EP1013926B1 - Hydraulische Verdrängermaschine, insbesondere Verdrängerpumpe - Google Patents

Hydraulische Verdrängermaschine, insbesondere Verdrängerpumpe Download PDF

Info

Publication number
EP1013926B1
EP1013926B1 EP99125173A EP99125173A EP1013926B1 EP 1013926 B1 EP1013926 B1 EP 1013926B1 EP 99125173 A EP99125173 A EP 99125173A EP 99125173 A EP99125173 A EP 99125173A EP 1013926 B1 EP1013926 B1 EP 1013926B1
Authority
EP
European Patent Office
Prior art keywords
displacement
positive
piston
sintered material
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99125173A
Other languages
English (en)
French (fr)
Other versions
EP1013926A1 (de
Inventor
Egon Eisenbacher
Christoph Renner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1013926A1 publication Critical patent/EP1013926A1/de
Application granted granted Critical
Publication of EP1013926B1 publication Critical patent/EP1013926B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/92Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/083Nitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0804Non-oxide ceramics
    • F05C2203/0856Sulfides
    • F05C2203/086Sulfides of molybdenum

Definitions

  • the invention is based on a hydraulic displacement machine, in particular of a positive displacement pump, which the characteristics from the Preamble of claim 1 has.
  • a displacement machine designed as an internal gear pump Art is shown for example in DE 43 22 240 C2.
  • a crescent-shaped pump chamber in which there is an approximately crescent-shaped Filler is located with which the high pressure area and the low pressure area of the pump along the tooth tips of the two Gears are sealed against each other.
  • the filler divided longitudinally. The gap between the two filler pieces becomes like this pressurized that the two filler parts each with one small excess force pressed onto the tooth tips of the gears become.
  • the high pressure area and the low pressure area of a gear machine must also face each other at the front of the gears be sealed. If you want the gear machine even at higher ones Use pressure and a very effective seal have, so are also used for the sealing on the end faces of the Gears used components with a certain excess force be pressed against the gears. There is a pressure field for this on the back of the components facing away from the gears mostly referred to as axial sealing washers, with the high pressure area connected to the gear machine.
  • JP 08-159044 A suggested the gears from a wear-resistant To produce sintered material.
  • Such operating media are, for example, fuels, like gasoline or diesel for internal combustion engines.
  • fuels like gasoline or diesel for internal combustion engines.
  • piston pumps especially radial piston pumps used.
  • a radial piston pump designed for high-pressure delivery Displacement machine of the generic type provided by fuel Art is known for example from DE 42 13 798 A1.
  • the displacement parts Piston and cylinder together.
  • one of the slides two displacement parts or a slide shoe held on it on one Eccentric ring through which the movement of one displacement part is forced in the delivery stroke.
  • the invention is therefore based on the object of a hydraulic displacement machine, which has the features from the preamble of claim 1, evolve so that the wear on the sliding against each other Components is low.
  • a gear pump very little wear-related in an automobile and especially in the transmission area Particles are released into the hydraulic medium and onto the Installation of a filter or at least no filter replacement can be.
  • wear on each other sliding components to be low, so that no abrasion particles the injection nozzles clog or make it stiff and thus a failure of the Pump by eating the displacement parts or by excessive wear on the Lifting element is avoided.
  • This task is performed on a positive displacement machine with the characteristics from Preamble of claim 1 solved according to the invention in that at least one of the two components is hardened at least on the surface and from Sintered material consists mainly of ferrite and an additional component contains to improve the sliding properties.
  • Curable Ferrite for component and wear resistance with one component Improvement of the sliding properties arises after sintering, hardening and a grinding process, through which the component its exact dimensions and a receives a smooth surface, a component that also lacks lubrication in operation without tolerates substantial abrasion. As a result, the wear on and the particle release very low due to the displacement machine.
  • an internal gear machine is preferred Component made of sintered material, which is used to seal a high pressure area from a low pressure area along the tooth tips or along the End faces of the gears.
  • the component consisting of the sintered material is preferred 7 hardened by nitriding, with an edge zone of the component at temperatures around 500 degrees Celsius is enriched with nitrogen by the component a nitrogen releasing medium, e.g. B. is exposed to a gas stream.
  • a nitrogen releasing medium e.g. B.
  • Nitriding per se is a well known method for the superficial Hardening of components so that there is no need to go into them here.
  • the component contains components that improve the sliding properties claims 8 to 10 preferably copper, molybdenum disulfide and Graphite.
  • the combination of these makes the requirements particularly good Components met with each other in the proportions indicated as preferred.
  • a first embodiment designed as an internal gear pump and a Radial piston pump designed second embodiment of an inventive hydraulic displacement machine are shown in the drawing. The invention will now be explained in more detail with reference to the figures of this drawing.
  • the internal gear pump according to Figures 1 and 2 has a housing 10, the consists of an annular middle part 11, which radially encloses a pump chamber 12, a first cover part 13 and a second cover part 14.
  • the two cover parts 13 and 14 delimit the pump chamber 12 in axial direction.
  • the middle part 11 engages over the two cover parts 13 and 14 in Area of an outer recess 15.
  • the cover part 13 has one through bore 16 into which a plain bearing 17 is pressed. With the hole 16 aligns a blind hole 18 of the cover part 14, in which also a plain bearing 17 is pressed. In the two plain bearings 17 there is a drive shaft 19 of the pump stored.
  • An externally toothed pinion 20 is inside the pump chamber 12 attached to the drive shaft 19 or made in one piece therewith.
  • the pinion is located within an internally toothed ring gear 21, the axis of which is eccentric is arranged to the axis of the crack 20 and that on its outer circumference is mounted in the middle part 11 of the housing 10.
  • Mid-plane 22 In the area on both sides spanned by the two axes of the pinion 20 and the ring gear 21 Mid-plane 22 intermesh the two gears, between which there are otherwise a crescent-shaped free space 23 is located.
  • This free space 23 is approximately half filled by a filler 30.
  • a good seal of the pinion and ring gear is necessary. That is why Filling piece 30 in two parts from a sealing segment 31 and a segment carrier 32 built up.
  • the sealing segment 31 is adjacent to the ring gear 21 and can with a small excess force pressed against the tooth tips of the ring gear 21 become.
  • the sealing segment 31 becomes hydraulic when the pump is operating also pressed against a flat 33 of a stop pin 34.
  • the segment carrier 32 is hydraulic in operation with an inside and with excess power to the ring gear of the pinion 30 and also against the flat 33 of the stop pin 34 pressed.
  • the segment carrier 32 and the sealing segment 31 are made by two leaf springs 35 pressed apart, which are in two axially extending and to the sealing segment 31 open grooves 36 of the segment carrier 32 are.
  • the two grooves 36 take up a sealing roller 37 in addition to a leaf spring 35 of the respective leaf spring 35, but also in operation hydraulically to the gap between the segment carrier 32 and the sealing segment 31 is pressed.
  • Through the two sealing rollers 37 is within between the segment carrier 32 and the Sealing segment 31 existing gap against the high pressure area P and against the low-pressure area S of the pump sealed pressure chamber, which is to be pressurized, approximately half the operating pressure corresponds to the pump.
  • the stop pin 34 crosses the free space 23 in the central plane 22 and is in two aligned blind holes 39 of the cover parts 13 and 14 on both sides the pump chamber 12 rotatably mounted.
  • the axial extent of the filler 24 agrees with the axial extent of the two gear wheels 20 and 21 match.
  • Every axial sealing washer 45 closely surrounds the drive shaft 19 and the stop pin 34 and is thereby in position in a plane perpendicular to the axis of the drive shaft 19 secured.
  • a pressure field 46 is defined by a recess in the cover part 13 or 14 educated. As can be seen from the dashed line in FIG. 2, it has one semi-crescent-shaped shape and extends approximately from the foot of the filler 30 am Stop pin 34 from up to close to the central plane 22.
  • an axial sealing washer 45 essentially covers only the high pressure side of the pump while the low pressure side is kept clear so that there is no friction between the gears and an axial sealing washer can take place, which would lower the efficiency of the pump.
  • the diameter of the suction channel 48 is larger than the diameter of the pressure channel 49.
  • the ring gear 21 has in the Tooth gaps radially through holes 50 through from the inside, through which a hydraulic fluid from the suction channel 48 into the free space 23 and from can get there into the pressure channel 49.
  • the pump shown is constructed in such a way that the pinion 20, in operation according to FIG. 2 considered, must be driven clockwise.
  • the ring gear 21 also rotates then turn clockwise. Hydraulic fluid in the tooth gaps travels along the filler 30 with the tooth gaps and reaches the tooth meshing area of the two gears. There the hydraulic fluid through the Bores 50 of the ring gear 21 are displaced into the pressure channel 49. At the same time through other holes 50 and over the end faces of the gears hydraulic fluid is sucked away from the suction channel 48 into the free space 23.
  • the gears of the pump shown are hardened, especially the teeth do not wear out and a high volumetric efficiency is achieved.
  • the wear on the seal between the high pressure area P and the low pressure area S serving components, namely the Sealing segment 31, the segment carrier 32 and the axial sealing washers 45 low remains and particles do not get into the hydraulic fluid circuit Clogged flow openings or in narrow guide gaps advised and to the stiffness or failure of the brought together
  • the components mentioned are hardened on their surface. They consist of a sintered material, the starting mixture of 15% to 25% Copper, 2.5% to 3% molybdenum disulfide, about 0.4% graphite and the rest iron in Contains form of ferrite. The latter is the one component that will be hardened can.
  • the radial piston pump according to Figure 3 which is used to deliver fuel in one Automobile is intended, has a pump housing 52 in which a central receiving space 53 for receiving a drive shaft, not shown with an axis 54 driven eccentric pin 55 on which an eccentric ring 56 is rotatably mounted. These are evenly distributed around the axis 54 three displacement units 57 assigned, each of which is in a radial bore 58 of the pump housing 52 is located. Corresponding to the three displacement units 57 is the eccentric ring 56 with three flats distributed around the circumference 59 provided, on each of which a slide shoe 60 of a displacement unit 57 is supported is.
  • the eccentric ring 56 Due to the force lying on the flats 59 Sliding shoes 60, the eccentric ring 56 is held so that it rotates of the eccentric pin 55 can not follow freely, but while maintaining its orientation is moved on a circle, i.e. a translational one Circular motion.
  • the sliding shoes 60 thus slide during operation back and forth on the flats 59.
  • Each displacement unit 57 has a cylinder 64 with a cylinder bore 65, in which a slide shoe 60 is pressed to the stop. Through every slide shoe pass through channels that fill the cylinder bore 65 via a suction valve Allow 66 from the recording room 53.
  • the cylinder 64 is over a Compression spring 68 biased towards the flat 59, the compression spring on the one hand on an outer shoulder of the cylinder 64 and on the other hand on one Screw plug 70 is supported, which closes a radial bore 58.
  • the end section is one Piston 74 is pressed into the cylinder bore, projecting far beyond the screw plug 70 65 immersed and that together with the cylinder 64 and the sliding block 60 limits a volume-variable work space.
  • the cylinder 64 executes a radial stroke movement. Except the relative Sliding movement between the slide shoe 60 and the eccentric ring 56 takes place in operation, a relative sliding movement between the cylinder 64 and the Piston 74 instead.
  • cylinder 64 could be made from one captivate commercially available sintered material under the name Ferromoliporit, which contains special lubricant deposits and is hardenable.
  • Ferromoliporit contains special lubricant deposits and is hardenable.
  • the cylinder 64 could also be the piston 74 or cylinder and piston from the Sintered material exist.
  • Ferromoliporite is the sintered material which, as described with reference to FIGS. 1 and 2, is also used for parts of the internal gear pump shown there. Accordingly, the starting mixture for this material consists of 15% up to 25% copper, 2.5% to 3% molybdenum disulfide, about 0.4% graphite and Rest composed of iron in the form of ferrite.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)

