EP1030106B1 - Bruleur à flamme bleue optimisant la combustion - Google Patents

Bruleur à flamme bleue optimisant la combustion Download PDF

Info

Publication number
EP1030106B1
EP1030106B1 EP00111167A EP00111167A EP1030106B1 EP 1030106 B1 EP1030106 B1 EP 1030106B1 EP 00111167 A EP00111167 A EP 00111167A EP 00111167 A EP00111167 A EP 00111167A EP 1030106 B1 EP1030106 B1 EP 1030106B1
Authority
EP
European Patent Office
Prior art keywords
burner
accordance
recirculation
combustion chamber
fuel jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00111167A
Other languages
German (de)
English (en)
Other versions
EP1030106A3 (fr
EP1030106A2 (fr
Inventor
Bernhard Knapp
Manfred Bader
Lutz Mardorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV, Deutsche Forschungs und Versuchsanstalt fuer Luft und Raumfahrt eV DFVLR filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority claimed from EP95905077A external-priority patent/EP0683883B1/fr
Publication of EP1030106A2 publication Critical patent/EP1030106A2/fr
Publication of EP1030106A3 publication Critical patent/EP1030106A3/fr
Application granted granted Critical
Publication of EP1030106B1 publication Critical patent/EP1030106B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
    • F23D11/26Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed
    • F23D11/28Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed with flow-back of fuel at the burner, e.g. using by-pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/40Inducing local whirls around flame

