EP0683883B1 - Bruleur a flamme bleue optimisant la combustion - Google Patents

Bruleur a flamme bleue optimisant la combustion Download PDF

Info

Publication number
EP0683883B1
EP0683883B1 EP95905077A EP95905077A EP0683883B1 EP 0683883 B1 EP0683883 B1 EP 0683883B1 EP 95905077 A EP95905077 A EP 95905077A EP 95905077 A EP95905077 A EP 95905077A EP 0683883 B1 EP0683883 B1 EP 0683883B1
Authority
EP
European Patent Office
Prior art keywords
burner
combustion chamber
accordance
recirculation
fuel jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95905077A
Other languages
German (de)
English (en)
Other versions
EP0683883A1 (fr
Inventor
Bernhard Knapp
Manfred Bader
Lutz Mardorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4430889A external-priority patent/DE4430889A1/de
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority to EP00111167A priority Critical patent/EP1030106B1/fr
Publication of EP0683883A1 publication Critical patent/EP0683883A1/fr
Application granted granted Critical
Publication of EP0683883B1 publication Critical patent/EP0683883B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
    • F23D11/26Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed
    • F23D11/28Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed with flow-back of fuel at the burner, e.g. using by-pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/40Inducing local whirls around flame

Definitions

  • the invention relates to a burner for liquid media
  • a burner housing which has a support tube with a arranged in this antechamber and one itself subsequent flame tube, one in the support tube in the nozzle chamber arranged with a fuel jet generating nozzle, one arranged in the flame tube burner chamber designed essentially without a mixing tube in which the fuel jet spreads Separating element with a central opening through which the Fuel jet passes between the prechamber and the combustion chamber is arranged, the Combustion chamber connects to the separator, a fan for Generation of a combustion air flow entering the combustion chamber, which comprises a partial stream close to the fuel jet, in the combustion chamber the fuel with a blue-burning Flame essentially stoichiometric or burns close to stoichiometric.
  • DE-OS 40 09 222 discloses a burner for stoichiometric Burning liquid or gaseous fuels from an atomizer nozzle. This burner is around the atomizer nozzle through an aperture in air Combustion chamber guided, in which the emerging from the nozzle Fuel also occurs.
  • EP-A-0 430 011 also discloses a blue-burning one Burner in which there is a mixture around an atomizing nozzle from fresh air and recirculating combustion gases and be mixed before again with that of the Atomizer nozzle coming to a stoichiometric fuel Cause combustion.
  • a mixture of combustion air and recirculating combustion gas in front of the level, in which is an orifice of the nozzle, a mixture of combustion air and recirculating combustion gas and after This mixes the combustion air in a mixing chamber and the recirculating combustion gases with the fuel, which then enter the actual combustion chamber.
  • a mixture of combustion air and recirculating combustion gas in front of the level, in which is an orifice of the nozzle, a mixture of combustion air and recirculating combustion gas and after This mixes the combustion air in a mixing chamber and the recirculating combustion gases with the fuel, which then enter the actual combustion chamber.
  • the supply of Fresh air divided, on the one hand, into a first part, the directly mixed with the recirculating combustion gases, and on the other hand in a second part, which the Flows around the atomizer nozzle and serves to close the atomizer nozzle cool so that the cooling of the atomizer nozzle, in particular the oil nozzle, is adjustable.
  • This fresh air is then also in a mixing chamber with the remaining fresh air and
  • a controllable burner is known from DE-OS 27 12 564, in which a baffle plate is present and downstream the baffle plate creates a negative pressure area by generating a rotating hollow air column is created so that combustion gases be sucked back into this vacuum area.
  • the rotating hollow air column is thereby in radial Radial slots running in the direction and covered with scoops generated.
  • the atomizer nozzle with the ignition electrodes is in arranged in a closed room, which only so much fresh air is supplied as required to move the spark is.
  • DE-PS 29 08 427 discloses a burner in which first a sub-stoichiometric one with the addition of flue gases Combustion in a primary combustion zone with immediate supply of one that envelops the fuel flow Jacket air flow takes place and then in a superstoichiometric secondary combustion zone, in the residual air over the peripheral area of the primary combustion zone is fed, further combustion takes place.
  • the residual air is coaxial around the respective burner fed around regulated in at least two sub-flows, the from the burner mouth after a certain free flow path reach the flame.
  • From DE-OS 31 09 988 is a so-called blue burner known in which an internal recirculation via a mixing tube is forced, being from an atomizer nozzle escaping fuel jet on the one hand this directly surrounding combustion air is supplied and on the other hand further air passage holes are provided radially on the outside are, however, radially inside the mixing tube lie.
  • EP-A-0 538 761 describes a burner with recirculation known in which the external recirculation by a longitudinal direction of the slots is generated, this Slots run with their longitudinal direction in the circumferential direction.
  • Similar burners are for example from DE-PS 27 00 671 or DE-PS 39 01 681 known.
  • a blue flame burner means that this flame burns a completely gasified fuel, what especially when using oil as fuel Requires that from the nozzle in the Small oil droplets first emerging from the fuel jet until completely burned by the flame to evaporate.
  • the invention is the Task based on a burner of the generic type to improve that as low a pollutant and stable stoichiometric or near stoichiometric combustion allowed.
  • An advantageous development of the solution according to the invention provides that openings are provided in the burner housing, through which a cold combustion gas leading external Recirculation flow enters the combustion chamber that external recirculation flow enters the combustion chamber, that the outer recirculation flow near the separator enters the combustion chamber and is so large that a Flame root of the blazing flame a distance of has at least 1 cm from the nozzle, and that between a non - burning part of the nozzle and the flame root Fuel jet conical with the addition of combustion air spreads.
  • the sufficient length of the non-burning part of the fuel jet created the opportunity to get the hot gases out the inner recirculation flow the non-burning part of the fuel jet and thus the possibility of the oil droplets in the fuel jet with certainty to evaporate to the flame root, so that ultimately one stable blue-burning flame that emerges to a high degree insensitive to small changes in the setting parameters is.
  • Another advantageous solution provides that in the burner housing Openings are provided through which an external, cold combustion gas leading Recirculation flow enters the combustion chamber that external recirculation flow near the separating element in the Combustion chamber enters and that this is an internal recirculation flow shields against the separating element, which itself as in the combustion chamber from the blue-burning flame to the non-burning part of the fuel jet retreating Current forms.
  • the solution according to the invention also has in connection with the use of an external recirculation flow great advantage that due to the lack of mechanical Flow control elements in the combustion chamber, in particular due to the missing mixing tube, no problems with pollutant emissions that occur at the start of the burner cause the external recirculation to vary must be set. Rather, the invention Solution the big advantage that already at the start of the Optimal low-pollution combustion takes place, so that the laborious regulation of external recirculation, like described for example in DE-PS 39 06 854, although still can be carried out, however, due to the available good pollution levels without this regulation is required.
  • An advantageous exemplary embodiment provides that the inner recirculation flow originating from the flame on an inside of the flame tube towards the Separator flows. In this position, the inner Recirculation flow through the recirculation stabilizing Partial flow of the combustion air is particularly simple and sustainable stabilize.
  • inner recirculation flow is the inner recirculation flow burning yellow.
  • a particularly beneficial effect of the internal recirculation flow, especially with regard to heat transfer on the fuel jet to evaporate the oil droplets reach themselves when the inner recirculation flow through the recirculation-stabilizing partial flow passes through.
  • the recirculation-stabilizing partial stream preferably occurs in the form of a ring flow interrupted in the circumferential direction to their fuel jet into the combustion chamber, whereby the stabilization of the recirculation flow still is further improved since at the points of the interruption a "flow" of the ring current in the radial direction in is easily possible while between breaks stabilizing vortices are generated.
  • the amount of air in the partial stream close to the fuel jet with all settings is constant, so that the partial flow near the fuel jet always a basic supply of the Ensures fuel jet with air.
  • the amount of air in the partial stream near the fuel jet is dimensioned so that at the maximum amount of fuel, the amount of air in recirculation-stabilizing partial flow is maximum and minimal amount of fuel the combustion air flow only through the sub-stream close to the fuel jet is formed.
  • the Burner output can be varied by a factor of five.
