EP1007753A1 - Verfahren zum herstellen einer haftschicht für eine wärmedämmschicht - Google Patents

Verfahren zum herstellen einer haftschicht für eine wärmedämmschicht

Info

Publication number
EP1007753A1
EP1007753A1 EP99936366A EP99936366A EP1007753A1 EP 1007753 A1 EP1007753 A1 EP 1007753A1 EP 99936366 A EP99936366 A EP 99936366A EP 99936366 A EP99936366 A EP 99936366A EP 1007753 A1 EP1007753 A1 EP 1007753A1
Authority
EP
European Patent Office
Prior art keywords
layer
slip
component
producing
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99936366A
Other languages
English (en)
French (fr)
Other versions
EP1007753B1 (de
Inventor
Gerhard Wydra
Martin Thoma
Horst Pillhöfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP1007753A1 publication Critical patent/EP1007753A1/de
Application granted granted Critical
Publication of EP1007753B1 publication Critical patent/EP1007753B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/58Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in more than one step

Definitions

  • the invention relates to a method for producing an adhesive layer for a thermal insulation layer, which is applied to a component.
  • Thermally or mechanically stressed components are covered with protective layers, e.g. Wear protection layers or thermal insulation layers.
  • An adhesive layer is generally provided between such an outer layer and the component. Such adhesive layers must have a certain roughness and surface topography for clinging to the outer layer.
  • the adhesive layers are e.g. in the case of thermally highly stressed, metallic components, such as turbine blades, between the component and a thermal barrier coating.
  • thermal insulation layers can consist of a base made of zirconium oxide with additions of calcium or magnesium oxide.
  • the adhesive layers must be oxide-free and resistant to hot gas corrosion. Since different thermal expansions generally occur in the thermal barrier coating and the material of the metallic component, these must also be at least partially compensated for by the adhesive layer.
  • Diffusion layers which contain Al, Cr or Si are known as adhesive layers and are produced by means of the so-called powder pack process or out-of-pack process.
  • the disadvantages of the diffusion layers produced using these methods are their brittleness and the limited layer thicknesses of up to approx. 100 ⁇ m.
  • Another known coating layer based on MCrAlY is sprayed onto the component by means of plasma spraying or is vapor-deposited onto the component by means of vaporization of the layer components in the electron beam. Layer thicknesses of up to approx. 300 ⁇ m are achieved. Such processes are very complex and expensive in terms of production technology. Further disadvantages consist in the fact that the layers cannot be applied uniformly on geometrically complicated components, scattering in of the layer composition occur and the layer elements oxidize during spraying or vapor deposition.
  • JP 55-82761 A it is known to expose components of e.g. a gas turbine, by first applying Ni powder provided with a binder to the component and heat-treating, then introducing Cr by chemical vapor deposition or Al by a packing process and finally depositing and heat-treating Pt, Pd or Rh.
  • the object of the present invention is to provide a method for producing a layer of the type described in the introduction, which is as simple and inexpensive to manufacture as possible in terms of production technology.
  • the solution to the object is characterized by the steps of a) producing a slip by mixing at least one of the elements
  • Powder containing Cr, Ni or Ce with a binder b) applying the slip to the component, c) drying the slip at temperatures from room temperature to 300 ° C., and d) alitizing the slip layer, the process being controlled so that the Adhesive layer has a structure with a grain size smaller than 75 microns and a void fraction of jO to 40%.
  • the advantage of the method is that the powder mixed with a binder can be applied in a simple manner to the component to form a layer, without expensive processes such as plasma spraying or electron beam evaporation being required from the plant outlay.
  • the layers produced using this method have a comparatively fine-grained structure with a grain size that is smaller than 75 ⁇ m.
  • the layer has a void fraction of 0 to 40%.
  • the layer has improved thermal fatigue resistance and an advantageous expansion behavior that is fault-tolerant to cracks.
