Graben in der Halbleiterschicht unterzubringen, wobei beispielsweise ein solcher Graben an seinem Rand mit einer Isolierschicht aus Siliziumdioxid oder Siliziumnitrid ausgekleidet und in seinem Innern mit dotiertem polykristallinem Silizium gefüllt wird.
Die leitende Verbindung zwischen der Sourcezone und dem Halbleitersubstrat kann aus einer hochdotierten Halbleiterzone des einen Leitfähigkeitstyps gebildet werden. Es ist aber auch möglich, für diese leitende Verbindung einen Graben vorzusehen, aus welchem dann Dotierstoff des einen Leitfähigkeitstyps aufdiffundiert wird und der mit poly- oder monokristallinem Silizium aufgefüllt wird. Eine andere Möglichkeit zur Gestaltung der leitenden Verbindung besteht aus einem Graben, der wenigstens teilweise mit Metall oder einer gut leitenden Schicht gefüllt ist. Für eine solche Schicht kann vorzugsweise Titannitrid eingesetzt werden. Im übrigen kann das Innere des Grabens mit polykristallinem Silizium aufge- füllt werden, das mit Dotierstoff des anderen Leitfähigkeitstyps dotiert ist.
Das Halbleitersubstrat selbst kann direkt mit einer Kühleinrichtung, wie beispielsweise einer Kühlfahne, die auf eine Unterlage aufschraubbar ist, versehen werden. Damit wird eine besonders wirksame Wärmeabführung erreicht.
Die Halbleiterschicht ist zwischen der Drainzone und der Gateelektrode vorzugsweise schwächer dotiert als in der Drainzone. Dadurch ist ein Betrieb des MOSFETs mit höheren Spannungen möglich. Ein solcher Betrieb wird auch dadurch begünstigt, wenn der Abstand zwischen der Drainzone und der Kante der Gateelektrode wenigstens 0,1 um bis etwa 5 um beträgt. Auch sollte die Dicke der Isolatorschicht vorzugsweise in Richtung auf die Drainzone zu stetig oder stufenartig anwachsen.
Die Kontaktgabe zwischen der hochdotierten Sourcezone und der leitenden Verbindung kann mittels eines vergrabenen Metalles, wie beispielsweise eines Suizides oder einer anderen leitenden Schicht aus beispielsweise Titannitrid erfolgen.
Über der Kurzschlußstelle zwischen der hochdotierten Sourcezone und der leitenden Verbindung ist die Isolatorschicht aus Siliziumdioxid abgeschieden. Es ist auch möglich, dort die Metallisierung für die Drainzone, also beispielsweise eine Aluminiumschicht, zu unterbrechen.
Die Gateelektroden können gitterartig angeordnet sein und ein "Netz" aus polykristallinem Silizium des anderen Leitfähigkeitstyps gebildet ist, welches in die Isolatorschicht aus Siliziumdioxid oder einem anderen Material, wie beispielsweise Siliziumnitrid eingebettet ist. Die hochdotierten Drainzonen des anderen Leitfähigkeitstyps sind vorzugsweise mit einer ganzflächigen Metallschicht aus beispielsweise Aluminium kontaktiert, die gitterförmig gestaltet sein kann, wenn die einzelnen Sourcezonen einen bis zu ihrer Oberfläche reichenden Aluminium-Kurzschluß haben.
Zwischen der hochdotierten Drainzone des anderen Leitfähigkeitstyps und der Kante der aus polykristallinem Silizium bestehenden Gateelektrode sollte in der Isolatorschicht ein Abstand von einigen Zehntel um bis 5 um bestehen, um eine hohe Spannungsfestigkeit zu erreichen. Diese wird auch dadurch gefördert, wenn die Dicke der Isolierschicht im Bereich der Gateelektrode in Richtung auf die Drainzone zu stufenartig oder stetig anwächst. Auch kann die Drainzone in bezug auf die Halbleiteroberfläche höher oder tiefer gelegen sein als die Sourcezone.
