EP0683884B1 - Bruleur a flamme bleue ajustable - Google Patents

Bruleur a flamme bleue ajustable Download PDF

Info

Publication number
EP0683884B1
EP0683884B1 EP95905078A EP95905078A EP0683884B1 EP 0683884 B1 EP0683884 B1 EP 0683884B1 EP 95905078 A EP95905078 A EP 95905078A EP 95905078 A EP95905078 A EP 95905078A EP 0683884 B1 EP0683884 B1 EP 0683884B1
Authority
EP
European Patent Office
Prior art keywords
burner
accordance
recirculation
combustion chamber
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95905078A
Other languages
German (de)
English (en)
Other versions
EP0683884A1 (fr
Inventor
Bernhard Knapp
Manfred Bader
Lutz Mardorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4430888A external-priority patent/DE4430888A1/de
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP0683884A1 publication Critical patent/EP0683884A1/fr
Application granted granted Critical
Publication of EP0683884B1 publication Critical patent/EP0683884B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/24Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space
    • F23D11/26Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed
    • F23D11/28Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space by pressurisation of the fuel before a nozzle through which it is sprayed by a substantial pressure reduction into a space with provision for varying the rate at which the fuel is sprayed with flow-back of fuel at the burner, e.g. using by-pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/40Inducing local whirls around flame

