EP1026062B1 - Verfahren zur Auswertung von Schienenkontaktsignalen - Google Patents

Verfahren zur Auswertung von Schienenkontaktsignalen Download PDF

Info

Publication number
EP1026062B1
EP1026062B1 EP00440010A EP00440010A EP1026062B1 EP 1026062 B1 EP1026062 B1 EP 1026062B1 EP 00440010 A EP00440010 A EP 00440010A EP 00440010 A EP00440010 A EP 00440010A EP 1026062 B1 EP1026062 B1 EP 1026062B1
Authority
EP
European Patent Office
Prior art keywords
counting
signals
evaluation device
point
counter readings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00440010A
Other languages
English (en)
French (fr)
Other versions
EP1026062A2 (de
EP1026062A3 (de
Inventor
Marc Kipping
Rainer Schüle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel CIT SA
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP1026062A2 publication Critical patent/EP1026062A2/de
Publication of EP1026062A3 publication Critical patent/EP1026062A3/de
Application granted granted Critical
Publication of EP1026062B1 publication Critical patent/EP1026062B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/161Devices for counting axles; Devices for counting vehicles characterised by the counting methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/168Specific transmission details

Definitions

  • the invention relates to a method for evaluating rail contact signals in a counting point, a counting point for carrying out the method, an evaluation device and an axle counting device.
  • Axle counting devices are used in rail-bound traffic, in particular in Connection with track-free signaling devices or at the level crossing protection used.
  • An axle counting device has the task of axle passages To register and count rail contacts.
  • the metering point usually comprises two Rail contacts and an electronic junction box.
  • the from the rail contacts originating amplitude modulated AC signals (frequency approx. 30 kHz) are in the electronic connection box in standardized rectangular signals transformed. These square wave signals are then displayed in real time over the Transfer the transmission path to the evaluation. Only there is the Sequence of the square wave signals a count determined.
  • a method which solves this problem is the subject of claim 1.
  • the invention Not only are count signals sent in real time, but in addition also counter readings which are determined independently from the counting point from the counting signals have been. If due to a fault, a count signal is not received by the evaluation device received, so the evaluation or even a dispatcher with the help of the additionally sent meter reading recognize this fault and if necessary correct. This additional redundancy leads to a clear Stabilization of the operation and is still with little additional construction costs reachable.
  • the counter readings determined by the metering point are then sent to the evaluation device when no count signals are sent.
  • the transmission of count signals has priority over the transmission of counter readings. This ensures that the meter readings are always transmitted in real time to the evaluation. Compared to methods in which only meter readings are sent from the metering point, much shorter system reaction times can therefore be achieved with the invention. This in turn makes it possible to reduce the length of the sections and / or to increase the driving speed on the track. For railroad crossings where metering points trigger the securing of the transition, the distance between point of delivery and transition can be shortened. Especially with slowly approaching rail vehicles thereby reduce the waiting time for vehicles or people who want to cross the transition.
  • the point of delivery sends the counter readings determined by it to the evaluation device in the form of frequency patterns, comprising at least two frequencies.
  • a point of delivery for carrying out the method is subject matter of claims 4 and 5, an evaluation device subject of claim 6 and an axle counter Subject of claim 7.
  • Fig. 1 shows a railway track G, on one rail, two rail contacts SK1 and SK2 are mounted, their execution (electromagnetic, optical, etc.) However, in the context of the invention is not essential.
  • the rail contacts are connected via leads to an electronic junction box EAK, which is preferably in close proximity to the rail contacts.
  • the electronic junction box EAK processes the rail contact signals, which have been obtained and supplied by the rail contacts SK1 and SK2.
  • the rail contacts SK1 and SK2 form together with the electronic junction box EAK the metering point ZP.
  • About a transmission line LINE is the electronic junction box EAK and thus the point of delivery ZP with an evaluation AWE in connection.
  • the evaluation device AWE is located For example, in a signal box or is assigned to a railroad crossing.
  • the electronic determines Terminal box EAK in a step 21 from the supplied rail contact signals Count signals.
  • a count signal is defined in this context as a signal from which a receiver can determine that an axis crossing occurred Has.
  • the count signal may be, for example, a short pulse through which a receiver - here the evaluation device AWE - is displayed that a Axis passage has taken place.