Description

Die Erfindung geht aus von einer hydraulischen Verdrängermaschine, insbesondere von einer Verdrängerpumpe, die die Merkmale aus dem Oberbegriff des Patentanspruches 1 aufweist.
Eine als Innenzahnradpumpe ausgebildete Verdrängermaschine dieser Art ist zum Beispiel in der DE 43 22 240 C2 gezeigt. Bei dieser bekannten Innenzahnradpumpe schließen das Ritzel und das Hohlrad eine sichelförmige Pumpenkammer ein, in der sich ein etwa halbsichelförmiges Füllstück befindet, mit dem der Hochdruckbereich und der Niederdruckbereich der Pumpe entlang den Zahnköpfen der beiden Zahnräder gegeneinander abgedichtet sind. Für eine wirkungsvolle Abdichtung auch bei größeren Druckunterschieden zwischen dem Hochdruckbereich und dem Niederdruckbereich ist das Füllstück längsgeteilt. Der Spalt zwischen den beiden Füllstückteilen wird so mit Druck beaufschlagt, daß die beiden Füllstückteile jeweils mit einem kleinen Kraftüberschuß an die Zahnköpfe der Zahnräder angedrückt werden.
Der Hochdruckbereich und der Niederdruckbereich einer Zahnradmaschine müssen auch an den Stirnseiten der Zahnräder gegeneinander abgedichtet werden. Will man die Zahnradmaschine auch bei höheren Drücken verwenden und eine sehr wirkungsvolle Abdichtung haben, so werden auch für die Abdichtung an den Stirnseiten der Zahnräder Bauteile verwendet, die mit einem gewissen Kraftüberschuß an die Zahnräder angedrückt werden. Dazu ist ein Druckfeld an der den Zahnrädern abgewandten Rückseite der Bauteile, die meistens als Axialdichtscheiben bezeichnet werden, mit dem Hochdruckbereich der Zahnradmaschine verbunden.
Bisher werden für die zur Abdichtung an die Zahnräder angedrückten Bauteile Werkstoffe verwendet, die insbesondere bei hohen Drehzahlen der Innenzahnradmaschine, bei hohem Druck oder bei hohen Temperaturen des Arbeitsmediums einem abrasiven Verschleiß unterworfen sind. Der Kraftüberschuß, mit dem die Bauteile an die Zahnräder gedrückt werden, wird nämlich im wesentlichen durch unterschiedlich große Flächen, an denen der Druck wirkt, erhalten und steigt deshalb mit höher werdendem Druck an. Hohe Drehzahlen und hohe Temperaturen können zu einer mangelhaften Schmierung zwischen den Bauteilen und den Zahnrädern führen. Der Abrieb gelangt in den hydraulischen Kreislauf und kann Schäden und Fehlfunktionen hervorrufen.
Grundsätzlich ist es möglich, durch den Einbau eines Filters den Abrieb aus dem Hydraulikmedium zu entfernen. Anlagen der sogenannten Stationärhydraulik sind sozusagen standardmäßig mit einem Filter ausgerüstet. Es gibt jedoch auch Anwendungsfälle, insbesondere im Automobilbereich, wo man keine Filter benutzen will. Derartige Filter setzen sich allmählich zu, erhöhen dadurch die Druckverluste im hydraulischen Kreislauf und müssen ausgetauscht werden. Nicht zuletzt spielen auch der Platz, der für einen Filter und seine Zugänglichkeit erforderlich wäre, und die zusätzlichen Kosten im Automobilbau eine Rolle.
Zudem ist ein Verschleiß an den aneinander gleitenden Bauteilen nicht immer durch eine Art Nachstellung zu kompensieren, so daß die internen Leckagen in der Maschine zunehmen und Wirkungsgradverluste zunehmen.
Um den Verschleiß der Zahnräder zu verringern, wird in der JP 08-159044 A vorgeschlagen, die Zahnräder aus einem verschleißfesten Sintermaterial herzustellen.
Probleme mit dem Verschleiß von aneinander gleitenden Bauteilen einer Verdrängermaschine treten unabhängig von bestimmten Betriebsparametern wie hoher Drehzahl oder hoher Temperatur auch dann auf, wenn das Betriebsmedium an sich schlechte Schmiereigenschaften hat. Derartige Betriebsmedien sind zum Beispiel Kraftstoffe, wie Benzin oder Diesel für Verbrennungsmotoren. Für die Hochdruckförderung derartiger Kraftstoffe werden überwiegend Kolbenpumpen, insbesondere Radialkolbenpumpen verwendet.
Eine als Radialkolbenpumpe ausgebildete und zur Hochdruckförderung von Kraftstoff vorgesehene Verdrängermaschine der gattungsgemäßen Art ist zum Beispiel aus der DE 42 13 798 A1 bekannt. Bei einer solchen Radialkolbenpumpe gleiten einerseits die Verdrängerteile Kolben und Zylinder aneinander. Andererseits gleitet eines der beiden Verdrängerteile oder ein an ihm gehaltener Gleitschuh an einem Exzenterring, durch den die Bewegung des einen Verdrängerteils im Förderhub erzwungen wird.
Um den Verschleiß an den aufeinander gleitenden Bauteilen zu verringern, wird in der US 3 808 659 A vorgeschlagen, in dem Zylinder eine Zylinderhülse aus gehärtetem Sintermaterial einzusetzen.
Der Erfindung liegt somit die Aufgabe zugrunde, eine hydraulische Verdrängermaschine, die die Merkmale aus dem Oberbegriff des Patentanspruchs 1 aufweist, so weiterzuentwickeln, daß der Verschleiß an den aneinander gleitenden Bauteilen gering ist. Insbesondere sollen bei der Verwendung einer Zahnradpumpe in einem Automobil und hier insbesondere im Getriebebereich sehr wenig verschleißbedingte Partikel in das Hydraulikmedium abgegeben werden und auf den Einbau eines Filters oder zumindest auf den Austausch eines Filters verzichtet werden konnen. Bei Verwendung einer Kolbenpumpe zur Förderung von Kraftstoff soll trotz des schlecht schmierenden Betriebsmediums der Verschleiß an den aneinander gleitenden Bauteilen gering sein, damit keine Abriebpartikel die Einspritzdüsen verstopfen oder schwergängig machen und damit ein Ausfall der Pumpe durch Fressen der Verdrängerteile oder durch zu starken Verschleiß am Hubelement vermieden wird.