Definitions

  • the invention relates to a burner for liquid or gaseous Media comprising a burner housing one in the Burner housing arranged nozzle assembly with a fuel jet generating nozzle, the fuel jet with respect the amount of fuel forming this adjustable is a combustion chamber in which the fuel jet spreads, and a fan for generating one in the combustion chamber incoming combustion air flow, which accordingly essentially complete combustion of the fuel jet is adjustable in terms of its air volume, being in the combustion chamber from the fuel jet and the Combustion air flow due to a stable recirculation flow blue-burning flame can be generated.
  • DE-OS 40 09 222 discloses a burner for stoichiometric Burning liquid or gaseous fuels from an atomizer nozzle. This burner is around the atomizer nozzle through an aperture in air Combustion chamber guided, in which the emerging from the nozzle Fuel also occurs.
  • EP-A-0 430 011 also discloses a blue-burning one Burner in which there is a mixture around an atomizing nozzle from fresh air and recirculating combustion gases are added and mixed before again with that of the atomizer nozzle coming to a stoichiometric Cause combustion.
  • the feed is the fresh air divided, on the one hand into a first Part that deals directly with the recirculating combustion gases mixed, and on the other hand in a second Part that flows around the atomizer nozzle and serves to cool the atomizing nozzle so that the cooling of the atomizing nozzle, especially the oil nozzle, is adjustable. Also this fresh air is then mixed with the remaining fresh air and the recirculating combustion gas and mixed with the fuel.
  • a controllable burner is known from DE-OS 27 12 564, in which a baffle plate is present and downstream the baffle plate creating a negative pressure area a rotating hollow air column is created so that Combustion gases are sucked back into this vacuum area become.
  • the rotating hollow air column is thereby in radial direction and covered with scoops Radial slots created.
  • the atomizer nozzle with the ignition electrodes is in arranged in a closed room that only so much Fresh air is supplied, such as for moving the ignition spark is required.
  • DE-PS 29 08 427 discloses a burner in which first a sub-stoichiometric one with the addition of flue gases Combustion in a primary combustion zone with immediate supply of one that envelops the fuel flow Jacket air flow takes place and then in a superstoichiometric secondary combustion zone, in the residual air over the peripheral area of the primary combustion zone is fed, further combustion takes place.
  • the residual air is coaxial around the respective burner fed around regulated in at least two sub-flows, the from the burner mouth after a certain free Flow path reach the flame.
  • a so-called blue burner is known from DE-OS 31 09 988, in which an internal recirculation via a mixing tube is forced, being from an atomizer nozzle escaping fuel jet on the one hand this directly surrounding combustion air is supplied and on the other hand further air passage holes are provided radially on the outside are, however, radially inside the mixing tube lie.
  • EP-A-0 538 761 describes a burner with recirculation known in which the external recirculation by a longitudinal direction of the slots is generated, this Slots run with their longitudinal direction in the circumferential direction.
  • Similar burners are for example from DE-PS 27 00 671 or DE-PS 38 01 681 known.
  • a flame burning blue means that this flame essentially completely gasifies you Fuel burns, especially when using oil required as fuel that from the nozzle in the Small oil droplets first emerging from the fuel jet until essentially burned by the flame evaporate completely.
  • a burner is also known from EP 0 227 637, at which a mixing tube is provided in the combustion chamber, which specifies a stable recirculation flow, so that all settings of fuel quantity and air quantity themselves the conditions given by the mixing tube orientate.
  • the invention is therefore based on the object Burner of the generic type to improve such that different burner settings or burner outputs can be realized with a structurally simple solution.
  • combustion air flow in the form of a partial stream close to the fuel jet and in the form one with respect to the sub-stream near the fuel jet in defined distance radially outer recirculation stabilizing Partial stream enters the combustion chamber.
  • This division of the combustion air flow according to the invention creates an advantageous way of training the Recirculation flow in the respective setting of Stabilize the amount of fuel and the amount of air.
  • the recirculation-stabilizing partial stream preferably occurs in the form of a ring flow interrupted in the circumferential direction around their fuel jet into the combustion chamber, thereby stabilizing the recirculation flow still is further improved since at the points of the interruption a "flow" of the ring current in the radial direction in is easily possible while between breaks stabilizing vortices are generated.
  • the amount of air in the partial stream close to the fuel jet with all settings is constant, so that the Partial flow close to the fuel jet is always a basic supply of the fuel jet with air.
  • the amount of air in the partial stream close to the fuel jet dimensioned that the air quantity at maximum fuel quantity maximum in the recirculation-stabilizing partial flow and with a minimal amount of fuel, the combustion air flow only formed by the partial stream near the fuel jet becomes.
  • Recirculation-stabilizing partial stream With regard to the orientation of what enters the combustion chamber Recirculation-stabilizing partial stream have so far been no details given.
  • the recirculation stabilizing Partial flow at an angle to the direction of flow of the fuel jet, for example parallel to its conical surface, to enter the combustion chamber.
  • the recirculation stabilizing Partial flow essentially parallel to the direction of flow of the fuel jet enters the combustion chamber.
  • the stabilizing effect for the recirculation flows is particularly large if the recirculation stabilizing Partial flow in the form of a on a circular cylinder lying current image enters the burner chamber.
  • This Current picture could be a cylindrical flow, for example his.
  • the component streams arranged at a constant angular distance from each other are so that there is a space between each component flow remains through which the inner recirculation flow can pass through to get to the fuel jet and by the internal recirculation flow heated hot combustion gases to heat up, so that better evaporation of the oil droplets takes place in this.
  • each item stream is between about 10 and about 0.1 lies. It when the ratio of the Angular distance to the angular width of the inlet cross-section is between about 2 and 0.5, more preferably 1.5 and 0.7.
  • Ratio is in the range of approximately 1.1.
  • This inner recirculation flow is especially important with a liquid burner for the Heating of the liquid droplets generated by the nozzle in the non-burning part of the fuel jet, because of this internal recirculation flow is called combustion gases be returned from the flame to the non-burning Part of the fuel jet and thus help the Vaporizing liquid droplets to ultimately make one again to reach the blazing flame.
  • the inner recirculation flow is preferably yellow-burning educated.
  • the internal recirculation flow through the recirculation stabilizing Partial stream passes, this preferably - As already mentioned - from component beams is designed to pass through the internal recirculation flow by facilitating this.
  • Partial flow required cross section available ensure that the partial flow near the fuel jet passes through a passage between the nozzle head and an edge of one for the inflow opening provided near the fuel jet flows into the combustion chamber so that the size of the Pass through the flow cross-section for the fuel jet Specifies partial flow.
  • a particularly advantageous mixing of the near fuel jet Partial flow and the fuel in the combustion chamber results when the inflow opening for the designed to generate turbulence is.
  • the inflow opening with a vertebral edge or a vertebral cutting edge is provided.
  • the fuel jet one from a simply connected nozzle opening outgoing cone, in particular a full cone, because this is particularly easy to manufacture and also particularly simply homogeneous with the most homogeneous droplet size possible can train.
  • the burner housing were in None in connection with the previous exemplary embodiments detailed information. So looks an advantageous one Embodiment before that the burner housing a prechamber comprises, in which the nozzle is arranged and which is separated from the combustion chamber by a separating element. On Such construction of the burner housing has the advantage of great simplicity and high structural flexibility.
  • combustion chamber extends from a plane which is close to the nozzle opening, that is, that advantageously the fuel jet immediately after exiting the nozzle opening in the combustion chamber extends and not in part before this combustion chamber.
  • This allows, in particular, advantageous mixing of the internal and possibly external recirculation flows with the fuel jet to have a blue burning flame optimal combustion values, that is, in particular, optimal ones To achieve NOX and CO content.