Definitions

  • the invention relates to a burner for liquid media comprising a Burner housing, which has a support tube and an adjoining one Has flame tube, one arranged in the support tube in the prechamber Nozzle assembly with a nozzle generating a fuel jet, one in the Flame tube arranged essentially mixing tube-free burner chamber in which spreads the fuel jet, a separating element between the Antechamber and the combustion chamber with a central opening through which the fuel jet passes through a blower to generate one in the Combustion chamber incoming combustion air flow, which is close to a fuel jet Partial flow and a partial flow close to the fuel jet comprises radially external individual streams comprising partial stream, wherein in the combustion chamber the fuel with a blue burning flame in the burns essentially stoichiometric or near stoichiometric.
  • DE-OS 40 09 222 discloses a burner for stoichiometric combustion of liquid or gaseous fuels from an atomizer nozzle. With this burner, a nozzle is placed around the atomizer nozzle Aperture air led into a combustion chamber, in which the exiting from the nozzle Fuel also occurs.
  • EP-A-0 430 011 also discloses a blue-burning one Burner in which a mixture surrounds an atomizing nozzle supplied from fresh air and recirculating combustion gases and be mixed before again with that of the Atomizer nozzle coming to a stoichiometric fuel Cause combustion.
  • a mixture of combustion air and recirculating combustion gas in front of the level, in which is an orifice of the nozzle, a mixture of combustion air and recirculating combustion gas and after This mixes the combustion air in a mixing chamber and the recirculating combustion gases with the fuel, which then enter the actual combustion chamber.
  • a mixture of combustion air and recirculating combustion gas in front of the level, in which is an orifice of the nozzle, a mixture of combustion air and recirculating combustion gas and after This mixes the combustion air in a mixing chamber and the recirculating combustion gases with the fuel, which then enter the actual combustion chamber.
  • the supply of Fresh air divided on the one hand into a first part, the directly mixed with the recirculating combustion gases, and on the other hand in a second part, which the Flows around the atomizer nozzle and serves to close the atomizer nozzle cool so that the cooling of the atomizer nozzle, in particular the oil nozzle, is adjustable.
  • This fresh air is then also in a mixing chamber with the remaining fresh air and the
  • a controllable burner is known from DE-OS 27 12 564, in which a baffle plate is present and downstream the baffle plate a negative pressure area by generating a rotating hollow air column is created so that combustion gases be sucked back into this vacuum area.
  • the rotating hollow air column is thereby in radial Radial slots running in the direction and covered with scoops generated.
  • the atomizer nozzle with the ignition electrodes is in arranged in a closed room, which only so much fresh air is supplied as required to move the spark is.
  • DE-PS 29 08 427 discloses a burner in which first a sub-stoichiometric one with the addition of flue gases Combustion in a primary combustion zone with immediate supply of one that envelops the fuel stream Jacket air flow takes place and then in a superstoichiometric secondary combustion zone, in the residual air over the peripheral area of the primary combustion zone is fed, further combustion takes place.
  • the residual air is coaxial around the respective burner fed around regulated in at least two sub-flows from the burner mouth after a certain free flow path reach the flame.
  • a so-called blue burner is known from DE-OS 31 09 988, at which an internal recirculation is forced through a mixing tube, whereby the fuel jet emerging from an atomizer nozzle on the one hand immediately surrounding combustion air is supplied and on the other hand radially outside further air passage holes are provided, the however, lie radially within the mixing tube.
  • the same principle is also disclosed in WO 93/19325 A.
  • a burner with a recirculation is known from EP-A-0 538 761 which creates the external recirculation through a longitudinal direction of the slots is, these slots extend with their longitudinal direction in the circumferential direction.
  • Similar burners are for example from DE-PS 27 00 671 or DE-PS 38 01 681 known.
  • a blue flame burner is understood to mean that this flame Flame burns a completely gasified fuel, which in particular when using oil as fuel that comes in from the nozzle the Small oil droplets first emerge from the fuel jet until combustion to evaporate essentially completely by the flame.
  • the invention is based on the object to improve a burner of the generic type such that a stable and stoichiometric or near stoichiometric as low as possible Burning allowed.
  • a recirculation-stabilizing partial stream of combustion air is that one in the combustion chamber from the blue-burning flame to the non-burning one Part of the fuel jet's internal recirculation flow trains and that the recirculation-stabilizing partial flow of Combustion air stabilizes the internal recirculation flow.
  • the advantage of the solution according to the invention is that the additional recirculation-stabilizing partial flow of the combustion air stabilization the internal recirculation flow in the combustion chamber is possible.
  • a cold combustion gas leading external recirculation flow enters the combustion chamber that the external recirculation flow near the separator into the combustion chamber occurs and is so large that a flame root of the blue-burning flame is at least 1 cm from the nozzle, and that between the nozzle and the flame root is a non-burning part of the Spreads the fuel jet conically with the addition of combustion air.
  • the sufficient length of the non-burning part of the fuel jet created the opportunity to get the hot gases out the inner recirculation flow the non-burning part of the fuel jet and in turn the possibility of the oil droplets in the fuel jet with certainty to evaporate to the flame root, so that ultimately one stable blue-burning flame that is highly insensitive against minor changes in the setting parameters is.
  • the solution according to the invention also has in connection with the use of an external recirculation flow great advantage that due to the lack of mechanical Flow control elements in the combustion chamber, in particular due to the missing mixing tube, no problems with pollutant emissions that occur at the start of the burner cause the external recirculation to vary must be set. Rather, the invention offers Solution the big advantage that already at the start of the Optimal low-pollution combustion takes place, so that the complex regulation of external recirculation, like described for example in DE-PS 39 06 854, although still can be carried out, however, due to the available good pollution levels without this regulation is required.
  • An advantageous exemplary embodiment provides that the inner recirculation flow originating from the flame on an inside of the flame tube towards the Separator flows. In this position, the inner Recirculation flow through the recirculation stabilizing Partial flow of the combustion air is particularly simple and sustainable stabilize.
  • inner recirculation flow is the inner recirculation flow yellow burning.
  • a particularly beneficial effect of the internal recirculation flow, especially with regard to heat transfer on the fuel jet to evaporate the oil droplets reach themselves when the inner recirculation flow through the recirculation-stabilizing partial flow passes.
  • the recirculation-stabilizing partial stream preferably occurs in the form of a ring flow interrupted in the circumferential direction to their fuel jet into the combustion chamber, whereby the stabilization of the recirculation flow still is further improved since at the points of the interruption a "flow" of the ring current in the radial direction in is easily possible while between breaks stabilizing vortices are generated.
  • the amount of air in the partial stream close to the fuel jet with all settings is constant, so that the partial flow close to the fuel jet is always a basic supply for the Ensures fuel jet with air.
  • the amount of air in the partial stream near the fuel jet is dimensioned so that at the maximum amount of fuel the amount of air in recirculation-stabilizing partial flow is maximum and minimal amount of fuel the combustion air flow only through the sub-stream close to the fuel jet is formed.
  • the amount of air in the vicinity of the fuel jet Partial flow between approximately 0.6 times and about 0.2 times the amount of air at the maximum recirculation-stabilizing partial flow is, this is provided in particular in a burner, the Burner output can be varied by a factor of five.
  • the partial stream close to the fuel jet preferably occurs in the process flowing around the fuel jet into the combustion chamber a good mixing of this part of the combustion air with the Allow fuel jet in the combustion chamber.
  • Partial flow required cross section available ensure that the partial flow near the fuel jet passes through a passage between the nozzle head and an edge of one for the inflow opening provided near the fuel jet flows into the combustion chamber so that the size of the Pass the flow cross-section for the fuel jet near Specifies partial flow.
  • a particularly advantageous mixing of the near fuel jet Partial flow and the fuel in the combustion chamber results when the inflow opening for the Partial stream close to the fuel jet generating turbulence is.
  • the inflow opening with a swirl edge or a swirl cutting edge is.