  • This count signal can also be a frequency sequence be, which, as explained in more detail in an exemplary embodiment to be described later is represented, a combination of Absenkzupartyn and the evaluation still needs to be evaluated. While the rail contact signals continuously transmitted to the electronic connection box EAK count signals defined in the above sense only if actually detected Axis passage takes place, so the rail contact signals so a significant change Experienced.
  • step 22 it is checked whether a count signal is present. If so, it will Counting signal sent in a step 23 to the evaluation. In parallel or subsequently, in a step 24 at the point of delivery ZP, an updated meter reading is obtained determined.
  • the procedure here is basically known and also the beginning cited essay by G. Poppe removable. In this variant is now provided this counter reading not immediately, but only in a step 25 to the Send evaluation device when no count signal is sent. The sending Counting signals thus has priority, so that the evaluation always in the fastest possible way via any significant change in a rail contact signal is informed.
  • transmission method analog, digital, electrical, optical etc.
  • transmission method in individual the count signals and the counter readings to the evaluation device AWE is not essential to the invention as long as it is ensured that that both counts and count signals are transmitted, wherein the transmission of counting signals always takes precedence over the sending of counter readings.
  • FIGS. 3 and 4 A second embodiment will be explained with reference to FIGS. 3 and 4, which on the just described.
  • both the count signals and the count results as audio-frequency signals over the Transmit transmission path.
  • Fig. 3 interface receives a signal evaluation device accommodated in the electronic connection box EAK SIGA rail contacts SK1 and SK2 rail contact signals fed.
  • the rail contact signals Amplitude modulated AC signals are, as they are also in the initially cited by G. Poppe.
  • the signal evaluation device SIGA uses these signals in a conventional manner Square-wave signals whose subsidences represent axis crossings.
  • Fig. 3 is the upper right of the time course of these square wave signals in the case of Axis passage over two adjacent rail contacts shown. It will Assuming that the rail contact SK1 is traveled first. Consequently, that is first lowered from the rail contact signal SK1 detected square wave signal. Of the same waveform repeats itself a little later for the other rail contact SK2. From the temporal sequence of the subsidence, the direction can be determined from the vehicle axle over the two rail contacts SK1 and SK2 Has. In addition, it can be seen in Fig. 3 that there are exactly four different Absenkzuholder which can occur with a combination of two rail contacts.
  • the lowered state marked with the framed symbol 0 is thereby excellent, that neither the rail contact SK1 nor the rail contact SK2 is driven. This state is therefore referred to below as zero state.
  • both rail contacts simultaneously register an axis passage.
  • With the lowering states A and B registered only one of the two rail contacts SK1 or SK2 one axle passage.
  • an evaluation device AWE By evaluating the time sequence of the lowering states, an evaluation device AWE is able to determine the number of axles and also the direction of a rail vehicle traveling over the rail contacts. Therefore, a defined frequency f 1 ... F 4 is assigned to each lowering state in a frequency selection device FQAE and the latter is sent via the transmission path to the evaluation device AWE.
  • the frequencies are provided by a frequency generator FQG.
  • the above-mentioned counting signals are therefore in this embodiment nothing more than a group of four electrical signals of different frequency, representing the lowering states and can be closed by the evaluation of the existence of an axis passage.
  • a count detection unit ZSE is also provided, which independently determines the count by counting up or down from the supplied lowering states 0, 1, A and B. This determination corresponds in principle to that which is also carried out in known evaluation systems based on the real-time transmission, and is therefore not explained in more detail.
  • the count determined by the count detection unit ZSE is fed to a decision-maker ENT, which is additionally connected to the signal evaluation unit SIGA. If the determined lowering state is equal to zero state 0, then the decision-maker ENT converts the supplied meter reading into logic levels. Preferably, the counts are converted into binary numbers, so that only two logic levels are required.
  • the counter reading 86 would be converted into the binary number 1010110, and the zeros of this binary number would be assigned the level L and the ones of the level H.
  • This sequence of levels is passed on to the frequency selector FQAE by the decision maker ENT.
  • the levels L and H each have a frequency f 5 and f 6 assigned.
  • the entire transmission thus requires only six different frequencies f 1 ... F 6 , namely four frequencies for the transmission of the lowering states (0, A, B, 1) and two frequencies for the transmission of the counter readings.
  • the transmission of the zero state 0 is not caused by the signal evaluation SIGA, but by the decision ENT.