  • the partial stream close to the fuel jet preferably occurs in the process flowing around the fuel jet into the combustion chamber a good mixing of this part of the combustion air with the Allow fuel jet in the combustion chamber.
  • Partial flow required cross section available ensure that the partial flow near the fuel jet passes through a passage between the nozzle head and an edge of one for the inflow opening provided near the fuel jet flows into the combustion chamber so that the size of the Pass through the flow cross-section for the fuel jet Specifies partial flow.
  • a particularly advantageous mixing of the near fuel jet Partial flow and the fuel in the combustion chamber results when the inflow opening for the designed to generate turbulence is.
  • the inflow opening with a swirl edge or a swirl cutting edge is.
  • the burner housing With regard to the construction of the burner housing were related with the previous embodiments none detailed information. So looks an advantageous one Embodiment before that the burner housing a prechamber comprises, in which the nozzle is arranged and which is separated from the combustion chamber by the separating element. On Such construction of the burner housing has the advantage of great simplicity and high structural flexibility.
  • the separating element Inlet opening facing the nozzle for the fuel jet Has partial flow.
  • This flame tube is preferred for lowering the nitrogen oxide emission with openings for the formation of the external recirculation flow Mistake.
  • combustion chamber extends from a plane that is close the nozzle opening.
  • the combustion chamber allows optimal guidance of the individual Recirculation currents, especially the inner and the external recirculation flow to the non-burning part of the fuel jet.
  • a particularly simple and efficient design of the combustion chamber provides that this between the separator and the Area of the flame root has a substantially constant Has cross section. This gives the advantage of being sufficient Space for guiding and training the recirculation flows, especially the inner recirculation flow is available.
  • the aperture in turn could also be curved be as follows. As for example from DE-OS 40 09 222 known. However, it is particularly advantageous if the aperture extends in a plane because such a form of Aperture also optimally guides the recirculation flows to the non-burning part of the fuel jet in the Area of the aperture allowed.
  • the recirculation space is expediently designed in such a way that that it extends at least to the flame root, to have enough space for the internal recirculation flow to accomplish.
  • the recirculation stabilizing Partial stream enters the recirculation room.
  • the recirculation-stabilizing partial stream is preferably formed so that it is symmetrical about an axis of the combustion chamber and thus to an axis of the recirculation space in this occurs.
  • the recirculation-stabilizing partial stream is preferably designed so that it lies in the form of a cylinder Current image enters the combustion chamber. This form of the recirculation-stabilizing partial flow enables one particularly optimal stabilization of the internal recirculation flow.
  • the cylinder is designed as a circular cylinder, which lies through one in the middle of it Pitch circle is set.
  • this ratio is between approximately 3 and about 0.1, better between about 2 and about, 0.1, more preferably between about 1 and about 0.1, and it has proven particularly optimal if this Ratio in the range of about 1.5 to about 0.3 lies.
  • the circular ring area has a pitch circle diameter which is in a range of approximately 0.2 to about 0.7 an outer diameter of the combustion chamber or the recirculation room
  • a particularly optimal effect of the recirculation stabilizing Partial flow can be achieved if the recirculation space, one for example the inside diameter of the Flame tube has the corresponding outer diameter, which is about 1.5 to 3 times larger than the diameter of the Pitch circle of the circular cylinder.
  • the recirculation space is one Outside diameter, which is about 1.8 to about 2.6 times, more preferably about 2 to about 2.5 times, larger is the diameter of the pitch circle of the circular cylinder.
  • the Outside diameter of the recirculation space approximately 2.4 ⁇ 10% times as large, more optimally about 2.5 times, as large as the pitch circle diameter.
  • This flame chamber can have the same inner diameter for large outputs have as the recirculation space, in particular for small services, however, it has to do with spatial stabilization proved to be advantageous if the flame space has a maximum diameter is the same size or smaller than the recirculation space.
  • Particularly preferred values result when the diameter of the flame space in the range of approximately 0.6 to 0.9 times of the diameter of the recirculation space. Especially It is advantageous if the inner diameter of the flame space in the range of approximately 0.8 times the inner diameter of the Recirculation space.
  • This embodiment has the great advantage that the outer recirculation flow is defined on the one hand lead and on the other hand with regard to the mass flow can also be defined defined what for the invention Aspects, especially the guidance of the external recirculation flow to shield the internal recirculation flow from the separating element and the dimensioning of the Mass flow to achieve a sufficiently long non-burning Part of the fuel jet is important. This is also the volume for the internal recirculation flow fixed.
  • An advantageous exemplary embodiment provides that an area of the entry for the combustion air flow in openings provided in the combustion chamber approximately the area of the recirculation openings provided in the flame tube for the outer recirculation flow. With this dimensioning a is sufficient large mass flow in the recirculation flow ensures around a sufficiently elongated part of the non-burning Get fuel jet in the combustion chamber.
  • a flow stabilization element in the flame tube is also possible to have a flow stabilization element in the flame tube to arrange, which is from the aperture in Direction of a foot area of the flame up to a maximum of approximately over a quarter of the distance between the aperture and the Flame extends.
  • This flow stabilization element has nothing to do with what is known from the prior art Mixing tube, since the known mixing tube is only the formation of a single recirculation flow while the inventive Flow stabilization element also like this is trained that it is the formation of several by the Recirculation-stabilizing partial flow of definable recirculation flows allows, especially the training of required for the respective fuel quantities and air quantities Recirculation currents.
  • the flow stabilizing element a maximum of about one Sixth of the distance between the bezel and the foot area the flame extends.
  • combustion chamber be free from within the same arranged flow stabilization elements for the Recirculation is formed.
  • the setting device is preferably designed such that with an adjustment of the air volume the place of entry of the Combustion air flow into the combustion chamber in the radial direction Fuel jet is essentially invariant. This has the great advantage that by determining the location of the Entry of the combustion air flow an optimal stabilization the recirculation with all fuel quantity settings and amount of combustion air is possible.
  • Adjustment device an adjusting element rotatably mounted on the panel with which the cross section of one in the Aperture provided opening is adjustable.
  • the setting element can be rotated formed on the bezel shim, which in different rotational positions relative to the aperture and the openings provided in the panel can be brought.
  • this setting element can be designed that it is adjustable in different discrete setting positions is.
  • the adjusting element is continuously adjustable so that it is continuous the cross sections between a maximum value and a The minimum value can be varied.
  • the adjusting device can be designed so that it manually, for example with an appropriate tool, is adjustable.
  • variable control of the air volume advantageous if the setting device has a controllable actuator is adjustable.
  • the return valve is designed that with this different amounts of fuel of the fuel jet are permanently adjustable. It is even more advantageous however, if the return valve is continuously adjustable is so that continuous adjustment and adjustment the amount of fuel is possible.
  • the return valve is adjustable by means of an actuator.
  • a particularly advantageous embodiment of the invention Solution provides that the burner has a control with which the amount of fuel and the amount of air of the combustion air flow are adjustable.
  • a Control can be a simple optimal setting of both the amount of fuel and the Amount of combustion air, especially with regard to a stoichiometric or near stoichiometric combustion, to reach.
  • control the Actuator of the return valve controls.
  • Control controls the actuator of the setting device.
  • the controller is both the actuator of the return valve as well as the actuator of the adjusting device controls.
  • controller according to the invention also several Possibilities conceivable. This is an advantageous embodiment before that control burner outputs fixed can be specified. Alternatively, it is conceivable that the Control burner outputs can be variably specified.
  • a particularly advantageous embodiment provides that the controller according to a predetermined performance
  • the amount of fuel and the amount of air correspond on the one hand to this Performance and on the other hand in terms of a stoichiometric or near-stoichiometric combustion.
  • the amount of fuel is adjustable in that the Burner as a kit that can be used in the same burner housing different nozzles is formed. The setting the amount of fuel takes place in that the appropriate nozzle is inserted into the burner.