  • additions of elements such as Y are equally distributed and not oxidized.
  • the slip is produced with a powder from MCrAIY or a MCrAlY alloy, where M stands for at least one of the elements Ni, Co, Pt or Pd and instead of Y also Hf or Ce can be applied.
  • the powder is preferably present with a particle size distribution of 5 to 120 ⁇ m.
  • the slip is preferably applied to the component by spraying, pinning or dipping, as a result of which the process can be carried out easily and inexpensively in terms of production technology.
  • locally delimited layers can also be applied to geometrically complex components in a simple manner.
  • no expensive and complex spraying and evaporating systems are required.
  • unlike thermal spraying or electron beam evaporation the problem of oxidation of powder particles does not arise.
  • the drying of the slip, which is present in a suspension together with the organic or inorganic binder, is preferably carried out over 0.5-4 hours, a duration of 1-2 hours having proven advantageous.
  • the slip layer is heat-treated in argon or vacuum at temperatures of 750 to 1200 ° C. before the alitation, wherein the heat treatment can be carried out for 1-6 hours in order to connect the slip layer to the component by means of diffusion.
  • the final step of alitizing the slip layer is carried out at temperatures between 800 to 1200 ° C. and for a period of 1-12 hours.
  • the alitation is used for diffusion bonding and compacting the layer and is carried out in a customary process, for example in the powder pack process, with the introduction of Al.
  • the AI diffuses into the layer and into the base material of the component.
  • the layer is preferably an adhesive layer, to which a heat insulation layer is applied as an outer layer or protective layer, which can be done in the usual way by means of plasma spraying or electron beam vapor deposition.
  • Fig. 1 is a micrograph of the layer before alitizing
  • Fig. 2 is a micrograph of the layer after alitizing.
  • a MCrAlY powder is first mixed in suspension with a conventional inorganic binder to produce a slip.
  • the grain sizes of the powder particles are between 5 and 120 ⁇ m. This creates a flowable, sprayable mass.
  • the viscosity of this mass can e.g. by the grain size of the powder particles used.
  • the M stands for nickel or cobalt or an alloy of the two elements.
  • the proportion of aluminum and chromium is chosen to be as high as possible in order to take advantage of their protective effect against oxidation, which is based on the fact that chromium and aluminum form protective oxides at high temperatures.
  • the slip is then applied to a metallic component, such as a turbine guide vane made of a nickel-based alloy, with a brush to form a layer.
  • a metallic component such as a turbine guide vane made of a nickel-based alloy
  • the thickness and local spread of the layer can be influenced in a simple manner with this type of application.
  • the application could e.g. also done with a spray gun.
  • the slurry in suspension is dried at room temperature for about 1.5 hours.
  • the dried layer is then heat treated in argon at 1000 ° C. for one hour in order to achieve a connection of the layer with the material of the turbine guide vane by means of diffusion. Then the layer is at about 1 100 ° C. Alitated for 4 hours using a conventional method to strengthen the connection to the metallic component by means of diffusion and to compact the layer. Al enters the layer and the base material of the metallic component and thus ensures both a firm connection Layer with the component as well as for a connection of the spherical MCrAlY particles to each other. In addition, the MCrAlY particles sinter together at least partially.
  • Layer 1 shows a layer 2 applied to a metallic component 1, which has been heat-treated but has not yet been treated.
  • Layer 2 clearly shows the spherical structure of the MCrAlY particles as well as the cavities between them.
  • the component 1 and the layer 2 after the alitation step shows the component 1 and the layer 2 after the alitation step.
  • the spherical MCrAlY particles are connected to one another by the penetration of Al into the layer and into the base material of component 1.
  • the MCrAlY particles were sintered together in the alitation step.
  • the layer produced in this way has a significantly improved thermal fatigue resistance in comparison to (adhesive) layers produced in a conventional manner.
  • the active elements, such as Y, are evenly distributed and not oxidized.