Diese Aufgabe wird bei einer Verdrängermaschine mit den Merkmalen aus dem Oberbegriff des Patentanspruchs 1 erfindungsgemäß dadurch gelöst, daß zumindest eines der beiden Bauteile zumindest an der Oberfläche gehärtet ist und aus Sintermaterial besteht, das überwiegend Ferrit und zusätzlich einen Bestandteil zur Verbesserung der Gleiteigenschaften enthält. Durch die Mischung von härtbarem Ferrit für die Bauteil- und die Verschleißfestigkeit mit einem Bestandteil zur Verbesserung der Gleiteigerischaften entsteht nach dem Sintern, dem Härten und einem Schleifprözeß, durch den das Bauteil seine genauen Abmaße und eine glatte Oberfläche erhält, ein Bauteil, das auch Mangelschmierung im Betrieb ohne wesentlichen Abrieb verträgt. Dadurch ist der Verschleiß an der und die Partikelabgabe durch die Verdrängermaschine sehr gering.
Vorteilhafte Ausgestaltungen einer erfindungsgemäßen Verdrängermaschine kann man den Unteransprüchen entnehmen.
Gemäß Patentanspruch 2 wird bei einer Innenzahnradmaschine bevorzugt ein Bauteil aus Sintermaterial hergestellt, das zur Abdichtung einesHochdruckbereichs von einem Niederdruckbereich entlang den Zahnköpfen oder entlang den Stirnseiten der Zahnräder dient.
Bei einer hydraulischen Kolbenmaschine ist es günstig, wenn gemäß Patentanspruch 3 zumindest eines der beiden Verdrängerteile einer Verdrängereinheit, Kolben und Zylinder, aus dem zumindest an der Oberfläche gehärteten Sintermaterial hergestellt ist. Vorteilhafterweise ist auch von dem Paar Verdrängerteil-Hubelement zumindest ein Teil aus dem Sintermaterial hergestellt. Dabei sei ausdrücklich darauf hingewiesen, daß ein Verdrängerteil oder das Hubelement auch mehrteilig ausgebildet sein kann, und nur eines dieser Teile, nämlich das am Gegenstück gleitende, aus Sintermaterial besteht.
Bevorzugt wird das aus dem Sintermaterial bestehende Bauteil gemäß Patentanspruch 7 durch Nitrieren gehärtet, wobei eine Randzone des Bauteils bei Temperaturen um die 500 Grad Celsius mit Stickstoff angereichert wird, indem das Bauteil einem Stickstoff abgebenden Medium, z. B. einem Gasstrom, ausgesetzt wird.
Das Nitrieren an sich ist ein allgemein bekanntes Verfahren für das oberflächliche Härten von Bauteilen, so daß hier nicht näher darauf eingegangen werden muß.
Als Bestandteile, die die Gleiteigehschaften verbessern, enthält das Bauteil gemäß den Patentansprüchen 8 bis 10 bevorzugt Kupfer, Molybdändisulfid und Graphit. Besonders gut werden die Anforderungen durch eine Kombination dieser Bestandteile miteinander in den als bevorzugt angegebenen Anteilen erfüllt.
Ein als Innenzahnradpumpe ausgebildetes erstes Ausführungsbeispiel und ein als Radialkolbenpumpe ausgebildetes zweites Ausführungsbeispiel einer erfindungsgemäßen hydraulischen Verdrängermaschine sind in der Zeichnung dargestellt. Anhand der Figuren dieser Zeichnung wird die Erfindung nun näher erläutert.
Es zeigen
Figur 1
das erste Ausführungsbeispiel in einem Schnitt durch die von den beiden Achsen der Zahnräder aufgespannten Ebene,
Figur 2
einen Schnitt entlang der Linie II-II aus Figur 1 und
Figur 3
das zweite Ausführungsbeispiel in einem Schnitt senkrecht durch die Antriebswelle.
Die Innenzahnradpumpe nach den Figuren 1 und 2 besitzt ein Gehäuse 10, das sich aus einem ringförmigen Mittelteil 11, das eine Pumpenkammer 12 radial einschließt, einem ersten Deckelteil 13 und einem zweiten Deckelteil 14 zusammensetzt. Die beiden Deckelteile 13 und 14 begrenzen die Pumpenkammer 12 in axialer Richtung. Das Mittelteil 11 übergreift die beiden Deckelteile 13 und 14 im Bereich jeweils einer äußeren Eindrehung 15. Das Deckelteil 13 besitzt eine durchgehende Bohrung 16, in die ein Gleitlager 17 eingepreßt ist. Mit der Bohrung 16 fluchtet eine Sackbohrung 18 des Deckelteils 14, in die ebenfalls ein Gleitlager 17 eingepreßt ist. In den beiden Gleitlagem 17 ist eine Antriebswelle 19 der Pumpe gelagert. Ein außenverzahntes Ritzel 20 ist innerhalb der Pumpenkammer 12 auf der Antriebswelle 19 befestigt oder einstückig mit dieser hergestellt. Das Ritzel befindet sich innerhalb eines innenverzahnten Hohlrades 21, dessen Achse exzentrisch zur Achse des Ritzeis 20 angeordnet ist und das an seinem Außenumfang im Mittelteil 11 des Gehäuses 10 gelagert ist. Im Bereich beidseits einer durch die beiden Achsen des Ritzels 20 und des Hohlrades 21 aufgespannten Mittelebene 22 kämmen die beiden Zahnräder miteinander, zwischen denen sich im übrigen ein sichelförmiger Freiraum 23 befindet.