  • the nozzles are all in the essentially the same spray pattern and especially one in have substantially the same outer contour on the air flow side and just deliver different amounts of fuel.
  • a particularly advantageous embodiment provides that with the adjustment parts the fuel stream close to the fuel jet is constant while the recirculation stabilizing Partial flow with different setting parts different values can be set.
  • the kit an identical burner housing for all burner outputs includes.
  • the kit for everyone Burner performance includes an identical fan.
  • kit is identical Combustion chamber includes.
  • the kit is available for all Burner performance includes an identical nozzle assembly.
  • An advantageous development of the method according to the invention to operate a burner provides that in Burner housing openings are provided through which a cold recycle gas leading external recirculation flow is introduced into the combustion chamber that the outer recirculation flow near the separator in the combustion chamber is introduced and is kept so large that a flame root the blazing flame at a distance of is held at least 1 cm from the nozzle and that between the nozzle and the flame root a non-burning Part of the fuel jet with the addition of combustion air spreads conically.
  • a first embodiment of an inventive Brenners shown in Fig. 1, comprises one as a whole with 10th designated burner housing with a support tube 12 and a to this adjoining flame tube 14.
  • a fan designated as a whole with 16 which has a fan drive 18 and a fan wheel 20 includes.
  • This fan 16 produces a Support tube 12 passing through air flow 22, which in the direction of the flame tube 14 flows.
  • Nozzle block arranged, which is a nozzle holder 26 with a screwed into this nozzle 28.
  • the Nozzle 28 is described in detail below
  • Return nozzle is formed and is via a nozzle feed 30 supplied with liquid fuel, in particular oil, while a part of the fuel supplied in the nozzle feed line 30 again flows back, throttling the return via an in adjustable return valve arranged in the nozzle return line 32 34 is possible.
  • the feeding of the fuel into the nozzle feed line 30 takes place via a fuel feed pump 36, which is preferably is also driven by the drive 18 of the blower 16, in particular on the same shaft as the impeller 20.
  • This fuel feed pump 36 is via a pump feed line 38 is fueled and also has a return line 40 connected in which excess fuel flows back from the fuel feed pump 36. In these Return line 40 also opens the nozzle return line 32 after the return valve 34.
  • the nozzle 28 includes one Nozzle head 50, which in turn rests on a nozzle body 52 is screwed on, and receives a swirl body 54.
  • the nozzle head 50 in turn is also still in the nozzle carrier 26 screwed so that the nozzle body 52 in one Recess 56 of the nozzle carrier 26 is located, the recess 56 forms a fuel supply area 58, which with the Nozzle feed line 30 is connected and a return area 60, which is connected to the nozzle return line 32.
  • the fuel entering the fuel supply area 58 preferably flows through a filter 62 and then overflows two opposite inlet channels 64 of the nozzle body 52 in further inlet channels 66 in the swirl body 54 and of these, as shown in Fig. 3, in an annular Inlet space 68 of the swirl body 54, which by a support plate closing the swirl body 54 on the end face 70 is closed.
  • the fuel From the annular inlet space 68 the fuel enters swirl channels 72 lying radially within the annular inlet space 68 Swirl chamber 74, in which there is a corresponding to the orientation of the swirl channels 72 forms circumferential swirl flow and the fuel passes from this swirl chamber 72 an annular circumferential gap 76 in a spray hole 78, from which a conical fuel jet 80 exit.
  • the spray bore 78 is opposite in the swirl body 54 a return channel 82 is arranged which the swirl body 54 passes through and arranged in a nozzle body 52 Return channel 84 merges, which then finally in the return area 60 of the recess 56 opens, which then in turn in connection with the nozzle return line 32 stands.
  • the nozzle assembly 24 together with the nozzle 28 is within the Support tube 12 arranged in a prechamber 48, which also is penetrated by the air flow 22.
  • the antechamber 48 is closed off by one as a whole 90 designated and inserted into the support tube 12, on which is located downstream of the nozzle 28 a combustion chamber 92 connects, which is surrounded by the flame tube 14. Also the flame tube 14 is preferably held on the support tube 12.
  • the aperture 90 is arranged so that the spray bore 78th with a nozzle opening near or in plane 89 of the Aperture 90 is located and the fuel jet emerging at the nozzle 28 80 essentially completely in the combustion chamber 92 spreads.
  • the aperture 90 is coaxial with the longitudinal axis 86 the inflow opening 94 arranged in the nozzle 28.
  • the Inflow opening 94 is also chosen so large that between an edge 96 of the inflow opening 94 and one of this edge 96 facing outside 98 of the nozzle head 50 an annular Passage 100 remains through which a fuel jet near Partial stream 102 of a total of 48 from the prechamber the combustion air flow flowing through the combustion chamber 92 passes through.
  • the edge 96 of the inflow opening 94 with a Vortex edge 104 provided, which for vortex formation in the partial flow 102 leads and for example by a step-shaped Cross-sectional constriction of the inflow opening 94 is formed.
  • Another partial flow 106 of the from the pre-chamber 48 in the Combustion chamber 92 entering combustion air flow passes through radially outside the inflow opening 94 in an annular region 108 arranged openings 110 through which a pitch circle 109, preferably at equal angular intervals and with spaces 111 around the center of the annulus area 108 are arranged.
  • the openings 110 preferably have a reference to the pitch circle 109 an extension in the azimuthal direction which one Corresponds to an angle which is approximately one to two times the the extent of the spaces 111 corresponding angle is.
  • the openings 110 can, however, overlap in the azimuthal direction extend an angle that is about 0.1 to about 8 times the angle of the extension of the gaps 111 corresponds.
  • the openings 110 are arranged so that the partial flow 106 of the combustion air flow through the spaces 111 between the openings 110 in the form of a circumferential direction interrupted ring flow corresponding flow pattern in the combustion chamber 92 enters and thus the training an inner recirculation flow 112 and also one external recirculation flow 119 in the combustion chamber 92 stabilized so that a flame root 114 one in the Combustion chamber 92 forming flame 116 essentially in is the same distance from the aperture 90, regardless of one amount of fuel carried by the fuel jet 80 and a corresponding through the partial streams 102 and 106 in the Combustion chamber 92 entering the corresponding amount of combustion air.
  • the flame root 114 in turn joins one non-burning part 81 of the fuel jet 80, which a length of about 1 to about 4 cm, preferably about 1 to about 3 cm, on and from it spreads the flame 116, which is on one Inner wall region 15 of the flame tube 14 creates before it this leaves.
  • the outer recirculation flow 119 also occurs close to the screen between the individual streams 105 and mixes then with the combustion air flow 102, 106 around the through the flame tube 14 passing mass flow so far that the flame root 114 at a constant distance of at least 2 cm from the aperture 90 and thus also from the nozzle 28 remains that the non-burning part 81 of the fuel jet 90 long enough to hold the oil droplets in it to evaporate almost completely.
  • Preference is the sum of the areas for entry the combustion air flow into the openings provided in the combustion chamber, in particular the sum of the areas of the openings 110 and the inflow opening 94, dimensioned so that they are at most approximately the sum of the areas of the recirculation openings for external recirculation, especially the sum of the areas formed as elongated slots in the circumferential direction outer recirculation openings 118 corresponds.
  • the ratio of the area of the recirculation openings 118 to The area of the central inflow opening 94 is between approximately 0.3 to about 19.2, preferably between about 0.9 and 5.1.
  • the recirculation chamber 91 then closes the Flammraum 117 on.
  • the first one shown in FIGS. 1 to 9 is preferred Embodiment of the partial stream 102 near the fuel jet trained that this at the smallest burner output corresponding recirculation flow without the recirculation stabilizing Partial stream 106 stabilized (FIG. 9 lower half) and then for large burner capacities Recirculation-stabilizing partial flow 106 stabilization takes over (Fig. 9 upper half) that the near fuel jet Partial stream 102 can no longer afford.
  • the burner is dimensioned differently, it is also possible to at the lowest power, both near the fuel jet Stream 102 and a minimal recirculation stabilizing Provide partial stream 106.
  • Such a stabilization of the recirculation flows 112 and 119 can be reached in particular if, for example corresponding to the inner diameter of the flame tube Outside diameter of the recirculation chamber 91 of the combustion chamber 92 about 1.5 to about 3.9 times, yet better about two to three times the diameter of a partial circle 109 of the circular ring region 108 It is more advantageous if the inner diameter of the recirculation space 91 of the combustion chamber 92 which is approximately 2.2 to about 2.6 times, better still about 2.2 to about 2.5 times the diameter of the pitch circle 109.
  • the ratio of the diameter of the pitch circle 109 to The diameter of the central inflow opening 94 is between about 1.0 and about 4.2, preferably about 2.6 to about 4.0, more preferably about 2.8 to about 3.5, and preferably between about 1.82 and about 2.0.