  • the burner housing With regard to the construction of the burner housing were related with the previous embodiments none detailed information. So looks an advantageous one Embodiment before that the burner housing a prechamber comprises, in which the nozzle is arranged and which is separated from the combustion chamber by the separating element. On Such construction of the burner housing has the advantage of one great simplicity and high structural flexibility.
  • the separating element With regard to the guidance of the combustion air through the separating element is expediently provided that the separating element the inlet opening facing the nozzle for the fuel jet Has partial flow.
  • This flame tube is preferred for lowering the nitrogen oxide emission with openings for the formation of the external recirculation flow Mistake.
  • combustion chamber extends from a plane that is close the nozzle opening.
  • the combustion chamber allows optimal guidance of the individual Recirculation currents, especially the inner and the external recirculation flow to the non-burning part of the fuel jet.
  • a particularly simple and efficient design of the combustion chamber provides that this between the separator and the Area of the flame root has a substantially constant Has cross-section. This gives the advantage of being sufficient Space for guiding and training the recirculation flows, especially the inner recirculation flow is available.
  • the aperture in turn could also be curved be as follows. As for example from DE-OS 40 09 222 known. However, it is particularly advantageous if the aperture extends in a plane because such a form of Aperture also optimally guides the recirculation flows to the non-burning part of the fuel jet in the Area of the aperture allowed.
  • the recirculation space is expediently designed such that that it extends at least to the flame root, enough space for the internal recirculation flow to accomplish.
  • the recirculation stabilizing Partial stream enters the recirculation room.
  • the recirculation-stabilizing partial stream is preferably formed so that it is symmetrical about an axis of the combustion chamber and thus to an axis of the recirculation space in this occurs.
  • the recirculation-stabilizing partial stream is preferably designed so that it lies in the form of a cylinder Current image enters the combustion chamber. This form of the recirculation-stabilizing partial flow enables one particularly optimal stabilization of the internal recirculation flow.
  • the cylinder is designed as a circular cylinder, which lies through a middle of it Pitch circle is set.
  • this ratio is between approximately 3 and about 0.1, better between about 2 and about, 0.1, more preferably between about 1 and about 0.1, and it has proven particularly optimal if this Ratio in the range of about 1.5 to about 0.3 lies.
  • the circular ring area has a pitch circle diameter which is in a range of approximately 0.2 to about 0.7 an outer diameter of the combustion chamber or the recirculation room
  • a particularly optimal effect of the recirculation stabilizing Partial flow can be achieved if the recirculation space, one for example the inside diameter of the Flame tube has the corresponding outer diameter, which is about 1.5 to 3 times larger than the diameter of the Pitch circle of the circular cylinder.
  • the recirculation space is one Outside diameter, which is about 1.8 to about 2.6 times, more preferably about 2 to about 2.5 times, larger is the diameter of the pitch circle of the circular cylinder.
  • the Outside diameter of the recirculation space approximately 2.4 ⁇ 10% times as large, more optimally about 2.5 times, as large as the pitch circle diameter.
  • This flame chamber can have the same inner diameter for large outputs have as the recirculation space, in particular for small services, however, it has to do with spatial stabilization proved to be advantageous if the flame space has a maximum diameter is the same size or smaller than the recirculation space.
  • Particularly preferred values result when the diameter of the flame space in the range of approximately 0.6 to 0.9 times of the diameter of the recirculation space. Especially It is advantageous if the inner diameter of the flame space in the range of approximately 0.8 times the inner diameter of the Recirculation space.
  • This embodiment has the great advantage that the outer recirculation flow is defined on the one hand lead and on the other hand with regard to the mass flow also lets you set what for.
  • the inventive Aspects especially the guidance of the external recirculation flow to shield the internal recirculation flow from the separating element and the dimensioning of the Mass flow to achieve a long enough non-burning Part of the fuel jet is important. This is also the volume for the inner recirculation flow established.
  • An advantageous exemplary embodiment provides that an area of the entry for the combustion air flow in the openings provided in the combustion chamber maximum approximately the area of the recirculation openings provided in the flame tube for the outer recirculation flow. With this dimensioning a is sufficient large mass flow in the recirculation flow ensures around a sufficiently elongated part of the non-burning Get fuel jet in the combustion chamber.
  • a flow stabilization element in the flame tube is also possible to have a flow stabilization element in the flame tube to arrange, which is from the aperture in Direction of a foot area of the flame up to a maximum of approximately over a quarter of the distance between the aperture and the Flame extends.
  • This flow stabilization element has nothing to do with what is known from the prior art Mixing tube, since the known mixing tube only the formation of a single recirculation flow while the inventive Flow stabilization element also like this is trained that it is the formation of several by the Recirculation-stabilizing partial flow of definable recirculation flows allows, especially the training of required for the respective fuel quantities and air quantities Recirculation flows.
  • the flow stabilizing element a maximum of about one Sixth of the distance between the bezel and the foot area the flame extends.
  • combustion chamber be free from within the same arranged flow stabilization elements for the Recirculation is formed.
  • the adjusting device is preferably designed such that with an adjustment of the air volume the place of entry of the Combustion air flow into the combustion chamber in the radial direction Fuel jet is essentially invariant. This has the great advantage that by determining the location of the Entry of the combustion air flow an optimal stabilization the recirculation with all fuel quantity settings and amount of combustion air is possible.
  • Adjustment device an adjusting element rotatably mounted on the panel with which the cross section of one in the Aperture provided opening is adjustable.
  • the setting element can be rotated formed on the bezel shim, which in different rotational positions relative to the aperture and to the openings provided in the panel can be brought.
  • this setting element can be designed that it is adjustable in different discrete setting positions is.
  • the adjusting element is continuously adjustable so that it is continuous the cross sections between a maximum value and a The minimum value can be varied.
  • the setting device can be designed so that it manually, for example with an appropriate tool, is adjustable.
  • variable control of the air volume advantageous if the setting device has a controllable actuator is adjustable.
  • Such a return nozzle is particularly easy adjust that this is an adjustable return valve is assigned, which enables the return of the return nozzle variably adjustable and thus also that of the Adjust the amount of fuel dispensed from the nozzle.
  • the return valve is designed that with this different amounts of fuel of the fuel jet are permanently adjustable. It is even more advantageous however, if the return valve is continuously adjustable is, so that continuous adjustment and adjustment the amount of fuel is possible.
  • the return valve is adjustable by means of an actuator.
  • a particularly advantageous embodiment of the invention Solution provides that the burner has a control with which the amount of fuel and the amount of air of the combustion air flow are adjustable.
  • a Control can be a simple optimal setting of both the amount of fuel and the Amount of combustion air, especially with regard to a stoichiometric or near stoichiometric combustion, to reach.
  • control the Actuator of the return valve controls.
  • Control controls the actuator of the setting device.
  • the controller is both the actuator of the return valve as well as the actuator of the adjusting device controls.
  • controller according to the invention also several Possibilities conceivable. This is an advantageous embodiment before that control burner outputs fixed can be specified. Alternatively, it is conceivable that the Control burner outputs are variably specifiable.
  • a particularly advantageous embodiment provides that the controller according to a predetermined performance
  • the amount of fuel and the amount of air correspond on the one hand to this Performance and on the other hand in terms of a stoichiometric or near-stoichiometric combustion.
  • the amount of fuel is adjustable in that the Burner can be used as a kit with the same burner housing different nozzles is formed. The setting the amount of fuel takes place in that the appropriate nozzle is inserted into the burner.
  • the nozzles are all in the essentially the same spray pattern and especially one in have essentially the same outer contour on the air flow side and just deliver different amounts of fuel.
  • a particularly advantageous embodiment provides that with the adjustment parts the fuel stream close to the fuel jet is constant while the recirculation stabilizing Partial flow with different setting parts different values can be set.