Wenn für die leitende Verbindung eine hochdotierte Zone des einen Leitfähigkeitstyps verwendet wird, dann kann diese Zone auf ähnliche Weise hergestellt werden, wie dies bei Isolierdiffusionen oder bei mit einem pn-Übergang isolierten integrierten Schaltungen geschieht. Die leitende Verbindung kann aber auch über einen Graben erfolgen, aus welchem Dotierstoff des einen Leitfähigkeitstyps ausdiffundiert ist, und der dann mit polykristallinem oder einkristallinem Silizium oder mit einem Isolator, wie beispielsweise Siliziumdioxid aufgefüllt wird.
Die Anordnung der Drainanschlüsse und der Sourcezonen kann streifenförmig oder zellenartig sein. Bei einer in der Halbleiterschicht vorgesehenen Gateelektrode ist diese in einen Graben eingepflanzt, der die Drainzone umringt. Außerhalb des Grabens ist die Sourcezone angeordnet, welche mit der leitenden Verbindung, die in bevorzugter Weise aus einem tiefen Graben mit leitfähiger Wand aus beispielsweise Titannitrid besteht, mit dem Halbleitersubstrat elektrisch verbunden ist.
Die leitenden Verbindungen können beliebig angeordnet sein; sie können beispielsweise zellenförmig zwischen streifenför- migen Drainzonen oder selbst streifenförmig vorgesehen werden.
Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1 ein Schnittbild durch ein erstes Ausführungsbeispiel des erfindungsgemäßen MOSFETs,
Fig. 2 ein Schnittbild durch ein zweites Ausführungsbeispiel des erfindungsgemäßen MOSFETs,
Fig. 3 eine Draufsicht zur Veranschaulichung der Lage von Sourcezonen und Drainzonen bei einer Zellenanordnung mit mehreren Leistungs- MOSFETs, und
Fig. 4 ein Schnittbild durch ein drittes Ausführungsbeispiel der vorliegenden Erfindung.
Fig. 1 zeigt in einem Schnittbild ein Silizium-Halbleitersubstrat 1, das p++-leitend ist, also beispielsweise eine hohe Bordotierung aufweist. Auf dieses Halbleitersubstrat 1 ist epitaktisch eine n-leitende Halbleiterschicht 2 aufgetragen, in welcher n+-leitende Drainzonen 3 sowie n+-leitende Sourcezonen 4 vorgesehen sind. Zwischen den Sourcezonen 4 und den Drainzonen 3 befindet sich eine p-leitende Kanalzone 5.
Die Zonen 3, 4 und 5 können jeweils ringförmig gestaltet sein. Auf der Oberfläche der Halbleiterschicht 2 ist eine Isolatorschicht 6 aus Siliziumdioxid vorgesehen, in die Gateelektroden 7 aus polykristallinem Silizium eingebettet sind. Die Drainzonen 3 sind mit einer Metallisierung 8 aus Aluminium kontaktiert.
Zwischen dem Halbleitersubstrat 1 und der Sourcezone 4 befindet sich eine leitende Verbindung aus einer p+-leitenden Zone
9, wobei diese Zone 9 mit der Sourcezone 4 über ein Metall
10, wie beispielsweise ein Silizid oder Titannitrid verbunden ist.
Auf das Halbleitersubstrat 1 ist an der "Unterseite" eine Elektrode 11 aus beispielsweise Aluminium aufgetragen, die mit einer Kühlfahne 12 aus einer relativ dicken Metallschicht verbunden ist, mit welcher der MOSFET an beispielsweise einer Autokarosserie angeschraubt werden kann.
Wesentlich an der vorliegenden Erfindung ist, daß von der Sourcezone 4 über das Metall 10 und die hochdotierte Zone 9 eine leitende Verbindung zu dem Halbleitersubstrat 1 besteht, so daß die Sourcezone "unten" über die Elektrode 11 kontaktiert ist ("Source-Down-MOSFET") .