  • the central inflow opening 94 is dimensioned so that an outer diameter of the recirculation chamber 91 of the combustion chamber 92 about 3.4 to about 8.5 times, better still about that 4 to 6 times, better still about 4.4 to approximately 5.9 times the diameter of the central inflow opening 94 is.
  • annular Includes shim 122 which with the openings 110 identical openings 124, which also in the same angular distances as and in the openings 110 radial distance from a center of the annulus area 108 are arranged.
  • Annular shim 122 is in turn, as shown enlarged in Fig. 9, in a cylindrical disk-shaped provided in the aperture 90 Well 126, which is open to the antechamber 48. The rotatable guidance of the shim takes place over the Storage of the same with its outer edge 128 on one cylindrical edge 130 of depression 126.
  • the shim 122 is adjustable so that, as in 5 to 7, either openings 124 are congruent with the openings 110, so that the maximum cross section for the individual openings 110 replacing partial flow 106 is available, or rotatable so that the openings 124 are no longer congruent the openings 110 and only the overlapping one another Areas of openings 110 and 124 the partial flow 106 pass so that the air volume of the partial flow 106th is reduced, as shown in Fig. 6.
  • the partial stream 106 can, as shown in Fig. 7, be completely interrupted, namely, if the openings 124 on the gap between the Openings 110 are available.
  • this is in one Provide partial area of its outer edge with teeth 132, in which a toothing 134 as a whole with 136 designated setting pinion of the setting device 120 intervenes.
  • This setting pinion is in turn rotatable the aperture 90 stored, and in the simplest case in one another cylindrical bearing recess 138 in the aperture 90 stored, the rotatable bearing by the concern the teeth 134 on cylindrical wall surfaces 140 of the Storage deepening 138 takes place.
  • the deepening of the warehouse opens 138 to the antechamber 48.
  • Both the shim 122 and the pinion 136 are in their respective recesses 126 and 138 through 9 fixing elements not shown in the drawing held so that they each bottom on the wells issue.
  • the setting pinion 136 for example, self-locking in the storage recess 138 stored and for example with a slot 142 provided, which makes it possible with a conventional screwdriver to turn the setting pinion 136 so that adjustment of the shims 122 is also possible, the respective settings of the shims 122 maintained by the self-locking adjustment pinion 136 become.
  • the first embodiment now works so that interrupted partial flow 106 as the amount of combustion air only from the partial flow 102 through the passage 100 into the combustion chamber 92 incoming combustion air is available. Corresponding this amount of air is adjusted by the nozzle 28th amount of fuel dispensed into the fuel jet 80, where the amount of fuel is adjusted so that the flame 116 blue burns and a stoichiometric or near stoichiometric Combustion sets. This setting the amount of fuel takes place via the setting of the return valve 34 and thus via the nozzle return line 32 in the Return line 40 from the fuel stream returning from the nozzle 28.
  • Brenner is a distance from the flame root 114 of the flame 116 of aperture 90 is substantially constant and it is at all burner power settings a blue burn the Flame 116 with essentially stoichiometric or Near stoichiometric combustion adjustable.
  • Flow guide ring 150 is provided, which is at a distance of the aperture 90 is arranged, and with its front edge 152 up to a maximum of a quarter of a distance between the aperture 90 and the foot portion 114 of the flame 116 extends. Furthermore, the flow guide ring 150 with a the rear edge 154 facing the panel 90 at a distance from the Aperture 90 arranged so that the recirculation flow 112 between that in the edge 154 and a front face 156 of the Aperture 90 from the side of the aperture 90 in the flow guide ring 150 can occur.
  • the Flow ring 150 also serves as an additional one Stabilizing the recirculation flow 112, wherein a significant distance between the leading edge 152 and the foot portion 114 of the flame 116 is required to different power settings of the invention Brenners the formation of a strong recirculation flow 112 to ensure and the effect of the recirculation stabilizing Support substream 106.
  • the flow guide ring 150 is preferably with webs 158 held at the aperture 90.
  • a third embodiment of an inventive Brenners shown in Fig. 11, are those parts that are identical to the first embodiment, with provided with the same reference number, so that with regard to the Description of these parts also in full on the Execution referred to the first embodiment can be.
  • an actuator for setting the return valve 34 160 provided and for the adjustment of the setting pinion 136 an actuator 162, both of which have a common control 164 can be controlled.
  • This controller 164 has power settings via an input 166 built the burner according to the invention, wherein controller 164 for each input power setting 166 the corresponding setting of Return valve 34 and the actuator 162 of the adjusting device 120 makes. For example, this is in a memory of the controller 164 predeterminable positions the actuators 160 and 162 can be carried out.
  • the fuel stoichiometrically or burns close to stoichiometric is an additional one Lambda probe 168 arranged in the exhaust gas flow of flame 116, which is also connected to the controller 164 so that the controller 164 after rough settings of the power the actuators 160 and 162 are additionally capable is a fine adjustment of either the amount of combustion air or the amount of fuel to make stoichiometric or to comply with near stoichiometric combustion conditions.
  • the controller 164 is constructed in the simplest case so that via an adjuster, for example manually, each desired performance of the burner according to the invention adjustable are.
  • the controller 164 designed so that overall control of a system, for example a heating system, into which the burner according to the invention is integrated is a requirement for the required performance of the burner according to the invention takes place so that the controller 164 then depending on the requested performance of the invention Brenner adjusts the actuators 160 and 162 accordingly and a fine adjustment based on the measured values of the Lambda probe 168 carries out.
  • a fourth embodiment shown in Fig. 12, are those parts with the above embodiments are identical, with the same reference numerals provided so that with regard to their description on the statements full reference to these exemplary embodiments is taken.
  • a sixth embodiment of an inventive Brenners shown in Fig. 14, are those Parts with those of the first embodiment are identical, provided with the same reference numerals, so that with regard to these parts also on the explanations for first embodiment referred to in full can be.
  • the burner according to the invention built in the form of a kit.
  • a return nozzle trained nozzle 28 with a nozzle return line 32 and a return valve 34 provided therein Adjusting the fuel flow are a set of several Nozzles 228 are provided, each having the same spray pattern and the same airflow side Outer contour and therefore the same shape of the fuel jet 80, but deliver with different amounts of fuel.
  • the fuel is supplied via the Fuel feed pump 36 and the nozzle feed line 30, one Nozzle return line 32 is however unnecessary.
  • the different nozzles 228 correspond to each other different performances of the burner according to the invention.
  • the aperture 290a of the largest amount of fuel emitting nozzle 228, the orifice 290c assigned to the nozzle delivering the smallest amount of fuel and the aperture 290 b is assigned to a nozzle 228 is the amount of fuel between the maximum and the minimum amount of fuel.
  • the diaphragms 290a to c differ in cross section of the openings 210 provided for the partial flow 106, not however, in terms of their location, the openings 210a with the openings 110 with respect to the overall cross section of the Openings are identical, while openings 210b are one Overall cross section showing which one intermediate setting, for example shown in Fig. 6, and thus also an intermediate output of the corresponding nozzle 228 the aperture 290c, the openings 210 are completely absent, so that this the position of the adjusting device shown in FIG. 7 120 corresponds in which the partial flow 106 completely is prevented and the combustion air flow only through the Partial stream 102 is formed.
  • one of the Install panels 290a to 290c in the support tube 12, wherein in the fourth embodiment, the panels 190 are removable are held in the support tube.
  • This is for example on the nozzle assembly 24 by means of a retaining ring 292 Tripod 294 held, which the respective aperture 290 their side facing the antechamber 48 296 and this against a sealing ring 298 in the direction of the flame tube 14 presses.
  • the nozzle assembly 26 as a whole is in Movable in the direction of a longitudinal axis 300 of the support tube 12 and with a spring not shown in Fig. 14 in the direction of the flame tube 12 is applied. So it's taking out the diaphragm 290 in the direction of the antechamber 48 is possible, while the aperture 290 in the direction of the flame tube 14 through the abutment formed for example as a sealing ring 298 is fixed.
  • combustion chamber 92 is designed, in the same way as is preferably shown in connection with the first exemplary embodiment, free of mechanical flow guidance elements, so that when the nozzle 228 corresponding to the respective output and the respective orifice 290 are installed, the suitable recirculation flow 112 is also formed in a stable manner is guaranteed and is also ensured that the flame 116 provides a stoichiometric or near-stoichiometric combustion as a blue-burning flame. Furthermore, a function corresponding to the first exemplary embodiment is ensured by the cross sections of the openings 210 correspondingly provided for the partial flow 106.