  • the kit an identical burner housing for all burner outputs includes.
  • the kit is for everyone Burner performance includes an identical fan.
  • kit is identical Combustion chamber includes.
  • the kit is available for all Burner performance includes an identical nozzle assembly.
  • a first embodiment of an inventive Brenners shown in Fig. 1, comprises one as a whole with 10th designated burner housing with a support tube 12 and a to this adjoining flame tube 14.
  • a fan designated as a whole with 16 which has a fan drive 18 and a fan wheel 20 includes.
  • This fan 16 produces a Support tube 12 passing through air flow 22, which in the direction of the flame tube 14 flows.
  • Nozzle block arranged, which is a nozzle holder 26 with a screwed into this nozzle 28.
  • the Nozzle 28 is described in detail below
  • Return nozzle is formed and is via a nozzle feed 30 supplied with liquid fuel, in particular oil, while a part of the fuel supplied in the nozzle feed line 30 again flows back, with a throttling of the return via an in adjustable return valve arranged in the nozzle return line 32 34 is possible.
  • the feeding of the fuel into the nozzle feed line 30 takes place via a fuel feed pump 36, which is preferably is also driven by the drive 18 of the blower 16, in particular on the same shaft as the impeller 20.
  • This fuel feed pump 36 is via a pump feed line 38 is fueled and also has a return line 40 connected in which excess fuel flows back from the fuel feed pump 36. In these Return line 40 also opens the nozzle return line 32 after the return valve 34.
  • the nozzle 28 includes one Nozzle head 50, which in turn rests on a nozzle body 52 is screwed on, and receives a swirl body 54.
  • the nozzle head 50 in turn is also still in the nozzle carrier 26 screwed so that the nozzle body 52 in one Recess 56 of the nozzle carrier 26 is located, the recess 56 forms a fuel supply area 58, which with the Nozzle feed line 30 is connected and a return area 60, which is connected to the nozzle return line 32.
  • the fuel entering the fuel supply area 58 preferably flows through a filter 62 and then overflows two opposite inlet channels 64 of the nozzle body 52 in further inlet channels 66 in the swirl body 54 and of these, as shown in Fig. 3, in an annular Inlet space 68 of the swirl body 54, which by a support plate closing the swirl body 54 on the end face 70 is closed.
  • the fuel From the annular inlet space 68 the fuel enters swirl channels 72 lying radially within the annular inlet space 68 Swirl chamber 74, in which there is a corresponding to the orientation of the swirl channels 72 forms circumferential swirl flow and the fuel passes from this swirl chamber 72 an annular circumferential gap 76 in a spray hole 78, from which a conical fuel jet 80 exit.
  • the spray bore 78 is opposite in the swirl body 54 a return channel 82 is arranged which the swirl body 54 passes through and arranged in a nozzle body 52 Return channel 84 merges, which then finally in the return area 60 of the recess 56 opens, which then in turn in connection with the nozzle return line 32 stands.
  • the nozzle assembly 24 together with the nozzle 28 is within the Support tube 12 arranged in a prechamber 48, which also is penetrated by the air flow 22.
  • the antechamber 48 is closed off by one as a whole 90 designated and inserted into the support tube 12, on which is located downstream of the nozzle 28 a combustion chamber 92 connects, which is surrounded by the flame tube 14. Also the flame tube 14 is preferably held on the support tube 12.
  • the aperture 90 is arranged so that the spray bore 78th with a nozzle opening near or in the plane 89 of the Aperture 90 is located and the fuel jet emerging at the nozzle 28 80 essentially completely in the combustion chamber 92 spreads.
  • the aperture 90 is coaxial with the longitudinal axis 86 the inflow opening 94 arranged in the nozzle 28.
  • the Inflow opening 94 is also chosen so large that between an edge 96 of the inflow opening 94 and one of this edge 96 facing outside 98 of the nozzle head 50 an annular Passage 100 remains through which a fuel jet near Partial flow 102 of a total of 48 from the prechamber the combustion air flow flowing in through the combustion chamber 92.
  • the edge 96 of the inflow opening 94 with a Vortex edge 104 provided which for vortex formation in the partial flow 102 leads and for example through a step-shaped Cross-sectional constriction of the inflow opening 94 is formed.
  • Another partial flow 106 of the from the pre-chamber 48 in the Combustion chamber 92 entering combustion air flow passes through radially outside the inflow opening 94 in an annular region 108 arranged openings 110 through which a pitch circle 109 preferably at equal angular intervals and with spaces 111 around the center of the annulus area 108 are arranged.
  • the openings 110 preferably have a reference to the pitch circle 109 an extension in the azimuthal direction which one Corresponds to an angle which is approximately one to two times the the extension of the spaces 111 corresponding angle is.
  • the openings 110 can overlap in the azimuthal direction extend an angle that is about 0.1 to about 8 times the angle of the extension of the gaps 111 equivalent.
  • the openings 110 are arranged so that the partial flow 106 of the combustion air flow through the spaces 111 between the openings 110 in the form of a circumferential direction interrupted ring flow corresponding flow pattern in the combustion chamber 92 enters and thus the training an inner recirculation flow 112 and also one external recirculation flow 119 in the combustion chamber 92 stabilized so that a flame root 114 one in the Combustion chamber 92 forming flame 116 essentially in is the same distance from the aperture 90, regardless of one amount of fuel carried by the fuel jet 80 and a corresponding through the partial streams 102 and 106 in the Combustion chamber 92 entering the corresponding amount of combustion air.
  • the flows according to the invention in the combustion chamber 92 are shown in Fig. 8, thus the fully conical Fuel jet 80 close to the cylindrical fuel jet Partial stream 102, which with a flow direction 103 enters the combustion chamber 92, which is parallel to a flow direction 79 of the fuel jet 80. Furthermore, the recirculation-stabilizing partial flow 106 which has a flow direction 79 parallel flow direction 107 in the form of individual flows 105 enters the combustion chamber 92, the individual flows 105 lie on a circular cylinder, the cross-section on the aperture 90 has the shape of the annular region 108 and defined by the pitch circle 109 lying in the middle of the jacket is.
  • the flame root 114 in turn joins one non-burning part 81 of the fuel jet 80, which a length of about 1 to about 4 cm, preferably about 1 to about 3 cm, at and from it spreads the flame 116, which is on one Inner wall area 15 of the flame tube 14 creates before it this leaves.
  • the outer recirculation flow 118 also occurs close to the screen between the individual streams 105 and mixes then with the combustion air flow 102, 106 by the Increase flame tube 14 mass flow passing so far that the flame root 114 at a constant distance of at least 2 cm from the aperture 90 and thus also from the Nozzle 28 remains that the non-burning part 81 of the Fuel jet 90 is long enough to drop the oil droplets in to evaporate it almost completely.
  • the sum of the areas is that for entry the combustion air flow into the openings provided in the combustion chamber, in particular the sum of the area openings 110 and the inflow opening 94, dimensioned so that they are approximately at most the sum of the areas of the recirculation openings for the external recirculation, especially the sum of the areas of the formed as elongated slots in the circumferential direction corresponds to outer recirculation openings 118.
  • the ratio of the area of the recirculation openings 118 to The area of the central inflow opening 94 is between approximately 0.3 to about 19.2, preferably between about 0.9 and 5.1.
  • the recirculation chamber 91 then closes the Flammraum 117 on.
  • the first one shown in FIGS. 1 to 9 is preferred Embodiment of the partial stream 102 near the fuel jet trained that this at the smallest burner capacity corresponding recirculation flow without the recirculation stabilizing Partial stream 106 stabilized (FIG. 9 lower half) and then for large burner capacities recirculation-stabilizing partial flow 106 the stabilization takes over (Fig. 9 upper half) that the near fuel jet Partial stream 102 can no longer afford.
  • the burner is dimensioned differently, it is also possible to at the lowest power, both near the fuel jet Stream 102 as well as a minimal recirculation stabilizing Provide partial stream 106.
  • Such a stabilization of the recirculation flows 112 and 119 can be reached in particular if, for example corresponding to the inner diameter of the flame tube Outer diameter of the recirculation chamber 91 of the combustion chamber 92 about 1.5 to about 3.9 times, yet better about two to three times the diameter of a partial circle 109 of the circular ring region 108 It is more advantageous if the inner diameter of the recirculation space 91 of the combustion chamber 92 which is approximately 2.2 to about 2.6 times, better still about 2.2 to about 2.5 times the diameter of the pitch circle 109.
  • the ratio of the diameter of the pitch circle 109 to The diameter of the central inflow opening 94 is between about 1.0 and about 4.2, preferably about 2.6 to about 4.0, more preferably about 2.8 to about 3.5, and preferably between about 1.82 and about 2.0.
  • the central inflow opening 94 is dimensioned so that an outer diameter of the recirculation chamber 91 of the combustion chamber 92 about 3.4 to about 8.5 times, better still about that 4 to about 6 times, better still about 4.4 to approximately 5.9 times the diameter of the central inflow opening 94 is.