Das Metall 10 bewirkt einen Kurzschluß zwischen der Sourcezone 4 und der p+-leitenden Zone 9. Für dieses Metall 10 kann, wie bereits oben erläutert wurde, ein Silizid oder auch beispielsweise Titannitrid verwendet werden. Über dieser Kurzschlußstelle ist die Isolatorschicht 6 abgeschieden. Eine andere Möglichkeit besteht darin, über der Kurzschlußstelle die Metallisierung 8 zu unterbrechen. Jedenfalls reicht das Metall 10 bis zur äußeren Oberfläche der Halbleiterschicht 2. Die Gateelektroden 7 sind gitterartig angeordnet und bestehen vorzugsweise aus n+-leitendem polykristallinem Silizium, das in die Isolatorschicht 6 aus Siliziumdioxid oder einem anderen geeigneten Isoliermaterial eingebettet ist.
Die n+-leitenden Drainzonen 3 sind mit der ganzflächigen Metallisierung 8 aus Aluminium kontaktiert. Der Abstand zwischen den Zonen 3 und der Kante der Gateelektrode 7 sollte von einigen 0,1 μm bis etwa 5 μm reichen, um eine hohe Spannungsfestigkeit zu erzielen. Aus dem gleichen Grund ist es auch möglich, die Dicke der Isolatorschicht 6 unterhalb der Gateelektrode in Richtung auf die Drainzone 3 stufenweise oder stetig anwachsen zu lassen, obwohl dies in Fig. 1 nicht dargestellt ist. Auch kann die Drainzone 3 höher oder tiefer gelegen sein als die Sourcezone 4.
Fig. 2 zeigt ein weiteres Ausführungsbeispiel des erfindungsgemäßen Leistungs-MOSFETs, das sich von dem Ausführungsbei- spiel der Fig. 1 dadurch unterscheidet, daß die leitende Verbindung aus einem Graben 13 besteht, in den p+-leitendes polykristallines oder monokristallines Silizium 14 gefüllt ist, aus welchem eine p+-leitende Zone 15 in die Halbleiterschicht 2 ausdiffundiert ist. Mit einer Strichlinie 22 ist angedeutet, wie die Dicke der Isolatorschicht 6 unterhalb der Gateelektrode 7, deren Unterseite durch diese Strichlinie 22 gegeben ist, in Richtung auf die Drainzone 3 kontinuierlich anwachsen kann.
Fig. 3 zeigt eine Draufsicht auf eine Vielzahl von Leistungs- MOSFETs, wobei hier angegeben ist, wie die jeweiligen Sourcezonen 4 bzw. Drainzonen 3 angeordnet werden können, und wobei der Rand dieser Anordnung als Source-Streifen ausgeführt ist.
Die Ausführungsbeispiele der Fig. 1 und 2 zeigen einen Leistungs-MOSFET, bei dem die Gateelektroden in "traditioneller" Weise angeordnet sind. Im Gegensatz hierzu ist in Fig. 4 ein Schnittbild eines Leistungs-MOSFETs dargestellt, bei dem die Gateelektroden 7 in Gräben 16 untergebracht sind, die mit Isoliermaterial 17, wie beispielsweise Siliziumdioxid, gefüllt sind, in welchem n+-dotiertes polykristallines Silizium enthalten ist. Diese Gräben 16 reichen bis zu einer p~-lei- tenden Schicht 18, die zwischen dem p+-leitenden Siliziumsubstrat 1 und der n"-leitenden Siliziumschicht 2 angeordnet ist.