  • the layer produced in this way can be used as an adhesive layer, to which a thermal insulation layer is finally applied by plasma spraying or another conventional method.
  • the layer can also be used as a high-quality hot gas corrosion layer without the need for an additional outer protective layer.
  • the properties of the corrosion and oxidation-resistant layer can be varied or improved by extending the alitation process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer korrosions- und oxidationsbeständigen Schicht, die auf ein Bauteil aufgebracht wird, wobei das Verfahren fertigungstechnisch einfach und kostengünstig durchzuführen ist und die Schritte aufweist: a) Herstellen eines Schlickers durch Mischen wenigstens eines der Elemente Cr, Ni oder Ce enthaltenden Pulvers mit einem Bindemittel, b) Auftragen des Schlickers auf das Bauteil, c) Trocknen des Schlickers bei Temperaturen von Raumtemperatur bis 300 °C, und d) Alitieren der Schlickerschicht.

Description

Verfahren zum Herstellen einer Haftschicht für eine Wärmedämmschicht
Die Erfindung betrifft ein Verfahren zum Herstellen einer Haftschicht für eine Wä r- medämmschicht, die auf ein Bauteil aufgebracht wird.
Thermisch oder mechanisch belastete Bauteile werden mit Schutzschichten, z.B. Verschleißschutzschichten oder Wärmedämmschichten versehen. Zwischen einer solchen äußeren Schicht und dem Bauteil wird im allgemeinen eine Haftschicht vo r- gesehen. Derartige Haftschichten müssen eine bestimmte Rauhigkeit und Oberflä- chentopographie zur Verklammerung mit der äußeren Schicht aufweisen.
Im Gasturbinenbau werden die Haftschichten z.B. bei thermisch hochbelasteten, metallischen Bauteilen, wie Turbinenschaufeln, zwischen dem Bauteil und einer Wärmedämmschicht vorgesehen. Derartige Wärmedämmschichten können aus einer Basis aus Zirkonoxid mit Zusätzen von Caicium- oder Magnesiumoxid bestehen. Die Haftschichten müssen neben der Rauhigkeit zur Verklammerung mit der äußeren Schutzschicht bzw. der Wärmedämmschicht oxidfrei und heißgaskorrosionsbestän- dig sein. Da in der Wärmedämmschicht und dem Werkstoff des metallischen Bauteils im allgemeinen unterschiedliche Wärmedehnungen auftreten, müssen diese dar- überhinaus von der Haftschicht wenigstens teilweise ausgeglichen werden.
Als Haftschichten sind Diffusionsschichten, die AI, Cr oder Si enthalten, bekannt, welche mittels sog. Pulverpackverfahren oder Out of Pack-Verfahren hergestellt werden. Die Nachteile der mit diesen Verfahren hergestellten Diffusionsschichten bestehen in ihrer Sprödigkeit und den begrenzten Schichtdicken von bis ca. 100 μm.
Eine andere bekannte sog. Auflageschicht auf MCrAlY-Basis wird mittels Plasmaspritzen auf das Bauteil aufgespritzt oder mittels Verdampfen der Schichtb e- standteile im Elektronenstrahl auf das Bauteil aufgedampft. Dabei werden Schicht- dicken bis zu ca. 300 μm erzielt. Derartige Verfahren sind fertigungstechnisch sehr aufwendig und teuer. Weitere Nachteile bestehen darin, daß die Schichten auf ge o- metrisch komplizierten Bauteilen nicht gleichmäßig aufzubringen sind, Streuungen in der Schichtzusammensetzung auftreten und die Schichtelemente beim Aufspritzen bzw. Aufdampfen oxidieren.
