EP1021815B1 - Mikromechanisches elektrostatisches relais und verfahren zu dessen herstellung - Google Patents
Mikromechanisches elektrostatisches relais und verfahren zu dessen herstellung Download PDFInfo
- Publication number
- EP1021815B1 EP1021815B1 EP98947333A EP98947333A EP1021815B1 EP 1021815 B1 EP1021815 B1 EP 1021815B1 EP 98947333 A EP98947333 A EP 98947333A EP 98947333 A EP98947333 A EP 98947333A EP 1021815 B1 EP1021815 B1 EP 1021815B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- spring tongue
- fixed contact
- spring
- base substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 210000002105 tongue Anatomy 0.000 claims description 114
- 239000000758 substrate Substances 0.000 claims description 60
- 229910052710 silicon Inorganic materials 0.000 claims description 31
- 239000010703 silicon Substances 0.000 claims description 31
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 238000005530 etching Methods 0.000 claims description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 229920005591 polysilicon Polymers 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 238000001953 recrystallisation Methods 0.000 claims description 3
- 229910000863 Ferronickel Inorganic materials 0.000 claims 2
- 230000000284 resting effect Effects 0.000 claims 2
- 150000003376 silicon Chemical class 0.000 claims 1
- 239000010410 layer Substances 0.000 description 94
- 238000009413 insulation Methods 0.000 description 13
- 235000012431 wafers Nutrition 0.000 description 12
- 239000002346 layers by function Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000002161 passivation Methods 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011265 semifinished product Substances 0.000 description 3
- NHWNVPNZGGXQQV-UHFFFAOYSA-J [Si+4].[O-]N=O.[O-]N=O.[O-]N=O.[O-]N=O Chemical compound [Si+4].[O-]N=O.[O-]N=O.[O-]N=O.[O-]N=O NHWNVPNZGGXQQV-UHFFFAOYSA-J 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H59/00—Electrostatic relays; Electro-adhesion relays
- H01H59/0009—Electrostatic relays; Electro-adhesion relays making use of micromechanics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H59/00—Electrostatic relays; Electro-adhesion relays
- H01H59/0009—Electrostatic relays; Electro-adhesion relays making use of micromechanics
- H01H2059/0081—Electrostatic relays; Electro-adhesion relays making use of micromechanics with a tapered air-gap between fixed and movable electrodes
Definitions
- Such a micromechanical relay and a corresponding one Manufacturing processes are basically from the DE 42 05 029 C1 known. It is essential that the out an elastic spring tongue exposed to a substrate has a curvature has such that the armature electrode with the opposite Base electrode forms a wedge-shaped air gap, that when a voltage is applied between the two electrodes a quick tightening movement based on the so-called traveling wedge principle causes. Refinements to this principle are, for example shown in DE 44 37 259 C1 and DE 44 37 261 C1.
- the aim of the present invention is to provide a micromechanical To further develop relays of the type mentioned at the outset in such a way that even with the electrostatic drive larger contact forces can be generated, but with the functional elements of the relay on the base substrate by machining can be created from one side.
- this goal is achieved in that the at least one fixed contact on a fixed contact spring tongue is arranged facing the anchor spring tongue like these are tied on one side to a carrier layer and at rest is elastically curved away from the base substrate, and that the at least one movable contact on the free End of the anchor spring tongue projecting over this and the Fixed contact is overlapping.
- the invention thus differs from the previous ones Proposals for micromechanical relays and switches also the Fixed contact no longer rigidly arranged on the base substrate, it sits on one like the moving contact curved spring tongue, which creates an additional switching path can be achieved.
- the movable contact sits on the armature tongue and overlaps the fixed contact. Due to the pre-curvature of the two spring tongues facing each other can be so when switching from the beginning of the contact to End position of the armature sufficient overtravel for generation achieve the desired contact force.
- the production is particularly favorable when both Anchor spring tongue as well as the fixed contact spring tongue from the same carrier layer are formed and thus in one and same etching process can be produced.
- the one with her Free ends opposite spring tongues can mesh in an advantageous manner, so that the projecting movable contact not only at its rear End, but at least also on one side the surface of the anchor spring tongue can be connected.
- the special design depends on whether a normally open contact or a bridge contact should be created.
- Silicon is preferably used as the base substrate, the carrier layer for the spring tongues as a silicon layer with the interposition of the required functional and insulating layers deposited or bonded and is etched free in the corresponding work steps.
- the base substrate but can also consist of glass or ceramic; these materials are much cheaper than Silicon. Kermaik, however, requires an additional surface treatment, around that required for the relay structures to get a smooth surface.