Die leitende Verbindung zwischen den Sourcezonen 4 und dem Halbleitersubstrat 1 erfolgt hier über Gräben 19, die mit gut leitendem Material, wie beispielsweise Titannitrid 20 an ihrem Rand und in ihrem Inneren mit n+-leitendem polykristallinem Silizium 21 gefüllt sind. Anstelle des polykristallinen Siliziums kann auch ein Isolator, beispielsweise Siliziumdioxid oder Siliziumnitrid verwendet werden, das einen Hohlraum aufweisen kann. Für die leitende Verbindung kann auch ein Metall, wie beispielsweise Wolfram, in den Graben eingebracht werden.
Die Schichtdicken betragen beispielsweise 0,2 mm für das Halbleitersubstrat 1, 2 μm für die p~-leitende Schicht 18, 3 μm für die "Höhe" der Gateelektroden 7 und 4 μm für die n~- leitende Halbleiterschicht 2, die einen spezifischen Widerstand von beispielsweise 0,5 Ohm/cm haben kann. Der Abstand zwischen den Gräben 16 kann etwa 4 μm betragen, wobei jeder Graben 16 eine Breite von etwa 1 μm hat. Auch die Gräben 19 können eine Breite von etwa 1 μm aufweisen.
Der Verlauf des Stromes I ist in Fig. 4 durch eine Strichlinie angedeutet: er führt von der Elektrode 11 durch das Halbleitersubstrat 1, die p"-leitende Schicht 18 in die n"-lei- tende Schicht 2 und von dort um die Gateelektrode 7 herum zu der Drainzone 3. Die Gräben 19 mit dem Kurzschluß zwischen dem Halbleitersubstrat 1 und den Sourcezonen 4 können beliebig angeordnet sein. Sie können beispielsweise zellenförmig zwischen strei- fenförmigen Drainzonen 3 vorgesehen und gegebenenfalls ebenfalls streifenförmig ausgeführt werden.

Claims

Patentansprüche
1. Leistungs-MOSFET mit einer auf einem hochdotierten Halbleitersubstrat (1) des einen Leitfähigkeitstyps angeordneten Halbleiterschicht (2) des anderen Leitfähigkeitstyps, in der eine hochdotierte Sourcezone (4) des anderen Leitfähigkeitstyps und eine hochdotierte Drainzone (3) des anderen Leitfähigkeitstyps ausgebildet sind, und mit einer über einer Halbleiterzone (S) des einen Leitfähigkeitstyps vorgesehenen Gateelektrode (7), gekennzeichnet durch eine gut leitende Verbindung (9; 19, 20, 21) zwischen Sourcezone (4) und Halbleitersubstrat (1) .
2. Leistungs-MOSFET nach Anspruch 1, dadurch gekennzeichnet, daß die Gateelektrode (7) in einer auf der Halbleiterschicht (2) angeordneten Isolatorschicht (6) vorgesehen ist.
3. Leistungs-MOSFET nach Anspruch 1, dadurch gekennzeichnet, daß die Gateelektrode (7) in einem Graben (16) in der Halbleiterschicht (2) vorgesehen ist.
4. Leistungs-MOSFET nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die leitende Verbindung (9) aus einer hochdotierten Halbleiterzone des einen Leitfähigkeitstyps gebildet ist.
5. Leistungs-MOSFET nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die leitende Verbindung aus einem Graben (13) gebildet ist, aus dem Dotierstoff des einen Leitf higkeitstyps (15) ausdiffundiert ist und der mit poly- oder monokristallinem Silizium (14) aufgefüllt ist.
6. Leistungs-MOSFET nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die leitende Verbindung aus einem Graben (19) besteht, der wenigstens teilweise mit einem Metall oder einer gut leitenden Schicht (20) gefüllt ist.
7. Leistungs-MOSFET nach Anspruch 6, dadurch gekennzeichnet, daß das Metall Wolfram ist und die gut leitende Schicht
(20) aus Titannitrid besteht.
8. Leistungs-MOSFET nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß das Innere des Grabens (19) mit mit Dotierstoff des einen Leitfähigkeitstyps dotiertem polykristallinem Silizium (21) oder mit einem Isolator gefüllt ist.