  • the sending of the zero state can be completely dispensed with; then only 5 different frequencies are required.
  • the illustrated flow is alternative in many respects leaves.
  • the meter reading can only then be performed when decider ENT determines that zero states (i.e., no rail contact traveled).
  • the change between the two different ones Sending modes - sending count signals or counter readings - can be program-controlled be only to be sure that counting signals sent preferred become.
  • step 42 Checks whether the lowered state is equal to the zero state. If the lowered state is different from the zero state, the lowering state is sent in step 43. If there is a zero state, it is checked in a step 44 whether already a sequence of zero states of predetermined length has been determined. If so is true, the count is determined in a step 45 and in a step 46 the evaluation device AWE sent. In this variant it is avoided that Transmission attempts between axis passes are aborted too often because new ones Count signals are to be sent.
  • count signals and counter readings are not sent one after the other but at the same time from the point of delivery to the evaluation device.
  • the current counter reading is continuously transmitted with the aid of the frequency patterns formed from the frequencies f 5 and f 6 .
  • counting signals are additionally transmitted using the frequencies f 1 ... F 4 .
  • a decision maker is not required in this embodiment.
  • the frequencies used are within a range of use customary standard components for the transmitting and receiving devices allowed. This allows frequencies between 300 Hz and 3400 Hz to be easily transferred transfer conventional telephone lines. It should be noted, of course, that every other type of transmission comes into question; for example transmit the real-time count signals as described in the audio-frequency manner while a digital telegram transmission is selected for the counter readings becomes.
  • FIG. she has in addition to an interface, via which a communication link to a point of delivery ZP is producible, a receiving unit EE for receiving in real time transmitted count signals and for receiving counter readings. Besides that is an evaluation unit ZSA1 known per se is provided, which consists of the received Counting signals Counter readings determined. Depending on the transmission method used If necessary, a further evaluation unit ZSA2 necessary that the received Counter readings further processed. For example, in this further evaluation unit ZSA2 a telegram evaluation take place. If, as indicated in Fig. 5, the receiving unit EE outputs logic levels L and H, so they may possibly immediately be further processed by the following comparator VGL, so that the Evaluation unit ZSA2 can be omitted.
  • the comparator VGL which is the immediate received compares with the calculated counter readings, accesses either directly into the higher-level system (eg track-free signaling device or railroad crossing) or passes the result of the comparison to an output unit AE.
  • the output unit AE represents the interface to an operator and shows for example, the meter reading or error messages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Auswertung von Schienenkontaktsignalen in einem Zählpunkt, einen Zählpunkt zur Ausführung des Verfahrens, eine Auswerteeinrichtung sowie eine Achszähleinrichtung.
Achszähleinrichtungen werden im schienengebundenen Verkehr insbesondere im Zusammenhang mit Gleisfreimeldeeinrichtungen oder bei der Bahnübergangssicherung eingesetzt. Eine Achszähleinrichtung hat die Aufgabe, Achsdurchgänge an Schienenkontakten zu registrieren und zu zählen. Üblicherweise besteht eine Achszähleinrichtung aus einem Zählpunkt, einer in einem Stellwerk untergebrachten Auswerteeinrichtung und einer Übertragungsstrecke, die Zählpunkt und Auswerteeinrichtung miteinander verbindet. Der Zählpunkt umfaßt seinerseits meist zwei Schienenkontakte und einen elektronischen Anschlußkasten. Die von den Schienenkontakten stammenden amplitudenmodulierten Wechselstromsignale (Frequenz ca. 30 kHz) werden im elektronischen Anschlußkasten in genormte Rechtecksignale umgewandelt. Diese Rechtecksignale werden anschließend in Echtzeit über die Übertragungsstrecke an die Auswerteeinrichtung übertragen. Erst dort wird aus der Abfolge der Rechtecksignale ein Zählerstand ermittelt.
Da die Zählpunkte häufig weit von der Auswerteeinrichtung entfernt sind, kann es bei äußeren elektromagnetischen Störungen zu Übertragungsfehlern kommen. Dadurch werden an sich registrierte Achsdurchgänge möglicherweise nicht von der Auswerteeinrichtung erkannt und gezählt. Die Folge davon sind Betriebsbeeinträchtigungen, da beispielsweise Streckenabschnitte fälschlich als besetzt gelten.
Aus der U.S.-Patentschrift 5,629,509 ist ein Verfahren gemäß Oberbegriff des Anspruches 1 bekannt. Aus einem Aufsatz von G. Poppe mit dem Titel "Einsatzbereich des neuen Mikrorechner-Zählpunktes Zp30C" in der Eisenbahntechnischen Rundschau (ETR). 41 (1992), H. 7-8, Seiten 519 - 522, ist eine Achszähleinrichtung bekannt, bei der diese Probleme überwunden werden, indem im Zählpunkt eine aufwendigere Signalaufbereitung erfolgt. Der Zählpunkt weist hierzu einen gegebenenfalls redundant ausgeführten Mikrorechner auf, der bereits vor Ort Zählerstände ermittelt. Die Übertragung des aktuellen Zählerstands erfolgt nur auf Aufforderung durch die Innenanlage des Stellwerks, und zwar in Form von codegesicherten digitalen Telegrammen. Eine Übermittlung von analogen Rechtecksignalen findet nicht statt. Durch die digitale Telegrammübertragung kommt es wesentlich seltener zu Übertragungsfehlern, wodurch sich die Zahl der Betriebsbeeinträchtigungen verringert. Sollte tatsächlich ein Telegramm auf der Übertragungsstrecke verloren gehen oder nicht wiederherstellbar sein, so fordert die Innenanlage erneut ein Telegramm beim Zählpunkt an.