- the spring tongue can be made of deposited polysilicon, for example or recrystallized polysilicon or as an exposed doped silicon layer of a bonded on Silicon wafers are present. This layer can be caused by epitaxy or diffusion can be produced in a silicon wafer.
- a deposited one can also be used Layer of a spring metal, such as nickel, a nickel-iron alloy or of nickel with other additives become. Other metals can also be considered; it is important that the material has good spring properties and a shows little fatigue.
- a spring metal such as nickel, a nickel-iron alloy or of nickel with other additives.
- Other metals can also be considered; it is important that the material has good spring properties and a shows little fatigue.
- FIGS. 1 to 3 show the functional layer structure of a micromechanical relay based on silicon according to the invention.
- the base substrate 1 consists of silicon.
- This base substrate also serves as a base electrode; if necessary, however, a corresponding electrode layer can also be formed by suitable doping.
- a first sacrificial layer 3, which is later etched out, lies on this in turn. It consists, for example, of silicon dioxide and has a thickness d 1 of preferably less than 0.5 ⁇ m.
- a carrier layer 4 lies above the sacrificial layer 3 to form spring tongues.
- This layer is electrically conductive and consists for example of polysilicon with a thickness of 5 to 10 microns.
- An armature spring tongue 41 and a fixed contact spring tongue 42 are later etched free from this carrier layer 4.
- a fixed contact 7 is deposited on the fixed contact spring tongue 42 by appropriate coating methods, while a movable contact 8 is formed on the free end of the armature spring tongue 41 such that it overlaps the fixed contact 7 with the interposition of the second sacrificial layer 5.
- the height of the switch contacts can be selected as required, typically between 2 and 10 ⁇ m. Depending on the requirements, the thicknesses or the material compositions of the switch contacts can also be asymmetrical. As shown in FIG. 4, the two spring tongues 41 and 42 engage in a tooth-like manner, so that a central projection 44 of the spring tongue 42 is surrounded by two lateral projections 43 of the armature spring tongue 41 in the form of pliers.
- the movable contact 8 rests with three side sections on the armature spring tongue. In this embodiment, it forms a simple normally open contact with the fixed contact 7. Furthermore, it can be seen that the movable contact 8 has an S-shaped or Z-shaped cross section in order to ensure the overlap with the fixed contact 7.
- the intermediate sacrificial layer 2 typically has a thickness d 2 of less than 0.5 ⁇ m.
- the remaining layers required formed for example a supply line 71 for fixed contact 7, a feed line 81 to the movable contact 8 and another insulating layer 9 for passivation of the top the anchor spring tongue.
- FIG. 2 shows the finished arrangement after the spring tongues have been exposed by etching out the two sacrificial layers 3 and 5, a free space 31 being created below the armature spring tongue 41.
- the two spring tongues 41 and 42 curve upwards due to the tension layer 6, so that the arrangement according to FIG. 2 is formed with the contact open.
- the anchor spring tongue bends due to the preload to a clear opening x 1 at the spring end.
- This clear contact distance x K can be freely adjusted by the geometry of the armature spring tongue and the fixed contact spring tongue as well as the tension in the spring caused by the layer 6.
- FIG. 3 shows the closed switching state of the relay.
- the armature spring tongue 41 lies directly on the counter electrode, ie it touches the insulation layer 2 of the counter electrode or the base substrate.
- Figure 4 shows a plan view of the spring tongues 41 and 42 according to Figures 1 to 3.
- the shape and to see the arrangement of the contacts namely the fixed contact 7 on the projection 44 of the spring tongue 42 and the movable Contact 8 with three-sided suspension on the projections 43 of the spring tongue 41.
- a hole pattern 10 for etching free the first sacrificial layer 3 is shown.
- FIG. 5 shows an embodiment modified from FIG. 4 shown with a bridge contact.
- the spring tongue 42 has two separate fixed contacts 7 corresponding connecting tracks on two outer projections 46, while the spring tongue 41 has a central projection 47 forms on which the movable contact 8 lies.
- a slit 42a in the fixed contact spring tongue 42 ensures high torsional flexibility, thus both contacts in the event of uneven erosion open up. In this example, this serves as Bridge contact by overlapping the fixed contacts 7 on both sides.
- FIGS. 7 and 8 is schematic a design during manufacture and in the finished Condition shown in which the anchor spring tongue is only partially is curved.
- a tension layer 61 extends only over part the armature spring tongue 41 extends so that a curved Zone 62 of the anchor spring tongue on the area of the clamping point limited, while a zone 63 straight towards the end of the spring or with less curvature.
- an insulation layer 64 free of residual stress shown the electrical isolation of the load circuit forms with the lead 81 from the spring tongue. Lies above the tension layer 61 already mentioned.