  • Annular shim 122 is in turn, as shown enlarged in Fig. 9, in one provided in the diaphragm 90 cylindrical disk-shaped Well 126, which is open to the prechamber 48. The rotatable guidance of the shim takes place over the Storage of the same with its outer edge 128 on one cylindrical edge 130 of the recess 126.
  • the shim 122 is adjustable so that, as in 5 to 7, either openings 124 are congruent with the openings 110, so that the maximum cross section for the individual openings 110 replacing substream 106 is available, or rotatable so that the openings 124 are no longer congruent the openings 110 and only the overlapping one another Areas of openings 110 and 124 the partial flow Let 106 pass so that the air volume of the partial flow 106 is reduced, as shown in Fig. 6.
  • the partial flow 106 can be completely interrupted, as shown in FIG. 7, namely, when the openings 124 on the gap between the Openings 110 are available.
  • this is in one Provide partial area of its outer edge with teeth 132, into which a toothing 134 as a whole with 136 designated setting pinion of the setting device 120 intervenes.
  • This setting pinion is in turn rotatable the aperture 90 stored, and in the simplest case in one another cylindrical bearing recess 138 in the aperture 90 stored, the rotatable bearing by the concern the toothing 134 on cylindrical wall surfaces 140 of the Storage deepening 138 takes place.
  • the deepening of the warehouse opens 138 to the antechamber 48.
  • Both the shim 122 and the pinion 136 are in their respective recesses 126 and 138 through 9 fixing elements not shown in the drawing held so that they are each at the bottom of the wells issue.
  • the setting pinion 136 for example, self-locking in the storage recess 138 stored and for example with a slot 142 provided, which makes it possible with a conventional screwdriver to turn the setting pinion 136 so that adjustment of the shims 122 is also possible, the respective settings of the shims 122 maintained by the self-locking adjustment pinion 136 become.
  • the first embodiment now works so that interrupted partial flow 106 as the amount of combustion air only from the partial flow 102 through the passage 100 into the combustion chamber 92 incoming combustion air is available. Corresponding this amount of air is adjusted by the nozzle 28 amount of fuel dispensed into the fuel jet 80, where the amount of fuel is adjusted so that the flame 116 .blue burns and a stoichiometric or near stoichiometric Combustion sets. This setting the amount of fuel takes place via the setting of the return valve 34 and thus via the nozzle return line 32 in the Return line 40 from the fuel stream returning from the nozzle 28.
  • Brenner is a distance from the flame root 114 of the flame 116 of aperture 90 is substantially constant and it is at all burner power settings a blue burn the Flame 116 with essentially stoichiometric or Near stoichiometric combustion adjustable.
  • Brenners shown in Fig. 10, are those parts that are identical to the first embodiment, with the same Provide reference numerals. Regarding the description these parts can thus refer to the explanations of the first embodiment full reference is made.
  • Flow guide ring 150 is provided, which is at a distance of the aperture 90 is arranged, and with its front edge 152 up to a maximum of a quarter of a distance between the aperture 90 and the foot portion 114 of the flame 116 extends. Furthermore, the flow guide ring 150 with a the rear edge 154 facing the panel 90 at a distance from the Aperture 90 arranged so that the recirculation flow 112 between that in the edge 154 and a front face 156 of the Aperture 90 from the side of the aperture 90 in the flow guide ring 150 can occur.
  • the Flow ring 150 also serves as an additional one Stabilizing the recirculation flow 112, wherein a significant distance between the leading edge 152 and the foot area 114 of the flame 116 is required to be at different power settings of the invention Brenners the formation of a strong recirculation flow 112 to ensure and the effect of the recirculation stabilizing To support substream 106.
  • the flow guide ring 150 is preferably with webs 158 held at the aperture 90.
  • a third embodiment of an inventive Brenners shown in Fig. 11, are those parts that are identical to the first embodiment, with provided with the same reference number so that with respect to Description of these parts also in full on the Execution referred to the first embodiment can be.
  • an actuator for setting the return valve 34 160 provided and for the adjustment of the setting pinion 136 an actuator 162, both of which have a common control 164 can be controlled.
  • This controller 164 has power settings via an input 166 of the burner according to the invention, where controller 164 for each input power setting 166 the corresponding setting of the Return valve 34 and the actuator 162 of the adjusting device 120 makes. For example, this is in a memory of the controller 164 predeterminable positions the actuators 160 and 162 can be carried out.
  • the fuel stoichiometrically or burns close to stoichiometric is one more Lambda probe 168 arranged in the exhaust gas flow of flame 116, which is also connected to the controller 164 so that the controller 164 after rough settings of the power the actuators 160 and 162 are additionally capable is a fine adjustment of either the amount of combustion air or the amount of fuel to make stoichiometric or to comply with near-stoichiometric combustion conditions.
  • the controller 164 is constructed in the simplest case so that via an adjuster, for example manually, each desired performance of the burner according to the invention adjustable are.
  • the controller 164 designed so that overall control of a system, for example a heating system, into which the burner according to the invention is integrated is a requirement for the required performance of the burner according to the invention takes place so that the controller 164 then depending on the requested performance of the invention Brenner adjusts the actuators 160 and 162 accordingly and a fine adjustment based on the measured values of the Lambda probe 168 carries out.
  • a fourth embodiment shown in Fig. 12, are those parts with the above embodiments are identical, with the same reference numerals provided so that with regard to their description on the statements full reference to these exemplary embodiments is taken.
  • This flame tube allows, especially with small burner capacities, preferably less than 20 kW, stable in the flame tube 14 standing flame 116 to get. Also prevented this geometry an undesired intake of smoke gases from the front end of the flame tube 14.
  • a sixth embodiment of an inventive Brenners shown in Fig. 14, are those Parts with those of the first embodiment are identical, provided with the same reference numerals, so that with regard to these parts also on the comments on first embodiment referred to in full can be.
  • the burner according to the invention built in the form of a kit.
  • a return nozzle trained nozzle 28 with a nozzle return line 32 and a return valve 34 provided therein Adjusting the fuel flow are a set of several Nozzles 228 are provided, each having the same spray pattern and the same airflow side Outer contour and therefore the same shape of the fuel jet 80, but deliver with different amounts of fuel.
  • the fuel is supplied via the Fuel feed pump 36 and the nozzle feed line 30, one Nozzle return line 32 is however unnecessary.
  • the different nozzles 228 correspond to each other different performances of the burner according to the invention.
  • the diaphragms 290a to c differ in cross-section of the openings 210 provided for the partial flow 106, not however, in terms of their location, the openings 210a with the openings 110 with respect to the overall cross section of the Openings are identical, while openings 210b are one Overall cross section showing which of an intermediate setting, for example shown in Fig. 6, and thus also an intermediate output of the corresponding nozzle 228 the aperture 290c, the openings 210 are completely absent, so that this the position of the adjusting device shown in FIG. 7 120 corresponds in which the partial flow 106 completely is prevented and the combustion air flow only through the Partial stream 102 is formed.
  • one of the Install panels 290a to 290c in the support tube 12, wherein in the fourth embodiment, the panels 190 are removable are held in the support tube.
  • This is for example on the nozzle assembly 24 by means of a retaining ring 292 Tripod 294 held, which the respective aperture 290 their side facing the antechamber 48 296 and this against a sealing ring 298 in the direction of the flame tube 14 presses.
  • the nozzle assembly 26 as a whole is in Movable in the direction of a longitudinal axis 300 of the support tube 12 and with a spring not shown in Fig. 14 in the direction of the flame tube 12 is applied. So it's taking out the diaphragm 290 in the direction of the antechamber 48 is possible, while the aperture 290 in the direction of the flame tube 14 through the abutment, for example designed as a sealing ring 298 is fixed.
  • the combustion chamber 92 is designed free of mechanical flow guiding elements, so that when the nozzle 228 corresponding to the respective power and the respective orifice 290 are installed, the suitable recirculation flow 112 is also formed in a stable manner is guaranteed and is also ensured that the flame 116 provides a stoichiometric or near-stoichiometric combustion as a blue-burning flame. Furthermore, a function corresponding to the first exemplary embodiment is ensured by the cross sections of the openings 210 correspondingly provided for the partial flow 106.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Claims (52)