Da die Zählerstandsermittlung unmittelbare Sicherheitsrelevanz hat, werden hohe Anforderungen an die im Zählpunkt verwendete Hard- und Software gestellt. Die Zählpunkte sind dadurch relativ aufwendig und teuer. Als weiterer Nachteil ergibt sich, daß Zählsignale nicht in Echtzeit beim Stellwerk eintreffen. Dadurch wird insbesondere bei Hochgeschwindigkeitsstrecken, auf denen Züge oft mehr als 70 Meter pro Sekunde zurücklegen, die Ortsbestimmung der Züge unscharf, was sich nachteilig auf die Streckenkapazität auswirkt.
Es ist daher Aufgabe der Erfindung, ein Verfahren zur Verarbeitung von Schienenkontaktsignalen in einem Zählpunkt anzugeben, welches eine schnelle und zuverlässige Übertragung an eine Auswerteeinrichtung ermöglicht. Es ist ferner Aufgabe der Erfindung, einen Zählpunkt zur Ausführung des Verfahrens und eine mit dem Zählpunkt zusammenwirkende Auswerteeinrichtung anzugeben.
Ein Verfahren, welches diese Aufgabe löst, ist Gegenstand des Anspruchs 1. Erfindungsgemäß werden nicht nur Zählsignale in Echtzeit gesendet, sondern zusätzlich auch Zählerstände, die vom Zählpunkt aus den Zählsignalen selbständig ermittelt worden sind. Wird aufgrund einer Störung ein Zählsignal nicht von der Auswerteeinrichtung empfangen, so kann die Auswerteeinrichtung oder auch ein Fahrdienstleiter mit Hilfe des zusätzlich gesendeten Zählerstands diese Störung erkennen und gegebenenfalls korrigieren. Diese zusätzliche Redundanz führt zu einer deutlichen Stabilisierung des Betriebs und ist dennoch mit nur geringem baulichen Zusatzaufwand erreichbar.
Bei einem vorteilhaften Ausführungsbeispiel der Erfindung nach Anspruch 2 werden die vom Zählpunkt ermittelten Zählerstände dann an die Auswerteeinrichtung gesendet, wenn keine Zählsignale gesendet werden.Dadurch hat das Senden von Zählsignalen Vorrang vor dem Senden von Zählerständen. Dies gewährleistet, daß die Zählerstände stets in Echtzeit an die Auswerteeinrichtung übertragen werden. Im Vergleich zu Verfahren, bei denen ausschließlich Zählerstände vom Zählpunkt gesendet werden, lassen sich bei der Erfindung daher wesentlich kürzere Systemreaktionszeiten erzielen. Dies erlaubt es wiederum, die Länge der Streckenabschnitte zu reduzieren und/oder die Fahrgeschwindigkeit auf der Strecke zu erhöhen. Bei Bahnübergängen, bei denen Zählpunkte die Sicherung des Übergangs auslösen, kann die Entfernung zwischen Zählpunkt und Übergang verkürzt werden. Vor allem bei sich langsam nähernden Schienenfahrzeugen verringern sich dadurch die Wartezeiten für Fahrzeuge oder Personen, die den Übergang überqueren wollen.
Bei einer weiteren Variante des Verfahren nach Anspruch 3 sendet der Zählpunkt die von ihm ermittelten Zählerstände an die Auswerteeinrichtung in Form von Frequenzmustern, die wenigstens zwei Frequenzen umfassenden. Dadurch wird eine einfache, zuverlässige und mit marktüblichen Standardbauteilen realisierbare serielle Datenübertragung möglich.
Ein Zählpunkt zur Ausführung des Verfahrens ist Gegenstand der Ansprüche 4 und 5, eine Auswerteeinrichtung Gegenstand des Anspruch 6 und eine Achszähleinrichtung Gegenstand des Anspruch 7.
Die Erfindung wird nachfolgend anhand der Ausführungsbeispiele und der Zeichnungen eingehend erläutert. Es zeigen:
  • Fig. 1: Schematische Darstellung einer Achszähleinrichtung;
  • Fig. 2: Ablaufdiagramm für das erfindungsgemäße Verfahren nach Anspruch 1;
  • Fig. 3: Schematische Darstellung für ein vorteilhaftes Ausführungsbeispiel eines erfindungsgemäßen Zählpunkts ZP;
  • Fig. 4: Ablaufdiagramm für eine Variante des erfindungsgemäßen Verfahrens;
  • Fig. 5: Schematische Darstellung einer erfindungsgemäßen Auswerteeinrichtung.
  • Fig. 1 zeigt ein Eisenbahngleis G, an dessen einer Schiene zwei Schienenkontakte SK1 und SK2 angebracht sind, deren Ausführung (elektromagnetisch, optisch etc.) im Zusammenhang mit der Erfindung jedoch nicht wesentlich ist. Die Schienenkontakte sind über Zuleitungen mit einem elektronischen Anschlußkasten EAK verbunden, der sich vorzugsweise in unmittelbarer Nähe zu den Schienenkontakten befindet. Der elektronische Anschlußkasten EAK verarbeitet die Schienenkontaktsignale, die von den Schienenkontakten SK1 und SK2 gewonnen und zugeführt worden sind. Die Schienenkontakte SK1 und SK2 bilden zusammen mit dem elektronischen Anschlußkasten EAK den Zählpunkt ZP. Über eine Übertragungsstrecke LINE steht der elektronische Anschlußkasten EAK und damit der Zählpunkt ZP mit einer Auswerteeinrichtung AWE in Verbindung. Die Auswerteeinrichtung AWE befindet sich beispielsweise in einem Stellwerk oder ist einem Bahnübergang zugeordnet.