9. Leistungs-MOSFET nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Halbleitersubstrat (1) mit einer insbesondere aus Metall bestehenden Kühleinrichtung (12) verbunden ist.
10. Leistungs-MOSFET nach Anspruch 3, dadurch gekennzeichnet, daß die Halbleiterschicht zwischen der Drainzone (3) und Gate (7) schwächer dotiert ist als die Drainzone (3) .
11. Leistungs-MOSFET nach Anspruch 4 oder 5, gekennzeichnet durch einen vergrabenen Metallbereich (10) zwischen Sourcezone (4) und hochdotierter Halbleiterzone (9) bzw. poly- oder monokristallinem Silizium (14) .
12. Leistungs-MOSFET nach Anspruch 2, dadurch gekennzeichnet, daß der Abstand zwischen Drainzone (3) und Kante der Gateelektrode (7) etwa 0,1 μm bis 5 μm beträgt.
13. Leistungs-MOSFET nach Anspruch 2, dadurch gekennzeichnet, daß die Dicke der Isolatorschicht (6) unter der Gateelek- trode (7) in Richtung auf die Drainzone (3) stetig oder stufenartig zunimmt.
14. Leistungs-MOSFET nach Anspruch 3, gekennzeichnet durch eine schwach dotierte Halbleiterschicht (18) des einen Leitfähigkeitstyps zwischen dem Halbleitersubstrat (1) und der Halbleiterschicht (2) des anderen Leitfähigkeitstyps.
15. Leistungs-MOSFET nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Halbleitersubstrat (1) eine Schichtdicke von etwa 0,2 mm aufweist.
16. Leistungs-MOSFET nach Anspruch 14, dadurch gekennzeichnet, daß die Halbleiterschicht (18) des einen Leitfahigkeitstyps eine Schichtdicke von etwa 2 μm aufweist.
17. Leistungs-MOSFET nach Anspruch 3, dadurch gekennzeichnet, daß die Gateelektrode eine Schichtdicke bzw. -tiefe von etwa 3 μm aufweist.
18. Leistungs-MOSFET nach Anspruch 17, dadurch gekennzeichnet, daß die Gateelektrode eine Breite von etwa 1 μm aufweist.
19. Leistungs-MOSFET nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die Halbleiterschicht (2) des anderen Leitfähigkeitstyps eine Schichtdicke von etwa
4 μm aufweist.
20. Leistungs-MOSFET nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die leitende Verbindung (9; 19, 20, 21) eine Breite von etwa 1 bis 2 μm aufweist.
21. Leistungs-MOSFET nach Anspruch 8, dadurch gekennzeichnet, daß der Isolator einen Hohlraum beinhaltet.
EP98966510A 1998-01-14 1998-12-07 Leistungs-mosfet Withdrawn EP1048074A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19801095A DE19801095B4 (de) 1998-01-14 1998-01-14 Leistungs-MOSFET
DE19801095 1998-01-14
PCT/DE1998/003589 WO1999036961A1 (de) 1998-01-14 1998-12-07 Leistungs-mosfet

Publications (1)

Publication Number Publication Date
EP1048074A1 true EP1048074A1 (de) 2000-11-02

Family

ID=7854555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98966510A Withdrawn EP1048074A1 (de) 1998-01-14 1998-12-07 Leistungs-mosfet

Country Status (5)

Country Link
US (1) US6459142B1 (de)
EP (1) EP1048074A1 (de)
JP (1) JP2002510147A (de)
DE (1) DE19801095B4 (de)
WO (1) WO1999036961A1 (de)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1290403A (zh) * 1998-02-07 2001-04-04 斋摩德股份有限公司 包括连接横向rf mos器件的源区与背侧的插头的类网状栅结构
DE19840032C1 (de) 1998-09-02 1999-11-18 Siemens Ag Halbleiterbauelement und Herstellungsverfahren dazu
US6784486B2 (en) * 2000-06-23 2004-08-31 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions therein