Dieser Freiraum 23 ist etwa zur Hälfte durch ein Füllstück 30 ausgefüllt. Für einen hohen Wirkungsgrad der Pumpe ist zwischen dem Füllstück 30 und den Zahnkränzen von Ritzel und Hohlrad eine gute Abdichtung notwendig. Deshalb ist das Füllstück 30 zweiteilig aus einem Dichtsegment 31 und einem Segmentträger 32 aufgebaut. Das Dichtsegment 31 ist dem Hohlrad 21 benachbart und kann mit einer geringen Überschußkraft gegen die Zahnköpfe des Hohlrades 21 gedrückt werden. Außerdem wird das Dichtsegment 31 im Betrieb der Pumpe hydraulisch auch gegen eine Abflachung 33 eines Anschlagstifts 34 gedrückt. Der Segmentträger 32 wird im Betrieb hydraulisch mit einer Innenseite und mit Kraftüberschuß an den Zahnkranz des Ritzels 30 und ebenfalls gegen die Abflachung 33 des Anschlagstifts 34 gedrückt.
Der Segmentträger 32 und das Dichtsegment 31 werden durch zwei Blattfedern 35 auseinandergedrückt, die sich in zwei axial verlaufenden und zum Dichtsegment 31 hin offenen Nuten 36 des Segmentträgers 32 befinden. Die beiden Nuten 36 nehmen außer jeweils einer Blattfeder 35 noch eine Dichtrolle 37 auf, die von der jeweiligen Blattfeder 35, im Betrieb aber auch hydraulisch an den Spalt zwischen dem Segmentträger 32 und dem Dichtsegment 31 gedrückt wird. Durch die beiden Dichtrollen 37 ist innerhalb des zwischen dem Segmentträger 32 und dem Dichtsegment 31 bestehenden Spalts ein gegen den Hochdruckbereich P und gegen den Niederdruckbereich S der Pumpe abgedichteter Druckraum entstanden, der mit einem Druck beaufschlagt werden soll,.der etwa dem halben Betriebsdruck der Pumpe entspricht. Er ist deshalb über jeweils eine Einfräsung 38 in je der Stirnseite des Dichtsegments mit einem Druckaufbaubereich am Zahnkranz des Hohlrades 21 verbunden, in dem etwa der halbe Betriebsdruck herrscht. Im Betrieb werden der Segmentträger 32 und das Dichtsegment 31 also außer von den Blattfedern 35 im Bereich vor der dem Anschlagstift 34 nähesten Dichtrolle 37 auch von einem hydrautischen Druck auseinandergedrückt. Dieser Druck entspricht zwischen den beiden Dichtrollen 37 einem Bruchteil des Betriebsdruckes, während er zwischen dem dem Anschlagstift 34 entfernten Ende des Dichtsegments 32 und der einen Dichtrolle 37 mit dem Betriebsdruck übereinstimmt.
Der Anschlagstift 34 durchquert den Freiraum 23 in der Mittelebene 22 und ist in zwei miteinander fluchtenden Sackbohrungen 39 der Deckelteile 13 und 14 beidseits der Pumpenkammer 12 drehbar gelagert. Die axiale Ausdehnung des Füllstücks 24 stimmt mit der axialen Ausdehnung der beiden Zahnräder 20 und 21 überein.
Für einen hohen Wirkungsgrad der Pumpe ist auch an den Stimselten der Zahnräder 20 und 21, also axial, eine gute Abdichtung zwischen der Hochdruckseite P, die sich durch einen Bereich der Pumpenkammer 12 abgrenzen läßt, in dem sich das Füllstück 30 befindet und in dem im Anschluß an das Füllstück die beiden Zahnräder allmählich immer weiter ineinandergreifen, und der Niederdruckseite S der Pumpe notwendig. Für eine gute axiale Abdichtung ist zwischen den Zahnrädern 20 und 21 und jedem Deckelteil 13 oder 14 eine Axialdichtscheibe 45 angeordnet, die von einem Druck, der in einem zwischen ihr und dem entsprechenden Deckelteil 13 oder 14 bestehenden Druckfeld 46 herrscht, mit einer gewissen Überschußkraft axial gegen die Zahnräder 20 und 21 gedrückt wird. Jede Axialdichtscheibe 45 umgibt eng die Antriebswelle 19 und den Anschlagstift 34 und ist dadurch in einer Ebene senkrecht zur Achse der Antriebswelle 19 in ihrer Lage gesichert. Ein Druckfeld 46 wird durch eine Ausnehmung im Deckelteil 13 bzw. 14 gebildet. Es hat, wie anhand der gestrichelten Linie aus Figur 2 hervorgeht, eine halbsichelförmige Gestalt und erstreckt sich etwa vom Fuße des Füllstücks 30 am Anschlagstift 34 aus bis nahe an die Mittelebene 22 heran.
Wie man aus Figur 2 ersieht überdeckt eine Axialdichtscheibe 45 im wesentlichen nur die Hochdruckseite der Pumpe, während die Niederdruckseite freigehalten ist, so daß dort keine Reibung zwischen den Zahnrädern und einer Axialdichtscheibe stattfinden kann, die den Wirkungsgrad der Pumpe erniedrigen würde.
An diametral gegenüberliegenden Stellen münden in die Pumpenkammer 12 ein Saugkanal 48 und ein Druckkanal 49, wobei der Durchmesser des Saugkanals 48 größer als der Durchmesser des Druckkanals 49 ist. Das Hohlrad 21 besitzt in den Zahnlücken radial von innen nach außen durchgehende Bohrungen 50, durch die eine hydraulische Flüssigkeit vom Saugkanal 48 aus in den Freiraum 23 und von dort in den Druckkanal 49 gelangen kann.
Die gezeigte Pumpe ist so aufgebaut, daß das Ritzel 20, im Betrieb nach Figur 2 betrachtet, im Uhrzeigersinn angetrieben werden muß. Auch das Hohlrad 21 dreht sich dann im Uhrzeigersinn. In den Zahnlücken befindliche Hydraulikflüssigkeit wandert mit den Zahnlücken am Füllstück 30 entlang und gelangt in den Zahneingriffsbereich der beiden Zahnräder. Dort wird die Hydraulikflüssigkeit durch die Bohrungen 50 des Hohlrades 21 hindurch in den Druckkanal 49 verdrängt. Gleichzeitig wird durch andere Bohrungen 50 und über die Stirnseiten der Zahnräder hinweg aus dem Saugkanal 48 Hydraulikflüssigkeit in den Freiraum 23 angesaugt.