- Figure 9 shows the basic layer structure on the base substrate 1 as it is based on the so-called additive technique he follows.
- the flexible spring tongues or their carrier layer obtained from a material, that only deposited on the substrate during manufacture becomes.
- the substrate shown in the example of 9 shows a wafer made of p-silicon.
- a control base electrode 11 n-by diffusion (for example with phosphorus); between the n-silicon the electrode and the p-silicon of the base substrate a barrier layer 12 is formed Insulation layer 2 and above the sacrificial layer 3 applied and structured.
- the carrier layer 4 is covered with a thickness of e.g. 5 to 10 ⁇ m deposited.
- FIG. 10 Layer arrangement shown, wherein the substrate consists of glass. But it could also be made from a silicon substrate Insulation layer or ceramic with appropriate surface treatment consist. A base electrode is placed over this substrate 11 generated in the form of a metal layer. Thereon there is then an insulating layer 2 and the sacrificial layer above it 3.
- a carrier layer is used electroplated metal layer made of nickel or a nickel alloy (e.g. nickel-iron) or one other metal alloy.
- the spring characteristic is important with little fatigue of this metal.
- the structuring also takes place in this example the load circuit elements analogous to additive technology, such as already described with reference to FIG. 1 and FIG. 6. It will for example, an insulation layer 64 for insulation between the load circuit and that formed by the spring tongue 41 Drive electrode, if necessary, an additional Tension layer 61, the load circuit tracks 71 and 81, the fixed contact 7, the second sacrificial layer 5 and the movable contact 8 successively applied and structured. So much for additional layers for passivation isolation are necessary, this happens according to experience of the specialist.
- the structure consists in the use of a so-called SOI wafer (silicon-on-insulator). Such an SOI wafer is shown in FIG Semi-finished product shown.
- SOI wafer silicon-on-insulator
- FIG Semi-finished product shown.
- the difference to the structure according to the figure 9 is that the individual layers in this case are not subsequently deposited on the substrate, but rather that such an SOI wafer is a semi-finished product has prefabricated layer structure, being on the silicon substrate 1 an insulation layer 2, for example made of silicon nitrite, a first sacrificial layer 3, for example made of silicon dioxide, as well as a crystalline silicon epitaxial layer as a carrier layer 4 with a thickness of, for example, 5 to 10 ⁇ m are arranged.
- a control voltage U s is applied to the electrodes via corresponding connection elements for actuating the relay, that is to say according to FIG. 2 to the base substrate 1, which also serves as the base electrode, or to the base electrode electrically insulated from the base substrate according to the embodiments in FIGS 11 and to the armature spring tongue 41, which also serves as an armature electrode.
- the armature spring tongue 41 is attracted to the base electrode by the electrostatic charge, as a result of which the contacts close.
Landscapes
- Micromachines (AREA)
- Contacts (AREA)
Description
- einem Basissubstrat mit einer Basiselektrode und mit mindestens einem Festkontakt,
- auf einem mit einer metallischen Schicht als Basiselektrode versehenen Basissubstrat wird unter Zwischenfügung einer Isolierschicht und eines Zwischenraums eine Trägerschicht aus Metall aufgebracht,
- in der Trägerschicht werden zwei einseitig angebundene, einander mit ihren freien Enden gegenüberstehende Federzungen ausgebildet,
- die Federzungen werden an ihrer Oberseite zumindest abschnittsweise mit einer Zugspannungsschicht versehen,
- eine - vorzugsweise kürzere - Federzunge wird an ihrem freien Ende mit mindestens einem Festkontakt versehen,
- die - vorzugsweise längere - Federzunge wird mit mindestens einem beweglichen Kontakt versehen, der unter Zwischenfügung einer Opferschicht den Festkontakt überlappt, und
- durch Freiätzung der Federzungen voneinander und von dem Substrat wird deren Krümmung vom Substrat weg nach oben erreicht.