    Nachfolgend wird eine erste Variante des erfindungsgemäßen Verfahrens anhand des in Fig. 2 dargestellten Ablaufdiagramms näher erläutert. Zunächst ermittelt der elektronische Anschlußkasten EAK in einem Schritt 21 aus den zugeführten Schienenkontaktsignalen Zählsignale. Ein Zählsignal ist in diesem Zusammenhang definiert als ein Signal, aus dem ein Empfänger ermitteln kann, daß ein Achsdurchgang stattgefunden hat. Das Zählsignal kann beispielsweise ein kurzer Impuls sein, durch den einem Empfänger - hier also der Auswerteeinrichtung AWE - angezeigt wird, daß ein Achsdurchgang stattgefunden hat. Dieses Zählsignal kann auch eine Frequenzfolge sein, die, wie in einem später zu beschreibenden Ausführungsbeispiel näher erläutert wird, eine Kombination von Absenkzuständen repräsentiert und von der Auswerteeinrichtung noch weiter ausgewertet werden muß. Während die Schienenkontaktsignale laufend an den elektronischen Anschlußkasten EAK übertragen werden, werden in obigem Sinne definierte Zählsignale nur dann ermittelt, wenn tatsächlich ein Achsdurchgang stattfindet, die Schienenkontaktsignale also eine signifikante Veränderung erfahren.
    In Schritt 22 wird geprüft, ob ein Zählsignal vorliegt. Falls dies zutrifft, so wird das Zählsignal in einem Schritt 23 an die Auswerteeinrichtung gesendet. Parallel dazu oder anschließend wird in einem Schritt 24 im Zählpunkt ZP ein aktualisierter Zählerstand ermittelt. Das Vorgehen hierbei ist grundsätzlich bekannt und auch dem eingangs zitiertem Aufsatz von G. Poppe entnehmbar. Bei dieser Variante ist nun vorgesehen, diesen Zählerstand nicht sofort, sondern erst dann in einem Schritt 25 an die Auswerteeinrichtung zu senden, wenn kein Zählsignal gesendet wird. Das Senden von Zählsignalen hat somit grundsätzlich Vorrang, so daß die Auswerteeinrichtung stets auf schnellstmöglichem Wege über jede signifikante Änderung eines Schienenkontaktsignals informiert wird.
    Nach welchen Übertragungsverfahren (analog, digital, elektrisch, optisch etc.) im einzelnen die Zählsignale und die Zählerstände an die Auswerteeinrichtung AWE übermittelt werden, ist für die Erfindung nicht wesentlich, solange gewährleistet ist, daß sowohl Zählerstände als auch Zählsignale übertragen werden, wobei das Senden von Zählsignalen stets Vorrang vor dem Senden von Zählerständen hat.
    Anhand der Fig. 3 und 4 wird ein zweites Ausführungsbeispiel erläutert, das auf dem soeben beschriebenen aufbaut. Bei diesem zweiten Ausführungsbeispiel werden sowohl die Zählsignale als auch die Zählergebnisse als tonfrequente Signale über die Übertragungsstrecke übertragen. Über eine in Fig. 3 nicht näher dargestellte Schnittstelle erhält eine im elektronischen Anschlußkasten EAK untergebrachte Signalauswerteeinrichtung SIGA von den Schienenkontakten SK1 und SK2 Schienenkontaktsignale zugeführt. Im dargestellten Beispiel wird angenommen, daß die Schienenkontaktsignale amplitudenmodulierte Wechselstromsignale sind, wie sie auch in dem eingangs zitierten Aufsatz von G. Poppe beschrieben werden. Die Signalauswerteeinrichtung SIGA ermittelt aus diesen Signalen in an sich herkömmlicher Weise Rechtecksignale, deren Absenkungen Achsdurchgänge repräsentieren.
    In Fig. 3 ist oben rechts der zeitliche Verlauf dieser Rechtecksignale für den Fall eines Achsdurchgangs über zwei benachbarte Schienenkontakte dargestellt. Es wird angenommen, daß der Schienenkontakt SK1 zuerst befahren wird. Folglich ist das aus dem Schienenkontaktsignal SK1 ermittelte Rechtecksignal zuerst abgesenkt. Der gleiche Signalverlauf wiederholt sich wenig später für den anderen Schienenkontakt SK2. Aus der zeitlichen Abfolge der Absenkungen läßt sich die Richtung bestimmen, von der die Fahrzeugachse die beiden Schienenkontakte SK1 und SK2 überfahren hat. Außerdem ist in Fig. 3 erkennbar, daß es genau vier unterschiedliche Absenkzustände gibt, die bei einer Kombination zweier Schienenkontakte auftreten können. Der mit dem eingerahmten Symbol 0 gekennzeichnete Absenkzustand" ist dadurch ausgezeichnet, daß weder der Schienenkontakt SK1 noch der Schienenkontakt SK2 befahren ist. Dieser Zustand wird daher im folgenden als Nullzustand bezeichnet. Beim Absenkzustand 1 registrieren beide Schienenkontakte gleichzeitig einen Achsdurchgang. Bei den Absenkzuständen A und B registriert nur einer der beiden Schienenkontakte SK1 bzw. SK2 einen Achsdurchgang.
    Durch Auswertung der zeitlichen Abfolge der Absenkzustände ist eine Auswerteeinrichtung AWE in der Lage, die Achszahl und auch die Richtung eines über die Schienenkontakte hinwegfahrenden Schienenfahrzeugs zu ermitteln. Daher wird in einer Frequenzauswahleinrichtung FQAE jedem Absenkzustand eine definierte Frequenz f1...f4 zugeordnet und diese über die Übertragungsstrecke an die Auswerteeinrichtung AWE gesendet. Die Frequenzen werden von einem Frequenzgenerator FQG zur Verfügung gestellt. Die oben erwähnten Zählsignale sind folglich in diesem Ausführungsbeispiel nichts anderes als eine Gruppe von vier elektrischen Signalen unterschiedlicher Frequenz, die Absenkzustände repräsentieren und durch deren Auswertung auf das Vorliegen eines Achsdurchgangs geschlossen werden kann.