US6781194B2 (en) * 2001-04-11 2004-08-24 Silicon Semiconductor Corporation Vertical power devices having retrograded-doped transition regions and insulated trench-based electrodes therein
JP4198469B2 (ja) * 2001-04-11 2008-12-17 シリコン・セミコンダクター・コーポレイション パワーデバイスとその製造方法
FR2826183A1 (fr) * 2001-06-15 2002-12-20 St Microelectronics Sa Transistor mos de puissance lateral
US6819089B2 (en) 2001-11-09 2004-11-16 Infineon Technologies Ag Power factor correction circuit with high-voltage semiconductor component
US6828609B2 (en) 2001-11-09 2004-12-07 Infineon Technologies Ag High-voltage semiconductor component
DE10239310B4 (de) * 2002-08-27 2005-11-03 Infineon Technologies Ag Verfahren zur Herstellung einer elektrisch leitenden Verbindung zwischen einer ersten und einer zweiten vergrabenen Halbleiterschicht
JP4825688B2 (ja) * 2002-09-11 2011-11-30 株式会社東芝 半導体装置の製造方法
US7015104B1 (en) 2003-05-29 2006-03-21 Third Dimension Semiconductor, Inc. Technique for forming the deep doped columns in superjunction
US7683454B2 (en) * 2003-12-05 2010-03-23 Stmicroelectronics S.A. MOS power component with a reduced surface area
EP1721344A4 (de) 2003-12-19 2009-06-10 Third Dimension 3D Sc Inc Verfahren zur herstellung eines supersperrschicht-bauelements
WO2005065140A2 (en) 2003-12-19 2005-07-21 Third Dimension (3D) Semiconductor, Inc. Method of manufacturing a superjunction device with conventional terminations
US7023069B2 (en) 2003-12-19 2006-04-04 Third Dimension (3D) Semiconductor, Inc. Method for forming thick dielectric regions using etched trenches
KR20070029655A (ko) 2003-12-19 2007-03-14 써드 디멘존 세미컨덕터, 인코포레이티드 넓은 메사를 갖는 수퍼 접합 장치의 제조 방법
JP4334395B2 (ja) * 2004-03-31 2009-09-30 株式会社東芝 半導体装置
US7547945B2 (en) * 2004-09-01 2009-06-16 Micron Technology, Inc. Transistor devices, transistor structures and semiconductor constructions
US7651897B2 (en) * 2004-12-07 2010-01-26 National Semiconductor Corporation Integrated circuit with metal heat flow path coupled to transistor and method for manufacturing such circuit
US7439583B2 (en) 2004-12-27 2008-10-21 Third Dimension (3D) Semiconductor, Inc. Tungsten plug drain extension
TWI401749B (zh) 2004-12-27 2013-07-11 Third Dimension 3D Sc Inc 用於高電壓超接面終止之方法
US7282401B2 (en) 2005-07-08 2007-10-16 Micron Technology, Inc. Method and apparatus for a self-aligned recessed access device (RAD) transistor gate
US7867851B2 (en) 2005-08-30 2011-01-11 Micron Technology, Inc. Methods of forming field effect transistors on substrates
US7700441B2 (en) 2006-02-02 2010-04-20 Micron Technology, Inc. Methods of forming field effect transistors, methods of forming field effect transistor gates, methods of forming integrated circuitry comprising a transistor gate array and circuitry peripheral to the gate array, and methods of forming integrated circuitry comprising a transistor gate array including first gates and second grounded isolation gates
US7602001B2 (en) 2006-07-17 2009-10-13 Micron Technology, Inc. Capacitorless one transistor DRAM cell, integrated circuitry comprising an array of capacitorless one transistor DRAM cells, and method of forming lines of capacitorless one transistor DRAM cells
JP2008034649A (ja) * 2006-07-28 2008-02-14 Sanyo Electric Co Ltd 半導体装置
US7772632B2 (en) 2006-08-21 2010-08-10 Micron Technology, Inc. Memory arrays and methods of fabricating memory arrays