Claims (17)
- Mikromechanisches elektrostatisches Relais miteinem Basissubstrat (1) mit einer Basiselektrode (1,11) und mit mindestens einem Festkontakt (7),
dadurch gekennzeichnet, daß der mindestens eine Festkontakt (7) auf einer Festkontakt-Federzunge (42) angeordnet ist, die der Anker-Federzunge (41) gegenüberstehend wie diese einseitig an einer Trägerschicht (4) angebunden und im Ruhezustand elastisch von dem Basissubstrat (1) weggekrümmt ist, und
daß der mindestens eine bewegliche Kontakt (8) an dem freien Ende der Anker-Federzunge (41) über dieses vorkragend und den Festkontakt (7) überlappend ausgebildet ist. - Relais nach Anspruch 1,
dadurch gekennzeichnet, daß die Anker-Federzunge (41) und die Festkontakt-Federzunge (42) aus der gleichen Trägerschicht (4) gebildet sind. - Relais nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß der mindestens eine bewegliche Kontakt (8) einen annähernd Z-förmigen Querschnitt aufweist, wobei ein Endschenkel auf der Anker-Federzunge (41) liegt und ein dazu annähernd paralleler Endschenkel den Festkontakt (7) überlappt. - Relais nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß die freien Enden der Anker-Federzunge (41) und der Festkontakt-Federzunge (42) zahnförmig ineinandergreifen, wobei jeweils ein Vorsprung (44;47) der einen Federzunge (42;41) in eine Ausnehmung der anderen Federzunge (41;42) eingreift, und
daß der mindestens eine Festkontakt (7) auf einem Vorsprung (44;46) der Festkontakt-Federzunge (42) liegt, während der mindestens eine bewegliche Kontakt (8) sich über eine Ausnehmung der anderen Federzunge (41) erstreckt. - Relais nach Anspruch 4,
dadurch gekennzeichnet, daß die Anker-Federzunge (41) in gestrecktem Zustand mit ihrem zangenförmig ausgebildeten Endabschnitt (43) einen mittigen, den Festkontakt (7) tragenden Vorsprung (44) der Festkontakt-Federzunge (42) umschließt und daß sich ein beidseitig aufliegender beweglicher Kontakt (8) frei über diesen Festkontakt (7) erstreckt. - Relais nach Anspruch 4,
dadurch gekennzeichnet, daß ein mittiger Vorsprung (47) der Anker-Federzunge (41) in gestrecktem Zustand zwischen zwei mit Festkontakten (7) versehene Vorsprünge (46) der Festkontakt-Federzunge (42) eingreift und
daß ein beweglicher Brückenkontakt (8) auf dem mittigen Vorsprung (47) befestigt ist und sich beiderseits frei über die Festkontakte (7) erstreckt. - Relais nach Anspruch 4,
dadurch gekennzeichnet, daß ein mittiger Vorsprung (147) der Anker-Federzunge (141) einen beiderseits überstehenden Brückenkontakt (148) trägt und daß zwei Festkontakt-Federzungen (142,143) je einen mit dem Brücken-kontakt (148) zusammenwirkenden Festkontakt (144,145) tragen. - Relais nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, daß die Trägerschicht (4) der Federzungen eine unter Zwischenfügung einer teilweise weggeätzten Opferschicht (3) auf dem Basis-substrat (1) abgeschiedene Schicht ist. - Relais nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet, daß das Basis-substrat (1) und die Trägerschicht (4) aus Silizium bestehen und daß die beiden Elektrodenschichten im Basissubstrat und
in der Anker-Federzunge durch eigenleitendes oder dotiertes Silizium gebildet sind. - Relais nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet, daß die Federzungen (41,42) jeweils auf ihrer dem Basissubstrat abgewandten Seite zumindest über einen Teil ihrer Länge eine eine Zugspannung erzeugende Schicht (6;61) aufweisen. - Relais nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, daß die die Federzungen (41:42) bildende Trägerschicht aus abgeschiedenem Polysilizium oder Polysilizium mit Rekristallisation besteht. - Relais nach einem der Ansprüche 1 bis 10,
dadurch gekennzeichnet, daß die die Federzungen (41,42) bildende Trägerschicht (4) aus einer galvanisch abgeschiedenen Metallschicht, insbesondere Nickel, Nickel-Eisen oder einer sonstigen Nickellegierung gebildet ist. - Relais nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet, daß das Basis-substrat (1) aus Silizium oder Glas besteht und daß die die Federzungen (41,42) bildende Federschicht (4) durch eine auf das Basissubstrat gebondete und freigelegte Silizium-Schicht (21) eines Silizium-Wafers (20) gebildet ist. - Verfahren zur Herstellung eines mikromechanischen elektrostatischen Relais nach einem der Ansprüche 1 bis 13, gekennzeichnet durch folgende Schritte:auf einem mit einer elektrisch leitenden Schicht als Basiselektrode versehenen Basissubstrat (1) wird unter Zwischenfügung einer Isolierschicht (2) und eines Zwischenraums (31) eine elektrisch leitende Trägerschicht (4; 21) aufgebracht,in der Trägerschicht (4; 21) werden zwei einseitig angebundene, einander mit ihren freien Enden gegenüberstehende Federzungen (41,42) ausgebildet,die Federzungen (41,42) werden an ihrer Oberseite zumindest abschnittsweise mit einer Zugspannungsschicht (6;61) versehen,eine - vorzugsweise kürzere - Federzunge (42) wird an ihrem freien Ende mit mindestens einem Festkontakt (7) versehen,die - vorzugsweise längere - Federzunge (41) wird mit mindestens einem beweglichen Kontakt (8) versehen, der unter Zwischenfügung einer Opferschicht (5) den Festkontakt (7) überlappt, unddurch Freiätzung der Federzungen (41,42) voneinander und von dem Substrat (1) wird deren Krümmung vom Substrat weg nach oben erreicht.