  • the separating element can be designed in any manner be, for example similar to EP 0 430 011. Especially however, it is advantageous if the separating element is an aperture because this constructive solution stands out distinguishes their simplicity.
  • the aperture itself could have a curved shape, such as for example that of DE-OS 40 09 222. Particularly advantageous it is, however, if the aperture extends in one plane, because such a shape of the diaphragm is constructive is particularly easy to manufacture and on the other hand has the advantage that it admixes the recirculation flows, that means both the inner and the external recirculation flow, in a particularly advantageous manner enables.
  • the recirculation space is preferably designed such that that it extends at least to the flame root.
  • the recirculation space one for example the inside diameter of the Flame tube has the corresponding outer diameter, which is about 1.5 to about 3 times larger than the diameter of the pitch circle from which the recirculation stabilizing Partial flow into the recirculation room entry.
  • the recirculation space is one Inside diameter, which is about 2 to 2.5 times is larger than the diameter of the pitch circle. Especially advantageous conditions can be achieved if the Recirculation space has a diameter which is about 2 times the size of the Diameter of the pitch circle.
  • This flame space can have the same inner diameter as that Have recirculation space. It is particularly advantageous however, if the flame space has an inside diameter, which is at most the same size or smaller than the recirculation space is. This solution is especially for small ones Burner outputs, for example less than 20 kW, are an advantage, because a narrowing of the flame space to the spatial Stabilization of the flame contributes and thus a spatial Prevents the flame from swinging back and forth in the flame space.
  • the solution provides that, for example, this Place the inside diameter of the flame tube Outer diameter of the flame chamber in the range of approximately 0.6 to 0.9 times the diameter of the recirculation space lies. It is particularly advantageous if the inside diameter of the flame space in the range of approximately 0.8 times the Inner diameter of the recirculation space.
  • the solution according to the invention sees a further one Using the external recirculation flow to that effect before that the external recirculation flow near the Separating element enters the combustion chamber and is so large that a flame root of the blue-burning flame a distance of at least 1 cm from the nozzle and that between the nozzle and the flame root a non-burning Part of the fuel jet with the addition of combustion air spreads conically.
  • the outer Recirculation flow not only used the proportion to reduce the nitrogen oxides, but in particular also to a large enough non-burning part of the To get fuel jet in the combustion chamber, which an adequate admixture of combustion air and recirculating Allows gases.
  • Another special embodiment of the invention Solution provides that the outer recirculation flow enters the combustion chamber near the separating element and that this opposes the inner recirculation flow shields the separator, which turns out to be in the combustion chamber from the blue-burning flame to the non-burning one Part of the fuel jet forms backward flow.
  • the outer recirculation flow could in principle be arbitrary Way into the combustion chamber.
  • the outer recirculation flow with the combustion air into the combustion chamber.
  • the outer recirculation flow separated from the combustion air flow in the Combustion chamber enters, so that through the separate flow guide there is a possibility, location and course of the external recirculation flow better and above all independently from the combustion air, which has another purpose, namely serves to oxidize the fuel.
  • a particularly advantageous embodiment provides that an area of the entry for the combustion air flow in the combustion chamber provided openings approximately at most Area of the openings provided in the flame tube for the outer Corresponds to recirculation flow.
  • a particularly expedient embodiment provides that the combustion air flow through the separating element in the combustion chamber flows in.
  • This flame tube is used to reduce nitrogen oxide emissions preferably with openings to form an outer Provide recirculation flow.
  • a flow stabilization element is arranged, which extends from the bezel towards a foot area the flame up to a maximum of about a quarter of the distance extends between the bezel and the flame.
  • This Flow stabilization element has nothing to do with that Mixing tube known from the prior art, since the known Mixing tube only the formation of a single recirculation flow allows while the flow stabilization element according to the invention is also designed that it allows the formation of several recirculation flows especially the training of those for each Amounts of fuel and air required recirculation flows.
  • Flow stabilization element at most about one sixth of the distance between the bezel and the foot area the flame extends.
  • combustion chamber be free from within the same arranged flow stabilization elements is trained for recirculation.
  • the setting device is preferably designed such that when setting the air volume, the place of entry of the combustion air flow into the combustion chamber in the radial direction is essentially invariant to the fuel jet. This has the great advantage that by determining the location of the Entry of the combustion air flow an optimal stabilization the recirculation with all fuel quantity settings and amount of combustion air is possible.
  • Adjustment device for locally fixed openings for the combustion air flow which has different cross sections are adjustable.
  • the Setting device a rotatably mounted on the panel Includes adjusting element with which the cross section of a in the aperture provided is adjustable.
  • the setting element can be rotated adjusting shim mounted on the panel, which in different rotational positions relative to the aperture and can be brought to the openings provided in the panel.
  • the adjustment element one the cross section of the opening provided in the panel varying closure element, for example one Stopper to form, which on the opening to or from this can be moved away.
  • this setting element can be designed that it is adjustable in different discrete setting positions is.
  • the adjusting element is continuously adjustable so that it is continuous the cross sections between a maximum value and a minimum value can be varied.
  • the adjusting device can be designed so that it manually, for example with an appropriate tool, is adjustable.
  • variable control of the air volume advantageous if the setting device has a controllable actuator is adjustable.
  • Such a return nozzle is particularly easy to do adjust that this is an adjustable return valve is assigned, which enables the return of the The return nozzle can be variably adjusted and thus also that of adjust the amount of fuel delivered to the nozzle.
  • the return valve is designed that with this different amounts of fuel of the fuel jet are permanently adjustable. Is even more advantageous it, however, if the return valve is continuously adjustable is so that continuous adjustment and adjustment the amount of fuel is possible.
  • the return valve is adjustable by means of an actuator.
  • a particularly advantageous embodiment of the invention Solution provides that the burner has a control with which the amount of fuel and the amount of air of the combustion air flow are adjustable.
  • a Control can be particularly simple an optimal setting of both the amount of fuel also the amount of combustion air, especially with regard to a stoichiometric or near stoichiometric combustion.
  • control the Actuator of the return valve controls.
  • Control controls the actuator of the setting device.
  • the controller is both the actuator of the return valve as well as the actuator of the adjusting device.
  • controller according to the invention also several Possibilities conceivable. This is an advantageous embodiment before that control burner outputs fixed can be specified. Alternatively, it is conceivable that the Control burner outputs can be variably specified.
  • a particularly advantageous embodiment provides that the controller according to a predetermined performance
  • the amount of fuel and the amount of air correspond on the one hand to this Performance and on the other hand in terms of a stoichiometric or near-stoichiometric combustion.
  • the amount of fuel is adjustable in that the burner can be used as a kit with the same burner housing different nozzles is formed. The setting the amount of fuel takes place in that in each case the corresponding nozzle is inserted into the burner.
  • the nozzles are all in the essentially the same spray pattern and especially one in have substantially the same outer contour on the air flow side and just deliver different amounts of fuel.
  • a particularly advantageous embodiment provides that with the adjustment parts the fuel stream close to the fuel jet is constant while the recirculation stabilizing Partial flow with different setting parts different values can be set.
  • the Kit for all burner outputs an identical burner housing includes.
  • the kit for everyone Burner performance includes an identical fan.
  • kit is identical Combustion chamber includes.
  • the kit is available for all Burner performance includes an identical nozzle assembly.