US7589995B2 (en) 2006-09-07 2009-09-15 Micron Technology, Inc. One-transistor memory cell with bias gate
US7923373B2 (en) 2007-06-04 2011-04-12 Micron Technology, Inc. Pitch multiplication using self-assembling materials
US20110233674A1 (en) * 2010-03-29 2011-09-29 International Business Machines Corporation Design Structure For Dense Layout of Semiconductor Devices
US8912574B2 (en) 2010-12-14 2014-12-16 International Business Machines Corporation Device isolation with improved thermal conductivity
US8471331B2 (en) 2011-08-15 2013-06-25 Semiconductor Components Industries, Llc Method of making an insulated gate semiconductor device with source-substrate connection and structure
US20240153876A1 (en) * 2022-11-03 2024-05-09 Globalfoundries Singapore Pte. Ltd. Transistors having backside contact structures

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1933731C3 (de) * 1968-07-05 1982-03-25 Honeywell Information Systems Italia S.p.A., Caluso, Torino Verfahren zum Herstellen einer integrierten Halbleiterschaltung
US3986196A (en) * 1975-06-30 1976-10-12 Varian Associates Through-substrate source contact for microwave FET
US4252582A (en) * 1980-01-25 1981-02-24 International Business Machines Corporation Self aligned method for making bipolar transistor having minimum base to emitter contact spacing
US4378630A (en) * 1980-05-05 1983-04-05 International Business Machines Corporation Process for fabricating a high performance PNP and NPN structure
DE3377960D1 (en) * 1982-06-30 1988-10-13 Fujitsu Ltd A field-effect semiconductor device
GB8414036D0 (en) * 1984-06-01 1984-07-04 Emi Ltd Field effect devices
US4819052A (en) * 1986-12-22 1989-04-04 Texas Instruments Incorporated Merged bipolar/CMOS technology using electrically active trench
US5156989A (en) * 1988-11-08 1992-10-20 Siliconix, Incorporated Complementary, isolated DMOS IC technology
US4992764A (en) * 1989-02-21 1991-02-12 Hittite Microwave Corporation High-power FET circuit
US5128737A (en) * 1990-03-02 1992-07-07 Silicon Dynamics, Inc. Semiconductor integrated circuit fabrication yield improvements
FR2659494B1 (fr) * 1990-03-09 1996-12-06 Thomson Composants Microondes Composant semiconducteur de puissance, dont la puce est montee a l'envers.
DE4143209A1 (de) * 1991-12-30 1993-07-01 Hoefflinger Bernd Prof Dr Integrierte schaltung
JP3179212B2 (ja) * 1992-10-27 2001-06-25 日本電気株式会社 半導体装置の製造方法
JPH06151989A (ja) * 1992-11-12 1994-05-31 Fuji Electric Co Ltd 超電導素子
DE4341667C1 (de) * 1993-12-07 1994-12-01 Siemens Ag Integrierte Schaltungsanordnung mit mindestens einem CMOS-NAND-Gatter und Verfahren zu deren Herstellung
US5479048A (en) * 1994-02-04 1995-12-26 Analog Devices, Inc. Integrated circuit chip supported by a handle wafer and provided with means to maintain the handle wafer potential at a desired level
JP3291958B2 (ja) * 1995-02-21 2002-06-17 富士電機株式会社 バックソースmosfet
US5578841A (en) * 1995-12-18 1996-11-26 Motorola, Inc. Vertical MOSFET device having frontside and backside contacts
US5741737A (en) * 1996-06-27 1998-04-21 Cypress Semiconductor Corporation MOS transistor with ramped gate oxide thickness and method for making same