- Verfahren nach Anspruch 14, wobei auf dem aus Silizium bestehenden Basissubstrat (1) unter Zwischenfügung einer ersten Opferschicht (3) die elektrisch leitende Federzungenschicht (4) aus Polysilizium oder Polysilizium mit Rekristallisation mit der Struktur der beiden Federzungen (41,42) abgeschieden wird, wobei die Konturen der Federzungen und die Kontakte durch eine zweite Opferschicht (5) voneinander getrennt werden, und wobei nach dem Aufbringen der Kontakte die beiden Opferschichten (3,5) herausgeätzt werden.
- Verfahren nach Anspruch 14, wobei auf dem Basissubstrat (1) aus Glas, Keramik oder Silizium unter Zwischenfügung einer ersten Opferschicht (3) die Struktur der Federzungen (41,42) aus Nickel oder einer Nickel-Legierung, insbesondere Nickel-Eisen, galvanisch abgeschieden wird, wobei auf einer der Federzungen (42) mindestens ein Festkontakt (7) und nach Aufbringen einer zweiten Opferschicht (5) auf der anderen Federzunge (41) ein dem Festkontakt (7) überlappender beweglicher Kontakt (8) aufgebracht wird und wobei schließlich nach dem Aufbringen der Kontakte die beiden Opferschichten (3,5) herausgeätzt werden.
- Verfahren nach Anspruch 14, wobeiauf dem Basissubstrat (1) aus Silizium oder Glas die Gegenelektrode (11) und darüber eine Isolierschicht (2) abgeschieden werden,dann ein Silizium-Wafer (20) mit einer dotierten Silizium-Schicht (21), insbesondere einer Epitaxie-Schicht oder einer diffundierten Schicht, als Federzungenschicht auf das Basissubstrat (1) gebondet wird,danach der Wafer (20) rückgeätzt wird, bis nur die dotierte Silizium-Schicht (21) stehenbleibt, dann aus dieser Silizium-Schicht die Strukturen der beiden Federzungen (41,42) herausgeätzt werden,dann auf der einen Federzunge (42) mindestens ein Festkontakt aufgebracht wird,dann unter Zwischenfügung einer Opferschicht (5) auf der anderen Federzunge (41) mindestens ein den Festkontakt (7) überlappender beweglicher Kontakt (8) aufgebracht wird undschließlich die Opferschicht (5) herausgeätzt wird.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19736674 | 1997-08-22 | ||
DE19736674A DE19736674C1 (de) | 1997-08-22 | 1997-08-22 | Mikromechanisches elektrostatisches Relais und Verfahren zu dessen Herstellung |
PCT/DE1998/002092 WO1999010907A1 (de) | 1997-08-22 | 1998-07-24 | Mikromechanisches elektrostatisches relais und verfahren zu dessen herstellung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1021815A1 EP1021815A1 (de) | 2000-07-26 |
EP1021815B1 true EP1021815B1 (de) | 2002-01-23 |
Family
ID=7839913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98947333A Expired - Lifetime EP1021815B1 (de) | 1997-08-22 | 1998-07-24 | Mikromechanisches elektrostatisches relais und verfahren zu dessen herstellung |
Country Status (8)
Country | Link |
---|---|
US (1) | US6191671B1 (de) |
EP (1) | EP1021815B1 (de) |
JP (1) | JP2001514434A (de) |
CN (1) | CN1310854A (de) |
CA (1) | CA2300956A1 (de) |
DE (2) | DE19736674C1 (de) |
TW (1) | TW385465B (de) |
WO (1) | WO1999010907A1 (de) |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6807734B2 (en) | 1998-02-13 | 2004-10-26 | Formfactor, Inc. | Microelectronic contact structures, and methods of making same |
KR20090038040A (ko) | 1998-12-02 | 2009-04-17 | 폼팩터, 인크. | 전기 접촉 구조체의 제조 방법 |
US6255126B1 (en) | 1998-12-02 | 2001-07-03 | Formfactor, Inc. | Lithographic contact elements |
US6672875B1 (en) | 1998-12-02 | 2004-01-06 | Formfactor, Inc. | Spring interconnect structures |
JP3119255B2 (ja) * | 1998-12-22 | 2000-12-18 | 日本電気株式会社 | マイクロマシンスイッチおよびその製造方法 |
IT1307131B1 (it) * | 1999-02-02 | 2001-10-29 | Fiat Ricerche | Dispositivo di micro-rele' a controllo elettrostatico. |