Die Zahnräder der gezeigten Pumpe sind gehärtet, damit insbesondere die Zähne nicht verschleißen und ein hoher volumetrischer Wirkungsgrad erzielt wird. Damit im Betrieb auch der Verschleiß an den der Abdichtung zwischen dem Hochdruckbereich P und dem Niederdruckbereich S dienenden Bauteilen, nämlich dem Dichtsegment 31, dem Segmentträger 32 und den Axialdichtscheiben 45 gering bleibt und in den Kreislauf der Hydraulikflüssigkeit nicht Partikel gelangen, die Durchtlußöffnungen kleinen Querschnitts verstopfen oder in enge Führungsspalte geraten und zur Schwergängigkeit oder zum Ausfall der aneinander geführten Teile führen könnten, sind die genannten Bauteile an ihrer Oberfläche gehärtet. Sie bestehen aus einem Sintermaterial, dessen Ausgangsmischung 15% bis 25% Kupfer, 2,5% bis 3% Molybdändisulfid, etwa 0,4% Graphit und zum Rest Eisen in Form von Ferrit enthält. Letzteres ist derjenige Bestandteil, der gehärtet werden kann. Dies geschieht vornehmlich durch Gasnitrieren, einem allgemein bekannten Verfahren. Die anderen Bestandteile der Ausgangsmischung für das Sintern dienen dazu, um gegenüber einer reinen Ferritmischung die Gleiteigenschaften der fertigen Bauteile zu verbessern. Nach dem Sintern und dem Gasnitrieren werden die Bauteile noch geschliffen und dadurch sehr genau an die Gestalt der Gegenflächen an den Zahnrädern angepaßt. Somit vertragen die Bauteile Dichtsegment, Segmentträger und Axialdichtplatten auch eine Mangelschmierung, die insbesondere bei hohen Drücken, hohen Drehzahlen oder hohen Temperaturen der Hydraulikflüssigkeit auft-eten kann, ohne wesentlichen Abrieb.
Die Radialkolbenpumpe nach Figur 3, die zur Förderung von Kraftstoff in einem Automobil bestimmt ist, besitzt ein Pumpengehäuse 52, in dem ein zentraler Aufnahmeraum 53 zur Aufnahme eines von einer nicht näher dargestellten Antriebswelle mit einer Achse 54 angetriebenen Exzenterzapfens 55, auf dem ein Exzenterring 56 drehbar gelagert ist. Diesem sind gleichmäßig um die Achse 54 verteilt drei Verdrängereinheiten 57 zugeordnet, von denen sich jede in einer Radialbohrung 58 des Pumpengehäuses 52 befindet. Entsprechend den drei Verdrängereinheiten 57 ist der Exzenterring 56 mit drei am Umfang verteilten Abflachungen 59 versehen, auf denen jeweils ein Gleitschuh 60 einer Verdrängereinheit 57 abgestützt ist. Durch die unter kraftwirkung auf den Abflachungen 59 aufliegenden Gleitschuhe 60 wird der Exzenterring 56 derart festgehalten, daß er der Drehbewegung des Exzenterzapfens 55 nicht frei folgen kann, sondern unter Beibehaltung seiner Ausrichtung auf einem Kreis bewegt wird, also eine translatorische Kreisbewegung ausführt. Während des Betriebs gleiten somit die Gleitschuhe 60 auf den Abflachungen 59 hin und her.
Zu jeder Verdrängereinheit 57 gehört ein Zylinder 64 mit einer Zylinderbohrung 65, in die ein Gleitschuh 60 auf Anschlag eingepreßt ist. Durch jeden Gleitschuh gehen Kanäle hindurch, die ein Befüllen der Zylinderbohrung 65 über ein Saugventil 66 vom Aufnahmeraum 53 aus ermöglichen. Der Zylinder 64 ist über eine Druckfeder 68 in Richtung auf die Abflachung 59 vorgespannt, wobei die Druckfeder einerseits an einer Außenschulter des Zylinders 64 und andererseits an einem Schraubstopfen 70 abgestützt ist, der eine Radialbohrung 58 verschließt.
In eine zentrale Sackbohrung des Schraubstopfens 70 ist der Endabschnitt eines Kolbens 74 eingepreßt, der, den Schraubstopfen 70 weit überragend, in die Zylinderbohrung 65 eintaucht und der gemeinsam mit dem Zylinder 64 und dem Gleitschuh 60 einen volumenveränderlichen Arbeitsraum begrenzt.
Im Betrieb führt der Zylinder 64 eine radiale Hubbewegung aus. Außer der relativen Gleitbewegung zwischen dem Gleitschuh 60 und dem Exzenterring 56 findet im Betrieb also ein relative Gleitbewegung zwischen dem Zylinder 64 und dem Kolben 74 statt.
Damit der durch die Gleitbewegungen verursachte Verschleiß an den aneinander anliegenden Bauteilen gering bleibt, ist jeweils mindestens eines dieser Bauteile aus einem Sintermaterial hergestellt, das überwiegend Ferrit und zusätzlich einen Bestandteil zur Verbesserung der Gleiteigenschaften enthält und das zumindest an seiner Oberfläche gehärtet ist. So könnte zum Beispiel der Zylinder 64 aus einem unter dem Namen Ferromoliporit im Handel angebotenen Sintermaterial bestechen, das spezielle Schmierstofeinlagerungen enthält und härtbar ist. Eine auf wendig Oberflächenbehandlung des Kolbens 74, mit der man bisher die Probleme hinsichtlich des Verschleißes zu beherrschen versuchte, ist nicht nötig. Anstelle des Zylinders 64 könnte auch der Kolben 74 oder Zylinder und Kolben aus dem Sintermaterial bestehen.
Ebenso wie eines der Verdrängerteile ist auch zumindest eines der Teile Gleitschuh und Exzenterring, insbesondere der Exzenterring, aus dem genannten Sintermaterial gefertigt und zumindest an seiner Oberfläche gehärtet.
Ferromoliporit ist das Sintermaterial, das, wie bezüglich den Figuren 1 und 2 beschieben, auch für Teile der dort gezeigten Innenzahnradpumpe verwendet ist. Dementsprechend setzt sich die Ausgangsmischung für dieses Material aus 15 % bis 25 % Kupfer, 2,5 % bis 3 % Molybdändisulfid, etwa 0,4 % Graphit und zum Rest aus Eisen in Form von Ferrit zusammen.