Claims (55)

  1. Brûleur pour produits liquides, comprenant
    un boítier de brûleur (10) qui comprend un tube de soutien (12) avec une chambre préliminaire (48) agencée dans celui-ci; et un tube de flamme (14) qui s'y raccorde,
    un porte-buse (24) agencé dans le tube de soutien (12) dans la chambre préliminaire (48) avec une buse (28) qui produit un jet de combustible (80),
    une chambre de combustion (92) agencée dans le tube de flamme (14) et réalisée sensiblement sans tube de mélange, dans laquelle le jet de combustible (80) se propage,
    un élément de séparation (90) avec une ouverture centrale (94) que traverse le jet de combustible (80), cet élément de séparation étant agencé entre la chambre préliminaire (48) et la chambre de combustion (92), ladite chambre de combustion (92) faisant suite à l'élément de séparation (90),
    un ventilateur (16) pour produire un écoulement d'air de combustion qui pénètre dans la chambre de combustion (92), comprenant un écoulement partiel (102) proche du jet de combustible, et que le combustible brûle dans la chambre de combustion (92) de manière sensiblement stoechiométrique, ou proche de rapports stoechiométriques avec une flamme bleue (116),
    caractérisé en ce que, en plus de l'écoulement partiel (102) proche du jet de combustible, un écoulement partiel (106) pénètre dans la chambre de combustion (92), assurant une stabilisation de recirculation, disposé radialement à l'extérieur et à une distance définie par rapport au premier écoulement partiel, en ce que l'écoulement partiel de stabilisation de recirculation (106) pénètre dans la chambre de combustion (92) sous la forme d'un motif d'écoulement correspondant à un écoulement annulaire interrompu en direction périphérique, en ce que dans la chambre de combustion (92) se forme un écoulement de recirculation intérieur (112) qui se déplace depuis la flamme bleue (116) en retour vers la partie qui n'est pas en combustion (81) du jet de combustible (80), et en ce que l'écoulement partiel de stabilisation de recirculation (106) de l'air de combustion stabilise l'écoulement de recirculation intérieur (112).
  2. Brûleur selon la revendication 1, caractérisé en ce que dans le boítier de brûleur sont prévues des ouvertures (118) à travers lesquelles pénètre dans la chambre de combustion (92) un écoulement de recirculation extérieur (119) qui amène les gaz de combustion froids, en ce que l'écoulement de recirculation extérieur (119) pénètre dans la chambre de combustion (92) à proximité de l'élément de séparation (90), et présente une taille telle qu'une racine de flamme (114) de la flamme bleue (116) présente une distance d'au moins 1 cm depuis la buse (28), et en ce qu'il se forme entre la buse (28) et la racine de flamme (114) une partie qui ne brûle pas (81) du jet de combustible (80) qui s'élargit en forme conique, avec mélange d'air de combustion (102, 106).
  3. Brûleur selon l'une ou l'autre des revendications 1 et 2, caractérisé en ce que dans le boítier de brûleur (10) sont prévues des ouvertures (118) à travers lesquelles pénètre dans la chambre de combustion (92) un écoulement de recirculation (119) qui amène les gaz de combustion froids, en ce que l'écoulement de recirculation extérieur (119) pénètre à proximité de l'élément de séparation (90) dans la chambre de combustion (92), et sépare un écoulement de recirculation intérieur (112) par rapport à l'élément de séparation (90), ledit écoulement de recirculation intérieur formant un courant qui s'écoule dans la chambre de combustion (92) depuis la flamme bleue (116) en retour vers la partie qui ne brûle pas (81) du jet de combustible (80).
  4. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement de recirculation intérieur (112) s'écoule, en partant de la flamme (116), sur un côté intérieur du tube de flamme (14) en direction de l'élément de séparation (90).
  5. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement de recirculation intérieur (112) présente une combustion jaune.
  6. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement de recirculation intérieur (112) traverse l'écoulement partiel de stabilisation de recirculation (106).
  7. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) pénètre dans la chambre de combustion (92) sensiblement parallèlement à la direction d'écoulement (79) du jet de combustible (80).
  8. Brûleur selon l'une des revendications précédentes, caractérisé en ce que les écoulements partiels (102, 106) pénètrent dans la chambre de combustion (92) respectivement au même emplacement indépendamment de la quantité d'air réglée.
  9. Brûleur selon la revendication 8, caractérisé en ce que, pour le réglage de la quantité d'air, l'un au moins des écoulements partiels (102, 106) est réglable pour l'ajustement à la quantité de combustible.
  10. Brûleur selon la revendication 9, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) est réglable pour ce qui concerne la quantité d'air.
  11. Brûleur selon la revendication 10, caractérisée en ce que la quantité d'air dans l'écoulement partiel de stabilisation de recirculation (106) est maximum lorsque la quantité de combustible est maximum et minimum lorsque la quantité de combustible est minimum.
  12. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la quantité d'air dans l'écoulement partiel proche du jet de combustible (102) est constante pour tous les réglages de la quantité de combustible.
  13. Brûleur selon l'une des revendications précédentes, caractérisé en ce que le jet de combustible (80) forme un cône pointu cohérent partant de l'ouverture de buse.
  14. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) pénètre dans la chambre de combustion (92) essentiellement parallèlement à la direction d'écoulement (79) du jet de combustible (80).
  15. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) pénètre dans la chambre de combustion (92) en entourant le jet de combustible (80).
  16. Brûleur selon la revendication 15, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) pénètre dans la chambre de combustion (92) dans la région d'une périphérie d'une tête de buse (50) de la buse (28, 228).
  17. Brûleur selon la revendication 16, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) s'écoule le long d'un contour extérieur défini (98) de la tête de buse (50).
  18. Brûleur selon la revendication 15, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) et le jet de combustible (80) pénètrent dans la chambre de combustion (92) à travers la même ouverture d'entrée centrale (94).
  19. Brûleur selon la revendication 18, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) s'écoule jusque dans la chambre de combustion (92) à travers un passage (100) entre la tête de buse (28, 228) et une bordure d'une ouverture d'entrée (94) prévue pour l'écoulement partiel proche du jet de combustible (102).
  20. Brûleur selon l'une ou l'autre des revendications 18 et 19, caractérisé en ce que l'ouverture d'entrée (94) pour l'écoulement partiel proche du jet de combustible (102) est réalisée de façon à produire des turbulences.
  21. Brûleur selon la revendication 20, caractérisé en ce que l'ouverture d'entrée (94) est pourvue d'une arête de tourbillonnement (104).
  22. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la totalité de l'écoulement d'air de combustion (102, 106) est passée à travers une chambre préliminaire (48).
  23. Brûleur selon la revendication 22, caractérisé en ce que l'écoulement d'air de combustion (102, 106) pénètre dans la chambre de combustion (92) à travers un élément de séparation (90).
  24. Brûleur selon la revendication 23, caractérisé en ce que l'élément de séparation (90, 290) comporte une ouverture d'entrée (94), tournée vers la buse (28, 228), pour l'écoulement partiel proche du jet de combustible (102).
  25. Brûleur selon l'une des revendications 22 à 24, caractérisé en ce que l'élément de séparation (90, 290) comprend au moins une ouverture (110, 210), pour l'écoulement partiel de stabilisation de recirculation (106), située radialement à l'extérieur par rapport à l'ouverture d'entrée (94) pour l'écoulement partiel proche du jet de combustible (102).
  26. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la chambre de combustion (92) s'étend à partir d'un plan (89) proche du plan de l'ouverture de buse.
  27. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la chambre de combustion (92) présente une section essentiellement constante entre l'élément de séparation (90) et la région de la racine de flamme (114).
  28. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'élément de séparation (90) est un diaphragme.
  29. Brûleur selon l'une des revendications précédentes, caractérisé en ce que le diaphragme (90) s'étend dans un plan (89).