DE60040671D1 (de) * | 1999-12-29 | 2008-12-11 | Formfactor Inc | Elastische leitende verbindung für elektronische bauteile und verfahren zu ihrer herstellung |
WO2001063634A2 (en) * | 2000-02-23 | 2001-08-30 | Tyco Electronics Amp Gmbh | Microswitch and process for its production |
DE10065025A1 (de) * | 2000-12-23 | 2002-07-04 | Bosch Gmbh Robert | Mikromechanisches Bauelement |
US6560861B2 (en) * | 2001-07-11 | 2003-05-13 | Xerox Corporation | Microspring with conductive coating deposited on tip after release |
WO2003028059A1 (en) | 2001-09-21 | 2003-04-03 | Hrl Laboratories, Llc | Mems switches and methods of making same |
KR100421222B1 (ko) * | 2001-11-24 | 2004-03-02 | 삼성전자주식회사 | 저전압 구동의 마이크로 스위칭 소자 |
KR20040080333A (ko) * | 2002-01-16 | 2004-09-18 | 마츠시타 덴끼 산교 가부시키가이샤 | 마이크로디바이스 |
US7109560B2 (en) | 2002-01-18 | 2006-09-19 | Abb Research Ltd | Micro-electromechanical system and method for production thereof |
DE10310072B4 (de) * | 2002-03-08 | 2005-07-14 | Erhard Prof. Dr.-Ing. Kohn | Mikromechanischer Aktor |
DE10210344A1 (de) * | 2002-03-08 | 2003-10-02 | Univ Bremen | Verfahren zur Herstellung mikromechanischer Bauteile und nach dem Verfahren hergestellte Bauteile |
US6784389B2 (en) * | 2002-03-13 | 2004-08-31 | Ford Global Technologies, Llc | Flexible circuit piezoelectric relay |
US6753747B2 (en) * | 2002-04-01 | 2004-06-22 | Intel Corporation | Integrated microsprings for high speed switches |
US6686820B1 (en) * | 2002-07-11 | 2004-02-03 | Intel Corporation | Microelectromechanical (MEMS) switching apparatus |
US7551048B2 (en) * | 2002-08-08 | 2009-06-23 | Fujitsu Component Limited | Micro-relay and method of fabricating the same |
US6621022B1 (en) * | 2002-08-29 | 2003-09-16 | Intel Corporation | Reliable opposing contact structure |
WO2004027799A2 (en) * | 2002-09-18 | 2004-04-01 | Magfusion, Inc. | Method of assembling a laminated electro-mechanical structure |
JP4076829B2 (ja) * | 2002-09-20 | 2008-04-16 | 株式会社東芝 | マイクロスイッチ及びその製造方法 |
US6943448B2 (en) * | 2003-01-23 | 2005-09-13 | Akustica, Inc. | Multi-metal layer MEMS structure and process for making the same |
US7190245B2 (en) * | 2003-04-29 | 2007-03-13 | Medtronic, Inc. | Multi-stable micro electromechanical switches and methods of fabricating same |
US7221495B2 (en) * | 2003-06-24 | 2007-05-22 | Idc Llc | Thin film precursor stack for MEMS manufacturing |
US7215229B2 (en) * | 2003-09-17 | 2007-05-08 | Schneider Electric Industries Sas | Laminated relays with multiple flexible contacts |
US7388459B2 (en) * | 2003-10-28 | 2008-06-17 | Medtronic, Inc. | MEMs switching circuit and method for an implantable medical device |
CN1317728C (zh) * | 2004-01-16 | 2007-05-23 | 清华大学 | 一种用牺牲层材料做支撑梁的微机械开关及制作工艺 |
DE102004010150B9 (de) * | 2004-02-27 | 2012-01-26 | Eads Deutschland Gmbh | Hochfrequenz-MEMS-Schalter mit gebogenem Schaltelement und Verfahren zu seiner Herstellung |
US6912082B1 (en) * | 2004-03-11 | 2005-06-28 | Palo Alto Research Center Incorporated | Integrated driver electronics for MEMS device using high voltage thin film transistors |
JP4754557B2 (ja) * | 2004-04-23 | 2011-08-24 | リサーチ・トライアングル・インスティチュート | フレキシブル静電アクチュエータ |
DE102004064163B4 (de) * | 2004-12-22 | 2011-11-24 | Eads Deutschland Gmbh | Schaltbares Hochfrequenz-MEMS-Element mit bewegbarem Schaltelement und Verfahren zu seiner Herstellung |
DE102004062992B4 (de) * | 2004-12-22 | 2012-03-01 | Eads Deutschland Gmbh | Schaltbares Hochfrequenz-MEMS-Element mit bewegbarem Schaltelement und Verfahren zu seiner Herstellung |
US7816745B2 (en) * | 2005-02-25 | 2010-10-19 | Medtronic, Inc. | Wafer level hermetically sealed MEMS device |