  1. Brûleur pour produits liquides, comprenant :
    un boítier de brûleur (10) qui comprend un tube de soutien (12) et un tube de flamme (14) qui s'y raccorde,
    un porte-buse (24) agencé dans le tube de soutien (12) dans une chambre préliminaire (48) avec une buse (28) qui produit un jet de combustible (80),
    une chambre de combustion (92) agencée dans le tube de flamme (14) et réalisée sensiblement sans tube de mélange, dans laquelle le jet de combustible (80) se propage,
    un élément de séparation (90) agencé entre la chambre préliminaire (48) et la chambre de combustion (92) avec une ouverture centrale (94) que traverse le jet de combustible (80),
    un ventilateur (16) pour produire un écoulement d'air de combustion qui pénètre dans la chambre de combustion (92), comprenant un écoulement partiel (102) proche du jet de combustible,
    dans lequel le combustible brûle dans la chambre de combustion (92) de manière sensiblement stoechiométrique, ou proche de rapports stoechiométriques avec une flamme bleue (116),
    caractérisé en ce que l'écoulement partiel (106) qui pénètre dans la chambre de combustion (92) en plus de l'écoulement partiel (102) proche du jet de combustible, par les écoulements individuels (105) situés radialement à l'extérieur à une distance définie par rapport à l'écoulement partiel (102) proche du jet de combustible, est un écoulement partiel (106) d'air de combustion assurant une stabilisation de recirculation, en ce que dans la chambre de combustion (92) se forme un écoulement de recirculation intérieur (112) qui se déplace depuis la flamme bleue (116) en retour vers la partie qui n'est pas en combustion (81) du jet de combustible (80), et en ce que l'écoulement partiel de stabilisation de recirculation (106) de l'air de combustion stabilise l'écoulement de recirculation intérieur (112).
  2. Brûleur selon la revendication 1, caractérisé en ce que dans le boítier de brûleur sont prévues des ouvertures (118) à travers lesquelles pénètre dans la chambre de combustion (92) un écoulement de recirculation extérieur (119) qui mène les gaz de combustion froids, en ce que l'écoulement de recirculation extérieur (119) pénètre dans la chambre de combustion (92) à proximité de l'élément de séparation (90), et présente une taille telle qu'une racine de flamme (114) de la flamme bleue (116) présente une distance d'au moins 1 cm depuis la buse (28), et en ce qu'il se forme entre la buse (28) et la racine de flamme (114) une partie qui ne brûle pas (81) du jet de combustible (80) qui s'élargit en forme conique, avec mélange d'air de combustion (102, 106).
  3. Brûleur selon le préambule de la revendication 1 ou selon l'une ou l'autre des revendications 1 et 2, caractérisé en ce que dans le boítier de brûleur (10) sont prévues des ouvertures (118) à travers lesquelles pénètre dans la chambre de combustion (92) un écoulement de recirculation (119) qui mène les gaz de combustion froids, en ce que l'écoulement de recirculation extérieur (119) pénètre à proximité de l'élément de séparation (90) dans la chambre de combustion (92), et sépare un écoulement de recirculation intérieur (112) par rapport à l'élément de séparation (90), ledit écoulement de recirculation intérieur se formant comme un écoulement qui s'écoule dans la chambre de combustion (92) depuis la flamme bleue (116) en retour vers la partie qui ne brûle pas (81) du jet de combustible (80).
  4. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement de recirculation intérieur (112) s'écoule, en partant de la flamme (116), sur un côté intérieur du tube de flamme (14) en direction de l'élément de séparation (90).
  5. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement de recirculation intérieur (112) présente une combustion jaune.
  6. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement de recirculation intérieur (112) traverse l'écoulement partiel de stabilisation de recirculation (106).
  7. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) pénètre dans la chambre de combustion (92) sensiblement parallèlement à la direction d'écoulement (79) du jet de combustible (80).
  8. Brûleur selon l'une des revendications précédentes, caractérisé en ce que les écoulements partiels (102, 106) pénètrent dans la chambre de combustion (92) respectivement au même emplacement indépendamment de la quantité d'air réglée.
  9. Brûleur selon la revendication 8, caractérisé en ce que, pour le réglage de la quantité d'air, l'un au moins des écoulements partiels (102, 106) est réglable pour l'ajustement à la quantité de combustible.
  10. Brûleur selon la revendication 9, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) est réglable pour ce qui concerne la quantité d'air.
  11. Brûleur selon la revendication 10, caractérisée en ce que la quantité d'air dans l'écoulement partiel de stabilisation de recirculation (106) est maximum lorsque la quantité de combustible est maximum et minimum lorsque la quantité de combustible est minimum.
  12. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la quantité d'air dans l'écoulement partiel proche du jet de combustible (102) est constante pour tous les réglages de la quantité de combustible.
  13. Brûleur selon l'une des revendications précédentes, caractérisé en ce que le jet de combustible (80) forme un cône pointu cohérent partant de l'ouverture de buse.
  14. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) pénètre dans la chambre de combustion (92) essentiellement parallèlement à la direction d'écoulement (79) du jet de combustible (80).
  15. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) pénètre dans la chambre de combustion (92) en entourant le jet de combustible (80).
  16. Brûleur selon la revendication 15, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) pénètre dans la chambre de combustion (92) dans la région d'une périphérie d'une tête de buse (50) de la buse (28, 228).
  17. Brûleur selon la revendication 16, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) s'écoule le long d'un contour extérieur défini (98) de la tête de buse (50).
  18. Brûleur selon la revendication 15, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) et le jet de combustible (80) pénètrent dans la chambre de combustion (92) à travers la même ouverture d'entrée centrale (94).
  19. Brûleur selon la revendication 18, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) s'écoule jusque dans la chambre de combustion (92) à travers un passage (100) entre la tête de buse (28, 228) et une bordure d'une ouverture d'entrée (94) prévue pour l'écoulement partiel proche du jet de combustible (102).
  20. Brûleur selon l'une ou l'autre des revendications 18 et 19, caractérisé en ce que l'ouverture d'entrée (94) pour l'écoulement partiel proche du jet de combustible (102) est réalisée de façon à produire des turbulences.
  21. Brûleur selon la revendication 20, caractérisé en ce que l'ouverture d'entrée (94) est pourvue d'une arête de tourbillonnement (104).