  • a first embodiment of an inventive Brenners shown in Fig. 1, includes one as a whole 10 designated burner housing with a support tube 12 and a flame tube 14 adjoining this.
  • the support tube 12 is in an opposite of the flame tube End region one designated as a whole by 16 Fan arranged, which a fan drive 18 and a Blower wheel 20 includes.
  • This fan 16 produces a Support tube 12 passing through air flow 22, which in the direction of the flame tube 14 flows.
  • Nozzle block arranged, which is a nozzle holder 26 with a screwed into this nozzle 28.
  • the Nozzle 28 is detailed below described return nozzle and is formed by a Nozzle feed line 30 with liquid fuel, in particular oil, supplied while a part via a nozzle return line 32 of the fuel supplied in the nozzle feed line 30 again flows back, throttling the return flow over a Adjustable arranged in the nozzle return line 32 Return valve 34 is possible.
  • the feeding of the fuel into the nozzle feed line 30 takes place via a fuel feed pump 36, which is preferably is also driven by the drive 18 of the blower 16, especially on the same shaft as the impeller 20 sits.
  • This fuel feed pump 36 is via a pump feed line 38 is fueled and is also with a return line 40 connected, in which excess Fuel from the fuel feed pump 36 flows back. In this return line 40 also opens Nozzle return line 32 after the return valve 34.
  • the nozzle 28 includes one Nozzle head 50, which in turn rests on a nozzle body 52 is screwed on, and receives a swirl body 54.
  • the nozzle head 50 is in turn also in the Nozzle carrier 26 screwed in, so that the nozzle body 52 in a recess 56 of the nozzle carrier 26, the Recess 56 forms a fuel supply area 58, which is connected to the nozzle feed line 30 and one Return area 60, which is connected to the nozzle return line 32 connected is.
  • the fuel entering the fuel supply area 58 preferably flows through a filter 62 and then overflows two opposite inlet channels 64 des Nozzle body 52 in further inlet channels 66 in the swirl body 54 and of these, as shown in Fig. 3, in an annular inlet space 68 of the swirl body 54, which by a front end of the swirl body 54 Support plate 70 is closed.
  • the fuel passes through swirl channels 72 into a radially inside the annular inlet space 68 lying swirl space 74, in which one rotating according to the orientation of the swirl channels 72 Swirl flow forms and from this swirl space 72nd the fuel passes through an annular gap 76 into a spray hole 78, from which a conical fuel jet 80 emerges.
  • the spray bore 78 is opposite in the swirl body 54 a return channel 82 is arranged which the Swirl body 54 passes through and is arranged in a nozzle body 52 Return channel 84 merges, which then finally in the return area 60 of the recess 56, which then in turn with the nozzle return line 32 in Connection is established.
  • the nozzle assembly 24 together with the nozzle 28 is within the Support tube 12 arranged in a prechamber 48, which also is penetrated by the air flow 22.
  • the antechamber 48 is closed off by one as a whole designated 90 and inserted into the support tube 12 Aperture, which is located downstream of the nozzle 28 Combustion chamber 92 connects, which are surrounded by the flame tube 14 is.
  • the flame tube 14 is preferably on the Support tube 12 held.
  • the aperture 90 is arranged so that the spray bore 78th with a nozzle opening near or in plane 89 of the Aperture 90 is located and the fuel jet emerging at the nozzle 28 80 essentially completely in the Combustion chamber 92 spreads.
  • the aperture 90 is coaxial with the longitudinal axis 86 the inflow opening 94 arranged in the nozzle 28.
  • the Inflow opening 94 is also chosen so large that between an edge 96 of the inflow opening 94 and one of this edge 96 facing outside 98 of the nozzle head 50 an annular Passage 100 remains through which a fuel jet near Partial stream 102 of a total of the prechamber 48 combustion air flow flowing into the combustion chamber 92 passes through.
  • the edge 96 of the inflow opening 94 is still with a vortex edge 104 provided, which for vortex formation in Partial stream 102 leads and for example through a step-shaped Cross-sectional constriction of the inflow opening 94 is formed is.
  • Another partial flow 106 of the from the pre-chamber 48 in the Combustion chamber 92 entering combustion air flow passes through radially outside the inflow opening 94 in an annular region 108 arranged openings 110 through which a pitch circle 109, preferably at equal angular intervals and with spaces 111 around the center of the Annular region 108 are arranged.
  • the openings 110 preferably have a reference to the pitch circle 109 an extension in the azimuthal direction which one Corresponds to an angle which is approximately one to two times the the extent of the spaces 111 corresponding angle is.
  • the openings 110 can be in the azimuthal direction extend over an angle that is approximately 0.1 to about 8 times the angle of the extension of the spaces 111 corresponds.
  • the openings 110 are arranged so that the partial flow 106 of the combustion air flow through the gaps 111 between the openings 110 in the form of a circumferential direction interrupted ring flow corresponding flow pattern enters the combustion chamber 92 and thus in each case the formation of an internal recirculation flow 112 and also an external recirculation flow 119 in the combustion chamber 92 stabilized so that a flame root 114 a flame 116 forming in the combustion chamber 92 is substantially at the same distance from the aperture 90, regardless of one carried by the fuel jet 80 Amount of fuel and a corresponding one through the partial flows 102 and 106 entering the combustion chamber 92 corresponding amount of combustion air.
  • the flame root 114 in turn joins one non-burning part 81 of the fuel jet 80, which a length of about 1 to about 4 cm, preferably about 1 to about 3 cm, on and from it starting from the flame 116 spreads, which is at one Inner wall region 15 of the flame tube 14 creates before it this leaves.
  • the outer recirculation flow 118 also occurs close to the screen between the individual streams 105 and mixed then with the combustion air flow 102, 106 by the Increase flame tube 14 mass flow passing so far that the flame root 114 at a constant distance of at least 2 cm from the aperture 90 and thus also from the Nozzle 28 remains that the non-burning part 81 of the Fuel jet 90 is long enough to drop the oil droplets in to evaporate it almost completely.
  • the sum of the areas is that for entry the combustion air flow into the openings provided in the combustion chamber, in particular the sum of the area openings 110 and of the inflow openings 94, dimensioned so that they are approximately at most the sum of the areas of the recirculation openings for external recirculation, especially the sum of the areas formed as elongated slots in the circumferential direction outer recirculation openings 118 corresponds.
  • the ratio of the area of the recirculation openings 118 to the area of the central inflow opening 94 lies between about 0.3 to about 19.2, preferably between about 0.9 and 5.1.
  • the recirculation space 91 then adjoins the flame space 117.
  • the one shown in FIGS. 1 to 9 first embodiment of the partial stream near the fuel jet 102 designed so that this is the smallest Burner output the corresponding recirculation flow stabilized without the recirculation-stabilizing partial flow 106 (Fig. 9 lower half) and with large burner outputs then the recirculation-stabilizing partial flow 106 the stabilization takes over (Fig. 9 upper half), the partial stream 102 near the fuel jet can no longer afford.
  • the burner is dimensioned differently, it is also possible to at the lowest power, both near the fuel jet Stream 102 and a minimal recirculation stabilizing Provide partial stream 106.
  • Such a stabilization of the recirculation flows 112 and 119 can be reached in particular if one of the Inner diameter of the flame tube corresponding outer diameter of the recirculation chamber 91 of the combustion chamber 92 about 1.5 to about 3.9 times, better still about that two to three times the diameter of a pitch circle 109 of the circular ring area 108 is even more advantageous it is when the outer diameter of the recirculation space 91 the combustion chamber 92 about 2.2 to about 2.6 times, preferably about 2.2 to about 2.5 times the Diameter of the pitch circle 109.
  • the ratio of the diameter of the pitch circle 109 to The diameter of the central inflow opening 94 is between about 1.0 and about 4.2, preferably between about 1.82 and about 2.0.
  • the central inflow opening 94 is dimensioned so that an outer diameter of the recirculation space 91 (corresponds to the inner diameter of the flame tube 14) of the combustion chamber 92 3.4 to about 8.5 times, better still about 4 to about 6 times, better still about 4.4 to approximately 5.9 times the diameter of the central inflow opening 94 is.
  • an annular Includes shim 122 which with the openings 110 identical openings 124, which also in the same angular distances as the openings 110 and in the same radial distance from a center of the annulus area 108 are arranged.
  • the circular shim 122 is in turn, as enlarged in FIG. 9 shown, in a cylindrical disk-shaped provided in the aperture 90 Recess 126, which leads to the prechamber 48 is open.
  • the shim is rotatably guided on the storage of the same with its outer edge 128 a cylindrical edge 130 of the recess 126.