Claims (10)

  1. Hydraulische Verdrängermaschine, insbesondere hydraulische Verdrängerpumpe, mit zwei gegeneinander gleitend bewegbaren Bauteilen,
    dadurch gekennzeichnet, daß zumindest ein Bauteil (31, 32, 45; 56, 60, 64, 74) der beiden Bauteile zumindest an der Oberfläche gehärtet ist und aus Sintermaterial besteht, das überwiegend Ferrit und zusätzlich einen Bestandteil zur Verbesserung der Gleiteigenschaften enthält.
  2. Verdrängermaschine nach Anspruch 1, dadurch gekennzeichnet, daß sie eine Innenzahnradmaschine, insbesondere Innenzahnradpumpe, ist und ein Gehäuse (10), ein außenverzahntes Ritzel (20), ein mit dem Ritzel (20) kämmendes Hohlrad (21) und ein Bauteil (31, 32, 45) zur Abdichtung eines Hochdruckbereichs (P) von einem Niederdruckbereich (S) entlang den Zahnköpfen oder den Stirnseiten der Zahnräder (20, 21) aufweist und daß das Bauteil (31, 32, 45) zumindest an der Oberfläche gehärtet ist und aus Sintermaterial besteht, das überwiegend Ferrit und einen Bestandteil zur Verbesserung der Gleiteigenschaften enthält.
  3. Hydraulische Verdrängermaschine nach Anspruch 1, dadurch gekennzeichnet, daß sie eine Kolbenmaschine ist und als Verdrängerteile zumindest einen Kolben (74) und einen den Kolben (74) aufnehmenden Zylinder (64) aufweist. und daß zumindest eines der beiden Verdrängerteile (74, 64) zumindest an der Oberfläche gehärtet ist und aus Sintermateriäl besteht, das überwiegend Ferrit und einen Bestandteil zur Verbesserung der Gleiteigenschaften enthält.
  4. Hydraulische Verdrängermaschine nach Anspruch 1 oder 3, dadurch gekennzeichnet, daß sie eine Kolbenmaschihe ist und als Verdrängerteile zumindest einen Kolben (74) und einen den Kolben (74) aufnehmenden Zylinder (64) und als Hubelement, an dem eines der Verdrängerteile gleitet, einen Exzenterring (56) oder eine Hubscheibe aufweist und daß das Hubelement zumindest an der Oberfläcfie gehärtet ist und aus Sintermaterial besteht, das überwiegend Ferrit und einen Bestandteil zur Verbesserung der Gleiteigenschaften enthält.
  5. Hydraulische Verdrängermaschine nach Anspruch 4, dadurch gekennzeichnet, daß das Hubelement ein Exzenterring (56) mit mehreren Abflachungen (59) ist, auf denen jeweils ein Verdrängerelement (64, 60) gleitet.
  6. Hydraulische Verdrängermaschine nach Anspruch 1 oder 3, dadurch gekennzeichnen, daß sie eine Kolbenmaschine ist und als Verdrängerteile zumindest einen Kolben (74) und einen den Kolben (74) aufnehmenden Zylinder (64, 60) und als Hubelement, an dem eines der Verdrängerteile (64, 60) gleitet, einen Exzenterring (56) oder eine Hubscheibe aufweist und daß das am Hubelement gleitende Verdrängerteil (64, 60) zumindest an der am Hubelement gleitenden Oberfläche gehärtet ist und zumindest an dieser Oberfläche aus Sintermaterial besteht, das überwiegend Ferrit und einen Bestandteil zur Verbesserung der Gleiteigenschaften enthält.
  7. Hydraulische Verdrängermaschine nach einem vorhergehenden Anspruch, dadurch gekennzeichnet, daß das aus dem Sintermaterial bestehende Bauteil (31, 32, 45; 56, 60, 64, 74) durch Nitrieren gehärtet ist.
  8. Hydraulische Verdrängermaschine nach einem vorhergehenden Anspruch, dadurch gekennzeichnet, daß das Sintermaterial zu vorzugsweise 15% bis 25% Kupfer enthält.
  9. Hydraulische Verdrängermaschine nach einem vorhergehenden Anspruch, dadurch gekennzeichnet, daß das Sintermaterial zu vorzugsweise 2,5% bis 3% Molybdändisulfid enthält.
  10. Hydraulische Verdrängermaschine nach einem vorhergehenden Anspruch, dadurch gekennzeichnet, daß das Sintermaterial zu vorzugsweise 0,4% Graphit enthält.
EP99125173A 1998-12-18 1999-12-17 Hydraulische Verdrängermaschine, insbesondere Verdrängerpumpe Expired - Lifetime EP1013926B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19858483A DE19858483A1 (de) 1998-12-18 1998-12-18 Hydraulische Verdrängermaschine, insbesondere Verdrängerpumpe
DE19858483 1998-12-18