  30. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la chambre de combustion (92) comprend une chambre de recirculation (91) traversée par la partie qui ne brûle pas (81) du jet de combustible (80) et disposée autour de celle-ci.
  31. Brûleur selon la revendication 30, caractérisé en ce que la chambre de recirculation (91) s'étend au moins jusqu'à la racine de flamme (114).
  32. Brûleur selon l'une ou l'autre des revendications 30 et 31, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) pénètre dans la chambre de recirculation (91).
  33. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) est formé de façon symétrique par rapport à un axe de symétrie de la chambre de combustion (92).
  34. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) pénètre dans la chambre de combustion (92) sous la forme d'un motif d'écoulement disposé sur un cylindre.
  35. Brûleur selon la revendication 34, caractérisé en ce que le motif d'écoulement se compose d'écoulements partiels individuels parallèles (105).
  36. Brûleur selon la revendication 35, caractérisé en ce que les écoulements partiels individuels (105) sont agencés sous un écartement angulaire constant (111) les uns par rapport aux autres.
  37. Brûleur selon la revendication 36, caractérisé en ce que le rapport entre l'écartement angulaire (111) de deux écoulements partiels individuels (105) et la largeur angulaire de la section d'entrée (110) de chaque écoulement partiel individuel (105) est compris entre environ 10 et environ 0,1.
  38. Brûleur selon la revendication 37, caractérisé en ce que le rapport entre l'écartement angulaire (111) de deux écoulements partiels individuels (105) et la largeur angulaire de la section d'entrée (110) de chaque écoulement partiel individuel (105) est compris entre environ 1,5 et 0,1.
  39. Brûleur selon la revendication 38, caractérisé en ce que le rapport entre l'écartement angulaire (111) de deux écoulements partiels individuels (105) et la largeur angulaire de la section d'entrée (110) de chaque écoulement partiel individuel (105) est située dans la plage entre environ 0,7 et 0,25.
  40. Brûleur selon l'une des revendications 33 à 39, caractérisé en ce que le cylindre est un cylindre circulaire, déterminé par un cercle partiel (109) situé au milieu de celui-ci.
  41. Brûleur selon la revendication 40, caractérisé en ce que la chambre de recirculation (91) présente un diamètre extérieur supérieur d'environ 1,5 à 3 fois au diamètre du cercle partiel (109) du cylindre circulaire.
  42. Brûleur selon la revendication 41, caractérisé en ce que la chambre de recirculation (91) présente un diamètre intérieur supérieur d'environ 2 à 2,5 fois au diamètre du cercle partiel (109) du cylindre circulaire.
  43. Brûleur selon la revendication 42, caractérisé en ce que la chambre de recirculation (91) présente un diamètre intérieur qui est approximativement 2,4 fois le diamètre du cercle partiel (109) du cylindre circulaire.
  44. Brûleur selon l'une des revendications 30 à 43, caractérisé en ce que la chambre de flamme (117) fait suite à la chambre de recirculation (91).
  45. Brûleur selon la revendication 44, caractérisé en ce que la chambre de flamme (117) présente un diamètre intérieur plus petit que celui de la chambre de recirculation (91).
  46. Brûleur selon la revendication 45, caractérisé en ce que le diamètre intérieur de la chambre de flamme (117) est situé dans la plage d'environ 0,6 à environ 0,9 fois le diamètre intérieur de la chambre de recirculation (91).
  47. Brûleur selon la revendication 46, caractérisé en ce que le diamètre intérieur de la chambre de flamme (117) est situé dans la plage d'environ 0,8 fois le diamètre intérieur de la chambre de recirculation (91).
  48. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la flamme (116) présente une racine de flamme (114) située dans la chambre de combustion (92).
  49. Brûleur selon la revendication 48, caractérisé en ce que la chambre de combustion (92) s'étend au-delà de la racine de flamme (114).
  50. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement de recirculation extérieur (119) pénètre dans la chambre de combustion (92) séparément de l'écoulement d'air de combustion (102, 106).
  51. Brûleur selon la revendication 50, caractérisé en ce que l'écoulement de recirculation extérieur (119) pénètre directement dans la chambre de combustion (92) via des ouvertures de recirculation (118) dans le tube de flamme (14).
  52. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la surface des ouvertures (94, 110) prévues pour l'entrée de l'écoulement d'air de combustion (102, 106) dans la chambre de combustion (92) correspond au maximum approximativement à la surface des ouvertures de recirculation (118) prévues dans le tube de flamme (14) pour l'écoulement de recirculation extérieur (119).
  53. Procédé pour le fonctionnement d'un brûleur pour produits liquides qui comprend
    un boítier de brûleur (10) qui comprend un tube de soutien (12) avec une chambre préliminaire (48) agencée dans celui-ci et un tube de flamme (14) qui lui fait suite,
    un porte-buse (24) agencé dans le tube de soutien (12) dans la chambre préliminaire (48), avec une buse (28) qui produit un jet de combustible (80),
    une chambre de combustion (92) agencée dans le tube de flamme (14) et réalisée sensiblement sans tube de mélange, dans laquelle le jet de combustible (80) se propage,
    un élément de séparation (90) avec une ouverture centrale (94) que traverse le jet de combustible (80), ledit élément de séparation étant agencé entre la chambre préliminaire (48) et la chambre de combustion (92) de sorte que la chambre de combustion (92) fait suite à l'élément de séparation (90), et
    un ventilateur (16) pour produire un écoulement d'air de combustion qui pénètre dans la chambre de combustion (92), et qui comprend un écoulement partiel (102) proche du jet de combustible,
    de sorte que le combustible est brûlé dans la chambre de combustion (92) de manière sensiblement stoechiométrique, ou proche de rapports stoechiométriques avec une flamme bleue (116),
    caractérisé en ce que l'on introduit dans la chambre de combustion (92) en supplément de l'écoulement partiel proche du jet de combustible (102) et situé radialement à l'extérieur et à distance définie par rapport à cet écoulement partiel, un écoulement partiel (106) d'air de combustion, lequel assure une stabilisation de recirculation,
    en ce que l'écoulement partiel de stabilisation de recirculation est introduit dans la chambre de combustion (92) sous la forme d'un motif d'écoulement correspondant à un écoulement annulaire interrompu en direction périphérique,
    en ce que l'on introduit dans la chambre de combustion (92) un écoulement de recirculation intérieur (112) qui s'écoule depuis la flamme bleue (116) en retour vers la partie qui ne brûle pas (81) du jet de combustible (80), et
    en ce que l'on stabilise l'écoulement de recirculation intérieur (112) avec l'écoulement partiel de stabilisation de recirculation (106) de l'air de combustion.
  54. Procédé pour le fonctionnement d'un brûleur, selon la revendication 53, caractérisé en ce qu'il est prévu dans le boítier de brûleur des ouvertures (118) à travers lesquelles on introduit dans la chambre de combustion (92) un écoulement de recirculation extérieur (119) qui amène des gaz de combustion froids,
    en ce que l'écoulement de recirculation extérieur (119) est introduit dans la chambre de combustion (92) à proximité de l'élément de séparation (90) et que sa taille est maintenue de telle sorte qu'une racine de flamme (114) de la flamme bleue (116) est maintenue à une distance d'au moins 1 cm depuis la buse (28),
    et en ce qu'une partie qui ne brûle pas (81) du jet de combustible (80) s'élargit sous forme de cône entre la buse (28) et la racine de flamme (114) avec mélange d'air de combustion (102, 106).
  55. Procédé pour le fonctionnement d'un brûleur, selon l'une ou l'autre des revendications 53 et 54, caractérisé en ce qu'il est prévu dans le boítier de brûleur (10) des ouvertures (118) à travers lesquelles on introduit dans la chambre de combustion (92) à proximité de l'élément de séparation (90) un écoulement de recirculation (119) qui amène des gaz de combustion froids, et
    en ce que ledit écoulement de recirculation sépare un écoulement de recirculation intérieur (112) par rapport à l'élément de séparation (90), ledit écoulement de recirculation intérieur se formant comme un courant qui s'écoule dans la chambre de combustion (92) depuis la flamme bleue (116) en retour vers la partie qui ne brûle pas (81) du jet de combustible (80).
EP95905077A 1993-12-18 1994-12-17 Bruleur a flamme bleue optimisant la combustion Expired - Lifetime EP0683883B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00111167A EP1030106B1 (fr) 1993-12-18 1994-12-17 Bruleur à flamme bleue optimisant la combustion