  • the shim 122 is adjustable so that 5 to 7, either openings 124 are congruent with the openings 110, so that the maximum cross section for the individual openings 110 replacing partial flow 106 is available, or rotatable so that the openings 124 are no longer congruent the openings 110 and only the overlapping one another Areas of openings 110 and 124 the partial flow Let pass 106 so that the air volume of the partial flow 106 is reduced, as shown in FIG. 6.
  • the partial flow 106 can be completely interrupted, as shown in FIG. 7 , namely when the openings 124 are in gap stand between the openings 110.
  • this is in one Provide partial area of its outer edge with teeth 132, in which a toothing 134 with one as a whole 136 designated setting pinion of the setting device 120 intervenes.
  • This setting pinion is in turn rotatable the aperture 90 stored, and in the simplest case in one another cylindrical bearing recess 138 in the aperture 90 stored, the rotatable bearing by the concern the teeth 134 on cylindrical wall surfaces 140 of the Storage deepening 138 takes place.
  • Both the shim 122 and the pinion 136 are in their respective recesses 126 and 138 through 9 fixing elements not shown in the drawing held so that they each bottom on the wells issue.
  • the setting pinion 136 for example, self-locking in the storage recess 138 stored and for example with a slot 142 provided, which makes it possible to use a conventional Screwdriver to turn the setting pinion 136 so that an adjustment of the shims 122 is also possible , the respective settings of the shims 122 maintained by the self-locking adjustment pinion 136 become.
  • the first embodiment now works so that interrupted partial flow 106 only as the amount of combustion air from the partial flow 102 through the passage 100 into the combustion chamber 92 incoming combustion air is available. Corresponding this amount of air is adjusted by the amount of fuel dispensed into the nozzle 28 into the fuel jet 80, with the amount of fuel being adjusted that the flame 116 burns blue and a stoichiometric or near-stoichiometric combustion. This setting of the fuel quantity takes place via the setting of the return valve 34 and thus over the Nozzle return line 32 into the return line 40 from the Nozzle 28 returning fuel flow.
  • Brenners is a distance from the flame root 114 of the flame 116 from aperture 90 is substantially constant and it is a blue fire at all burner power settings of flame 116 with essentially stoichiometric or near stoichiometric combustion adjustable.
  • Brenners shown in Fig. 10, are those parts that are identical to the first embodiment, with the same Provide reference numerals. Regarding the description these parts can therefore refer to the explanations for the first Embodiment are fully referenced.
  • a flow guide ring 150 is provided, which is at a distance is arranged by the aperture 90, and with its front edge 152 up to a maximum of a quarter of a distance between the aperture 90 and the foot area 114 of the Flame 116 extends. Furthermore, the flow guide ring 150 with a rear edge 154 facing the panel 90 in Distance from the orifice 90 arranged so that the recirculation flow 112 between that in the edge 154 and one Front face 156 of the aperture 90 from the side of the aperture 90 in the flow guide ring 150 can enter.
  • the flow ring 150 also serves as an additional one Stabilization of the recirculation flow 112, whereby a significant distance between the leading edge 152 and the Foot area 114 of flame 116 is required to be at different power settings of the invention Brenners the formation of a strong recirculation flow 112 to ensure and the effect of to support recirculation-stabilizing partial flow 106.
  • the flow guide ring 150 is preferably with webs 158 held at the aperture 90.
  • a third embodiment of an inventive Brenners shown in Fig. 11, are those Parts identical to the first embodiment are provided with the same reference numerals, so that with regard to the description of these parts also in full on the execution of the first embodiment Can be referenced.
  • an actuator 160 is provided and for adjustment the setting pinion 136 an actuator 162, both of which can be controlled via a common controller 164 are.
  • This controller 164 has power settings via an input 166 of the burner according to the invention, with controller 164 at each power setting Input 166 the corresponding setting of the return valve 34 and the actuator 162 of the adjusting device 120 makes. For example, this is through in one Memory of the control 164 definable positions of the Actuators 160 and 162 can be carried out.
  • the fuel stoichiometrically or burns close to stoichiometric is an additional one Lambda probe 168 arranged in the exhaust gas flow of flame 116, which is also connected to the controller 164 so that the controller 164 after rough settings of the power the actuators 160 and 162 are additionally capable is a fine adjustment of either the amount of combustion air or the amount of fuel to make stoichiometric or to comply with near stoichiometric combustion conditions.
  • the controller 164 is constructed in the simplest case so that via an adjuster, for example manually, each desired performance of the burner according to the invention are adjustable.
  • the controller 164 is designed such that over an overall control of a plant, for example one Heating system in which the burner according to the invention is integrated is a requirement for the respectively required Performance of the burner according to the invention takes place so that the Controller 164 then depending on the requested performance of the invention Brenners the actuators 160 and 162 accordingly adjusts and a fine adjustment due to the Measured values of the lambda probe 168 carries out.
  • a fourth embodiment shown in Fig. 12, are those parts with the above embodiments are identical, with the same reference numerals provided so that with regard to their description on the statements to these exemplary embodiments in full Reference is made.
  • This flame tube allows it especially for small ones Burner outputs, preferably less than 20 kW, a stable to obtain flame 116 standing in flame tube 14. Also prevented this geometry is an undesirable indentation of Flue gases from the front end of the flame tube 14.
  • a sixth embodiment of an inventive Brenners shown in Fig. 14, are those Parts with those of the first embodiment are identical, provided with the same reference numerals, so that with regard to these parts also on the explanations for first embodiment referred to in full can be.
  • the burner according to the invention built in the form of a kit.
  • a return nozzle trained nozzle 28 with a nozzle return line 32 and a return valve provided in this 34 to set the fuel flow are a set of several nozzles 228 are provided, each of which is the same Spray pattern and the same air flow side outer contour and thus the same shape of the fuel jet 80, but at deliver different amounts of fuel. With these nozzles 228 the fuel is supplied via the fuel feed pump 36 and the nozzle feed line 30, a nozzle return line 32 is unnecessary, however.
  • the different nozzles 228 correspond to each other different performances of the burner according to the invention.
  • Amounts of fuel of the different nozzles are 228 several screens 290a to 290c are provided, the screen 290a of the nozzle 228 emitting the largest amount of fuel, the Aperture 290c of the nozzle delivering the smallest amount of fuel is assigned and the aperture 290 b is assigned to a nozzle 228 is the amount of fuel between the maximum and the minimum amount of fuel.
  • the diaphragms 290a to c differ in cross section of the openings 210 provided for the partial flow 106, not however, in terms of their location, the openings 210a with the openings 110 with respect to the overall cross section of the Openings are identical, while openings 210b are one Overall cross section showing which one intermediate setting, for example shown in Fig. 6, and thus also an intermediate output of the corresponding nozzle 228 the aperture 290c, the openings 210 are completely absent, so that this the position shown in FIG Corresponds to setting device 120, in which the partial flow 106 is completely prevented and the Combustion air flow is formed only by the partial flow 102 becomes.
  • the apertures 190 are removably held in the support tube.
  • This is for example on the nozzle assembly 24 by means of a retaining ring 292 held a tripod 294, which the respective aperture 290 acted on its side facing the antechamber 48 296 and this against a sealing ring 298 in the direction of the flame tube 14 presses.
  • the nozzle assembly 26 is as All in the direction of a longitudinal axis 300 of the support tube 12 displaceable and with a not shown in Fig. 14 Spring applied towards the flame tube 12. So is removing the diaphragm 290 in the direction of the pre-chamber 48 possible while the aperture 290 towards the flame tube 14 through that, for example as a sealing ring 298 trained abutment is fixed.
  • combustion chamber 92 is designed, in the same way as is preferably shown in connection with the first exemplary embodiment, free of mechanical flow guidance elements, so that when the nozzle 228 corresponding to the respective output and the respective orifice 290 are installed, the suitable recirculation flow 112 is also formed in a stable manner is guaranteed and is also ensured that the flame 116 provides a stoichiometric or near-stoichiometric combustion as a blue-burning flame. Furthermore, a function corresponding to the first exemplary embodiment is ensured by the cross sections of the openings 210 correspondingly provided for the partial flow 106.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Claims (76)