    Erfindungsgemäß ist außerdem eine Zählstandsermittlungseinheit ZSE vorgesehen, die aus den zugeführten Absenkzuständen 0, 1, A und B selbständig den Zählerstand durch auf- oder herunterzählen ermittelt. Diese Ermittlung entspricht grundsätzlich derjenigen, die auch in bekannten, auf der Echtzeitübertragung basierenden Auswerteeinrichtungen durchgeführt wird, und wird deswegen nicht näher erläutert. Der von der Zählstandsermittlungseinheit ZSE ermittelte Zählerstand wird einem Entscheider ENT zugeführt, der zusätzlich mit der Signalauswerteeinrichtung SIGA verbunden ist. Ist der ermittelte Absenkzustand gleich dem Nullzustand 0, so setzt der Entscheider ENT den zugeführten Zählerstand in logische Pegel um. Vorzugsweise werden die Zählerstände in Binärzahlen umgewandelt, so daß nur zwei logische Pegel erforderlich sind. So würde beispielsweise der Zählerstand 86 in die Binärzahl 1010110 umgerechnet und den Nullen dieser Binärzahl der Pegel L und den Einsen der Pegel H zugeordnet. Diese Abfolge von Pegeln gibt der Entscheider ENT an die Frequenzauswahleinrichtung FQAE weiter. Dort wird den Pegeln L und H jeweils eine Frequenz f5 bzw. f6 zugeordnet. Die gesamte Übertragung benötigt somit lediglich sechs verschiedene Frequenzen f1...f6, nämlich vier Frequenzen für die Übertragung der Absenkzustände (0, A, B, 1) und zwei Frequenzen für die Übertragung der Zählerstände. Bei dem dargestellten Ausführungsbeispiel wird das Senden des Nullzustands 0 nicht von der Signalauswerteeinrichtung SIGA, sondern vom Entscheider ENT veranlaßt. Gegebenenfalls kann auf das Senden des Nullzustands auch ganz verzichtet werden; es sind dann nur 5 verschiedene Frequenzen erforderlich.
    Es versteht sich, daß der dargestellte Ablauf sich in vieler Hinsicht alternativ gestalten läßt. So kann beispielsweise die Zählerstandsermittlung erst dann durchgeführt werden, wenn der Entscheider ENT feststellt, daß Nullzustände (d. h. kein Schienenkontakt befahren) vorliegen. Der Wechsel zwischen den beiden unterschiedlichen Sendemodi - Senden von Zählsignalen oder von Zählerständen - kann programmgesteuert sein, wobei lediglich sichergestellt sein muß, daß Zählsignale bevorzugt gesendet werden.
    Ebenso ist es möglich vorzusehen, daß der Entscheider ENT erst dann das Senden von Zählerständen freigibt, wenn über eine vorab festgelegte Zeitspanne hinweg Nullzustände vorliegen. Werden die Absenkzustände zyklisch ermittelt, so kann anstelle der Zeit auch die Zahl der hintereinander ermittelten Absenkzustände als Maßstab genommen werden. Dies ist in dem in Fig. 4 gezeigten Ablaufdiagramm verdeutlicht. Nach dem Ermitteln der Absenkzustände in Schritt 41 wird in Schritt 42 überprüft, ob der Absenkzustand gleich dem Nullzustand ist. Falls der Absenkzustand vom Nullzustand verschieden ist, wird der Absenkzustand in Schritt 43 gesendet. Falls ein Nullzustand vorliegt, so wird in einem Schritt 44 überprüft, ob bereits eine Folge von Nullzuständen vorgegebenen Länge ermittelt worden ist. Falls dies zutrifft, wird in einem Schritt 45 der Zählerstand ermittelt und in einem Schritt 46 an die Auswerteeinrichtung AWE gesendet. Bei dieser Variante wird vermieden, daß Sendeversuche zwischen Achsdurchgängen zu häufig abgebrochen werden, weil neue Zählsignale zu senden sind.
    Bei einem dritten Ausführungsbeispiel werden Zählsignale und Zählerstände nicht nacheinander, sondern gleichzeitig vom Zählpunkt an die Auswerteeinrichtung gesendet. Dazu ist lediglich sicherzustellen, daß nicht nur eine, sondern mehrere der oben beschriebenen Freqenzen f1...f6 gleichzeitig gesendet werden können. So läßt sich etwa festlegen, daß fortwährend der aktuelle Zählerstand mit Hilfe der aus den Frequenzen f5 und f6 gebildeten Frequenzmustern gesendet wird. Sobald Zählsignale vorliegen, werden diese zusätzlich unter Verwendung der Freqenzen f1...f4 gesendet. Ein Entscheider ist bei diesem Ausführungsbeispiel nicht erforderlich.
    Vorzugsweise liegen die verwendeten Frequenzen in einem Bereich, der die Verwendung marktüblicher Standardbauteile für die Sende- und Empfangseinrichtungen erlaubt. So lassen sich Frequenzen zwischen 300 Hz und 3400 Hz problemlos über herkömmliche Telefonleitungen übertragen. Es sei aber darauf hingewiesen, daß natürlich auch jede andere Übertragungsart in Frage kommt; so können beispielsweise die in Echtzeit zu übertragenden Zählsignale wie beschrieben tonfrequent übertragen werden, während für die Zählerstände eine digitale Telegrammübertragung gewählt wird.
    Eine erfindungsgemäße Auswerteeinrichtung AWE ist in Fig. 5 dargestellt. Sie hat neben einer Schnittstelle, über die eine Kommunikationsverbindung zu einem Zählpunkt ZP herstellbar ist, eine Empfangseinheit EE zum Empfangen von in Echtzeit übermittelten Zählsignalen sowie zum Empfangen von Zählerständen. Außerdem ist eine an sich bekannte Auswerteeinheit ZSA1 vorgesehen, die aus den empfangenen Zählsignalen Zählerstände ermittelt. Je nach eingesetztem Übertragungsverfahren ist gegebenenfalls eine weitere Auswerteeinheit ZSA2 notwendig, die die empfangenen Zählerstände weiterverarbeitet. In dieser weiteren Auswerteeinheit ZSA2 könnte beispielsweise eine Telegrammauswertung stattfinden. Wenn, wie in Fig. 5 angedeutet, die Empfangseinheit EE logische Pegel L und H ausgibt, so können diese ggf. unmittelbar vom nachfolgenden Vergleicher VGL weiterverarbeitet werden, so daß die Auswerteeinheit ZSA2 entfallen kann. Der Vergleicher VGL, der die unmittelbar empfangenen mit den ermittelten Zählerständen vergleicht, greift entweder unmittelbar in die übergeordnete Anlage (z. B. Gleisfreimeldeeinrichtung oder Bahnübergang) ein oder gibt das Ergebnis des Vergleichs an eine Ausgabeeinheit AE weiter. Die Ausgabeeinheit AE stellt die Schnittstelle zu einer Bedienperson dar und zeigt beispielsweise den Zählerstand oder Fehlermeldungen an.