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4343430 1993-12-18
DE4343430 1993-12-18
DE4430889 1994-08-31
DE4430889A DE4430889A1 (de) 1993-12-18 1994-08-31 Verbrennungsoptimierter Blaubrenner
PCT/EP1994/004204 WO1995016882A1 (fr) 1993-12-18 1994-12-17 Bruleur a flamme bleue optimisant la combustion

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP00111167.3 Division-Into 2000-05-24

Publications (2)

Publication Number Publication Date
EP0683883A1 EP0683883A1 (fr) 1995-11-29
EP0683883B1 true EP0683883B1 (fr) 2001-02-28

Family

ID=25932245

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95905077A Expired - Lifetime EP0683883B1 (fr) 1993-12-18 1994-12-17 Bruleur a flamme bleue optimisant la combustion

Country Status (7)

Country Link
EP (1) EP0683883B1 (fr)
AT (2) ATE283449T1 (fr)
DK (1) DK0683883T3 (fr)
ES (1) ES2154722T3 (fr)
GR (1) GR3035908T3 (fr)
PT (1) PT683883E (fr)
WO (1) WO1995016882A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10254664B3 (de) * 2002-11-23 2004-03-04 Buderus Heiztechnik Gmbh Brenner für flüssige Brennstoffe
EP1489352A1 (fr) 2003-06-18 2004-12-22 BBT Thermotechnik GmbH Dispositif de mélange pour un brûleur au gaz ou au fioul
DE10348272B3 (de) * 2003-10-17 2005-02-03 Bbt Thermotechnik Gmbh Mischeinrichtung für einen Öl- oder Gasbrenner
DE10349836B3 (de) * 2003-10-25 2005-04-14 Bbt Thermotechnik Gmbh Mischeinrichtung für einen Öl- oder Gasbrenner
DE102004021093B3 (de) * 2004-04-29 2005-08-04 Bbt Thermotechnik Gmbh Öl- oder Gasbrenner
DE102004009787B3 (de) * 2004-02-28 2005-08-11 Bbt Thermotechnik Gmbh Mischeinrichtung für einen Öl- oder Gas-Gebläsebrenner
DE102005020664A1 (de) * 2005-05-07 2006-11-09 Robert Bosch Gmbh Brenner für flüssige Brennstoffe
EP1731834A1 (fr) * 2005-06-09 2006-12-13 Robert Bosch Gmbh Brûleur à combustible liquide
DE102007059063B3 (de) * 2007-12-07 2009-04-30 Robert Bosch Gmbh Modulierender Ölbrenner
DE202009014953U1 (de) 2009-08-29 2010-10-21 Robert Bosch Gmbh Mischeinrichtung für einen Ölbrenner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006049294A1 (de) * 2006-10-19 2008-04-24 Robert Bosch Gmbh Mischeinrichtung für einen Öl- oder Gasbrenner
DE102013100990A1 (de) * 2013-01-31 2014-07-31 Mhg Heiztechnik Gmbh Brennergehäuse