DE69739206D1 (de) * 1996-07-19 2009-02-26 Siliconix Inc Hochdichte-graben-dmos-transistor mit grabenbodemimplantierung
US6121661A (en) * 1996-12-11 2000-09-19 International Business Machines Corporation Silicon-on-insulator structure for electrostatic discharge protection and improved heat dissipation
US5889306A (en) * 1997-01-10 1999-03-30 International Business Machines Corporation Bulk silicon voltage plane for SOI applications
WO1998049732A2 (en) * 1997-04-28 1998-11-05 Koninklijke Philips Electronics N.V. Lateral mos transistor device
KR100230736B1 (ko) * 1997-06-25 1999-11-15 김영환 반도체 소자의 정전기 방지 구조 및 그의 제조방법(Structure of protecting electrostatic discharge for semiconductor device and method for manufacturing the same)
JPH11111856A (ja) * 1997-10-01 1999-04-23 Citizen Watch Co Ltd 半導体装置
US6048772A (en) * 1998-05-04 2000-04-11 Xemod, Inc. Method for fabricating a lateral RF MOS device with an non-diffusion source-backside connection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9936961A1 *

Also Published As

Publication number Publication date
US6459142B1 (en) 2002-10-01
DE19801095A1 (de) 1999-07-15
JP2002510147A (ja) 2002-04-02
WO1999036961A1 (de) 1999-07-22
DE19801095B4 (de) 2007-12-13

Similar Documents

Publication Publication Date Title
DE19801095B4 (de) Leistungs-MOSFET
EP1051756B1 (de) Mos-feldeffekttransistor mit hilfselektrode
DE102016111998B4 (de) Ausbilden von Elektrodengräben unter Verwendung eines gerichteten Ionenstrahls und Halbleitervorrichtung mit Graben-Elektrodenstrukturen
EP1408554B1 (de) Durch Feldeffekt steuerbares Halbleiterbauelement
DE19539541B4 (de) Lateraler Trench-MISFET und Verfahren zu seiner Herstellung
DE19949364B4 (de) Halbleiterbauteil mit MOS-Gate-Steuerung und Grabenstruktur sowie Verfahren zur Herstellung
EP0833386B1 (de) Durch Feldeffekt steuerbares, vertikales Halbleiterbauelement
DE102016103384B4 (de) Halbleitervorrichtung mit nadelförmigen Feldplattenstrukturen in einem Transistorzellengebiet und in einem inneren Abschlussgebiet
DE102017110969A1 (de) Halbleitervorrichtung mit grosser bandlücke mit graben-gatestrukturen
CH642485A5 (de) Leistungs-mosfet-anordnung.
DE112016006380B4 (de) Halbleiterbauelement
EP1048079A1 (de) Soi-hochspannungsschalter
EP1151478A1 (de) Mos-leistungsbauelement und verfahren zum herstellen desselben
DE19848828A1 (de) Halbleiterbauelement mit kleiner Durchlaßspannung und hoher Sperrfähigkeit
DE69937101T2 (de) Laterale-dünnfilm-silizium-auf-isolator (soi) anordnung mit mehreren gebieten im drift-gebiet
EP1181712B1 (de) Niederohmiges vdmos-halbleiterbauelement
EP1095408A1 (de) Vertikales halbleiterbauelement mit reduziertem elektrischem oberflachenfeld
DE69510484T2 (de) Metaloxidhalbleiter-Anordnung mit einer Substratkontaktstruktur
EP0913000B1 (de) Durch feldeffekt steuerbares halbleiterbauelement
EP1264350B1 (de) Vertikales hochvolt-halbleiterbauelement
DE10245049B4 (de) Kompensationshalbleiterbauelement
DE102022102392A1 (de) Halbleitervorrichtung und Verfahren zum Herstellen einerHalbleitervorrichtung
DE10005772B4 (de) Trench-MOSFET
EP1186052B1 (de) Source-down-leistungstransistor
DE10249633B4 (de) Source-Down-Leistungstransistor und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20010920

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20020412