  22. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la totalité de l'écoulement d'air de combustion (102, 106) est passée à travers une chambre préliminaire (48).
  23. Brûleur selon la revendication 22, caractérisé en ce que l'écoulement d'air de combustion (102, 106) pénètre dans la chambre de combustion (92) à travers un élément de séparation (90).
  24. Brûleur selon la revendication 23, caractérisé en ce que l'élément de séparation (90, 290) comporte une ouverture d'entrée (94), tournée vers la buse (28, 228), pour l'écoulement partiel proche du jet de combustible (102).
  25. Brûleur selon l'une des revendications 22 à 24, caractérisé en ce que l'élément de séparation (90, 290) comprend au moins une ouverture (110, 210), pour l'écoulement partiel de stabilisation de recirculation (106), située radialement à l'extérieur par rapport à l'ouverture d'entrée (94) pour l'écoulement partiel proche du jet de combustible (102).
  26. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la chambre de combustion (92) s'étend à partir d'un plan (89) proche du plan de l'ouverture de buse.
  27. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la chambre de combustion (92) présente une section essentiellement constante entre l'élément de séparation (90) et la région de la racine de flamme (114).
  28. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'élément de séparation (90) est un diaphragme.
  29. Brûleur selon l'une des revendications précédentes, caractérisé en ce que le diaphragme (90) s'étend dans un plan (89).
  30. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la chambre de combustion (92) comprend une chambre de recirculation (91) traversée par la partie qui ne brûle pas (81) du jet de combustible (80) et disposée autour de celle-ci.
  31. Brûleur selon la revendication 30, caractérisé en ce que la chambre de recirculation (91) s'étend au moins jusqu'à la racine de flamme (114).
  32. Brûleur selon l'une ou l'autre des revendications 30 et 31, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) pénètre dans la chambre de recirculation (91).
  33. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) est formé de façon symétrique par rapport à un axe de symétrie de la chambre de combustion (92).
  34. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) pénètre dans la chambre de combustion (92) sous la forme d'un motif d'écoulement disposé sur un cylindre.
  35. Brûleur selon la revendication 34, caractérisé en ce que le motif d'écoulement se compose d'écoulements partiels individuels parallèles (105).
  36. Brûleur selon la revendication 35, caractérisé en ce que les écoulements partiels individuels (105) sont agencés sous un écartement angulaire constant (111) les uns par rapport aux autres.
  37. Brûleur selon la revendication 36, caractérisé en ce que le rapport entre l'écartement angulaire (111) de deux écoulements partiels individuels (105) et la largeur angulaire de la section d'entrée (110) de chaque écoulement partiel individuel (105) est compris entre environ 10 et environ 0,1.
  38. Brûleur selon la revendication 37, caractérisé en ce que le rapport entre l'écartement angulaire (111) de deux écoulements partiels individuels (105) et la largeur angulaire de la section d'entrée (110) de chaque écoulement partiel individuel (105) est compris entre environ 1,5 et 0,1.
  39. Brûleur selon la revendication 38, caractérisé en ce que le rapport entre l'écartement angulaire (111) de deux écoulements partiels individuels (105) et la largeur angulaire de la section d'entrée (110) de chaque écoulement partiel individuel (105) est située dans la plage entre environ 0,7 et 0,25.
  40. Brûleur selon l'une des revendications 33 à 39, caractérisé en ce que le cylindre est un cylindre circulaire, déterminé par un cercle partiel (109) situé au milieu de celui-ci.
  41. Brûleur selon la revendication 40, caractérisé en ce que la chambre de recirculation (91) présente un diamètre extérieur supérieur d'environ 1,5 à 3 fois au diamètre du cercle partiel (109) du cylindre circulaire.
  42. Brûleur selon la revendication 41, caractérisé en ce que la chambre de recirculation (91) présente un diamètre intérieur supérieur d'environ 2 à 2,5 fois au diamètre du cercle partiel (109) du cylindre circulaire.
  43. Brûleur selon la revendication 42, caractérisé en ce que la chambre de recirculation (91) présente un diamètre intérieur qui est approximativement 2,4 fois le diamètre du cercle partiel (109) du cylindre circulaire.
  44. Brûleur selon l'une des revendications 30 à 43, caractérisé en ce que la chambre de flamme (117) fait suite à la chambre de recirculation (91).
  45. Brûleur selon la revendication 44, caractérisé en ce que la chambre de flamme (117) présente un diamètre intérieur plus petit que celui de la chambre de recirculation (91).
  46. Brûleur selon la revendication 45, caractérisé en ce que le diamètre intérieur de la chambre de flamme (117) est situé dans la plage d'environ 0,6 à environ 0,9 fois le diamètre intérieur de la chambre de recirculation (91).
  47. Brûleur selon la revendication 46, caractérisé en ce que le diamètre intérieur de la chambre de flamme (117) est situé dans la plage d'environ 0,8 fois le diamètre intérieur de la chambre de recirculation (91).
  48. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la flamme (116) présente une racine de flamme (114) située dans la chambre de combustion (92).
  49. Brûleur selon la revendication 48, caractérisé en ce que la chambre de combustion (92) s'étend au-delà de la racine de flamme (114).
  50. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement de recirculation extérieur (119) pénètre dans la chambre de combustion (92) séparément de l'écoulement d'air de combustion (102, 106).
  51. Brûleur selon la revendication 50, caractérisé en ce que l'écoulement de recirculation extérieur (119) pénètre directement dans la chambre de combustion (92) via des ouvertures de recirculation (118) dans le tube de flamme (14).
  52. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la surface des ouvertures (94, 110) prévues pour l'entrée de l'écoulement d'air de combustion (102, 106) dans la chambre de combustion (92) correspond au maximum approximativement à la surface des ouvertures de recirculation (118) prévues dans le tube de flamme (14) pour l'écoulement de recirculation extérieur (119).
EP00111167A 1993-12-18 1994-12-17 Bruleur à flamme bleue optimisant la combustion Expired - Lifetime EP1030106B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4343430 1993-12-18
DE4343430 1993-12-18
DE4430889A DE4430889A1 (de) 1993-12-18 1994-08-31 Verbrennungsoptimierter Blaubrenner
DE4430889 1994-08-31
EP95905077A EP0683883B1 (fr) 1993-12-18 1994-12-17 Bruleur a flamme bleue optimisant la combustion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP95905077.4 Division 1995-06-22