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109988A1 (de) * 1981-03-14 1982-12-02 Klaus 2000 Hamburg Eckloff Vergaser-oelbrenner
JPH0232531B2 (ja) * 1984-05-01 1990-07-20 Korona Kk Ekitainenryonenshosochi
FR2582781A1 (fr) * 1985-06-04 1986-12-05 Mueller Rudolf Bruleur pour chaudiere a combustion liquide avec circuit de recyclage des gaz de combustion
AU1793992A (en) * 1991-05-24 1992-12-30 Michael G. May Method of burning fuel to produce low pollutant emissions
DE4201060C2 (de) * 1992-01-17 1994-07-14 Man B & W Diesel Ag Brenner für vergasten flüssigen Brennstoff
ATE142324T1 (de) * 1992-02-28 1996-09-15 Fuellemann Patent Ag Brenner, insbesondere oelbrenner oder kombinierter oel/gas-brenner
DE4209221A1 (de) * 1992-03-21 1993-09-23 Deutsche Forsch Luft Raumfahrt Stickoxidarmer brenner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10254664B3 (de) * 2002-11-23 2004-03-04 Buderus Heiztechnik Gmbh Brenner für flüssige Brennstoffe
EP1489352A1 (fr) 2003-06-18 2004-12-22 BBT Thermotechnik GmbH Dispositif de mélange pour un brûleur au gaz ou au fioul
DE10348272B3 (de) * 2003-10-17 2005-02-03 Bbt Thermotechnik Gmbh Mischeinrichtung für einen Öl- oder Gasbrenner
DE10349836B3 (de) * 2003-10-25 2005-04-14 Bbt Thermotechnik Gmbh Mischeinrichtung für einen Öl- oder Gasbrenner
DE102004009787B3 (de) * 2004-02-28 2005-08-11 Bbt Thermotechnik Gmbh Mischeinrichtung für einen Öl- oder Gas-Gebläsebrenner
DE102004021093B3 (de) * 2004-04-29 2005-08-04 Bbt Thermotechnik Gmbh Öl- oder Gasbrenner
DE102005020664A1 (de) * 2005-05-07 2006-11-09 Robert Bosch Gmbh Brenner für flüssige Brennstoffe
DE102005020664B4 (de) * 2005-05-07 2008-11-06 Robert Bosch Gmbh Brenner für flüssige Brennstoffe
EP1731834A1 (fr) * 2005-06-09 2006-12-13 Robert Bosch Gmbh Brûleur à combustible liquide
DE102005026649A1 (de) * 2005-06-09 2006-12-28 Robert Bosch Gmbh Brenner für flüssige Brennstoffe
DE102007059063B3 (de) * 2007-12-07 2009-04-30 Robert Bosch Gmbh Modulierender Ölbrenner
DE202009014953U1 (de) 2009-08-29 2010-10-21 Robert Bosch Gmbh Mischeinrichtung für einen Ölbrenner

Also Published As

Publication number Publication date
GR3035908T3 (en) 2001-08-31
ATE283449T1 (de) 2004-12-15
WO1995016882A1 (fr) 1995-06-22
EP0683883A1 (fr) 1995-11-29
PT683883E (pt) 2001-08-30
ATE199451T1 (de) 2001-03-15
ES2154722T3 (es) 2001-04-16
DK0683883T3 (da) 2001-06-25

Similar Documents

Publication Publication Date Title
DE2539993C2 (de) Brenner für flüssigen oder gasförmigen Brennstoff
EP0558455B1 (fr) Brûleur, notamment brûleur à huile ou brûleur combiné huile/gaz
DE2951796C2 (de) Brenner für gasförmige oder flüssige Brennstoffe für minimale NO↓x↓-Emission
EP0683883B1 (fr) Bruleur a flamme bleue optimisant la combustion
DE2345282B2 (de) Verbrennungseinrichtung für Gasturbinentriebwerke
EP1734306B1 (fr) Brûleur pour combustion à prémélange
EP1802915A2 (fr) Bruleur pour turbine a gaz
EP1030106B1 (fr) Bruleur à flamme bleue optimisant la combustion
DE2460740A1 (de) Brennkammer fuer gasturbinentriebwerke
DE2953648C2 (de) Flüssigbrennstoffbrenner
DE2727795A1 (de) Brennkammer fuer eine gasturbine
DE102005038662B4 (de) Brennkopf und Verfahren zur Verbrennung von Brennstoff
DE2643293A1 (de) Oelbrenner
EP2037173B1 (fr) Tête de brûleur et procédé de combustion à un étage de combustible dans une zone de combustion éloignée de la tête de brûleur
DE4432395A1 (de) Brennereinrichtung für einen gasartigen Brennstoff
EP0430011B1 (fr) Brûleur pour la combustion de combustibles liquides ou gazeux
EP0683884B1 (fr) Bruleur a flamme bleue ajustable
DE4008692A1 (de) Mischeinrichtung fuer oelgeblaesebrenner
WO1992020964A1 (fr) Procede pour la combustion faiblement polluante d'un combustible
WO1979000468A1 (fr) Bruleur a mazout pour de faibles puissances de chauffage et procede de mise en action
EP0699867A2 (fr) Dispositif de combustion pour combustibles gazeux
DE4229525A1 (de) Mischeinrichtung für Ölzerstäubungsbrenner
DE4330082C2 (de) Brenner zur stöchiometrischen Verbrennung von flüssigem oder gasförmigem Brennstoff
DE2828319C2 (de) Brenner für flüssigen Brennstoff mit einer zylindrischen Wirbelkammer
DE19814768A1 (de) Blaubrenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 19970805

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970805

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

REF Corresponds to:

Ref document number: 199451

Country of ref document: AT

Date of ref document: 20010315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010309

REF Corresponds to:

Ref document number: 59409666

Country of ref document: DE

Date of ref document: 20010405

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2154722

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59409666

Country of ref document: DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59409666

Country of ref document: DE

Representative=s name: ,

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20131126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20130617

Year of fee payment: 20

Ref country code: IE

Payment date: 20131127

Year of fee payment: 20

Ref country code: SE

Payment date: 20131206

Year of fee payment: 20

Ref country code: GB

Payment date: 20131126

Year of fee payment: 20

Ref country code: AT

Payment date: 20131126

Year of fee payment: 20

Ref country code: CH

Payment date: 20131127

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20131129

Year of fee payment: 20

Ref country code: NL

Payment date: 20131206

Year of fee payment: 20

Ref country code: LU

Payment date: 20131217

Year of fee payment: 20

Ref country code: FR

Payment date: 20131126

Year of fee payment: 20

Ref country code: ES

Payment date: 20131218

Year of fee payment: 20

Ref country code: IT

Payment date: 20131216

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20131216

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140221

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59409666

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59409666

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20141217

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20141217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20141217

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20141216

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141224

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141216

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 199451

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141217

REG Reference to a national code

Ref country code: GR

Ref legal event code: MA

Ref document number: 20010400762

Country of ref document: GR

Effective date: 20141218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141218