Publications (2)

Publication Number Publication Date
EP1013926A1 EP1013926A1 (de) 2000-06-28
EP1013926B1 true EP1013926B1 (de) 2004-09-15

Family

ID=7891565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99125173A Expired - Lifetime EP1013926B1 (de) 1998-12-18 1999-12-17 Hydraulische Verdrängermaschine, insbesondere Verdrängerpumpe

Country Status (4)

Country Link
US (1) US6450792B1 (de)
EP (1) EP1013926B1 (de)
JP (1) JP2000205142A (de)
DE (2) DE19858483A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1310755B1 (it) * 1999-11-30 2002-02-22 Elasis Sistema Ricerca Fiat Pompa idraulica ad alta pressione, in particolare pompa a pistoniradiali per il carburante di un motore a combustione interna.
DE10044997A1 (de) * 2000-09-11 2002-03-21 Schaeffler Waelzlager Ohg Druckplatte einer Radialkolbenpumpe
KR20040041964A (ko) * 2002-11-12 2004-05-20 현대자동차주식회사 분할형 크레센트를 갖는 변속기의 오일 펌프
DE10326879A1 (de) * 2003-06-14 2004-12-30 Daimlerchrysler Ag Radialkolbenpumpe zur Kraftstoffhochdruckerzeugung bei Kraftstoffeinspritzsystemen von Brennkraftmaschinen
DE102004033321B4 (de) * 2004-07-09 2006-03-30 Brueninghaus Hydromatik Gmbh Axialkolbenmaschine mit Verschleißschutzschicht
US8142142B2 (en) * 2008-09-05 2012-03-27 Siemens Energy, Inc. Turbine transition duct apparatus
DE102010062219A1 (de) * 2010-11-30 2012-05-31 Robert Bosch Gmbh Innenzahnradpumpe
DE102010064130A1 (de) * 2010-12-23 2012-06-28 Robert Bosch Gmbh Axialscheibe und Zahnradpumpe mit Axialscheibe
DE102011078064A1 (de) * 2011-06-24 2012-12-27 Robert Bosch Gmbh Innenzahnradpumpe
CN102536793B (zh) * 2012-02-17 2015-01-14 河南大学 内切筒状四转子容积泵
DK177834B1 (en) * 2013-02-27 2014-09-08 C C Jensen As Device for processing a liquid under vacuum pressure
DE102013204616B4 (de) * 2013-03-15 2021-12-09 Robert Bosch Gmbh 2Innenzahnradpumpe
DE102013207096A1 (de) * 2013-04-19 2014-10-23 Robert Bosch Gmbh Innenzahnradpumpe für eine hydraulische Fahrzeugbremsanlage
DE102013207103A1 (de) * 2013-04-19 2014-10-23 Robert Bosch Gmbh Innenzahnradpumpe für eine hydraulische Fahrzeugbremsanlage
DE102014103958A1 (de) * 2014-03-21 2015-09-24 Eckerle Industrie-Elektronik Gmbh Motor-Pumpen-Einheit