Publications (3)

Publication Number Publication Date
EP1030106A2 EP1030106A2 (fr) 2000-08-23
EP1030106A3 EP1030106A3 (fr) 2000-11-22
EP1030106B1 true EP1030106B1 (fr) 2004-11-24

Family

ID=6505503

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00111167A Expired - Lifetime EP1030106B1 (fr) 1993-12-18 1994-12-17 Bruleur à flamme bleue optimisant la combustion

Country Status (2)

Country Link
EP (1) EP1030106B1 (fr)
DE (5) DE4430888A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539246A1 (de) * 1995-10-21 1997-04-24 Asea Brown Boveri Airblast-Zerstäuberdüse
DE29518919U1 (de) * 1995-11-29 1996-01-25 MEKU Metallverarbeitungs-GmbH, 78083 Dauchingen Mischeinrichtung für einen Brenner
DE19735345C2 (de) * 1997-08-14 2000-05-25 Viessmann Werke Kg Öl- oder Gasgebläsebrenner
US6206686B1 (en) 1998-05-01 2001-03-27 North American Manufacturing Company Integral low NOx injection burner
DE10000653C2 (de) * 2000-01-11 2002-06-27 Bosch Gmbh Robert Gasheizgerät mit pneumatisch geregeltem Vormischbrenner
EP1534803A1 (fr) * 2002-07-19 2005-06-01 Shell Internationale Researchmaatschappij B.V. Utilisation d'un combustible obtenu par procede fischer-tropsch dans une chaudiere a condensation
DE20317839U1 (de) * 2003-11-18 2005-03-31 Meku Metallverarbeitung Mischeinrichtung für einen Brenner
DE102004009787B3 (de) * 2004-02-28 2005-08-11 Bbt Thermotechnik Gmbh Mischeinrichtung für einen Öl- oder Gas-Gebläsebrenner
DE102007053658B4 (de) * 2007-11-10 2010-06-02 Robert Bosch Gmbh Brenner für flüssige Brennstoffe
US8622737B2 (en) * 2008-07-16 2014-01-07 Robert S. Babington Perforated flame tube for a liquid fuel burner
DE102010063524A1 (de) 2010-12-20 2012-06-21 Bodo Wyrwa Einstellbarer Brenner für vergasten flüssigen Brennstoff, insbesondere an Öl-Heizungsanlagen und ein mittels des einstellbaren Brenners realisiertes Verfahren
CN116642180B (zh) * 2023-04-07 2023-11-17 沧州市天龙燃烧设备有限公司 一种全自动油气混烧低氮燃烧器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2700671C2 (de) 1977-01-08 1988-07-28 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Blaubrennender Ölbrenner
DE2712564C2 (de) 1977-03-22 1983-10-27 Max Weishaupt Gmbh, 7959 Schwendi Brenner für flüssige Brennstoffe
DE2908427C2 (de) 1979-03-05 1983-04-14 L. & C. Steinmüller GmbH, 5270 Gummersbach Verfahren zur Verminderung der NO↓X↓-Emission bei der Verbrennung von stickstoffhaltigen Brennstoffen
DE3109988A1 (de) * 1981-03-14 1982-12-02 Klaus 2000 Hamburg Eckloff Vergaser-oelbrenner
JPH0232531B2 (ja) * 1984-05-01 1990-07-20 Korona Kk Ekitainenryonenshosochi
FR2582781A1 (fr) * 1985-06-04 1986-12-05 Mueller Rudolf Bruleur pour chaudiere a combustion liquide avec circuit de recyclage des gaz de combustion
DE3801681C1 (en) 1988-01-21 1989-05-18 Deutsche Forschungs- Und Versuchsanstalt Fuer Luft- Und Raumfahrt Ev, 5300 Bonn, De Method for burning gaseous or liquid fuel and burner for carrying out this method
DE3906854C1 (en) 1989-03-03 1990-10-31 Buderus Heiztechnik Gmbh, 6330 Wetzlar, De Burner tube for a blue-burning oil burner
DE9007612U1 (de) 1989-07-13 1993-05-06 Elco Energiesysteme AG, Vilters Brenner zur stöchiometrischen Verbrennung von flüssigen oder gasförmigen Brennstoffen
DE3938786A1 (de) 1989-11-23 1991-05-29 Elco Oel & Gasbrenner Brenner zur verbrennung von fluessigen oder gasfoermigen brennstoffen
WO1992020964A1 (fr) * 1991-05-24 1992-11-26 Sci Mercimmo Procede pour la combustion faiblement polluante d'un combustible
IT1253128B (it) 1991-10-25 1995-07-10 Rbl Spa Bruciatore perfezionato per la combustione di combustibili fluidi
DE4201060C2 (de) * 1992-01-17 1994-07-14 Man B & W Diesel Ag Brenner für vergasten flüssigen Brennstoff
DE59303606D1 (de) * 1992-02-28 1996-10-10 Fuellemann Patent Ag Brenner, insbesondere Oelbrenner oder kombinierter Oel/Gas-Brenner
DE4209221A1 (de) * 1992-03-21 1993-09-23 Deutsche Forsch Luft Raumfahrt Stickoxidarmer brenner

Also Published As

Publication number Publication date
DE4430889A1 (de) 1995-07-06
DE59409666D1 (de) 2001-04-05
EP1030106A3 (fr) 2000-11-22
DE59410396D1 (de) 2004-12-30
DE4430888A1 (de) 1995-07-06
DE59409667D1 (de) 2001-04-05
EP1030106A2 (fr) 2000-08-23

Similar Documents

Publication Publication Date Title
DE2539993C2 (de) Brenner für flüssigen oder gasförmigen Brennstoff
DE69735965T2 (de) Brenner
EP0558455B1 (fr) Brûleur, notamment brûleur à huile ou brûleur combiné huile/gaz
DE2951796C2 (de) Brenner für gasförmige oder flüssige Brennstoffe für minimale NO↓x↓-Emission
EP1734306B1 (fr) Brûleur pour combustion à prémélange
DE2345282B2 (de) Verbrennungseinrichtung für Gasturbinentriebwerke
DE2747678A1 (de) Treibstoffduese fuer gasturbinen
EP1802915A2 (fr) Bruleur pour turbine a gaz
EP1030106B1 (fr) Bruleur à flamme bleue optimisant la combustion
EP0683883B1 (fr) Bruleur a flamme bleue optimisant la combustion
DE2727795A1 (de) Brennkammer fuer eine gasturbine
EP2037173B1 (fr) Tête de brûleur et procédé de combustion à un étage de combustible dans une zone de combustion éloignée de la tête de brûleur
DE2643293A1 (de) Oelbrenner
DE9103964U1 (de) Brenner für flüssige Brennstoffe
DE4432395A1 (de) Brennereinrichtung für einen gasartigen Brennstoff
EP0430011B1 (fr) Brûleur pour la combustion de combustibles liquides ou gazeux
EP0683884B1 (fr) Bruleur a flamme bleue ajustable
DE4008692A1 (de) Mischeinrichtung fuer oelgeblaesebrenner
WO1992020964A1 (fr) Procede pour la combustion faiblement polluante d'un combustible
DE2345838A1 (de) Brenner
DD143817A1 (de) Vorrichtung zur direkten brennstoffverbrennung in einer wirbelschicht
WO1979000468A1 (fr) Bruleur a mazout pour de faibles puissances de chauffage et procede de mise en action
DE4330082C2 (de) Brenner zur stöchiometrischen Verbrennung von flüssigem oder gasförmigem Brennstoff
EP0699867A2 (fr) Dispositif de combustion pour combustibles gazeux
DE4229525A1 (de) Mischeinrichtung für Ölzerstäubungsbrenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 683883

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 23D 11/40 A, 7F 23C 9/00 B

17P Request for examination filed

Effective date: 20010504

AKX Designation fees paid

Free format text: AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 20030410

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 0683883

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041124

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59410396

Country of ref document: DE

Date of ref document: 20041230

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041217

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050306

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20131126

Year of fee payment: 20

Ref country code: IE

Payment date: 20131127

Year of fee payment: 20

Ref country code: CH

Payment date: 20131127

Year of fee payment: 20

Ref country code: GB

Payment date: 20131126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131126

Year of fee payment: 20

Ref country code: IT

Payment date: 20131216

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20131230

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131230

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59410396

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20141216

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141216

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 283449

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141217