  1. Brûleur pour produits liquides ou gazeux, comprenant :
    un boítier de brûleur (10),
    un porte-buse (24) agencé dans le boítier de brûleur (10) avec une buse (28) qui produit un jet de combustible, ledit jet de combustible (80) étant réglable en ce qui concerne la quantité de combustible qu'il forme,
    une chambre de combustion (92) dans laquelle se propage le jet de combustible (80),
    un ventilateur (16) pour produire un écoulement d'air de combustion (102, 106) qui pénètre dans la chambre de combustion (92) et qui est réglable quant à sa quantité de manière à correspondre à une combustion sensiblement complète du jet de combustible, de sorte que l'on peut produire dans la chambre de combustion (92) à partir du jet de combustible (80) et de l'écoulement d'air de combustion (102, 106) une flamme bleue (116) grâce à un écoulement de recirculation stable (112),
    caractérisé en ce que la chambre de combustion (92) est ainsi réalisée qu'elle permet la formation de différents écoulements de recirculation (112),
    en ce que l'écoulement d'air de combustion (102, 106) pénètre dans la chambre de combustion (92) de manière locale par rapport au jet de combustible (80) de telle façon que cet écoulement d'air de combustion (102, 106) stabilise, pour chaque réglage de la quantité d'air et de la quantité de combustible, l'écoulement de recirculation (112) qui produit une flamme bleue (116), et
    en ce que l'écoulement d'air de combustion (102, 106) qui pénètre dans la chambre de combustion (92) est réglable quant à sa quantité d'air au moyen d'un dispositif de réglage (120), lequel comprend des ouvertures (110) fixées localement pour l'écoulement d'air de combustion (106), lesdites ouvertures pouvant être réglées à des sections différentes.
  2. Brûleur selon la revendication 1, caractérisé en ce que l'écoulement d'air de combustion pénètre dans la chambre de combustion sous forme d'un écoulement partiel proche du jet de combustible (102) et sous forme d'un écoulement partiel (106) de stabilisation de recirculation situé radialement à l'extérieur et à distance définie par rapport à l'écoulement partiel (102) proche du jet de combustible.
  3. Brûleur selon la revendication 2, caractérisé en ce que les écoulements partiels (102, 106) pénètrent dans la chambre de combustion (92) respectivement au même emplacement indépendamment de la quantité d'air réglée.
  4. Brûleur selon l'une ou l'autre des revendications 2 et 3, caractérisé en ce que, pour le réglage de la quantité d'air, l'un au moins des écoulements partiels (102, 106) est réglable pour l'ajustement à la quantité de combustible.
  5. Brûleur selon la revendication 4, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) est réglable pour ce qui concerne la quantité d'air.
  6. Brûleur selon la revendication 5, caractérisé en ce que la quantité d'air dans l'écoulement partiel de stabilisation de recirculation (106) est maximum lorsque la quantité de combustible est maximum et minimum lorsque la quantité de combustible est minimum.
  7. Brûleur selon l'une des revendications 2 à 6, caractérisé en ce que la quantité d'air dans l'écoulement partiel proche du jet de combustible (102) est constante pour tous les réglages de la quantité de combustible.
  8. Brûleur selon l'une des revendications 2 à 7, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) pénètre dans la chambre de combustion (92) sensiblement parallèlement à la direction d'écoulement du jet de combustible (80).
  9. Brûleur selon l'une des revendications 2 et 8, caractérisé en ce que l'écoulement partiel de stabilisation de recirculation (106) pénètre dans la chambre de combustion (92) sous la forme d'un motif d'écoulement disposé sur un cylindre.
  10. Brûleur selon la revendication 9, caractérisée en ce que le motif d'écoulement se compose d'écoulements partiels individuels parallèles (105).
  11. Brûleur selon la revendication 10, caractérisée en ce que les écoulements partiels individuels (105) sont agencés sous un écartement angulaire constant (111) les uns par rapport aux autres.
  12. Brûleur selon la revendication 11, caractérisé en ce que le rapport entre l'écartement angulaire (111) de deux écoulements partiels individuels (105) et la largeur angulaire de la section d'entrée (110) de chaque écoulement partiel individuel (105) est compris entre environ 10 et environ 0,1.
  13. Brûleur selon la revendication 12, caractérisé en ce que le rapport entre l'écartement angulaire (111) de deux écoulements partiels individuels (105) et la largeur angulaire de la section d'entrée (110) de chaque écoulement partiel individuel (105) est compris entre environ 2 et 0,5.
  14. Brûleur selon la revendication 13, caractérisé en ce que le rapport entre l'écartement angulaire (111) de deux écoulements partiels individuels (105) et la largeur angulaire de la section d'entrée (110) de chaque écoulement partiel individuel (105) est situé dans la plage entre environ 1,5 et 0,7.
  15. Brûleur selon l'une des revendications 2 à 14, caractérisé en ce qu'il se forme dans la chambre de combustion (92) un écoulement de recirculation intérieur (112) qui s'écoule depuis la flamme bleue (116) en retour vers la partie qui ne brûle pas (81) du jet de combustible (80), et en ce que l'écoulement partiel de stabilisation de recirculation (106) de l'air de combustion stabilise l'écoulement de recirculation intérieur (112).
  16. Brûleur selon la revendication 15, caractérisé en ce que l'écoulement de recirculation intérieur (112) s'écoule vers l'amont et en sens opposé au jet de combustible sur un côté intérieur du tube de flamme (14) en partant de la flamme (116).
  17. Brûleur selon l'une ou l'autre des revendications 15 et 16, caractérisé en ce que l'écoulement de recirculation intérieur (112) présente une combustion jaune.
  18. Brûleur selon l'une des revendications 15 à 17, caractérisé en ce que l'écoulement de recirculation intérieur (112) traverse le courant partiel de stabilisation de recirculation (106).
  19. Brûleur selon l'une des revendications 2 à 18, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) pénètre dans la chambre de combustion (92) essentiellement parallèlement à la direction d'écoulement (79) du jet de combustible (80).
  20. Brûleur selon la revendication 19, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) pénètre dans la chambre de combustion (92) en entourant le jet de combustible (80).
  21. Brûleur selon l'une des revendications 2 à 20, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) pénètre dans la chambre de combustion (92) dans la région d'une périphérie d'une tête de buse (50) de la buse (28, 228).
  22. Brûleur selon la revendication 21, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) s'écoule le long d'un contour extérieur défini (98) de la tête de buse (50).
  23. Brûleur selon l'une des revendications 20 à 22, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) pénètre dans la chambre de combustion (92) à travers la même ouverture d'entrée centrale (94) que le jet de combustible (80).
  24. Brûleur selon l'une ou l'autre des revendications 22 et 23, caractérisé en ce que l'écoulement partiel proche du jet de combustible (102) s'écoule jusque dans la chambre de combustion (92) à travers un passage (100) entre la tête de buse (28, 228) et une bordure d'une ouverture d'entrée (94) prévue pour l'écoulement partiel proche du jet de combustible (102).
  25. Brûleur selon la revendication 24, caractérisé en ce que l'ouverture d'entrée (94) pour l'écoulement partiel proche du jet de combustible (102) est réalisée de façon à produire des turbulences.
  26. Brûleur selon la revendication 25, caractérisé en ce que l'ouverture d'entrée (94) est pourvue d'une arête de tourbillonnement (104).
  27. Brûleur selon l'une des revendications précédentes, caractérisé en ce que le jet de combustible (80) forme un cône qui part d'une ouverture de buse simple cohérente.
  28. Brûleur selon l'une des revendications précédentes, caractérisé en ce que le boítier de brûleur (10) comprend une chambre préliminaire (48), dans laquelle est agencée la buse (28, 228) et qui est séparée de la chambre de combustion (92) par un élément de séparation (90, 290).
  29. Brûleur selon la revendication 28, caractérisé en ce que la chambre de combustion (92) s'étend à partir d'un plan (89) proche du plan de l'ouverture de buse.
  30. Brûleur selon l'une ou l'autre des revendications 28 et 29, caractérisé en ce que la chambre de combustion (92) présente une section essentiellement constante entre l'élément de séparation (90) et la région de la racine de flamme (114).
  31. Brûleur selon l'une des revendications 28 à 30, caractérisé en ce que l'élément de séparation (90) est un diaphragme.
  32. Brûleur selon la revendication 31, caractérisé en ce que le diaphragme (90) s'étend dans un plan (89).
  33. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la chambre de combustion (92) comprend une chambre de recirculation (91) traversée par la partie qui ne brûle pas (81) du jet de combustible (80) et disposée autour de celle-ci.
  34. Brûleur selon la revendication 33, caractérisé en ce que la chambre de recirculation (91) s'étend au moins jusqu'à la racine de flamme (114).
  35. Brûleur selon l'une ou l'autre des revendications 33 et 34, caractérisé en ce que la chambre de recirculation (91) présente un diamètre extérieur supérieur d'environ 1,5 à environ 3 fois le diamètre du cercle partiel (109) depuis lequel l'écoulement partiel de stabilisation de recirculation pénètre dans la chambre de recirculation (91).
  36. Brûleur selon la revendication 35, caractérisé en ce que la chambre de recirculation (91) présente un diamètre extérieur qui est supérieur d'environ 2 à environ 2, 5 fois au diamètre du cercle partiel (109).