    Claims (7)

    1. Verfahren zur Verarbeitung von Schienenkontaktsignalen in einem Zählpunkt (ZP) mit folgenden Schritten:
      a) aus von wenigstens einem Schienenkontakt (SK1, SK2) gewonnenen Schienenkontaktsignalen werden Zählsignale ermittelt (21; 41),
      b) die Zählsignale werden in Echtzeit an eine Auswerteeinrichtung (AWE) gesendet (23; 43), für die daraus Zählerstände ermittelbar sind,
      gekennzeichnet durch folgenden weiteren Schritt:
      c) im Zählpunkt werden aus den Zählsignalen Zählerstände ermittelt (24; 45) und zusätzlich zu den Zählsignalen an die Auswerteeinrichtung (25; 46) gesendet.
    2. Verfahren nach Anspruch 1, bei dem die vom Zählpunkt ermittelten Zählerstände dann an die Auswerteeinrichtung gesendet werden, wenn keine Zählsignale gesendet werden.
    3. Verfahren nach einem der Ansprüche 1 oder 2, bei dem der Zählpunkt die Zählerstände an die Auswerteeinrichtung in Form von Frequenzmustern sendet, die wenigstens zwei Frequenzen (f5, f6) umfassen.
    4. Zählpunkt (ZP) für eine Achszähleinrichtung mit
      a) einer Signalauswerteeinrichtung (SIGA) zum Ermitteln von Zählsignalen aus von wenigstens einem Schienenkontakt (SK1, SK2) gewonnenen Schienenkontaktsignalen,
      dadurch gekennzeichnet, daß
      b) der Zählpunkt eine Zählstandsermittlungeinheit (ZSE) umfaßt, die aus den Zählsignalen Zählerstände ermittelt, und daß
      c) eine Sendeeinheit (FQAE, FQG) vorgesehen ist zum Senden der Zählsignale in Echtzeit an eine Auswerteeinrichtung (AWE) und zum Senden der ermittelten Zählerstände.
    5. Zählpunkt nach Anspruch 4, bei dem ein Entscheider (ENT) vorgesehen ist, der sicherstellt, daß die vom Zählpunkt ermittelten Zählerstände dann an die Auswerteeinrichtung gesendet werden, wenn keine Zählsignale gesendet werden.
    6. Auswerteeinrichtung (AWE) für eine Achszähleinrichtung mit einer Schnittstelle, über die eine Kommunikationsverbindung zu einem Zählpunkt (ZP) nach Anspruch 4 oder herstellbar ist, gekennzeichnet durch:
      a) eine Empfangseinheit (EE) zum Empfangen von in Echtzeit übermittelten Zählsignalen und von Zählerständen,
      b) eine Auswerteeinheit (ZSA1) zum Ermitteln von Zählerständen aus den empfangenen Zählsignalen, und
      c) einen Vergleicher (VGL), der die empfangenen und die ermittelten Zählerstände miteinander vergleicht.
    7. Achszähleinrichtung, umfassend einen Zählpunkt nach Anspruch 4 und eine Auswerteeinrichtung nach Anspruch 6.
    EP00440010A 1999-01-16 2000-01-14 Verfahren zur Auswertung von Schienenkontaktsignalen Expired - Lifetime EP1026062B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19901568A DE19901568A1 (de) 1999-01-16 1999-01-16 Verfahren zur Auswertung von Schienenkontaktsignalen
    DE19901568 1999-01-16