US20070115082A1 (en) * | 2005-10-03 | 2007-05-24 | Analog Devices, Inc. | MEMS Switch Contact System |
US7968364B2 (en) * | 2005-10-03 | 2011-06-28 | Analog Devices, Inc. | MEMS switch capping and passivation method |
US7453339B2 (en) * | 2005-12-02 | 2008-11-18 | Palo Alto Research Center Incorporated | Electromechanical switch |
KR101188438B1 (ko) * | 2006-02-20 | 2012-10-08 | 삼성전자주식회사 | 하향형 멤스 스위치의 제조방법 및 하향형 멤스 스위치 |
EP2018673B1 (de) * | 2006-05-17 | 2014-01-08 | MicroGaN GmbH | Mikromechanische aktoren aus halbleiterverbindungen auf basis von nitriden von hauptgruppe-iii-elementen |
JP4234737B2 (ja) * | 2006-07-24 | 2009-03-04 | 株式会社東芝 | Memsスイッチ |
US7936240B2 (en) * | 2007-08-16 | 2011-05-03 | Simon Fraser University | Lithographically controlled curvature for MEMS devices and antennas |
KR20100061731A (ko) * | 2007-09-14 | 2010-06-08 | 퀄컴 엠이엠스 테크놀로지스, 인크. | Mems 제조에 이용되는 에칭 방법 |
EP2107038B1 (de) | 2008-03-31 | 2012-05-16 | Imec | Elektrostatisch betätigbare MEMS-Vorrichtung mit verringerter Substrataufladung |
JP5118546B2 (ja) * | 2008-04-25 | 2013-01-16 | 太陽誘電株式会社 | 電気式微小機械スイッチ |
CN102640410B (zh) | 2009-10-01 | 2014-12-31 | 卡文迪什动力有限公司 | 具有改良rf热切换性能及可靠性的微机械数字电容器 |
TWI425547B (zh) * | 2011-05-06 | 2014-02-01 | Nat Chip Implementation Ct Nat Applied Res Lab | Cmos微機電開關結構 |
CN102867699B (zh) * | 2011-07-08 | 2016-03-02 | 富士康(昆山)电脑接插件有限公司 | 微开关及其制造方法 |
GB201414811D0 (en) * | 2014-08-20 | 2014-10-01 | Ibm | Electromechanical switching device with electrodes comprising 2D layered materials having distinct functional areas |
KR102632493B1 (ko) * | 2015-11-16 | 2024-02-02 | 코르보 유에스, 인크. | Esd 보호를 위한 자연 폐쇄 mems 스위치 |
DE102020203576A1 (de) | 2020-03-19 | 2021-09-23 | Robert Bosch Gesellschaft mit beschränkter Haftung | System, insbesondere mikroelektromechanisches System, Verfahren zur Herstellung eines Systems, Verfahren zum Betrieb eines Systems |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4959515A (en) * | 1984-05-01 | 1990-09-25 | The Foxboro Company | Micromechanical electric shunt and encoding devices made therefrom |
US4570139A (en) * | 1984-12-14 | 1986-02-11 | Eaton Corporation | Thin-film magnetically operated micromechanical electric switching device |
US5260596A (en) * | 1991-04-08 | 1993-11-09 | Motorola, Inc. | Monolithic circuit with integrated bulk structure resonator |
CA2072199C (en) * | 1991-06-24 | 1997-11-11 | Fumihiro Kasano | Electrostatic relay |
US5258591A (en) * | 1991-10-18 | 1993-11-02 | Westinghouse Electric Corp. | Low inductance cantilever switch |
DE4205029C1 (en) * | 1992-02-19 | 1993-02-11 | Siemens Ag, 8000 Muenchen, De | Micro-mechanical electrostatic relay - has tongue-shaped armature etched from surface of silicon@ substrate |
DE69311277T2 (de) * | 1992-12-15 | 1998-01-15 | Asulab Sa | Schutzrohrschalter und Herstellungsverfahren für aufgehängte dreidimensionale metallische Mikrostrukturen |
DE4437261C1 (de) * | 1994-10-18 | 1995-10-19 | Siemens Ag | Mikromechanisches elektrostatisches Relais |
DE4437259C1 (de) * | 1994-10-18 | 1995-10-19 | Siemens Ag | Mikromechanisches Relais |
DE4437260C1 (de) * | 1994-10-18 | 1995-10-19 | Siemens Ag | Mikromechanisches Relais |
US5578224A (en) * | 1995-06-07 | 1996-11-26 | Analog Devices, Inc. | Method of making micromachined device with ground plane under sensor |
US5578976A (en) * | 1995-06-22 | 1996-11-26 | Rockwell International Corporation | Micro electromechanical RF switch |
US6057520A (en) * | 1999-06-30 | 2000-05-02 | Mcnc | Arc resistant high voltage micromachined electrostatic switch |
-
1997
- 1997-08-22 DE DE19736674A patent/DE19736674C1/de not_active Expired - Fee Related
-