  37. Brûleur selon la revendication 36, caractérisé en ce que la chambre de recirculation (91) présente un diamètre intérieur qui est environ 2,5 fois le diamètre du cercle partiel (109).
  38. Brûleur selon l'une des revendications 33 à 37, caractérisé en ce qu'une chambre de flamme (117) fait suite à la chambre de recirculation (91).
  39. Brûleur selon la revendication 38, caractérisé en ce que la chambre de flamme (117) présente un diamètre intérieur qui est égal ou inférieur au diamètre de la chambre de recirculation (91).
  40. Brûleur selon la revendication de 39, caractérisé en ce que le diamètre intérieur de la chambre de flamme (117) est situé dans la plage d'environ 0,6 à environ 0,9 fois le diamètre intérieur de la chambre de recirculation (91).
  41. Brûleur selon la revendication 40, caractérisé en ce que le diamètre intérieur de la chambre de flamme (117) est situé dans la plage d'environ 0,8 fois le diamètre intérieur de la chambre de recirculation (91).
  42. Brûleur selon l'une des revendications précédentes, caractérisé en ce que le boítier de brûleur (10) est pourvu d'ouvertures (118) à travers lesquelles un écoulement de recirculation (119) qui mène des gaz de combustion froids pénètre dans la chambre de combustion (92).
  43. Brûleur selon la revendication 42, caractérisé en ce que l'écoulement de recirculation extérieur (119) pénètre dans la chambre de combustion (92) à proximité de l'élément de séparation (90) et sa taille est telle qu'une racine de flamme (114) de la flamme bleue (116) présente une distance d'au moins 1 cm par rapport à la buse (28), et en ce qu'une partie qui ne brûle pas (81) du jet de combustible (80) est élargie en forme de cône entre la buse (28) et la racine de flamme (114) avec mélange d'air de combustion (102, 106).
  44. Brûleur selon l'une ou l'autre des revendications 42 et 43, caractérisé en ce que l'écoulement de recirculation extérieur (119) pénètre dans la chambre de combustion (92) à proximité de l'élément de séparation (90), et sépare l'écoulement de recirculation intérieur (112) par rapport à l'élément de séparation (90), ledit écoulement de recirculation intérieur se formant comme un écoulement qui s'écoule dans la chambre de combustion (92) depuis la flamme bleue (116) en retour vers la partie qui ne brûle pas (81) du jet de combustible (80).
  45. Brûleur selon l'une des revendications 42 à 44, caractérisé en ce que l'écoulement de recirculation extérieur (119) pénètre dans la chambre de combustion (92) séparément de l'écoulement d'air de combustion (102, 106).
  46. Brûleur selon l'une des revendications 42 à 45, caractérisé en ce que l'écoulement de recirculation extérieur (119) pénètre directement dans la chambre de combustion (92) via des ouvertures de recirculation (118) dans le tube de flamme (14).
  47. Brûleur selon la revendication 46, caractérisé en ce que la surface des ouvertures (94, 110) prévues dans la chambre de combustion (92) pour l'entrée de l'écoulement d'air de combustion (102, 106) correspond au maximum approximativement à la surface des ouvertures (118) prévues dans le tube de flamme (14) pour l'écoulement de recirculation extérieur (119).
  48. Brûleur selon l'une des revendications précédentes, caractérisé en ce que l'écoulement d'air de combustion (102, 106) pénètre dans la chambre de combustion (92) en traversant l'élément de séparation (90).
  49. Brûleur selon la revendication 48, caractérisé en ce que l'écoulement d'air de combustion (102, 106) est passé à travers à la chambre préliminaire (48).
  50. Brûleur selon l'une ou l'autre des revendications 32 et 49, caractérisé en ce que le diaphragme (90, 290) comporte une ouverture d'entrée (94), tournée vers la buse (28, 228), pour l'écoulement partiel proche du jet de combustible (102).
  51. Brûleur selon l'une des revendications 9 à 50, caractérisé en ce que le diaphragme (90,290) comporte des ouvertures (110, 210), pour l'écoulement partiel de stabilisation de recirculation (106), situées radialement à l'extérieur par rapport à l'ouverture d'entrée (94), pour l'écoulement partiel proche du jet de combustible (102).
  52. Brûleur selon la revendication 51, caractérisé en ce que les ouvertures (110, 210) sont situées dans une région annulaire (108) fixée dans le sens radial du diaphragme (90, 290).
  53. Brûleur selon la revendication 52, caractérisé en ce que la région annulaire (108) présente un diamètre de cercle partiel (109) compris dans une plage d'environ 0,25 à environ 0,5 fois le diamètre extérieur de la chambre de combustion (92).
  54. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la chambre de combustion (92) est entourée par un tube de flamme (14).
  55. Brûleur selon la revendication 54, caractérisé en ce que la flamme (116) présente une racine de flamme (114) située dans la chambre de combustion (92).
  56. Brûleur selon la revendication 55, caractérisé en ce que la chambre de combustion (92) s'étend au-delà de la racine de flamme (114).
  57. Brûleur selon l'une des revendications précédentes, caractérisé en ce qu'il est prévu un élément de stabilisation d'écoulement (150) agencé dans le tube de flamme (14), qui s'étend depuis le diaphragme (90) en direction d'une région de pied (114) de la flamme (116) au maximum jusqu'à environ un quart de la distance entre le diaphragme (90) et la région de pied (114) de la flamme (116).
  58. Brûleur selon la revendication 57, caractérisé en ce que l'élément de stabilisation d'écoulement (150) s'étend au maximum jusqu'à environ un sixième de la distance entre le diaphragme (90) et la racine (114) de la flamme (116).
  59. Brûleur selon l'une des revendications 1 à 56, caractérisé en ce que la chambre de combustion (92) est réalisée dépourvue d'élément de stabilisation d'écoulement (150) mécanique agencé à l'intérieur de celle-ci pour l'écoulement de recirculation (112).
  60. Brûleur selon l'une des revendications précédentes, caractérisé en ce que le dispositif de réglage (120) est ainsi réalisé que l'entrée de l'écoulement d'air de combustion (102, 106) n'est pas modifiée en direction radiale par rapport au jet de combustible (80) lors du réglage de la quantité d'air.
  61. Brûleur selon l'une des revendications précédentes, caractérisé en ce que le dispositif de réglage (120) comprend un élément de réglage (122) monté en rotation sur le diaphragme (90) et au moyen duquel la section d'une ouverture (110) prévue dans le diaphragme (90) est réglable.
  62. Brûleur selon la revendication 61, caractérisé en ce que l'élément de réglage est un disque de réglage monté en rotation sur le diaphragme (90).
  63. Brûleur selon l'une des revendications précédentes, caractérisé en ce que le dispositif de réglage (120) est réglable au moyen d'un servomoteur pilotable (162).
  64. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la buse (28) est une buse à recirculation.
  65. Brûleur selon la revendication 64, caractérisé en ce qu'une valve de recirculation réglable (34) est associée à la buse à recirculation (28).
  66. Brûleur selon la revendication 65, caractérisé en ce que la valve de recirculation (34) est réglable au moyen d'un servomoteur (160).
  67. Brûleur selon l'une des revendications précédentes, caractérisé en ce que le brûleur comprend une commande (164) au moyen de laquelle la quantité de combustible et la quantité de l'écoulement d'air de combustion sont réglables.
  68. Brûleur selon la revendication 67, caractérisé en ce qu'une sonde (168) qui détecte une combustion complète est associée à la commande (164).
  69. Brûleur selon la revendication 68, caractérisé en ce que la commande (164) régule la quantité d'air et/ou la quantité de combustible en correspondance d'une combustion stoechiométrique.
  70. Brûleur selon l'une des revendications 67 à 69, caractérisé en ce qu'une puissance de combustion est susceptible d'être imposée à la commande (164).
  71. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la quantité de combustible est réglable du fait que le brûleur est réalisé sous forme de jeu de composants comprenant des buses différentes (228) susceptibles d'être mises en place dans le même boítier de brûleur (10).
  72. Brûleur selon l'une des revendications précédentes, caractérisé en ce que la quantité d'air est réglable du fait que le brûleur est réalisé sous forme de jeu de composants comprenant des pièces de réglage (290) pour la quantité de l'écoulement d'air de combustion, susceptibles d'être mises en place de manière interchangeable dans le même boítier de brûleur (10).
  73. Brûleur selon la revendication 72, caractérisé en ce qu'au moyen des pièces de réglage (290) l'entrée locale de l'écoulement d'air de combustion (102, 106) dans la chambre de combustion (92) est également réglable.
  74. Brûleur selon l'une ou l'autre des revendications 72 et 73, caractérisé en ce que dans toutes les pièces de réglage (290) au moins un écoulement partiel (106) de l'écoulement d'air de combustion est réglable.
  75. Brûleur selon l'une des revendications 72 à 74, caractérisé en ce que l'emplacement d'entrée des écoulements partiels (102, 106) est le même pour toutes les pièces de réglage (290).
  76. Brûleur selon l'une des revendications 72 à 75, caractérisé en ce que dans les pièces de réglage (290) l'écoulement partiel proche du jet de combustible (102) est constant, tandis que l'écoulement partiel de stabilisation de recirculation (106) est réglable à des valeurs différentes avec des pièces de réglage différentes (290).
EP95905078A 1993-12-18 1994-12-17 Bruleur a flamme bleue ajustable Expired - Lifetime EP0683884B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4343430 1993-12-18
DE4343430 1993-12-18
DE4430888 1994-08-31
DE4430888A DE4430888A1 (de) 1993-12-18 1994-08-31 Einstellbarer Blaubrenner
PCT/EP1994/004205 WO1995016883A1 (fr) 1993-12-18 1994-12-17 Bruleur a flamme bleue ajustable