Aus der JP 55-82761 A ist es bekannt, heißen Gasen ausgesetzte Bauteile von, z.B. einer Gasturbine, zu schützen, indem zunächst mit einem Binder versehenes Ni- Pulver auf das Bauteil aufgebracht und wärmebehandelt wird, dann Cr durch chemische Gasphasenabscheidung oder AI durch ein Packverfahren eingebracht werden und schließlich Pt, Pd oder Rh abgeschieden und wärmebehandelt werden.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zum Herstellen einer Schicht der eingangs beschriebenen Gattung zu schaffen, die mit dem fertigungstechnisch möglichst einfach und kostengünstig herzustellen ist.
Die Lösung der Aufgabe ist erfindungsgemäß durch die Schritte gekennzeichnet, a) Herstellen eines Schlickers durch Mischen wenigstens eines der Elemente
Cr, Ni oder Ce enthaltenden Pulvers mit einem Bindemittel, b) Auftragen des Schlickers auf das Bauteil, c) Trocknen des Schlickers bei Temperaturen von Raumtempeartur bis 300° C, und d) Alitieren der Schlickerschicht, wobei das Verfahren so gesteuert wird, daß die Haftschicht eine Struktur mit einer Korngröße kleiner als 75 μm und einem Hohlraumanteil von jO bis 40% aufweist.
Der Vorteil des Verfahrens besteht darin, daß das mit einem Bindemittel gemischte Pulver auf einfache Weise auf das Bauteil unter Bildung einer Schicht aufgetragen werden kann, ohne daß vom Anlagenaufwand teure Verfahren wie das Plasmaspri tzen oder das Elektronenstrahlaufdampfen erforderlich sind. Die mit diesem Verfa h- ren hergestellten Schichten haben eine vergleichsweise feinkörnige Struktur mit einer Korngröße, die kleiner als 75 μm ist. Die Schicht weist einen Hohlraumanteil von 0 bis 40 % auf. Als Folge besitzt die Schicht eine verbesserte thermische Erm ü- dungsbeständigkeit sowie ein vorteilhaftes Ausdehnungsverhalten, das fehlertolerant gegenüber Rissen ist. Zudem sind Zusätze von Elementen, wie z.B. Y, gleich verteilt und nicht oxidiert. In einer bevorzugten Ausgestaltung des Verfahrens wir der Schlicker mit einem Pu I- ver aus MCrAIY bzw. einer MCrAlY-Legierung hergestellt, wobei M für wenigstens eines der Elemente Ni, Co, Pt oder Pd steht und anstelle von Y auch Hf oder Ce ver- wendet werden kann.
Bevorzugt liegt das Pulver mit einer Korngrößenverteilung von 5 bis 120 μm vor.
Das Auftragen des Schlickers auf das Bauteil erfolgt bevorzugt durch Spritzen, Pi n- sein oder Tauchen, wodurch sich das Verfahren fertigungstechnisch einfach und kostengünstig durchführen läßt. Durch diese Art des Auftragens lassen sich auf ei n- fache Weise lokal begrenzte Schichten auch auf geometrisch komplizierten Bauteilen aufbringen. Zudem sind keine teuren und aufwendigen Spritz- und Verdampferanlagen erforderlich. Außerdem tritt anders als beim thermischen Spritzen oder dem Elektronenstrahlaufdampfen das Problem der Oxidation von Pulverpartikeln nicht auf.
Bevorzugt wird das Trocknen des Schlickers, der zusammen mit dem organischen oder anorganischen Bindemittel in einer Suspension vorliegt, über 0,5 - 4 Stunden durchgeführt, wobei sich eine Dauer von 1 - 2 Stunden als vorteilhaft erwiesen hat.
Bevorzugt ist ferner, daß die Schlickerschicht vor dem Alitieren bei Temperaturen von 750 bis 1200 °C in Argon oder Vakuum wärmebehandelt wird, wobei das Wärmebehandeln über 1 - 6 Stunden durchgeführt werden kann, um die Schlickerschicht mit dem Bauteil mittels Diffusion zu verbinden.