1998
- 1998-07-10 TW TW087111211A patent/TW385465B/zh not_active IP Right Cessation
- 1998-07-24 DE DE59802921T patent/DE59802921D1/de not_active Expired - Fee Related
- 1998-07-24 CN CN98808413A patent/CN1310854A/zh active Pending
- 1998-07-24 WO PCT/DE1998/002092 patent/WO1999010907A1/de active IP Right Grant
- 1998-07-24 EP EP98947333A patent/EP1021815B1/de not_active Expired - Lifetime
- 1998-07-24 US US09/486,261 patent/US6191671B1/en not_active Expired - Fee Related
- 1998-07-24 CA CA002300956A patent/CA2300956A1/en not_active Abandoned
- 1998-07-24 JP JP2000508127A patent/JP2001514434A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2001514434A (ja) | 2001-09-11 |
CN1310854A (zh) | 2001-08-29 |
WO1999010907A1 (de) | 1999-03-04 |
DE19736674C1 (de) | 1998-11-26 |
EP1021815A1 (de) | 2000-07-26 |
DE59802921D1 (de) | 2002-03-14 |
CA2300956A1 (en) | 1999-03-04 |
US6191671B1 (en) | 2001-02-20 |
TW385465B (en) | 2000-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1021815B1 (de) | Mikromechanisches elektrostatisches relais und verfahren zu dessen herstellung | |
DE69417725T2 (de) | Micro-bearbeitetes relais und verfahren zur herstellung des relais | |
EP0938738B1 (de) | Verfahren zum herstellen eines mikromechanischen relais | |
DE4205029C1 (en) | Micro-mechanical electrostatic relay - has tongue-shaped armature etched from surface of silicon@ substrate | |
DE69705025T2 (de) | In mengen angefertigtes elektromagnetisches mikro-relais/mikro-schalter und verfahren zu ihrer herstellung | |
EP0685109B1 (de) | Mikromechanisches relais mit hybridantrieb | |
DE4437260C1 (de) | Mikromechanisches Relais | |
DE112016000050B4 (de) | Verfahren zur Herstellung eines Splitgate-Leistungsbauelements | |
DE2637479A1 (de) | Mos-feldeffekt-transistor | |
DE4232820B4 (de) | Verfahren zur Herstellung eines MOSFET | |
DE102021202238A1 (de) | Elektrisch betätigbarer MEMS-Schalter | |
DE19823690C1 (de) | Mikromechanisches elektrostatisches Relais | |
DE2838214A1 (de) | Piezoelektrische schaltvorrichtung | |
DE4205340C1 (en) | Micro-mechanical electrostatic relay with parallel electrodes - has frame shaped armature substrate with armature contacts above base electrode contacts on base substrate | |
DE4305033A1 (de) | Mikromechanisches Relais mit Hybridantrieb | |
DE69938511T2 (de) | Mikro-relais | |
EP1057196A1 (de) | Mikromechanisches elektrostatisches relais | |
EP1163692A1 (de) | Substratparallel arbeitendes mikrorelais | |
DE19853432A1 (de) | Halbleiteranordnung und Verfahren zum Herstellen derselben | |
DE112011101117B4 (de) | Integrierter elektromechanischer Aktuator und Verfahren zur Herstellung desselben | |
DE102010029539B4 (de) | Mikromechanisches Bauteil und Herstellungsverfahren für ein mikromechanisches Bauteil | |
DE19800189C2 (de) | Mikromechanischer Schalter | |
DE19854450C2 (de) | Mikromechanisches elektrostatisches Relais | |
EP4057317A1 (de) | Gekapseltes mems-schaltelement, vorrichtung und herstellungsverfahren | |
DE19950964B4 (de) | Mikromechanisches Relais und Verfahren zur Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20000322 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20010426 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 59802921 Country of ref document: DE Date of ref document: 20020314 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020410 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080829 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080729 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080729 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090724 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100202 |