Publications (2)

Publication Number Publication Date
EP0683884A1 EP0683884A1 (fr) 1995-11-29
EP0683884B1 true EP0683884B1 (fr) 2001-02-28

Family

ID=25932244

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95905078A Expired - Lifetime EP0683884B1 (fr) 1993-12-18 1994-12-17 Bruleur a flamme bleue ajustable

Country Status (3)

Country Link
EP (1) EP0683884B1 (fr)
AT (1) ATE199452T1 (fr)
WO (1) WO1995016883A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007053658A1 (de) 2007-11-10 2009-05-14 Robert Bosch Gmbh Brenner für flüssige Brennstoffe
DE102014105166B3 (de) * 2014-03-12 2015-08-06 Max Weishaupt Gmbh Drallerzeuger für einen Brenner sowie damit versehene Mischeinrichtung und damit versehener Brenner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123362A1 (fr) * 2008-05-08 2009-11-25 Ecospray Technologies S.r.l. Buse de retour à déversement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232531B2 (ja) * 1984-05-01 1990-07-20 Korona Kk Ekitainenryonenshosochi
AT387838B (de) * 1985-12-23 1989-03-28 Bruecker Helmut Dr Oelbrenner
DE3938786A1 (de) * 1989-11-23 1991-05-29 Elco Oel & Gasbrenner Brenner zur verbrennung von fluessigen oder gasfoermigen brennstoffen
DE4201060C2 (de) * 1992-01-17 1994-07-14 Man B & W Diesel Ag Brenner für vergasten flüssigen Brennstoff
DE4209221A1 (de) * 1992-03-21 1993-09-23 Deutsche Forsch Luft Raumfahrt Stickoxidarmer brenner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007053658A1 (de) 2007-11-10 2009-05-14 Robert Bosch Gmbh Brenner für flüssige Brennstoffe
DE102007053658B4 (de) * 2007-11-10 2010-06-02 Robert Bosch Gmbh Brenner für flüssige Brennstoffe
DE102014105166B3 (de) * 2014-03-12 2015-08-06 Max Weishaupt Gmbh Drallerzeuger für einen Brenner sowie damit versehene Mischeinrichtung und damit versehener Brenner

Also Published As

Publication number Publication date
ATE199452T1 (de) 2001-03-15
EP0683884A1 (fr) 1995-11-29
WO1995016883A1 (fr) 1995-06-22

Similar Documents

Publication Publication Date Title
DE69722093T2 (de) Emissionsarmer Wirbelbrenner
DE2539993C2 (de) Brenner für flüssigen oder gasförmigen Brennstoff
DE69824233T2 (de) Drallbrenner für Sauerstoff und Heizöl
EP1262714A1 (fr) Brûleur avec recirculation des gaz de combustion
EP1802915A2 (fr) Bruleur pour turbine a gaz
DE2345282B2 (de) Verbrennungseinrichtung für Gasturbinentriebwerke
DE2729321C2 (de) Verfahren zur Verbrennung von flüssigem Brennstoff sowie Brennereinrichtung zurDurchführung des Verfahrens
EP1030106B1 (fr) Bruleur à flamme bleue optimisant la combustion
EP0683883B1 (fr) Bruleur a flamme bleue optimisant la combustion
DE2953648C2 (de) Flüssigbrennstoffbrenner
DE2643293A1 (de) Oelbrenner
DE9103964U1 (de) Brenner für flüssige Brennstoffe
DE2712856A1 (de) Oelbrenneranordnung fuer heizungsanlagen
EP2037173B1 (fr) Tête de brûleur et procédé de combustion à un étage de combustible dans une zone de combustion éloignée de la tête de brûleur
DE2428622A1 (de) Brennerkopf, insbesondere fuer gasfoermige brennstoffe
EP0683884B1 (fr) Bruleur a flamme bleue ajustable
EP0430011B1 (fr) Brûleur pour la combustion de combustibles liquides ou gazeux
DE19545036A1 (de) Vormischbrenner
DE2345838A1 (de) Brenner
WO1979000468A1 (fr) Bruleur a mazout pour de faibles puissances de chauffage et procede de mise en action
DD143817A1 (de) Vorrichtung zur direkten brennstoffverbrennung in einer wirbelschicht
EP0699867A2 (fr) Dispositif de combustion pour combustibles gazeux
DE4229525A1 (de) Mischeinrichtung für Ölzerstäubungsbrenner
DE4330082C2 (de) Brenner zur stöchiometrischen Verbrennung von flüssigem oder gasförmigem Brennstoff
DE2828319C2 (de) Brenner für flüssigen Brennstoff mit einer zylindrischen Wirbelkammer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17Q First examination report despatched

Effective date: 19970808

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E.V.

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970808

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010228

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010228

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010228

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010228

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010228

REF Corresponds to:

Ref document number: 199452

Country of ref document: AT

Date of ref document: 20010315

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REF Corresponds to:

Ref document number: 59409667

Country of ref document: DE

Date of ref document: 20010405

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010531

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20010228

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011231

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021112

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20021127

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021204

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030311

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

BERE Be: lapsed

Owner name: DEUTSCHES *ZENTRUM FUR LUFT- UND RAUMFAHRT E.V.

Effective date: 20031231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59409667

Country of ref document: DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59409667

Country of ref document: DE

Representative=s name: ,

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140221

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59409667

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59409667

Country of ref document: DE