    Publications (3)

    Publication Number Publication Date
    EP1026062A2 EP1026062A2 (de) 2000-08-09
    EP1026062A3 EP1026062A3 (de) 2002-05-15
    EP1026062B1 true EP1026062B1 (de) 2005-05-25

    Family

    ID=7894485

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00440010A Expired - Lifetime EP1026062B1 (de) 1999-01-16 2000-01-14 Verfahren zur Auswertung von Schienenkontaktsignalen

    Country Status (4)

    Country Link
    EP (1) EP1026062B1 (de)
    AT (1) ATE296222T1 (de)
    DE (2) DE19901568A1 (de)
    ES (1) ES2240037T3 (de)

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ES2319062B1 (es) * 2007-09-19 2010-02-03 Lineas Y Cables, S.A. Pedal ferroviario.

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2054748C3 (de) * 1970-11-06 1979-05-10 Standard Elektrik Lorenz Ag, 7000 Stuttgart Einrichtung zum Auswerten von fahrtrichtungsabhängigen Achszählimpulsen in Eisenbahnsicherungsanlagen
    DE3223327A1 (de) * 1982-06-19 1983-12-22 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Sichere gleisfreimeldeeinrichtung
    DE3431171C2 (de) * 1984-08-24 1986-11-27 Standard Elektrik Lorenz Ag, 7000 Stuttgart Gleisfreimeldeeinrichtung mit Achszählung
    DE4405039A1 (de) * 1994-02-17 1995-08-24 Sel Alcatel Ag Achszähler mit änderbarer Schwellwerteinstellung

    Also Published As

    Publication number Publication date
    EP1026062A2 (de) 2000-08-09
    ATE296222T1 (de) 2005-06-15
    EP1026062A3 (de) 2002-05-15
    ES2240037T3 (es) 2005-10-16
    DE19901568A1 (de) 2000-07-27
    DE50010367D1 (de) 2005-06-30

    Similar Documents

    Publication Publication Date Title
    DE19509696C2 (de) Verfahren zur gegenseitigen Kontaktaufnahme zwischen Zügen und Einrichtung zur Durchführung des Verfahrens
    EP2403745B1 (de) Vorrichtungen zur detektion des belegt- oder freizustandes eines gleisabschnitts sowie verfahren zum betreiben solcher vorrichtungen
    WO2019243341A1 (de) Flexibles zugsicherungssystem
    DE2628905A1 (de) Zugsicherungs- und -steuerungsanlage
    EP2088051B1 (de) Verfahren und Vorrichtung zur sicheren Einstellung von einer Fahrstrasse für ein Schienenfahrzeug
    EP0739802A2 (de) Verfahren zur Erhöhung der Verfügbarkeit von Mehrabschnitts-Achszähleinrichtungen
    DE69028638T2 (de) Bahnschaltungssystem
    EP1026062B1 (de) Verfahren zur Auswertung von Schienenkontaktsignalen
    DE4423787C1 (de) Verfahren und Einrichtung für zuggesteuerten Richtungswechsel bei eingleisigem Bahnbetrieb
    DE3106629A1 (de) Einrichtung zur punktfoermigen zugbeeinflussung
    EP2289757B1 (de) Verfahren zum Kalibrieren eines Radsensors einer Gleisfreimeldeanlage, Radsensor sowie Gleisfreimeldeanlage
    EP3960580A1 (de) Eisenbahnleitsystem mit einem schnittstellen-adapter und methode zur konfiguration
    EP0979765A2 (de) Verfahren zur Ubermittlung eines von einem Zählpunkt ermittelten Zählerstands an eine zentrale Auswerteeinrichtung
    DE102005037801A1 (de) Bahnsystem und Verfahren zum Weiterleiten von Daten für ein Bahnsystem
    EP1396413B1 (de) Verfahren zur Hilfsbedienung von Fahrwegelementen
    EP1561663A1 (de) Verfahren und Vorrichtung zur Zugvollständigkeitskontrolle eines schienengebundenen Zuges
    DE102018200466A1 (de) Verfahren sowie Vorrichtung zur Überwachung eines Gefahrenraumes eines Bahnübergangs
    DE1455382C3 (de) Schaltungsanordnung zum automatischen überwachen des Verkehrs von Unterpflaster- und Straßenbahnen
    DE19627343A1 (de) Einrichtung zur Eigenortung eines spurgeführten Fahrzeugs
    DE2327689C2 (de) Besetztmeldeeinrichtung für Gleisabschnitte in Eisenbahnanlagen
    DE3223327A1 (de) Sichere gleisfreimeldeeinrichtung
    DE3436845C2 (de)
    DE3712833A1 (de) Sicherheitssteuereinrichtung
    DE1817668C3 (de) Verfahren zur Überwachung der laufenden zyklischen Übertragung von Telegrammen zwischen adressierten Objekten und einer Zentrale
    DE1605414C3 (de) Einrichtung zum Warnen von Rotten

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20020409

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050525

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050525

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050525

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050525

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50010367

    Country of ref document: DE

    Date of ref document: 20050630

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050825

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050825

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050825

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2240037

    Country of ref document: ES

    Kind code of ref document: T3

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051027

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060228

    BERE Be: lapsed

    Owner name: ALCATEL

    Effective date: 20060131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050525

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080114

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20141224

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20150113

    Year of fee payment: 16

    Ref country code: DE

    Payment date: 20150106

    Year of fee payment: 16

    Ref country code: CH

    Payment date: 20150114

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20150108

    Year of fee payment: 16

    Ref country code: AT

    Payment date: 20141222

    Year of fee payment: 16

    Ref country code: GB

    Payment date: 20150114

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50010367

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 296222

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20160114

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160114

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20160930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160131

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160802

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160114

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160201

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160114

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160114

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20170228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160115