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506383A (en) * 1968-08-29 1970-04-14 Trw Inc Low friction gear sets for pumps and motors
GB1270122A (en) * 1969-03-06 1972-04-12 Plessey Co Ltd Improvements in or relating to gear pumps
US3808659A (en) * 1972-07-27 1974-05-07 Gen Signal Corp Bonded bronze-iron liners for steel cylinder barrel and method of making same
DE2254752A1 (de) * 1972-11-09 1974-05-16 Bosch Gmbh Robert Radialkolbenmaschine
US4132515A (en) * 1975-10-27 1979-01-02 Kruger Heinz W Crescent gear pump or motor having bearing means for supporting the ring gear
US4501613A (en) * 1982-07-22 1985-02-26 Tokyo Shibaura Denki Kabushiki Kaisha Wear resistant sintered body
DE3301098A1 (de) * 1983-01-14 1984-07-19 Knorr-Bremse GmbH, 8000 München Rotationskompressor
DE3942091C1 (de) * 1989-12-20 1991-08-14 Etablissement Supervis, Vaduz, Li
DE4021500C3 (de) * 1990-07-05 1998-10-22 Mannesmann Vdo Ag Förderaggregat, insbesondere zum Fördern von Kraftstoff
JPH0551709A (ja) * 1991-08-22 1993-03-02 Toshiba Corp 圧縮機用摺動部品材料
DE4200987A1 (de) * 1992-01-16 1993-07-22 Vittorio Varisco Zahnradpumpe
US5749331A (en) * 1992-03-23 1998-05-12 Tecsyn, Inc. Powdered metal cylinder liners
DE4213798C2 (de) 1992-04-27 2002-10-24 Bosch Gmbh Robert Radialkolbenpumpe, insbesondere Kraftstoffpumpe für Verbrennungsmotoren
JPH06207252A (ja) * 1993-01-06 1994-07-26 Toshiba Corp 鉄基摺動部品材料
DE4345273C2 (de) 1993-07-03 1997-02-06 Eckerle Rexroth Gmbh Co Kg Hydraulische Zahnradmaschine (Pumpe oder Motor), insbesondere Innenzahnradmaschine
DE4430909A1 (de) * 1994-08-31 1996-03-07 Bosch Gmbh Robert Einheit aus Antriebsmotor und Radialkolbenpumpe
KR0134002B1 (ko) * 1994-11-16 1998-04-28 배순훈 압력형 전자펌프의 플런저
JPH08159044A (ja) * 1994-12-01 1996-06-18 Mitsubishi Materials Corp 内接式ギヤポンプ
DE19528618A1 (de) * 1995-08-04 1997-02-06 Prominent Dosiertechnik Gmbh Verdrängerkolbenpumpe
DE19725195A1 (de) * 1996-06-29 1998-01-02 Luk Fahrzeug Hydraulik Flügelzellenpumpe
DE19726794A1 (de) * 1997-06-24 1999-01-07 Elektra Beckum Ag Wasser-Hochdruckreinigungsgerät

Also Published As

Publication number Publication date
EP1013926A1 (de) 2000-06-28
DE59910510D1 (de) 2004-10-21
US6450792B1 (en) 2002-09-17
JP2000205142A (ja) 2000-07-25
DE19858483A1 (de) 2000-08-31

Similar Documents

Publication Publication Date Title
EP1013926B1 (de) Hydraulische Verdrängermaschine, insbesondere Verdrängerpumpe
DE3142990C2 (de)
EP0862693B1 (de) Kolbenpumpe
EP1749145B1 (de) Spaltverluststromsteuerung einer drehkolben- zahnradmaschine
DE102011107157B4 (de) Zahnringpumpe
DE102005041579B4 (de) Innenzahnradpumpe mit Füllstück
EP2652309B1 (de) Hochdruckpumpe
EP1570178B1 (de) Hochdruckpumpe für eine kraftstoffeinspritzeinrichtung einer brennkraftmaschine
DE19882149C2 (de) Zahnradpumpe
DE102010045867A1 (de) Axialkolbenmaschine
EP2550456B1 (de) Zahnradpumpe
DE102010055682A1 (de) Gehäuse einer Außenzahnradmaschine und Außenzahnradmaschine
DE3605452A1 (de) Verteilereinspritzpumpe
DE102009019418A1 (de) Umlaufverdrängerpumpe mit verbesserter Lagerschmierung
DE3225790A1 (de) Pumpe oder motor
EP1228313B1 (de) Hydraulische kolbenpumpe
DE10017780B4 (de) Kolbenmaschine
DE102008042877A1 (de) Hochdruckpumpenanordnung
WO2008080445A1 (de) Hydraulische kolbenmaschine
DE3112930A1 (de) Axialkolbenpumpe
EP1798415B1 (de) Hochdruckpumpe
DE1196507B (de) Zahnradpumpe oder -motor
DE1453476A1 (de) Hydraulische Maschine
DE2419855A1 (de) Zahnradpumpe
DE10211865A1 (de) Verdrängungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001023

AKX Designation fees paid

Free format text: BE DE FR IT

17Q First examination report despatched

Effective date: 20030311

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR IT

REF Corresponds to:

Ref document number: 59910510

Country of ref document: DE

Date of ref document: 20041021

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20051212

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060220

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070703

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070831

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071217