In einer bevorzugten Ausgestaltung des Verfahrens wird der abschließende Schritt Alitieren der Schlickerschicht bei Temperaturen zwischen 800 bis 1200 °C und einer Dauer von 1 - 12 Stunden durchgeführt. Das Alitieren dient zum Diffusionsverbinden und Kompaktieren der Schicht und wird in einem üblichen Verfahren, wie z.B. im Pulverpack-Verfahren, unter Einbringung von AI durchgeführt. Das AI diffundiert in die Schicht und in den Grundwerkstoff des Bauteils. Ferner ist die Schicht bevorzugt eine Haftschicht, auf die eine Wärmedämmschicht als äußere Schicht bzw. Schutzschicht aufgebracht wird, was in üblicher Weise mi t- tels Plasmaspritzen oder Elektronenstrahlaufdampfen erfolgen kann.
Im folgenden wird die Erfindung anhand einer Zeichnung unter Bezugnahme auf ein Beispiel näher erläutert. Es zeigt:
Fig. 1 ein Schliffbild der Schicht vor dem Alitieren und
Fig. 2 ein Schliffbild der Schicht nach dem Alitieren.
Bei der Herstellung einer Schicht wird zunächst zur Herstellung eines Schlickers ein MCrAlY-Pulver in einer Suspension mit einem üblichen anorganischen Bindemittel gemischt. Die Korngrößen der Pulverpartikel liegen zwischen 5 und 120 μm. Dabei bildet sich eine fließfähige, spritzbare Masse. Die Viskosität dieser Masse läßt sich z.B. durch die Korngröße der verwendeten Pulverpartikel beeinflussen. Das M steht für Nickel oder Kobalt oder eine Legierung der beiden Elemente. Der Anteil von AI u- minium und Chrom wird so hoch wie möglich gewählt, um deren Schutzeffekt gegen Oxidation auszunutzen, der darauf beruht, das Chrom und Aluminium bei hohen Temperaturen als Schutzfilme dienende Oxide bilden.
Anschießend wird der Schlicker unter Bildung einer Schicht mit einem Pinsel auf ein metallisches Bauteil, wie eine Turbinenleitschaufel aus einer Nickelbasis-Legierung, aufgetragen. Die Dicke und lokale Ausbreitung der Schicht läßt sich bei dieser Art des Auftragens auf einfache Weise beeinflussen. Alternativ könnte das Auftragen z.B. auch mit einer Spritzpistole erfolgen.
Im nächsten Schritt wird der in einer Suspension vorliegende Schlicker bei Rau m- temperatur über etwa 1 ,5 Stunden getrocknet.
Die getrocknete Schicht wird dann bei 1000 °C eine Stunde in Argon wärmebehandelt, um eine Verbindung der Schicht mit dem Werkstoff der Turbinenleitschaufel mittels Diffusion zu erzielen. Daran anschließend wird die Schicht bei etwa 1 100 °C 4 Stunden lang mit einem üblichen Verfahren alitiert, um die Verbindung mit dem metallischen Bauteil mittels Diffusion zu verstärken und die Schicht zu kompaktie- ren. Dabei tritt AI in die Schicht und den Grundwerkstoff des metallischen Bauteils ein und sorgt so sowohl für eine feste Verbindung der Schicht mit dem Bauteil als auch für eine Verbindung der kugligen MCrAlY-Partikel untereinander. Zudem sintern die MCrAlY-Partikel untereinander wenigstens teilweise zusammen.
Fig. 1 zeigt eine auf ein metallisches Bauteil 1 aufgebrachte Schicht 2, die wärmebehandelt aber noch nicht alitiert worden ist. In der Schicht 2 ist die kuglige Struktur der MCrAlY-Partikel ebenso wie die dazwischen befindlichen Hohlräume deutlich zu erkennen.
In Fig. 2 ist das Bauteil 1 und die Schicht 2 nach dem Alitierungsschritt dargestellt. In der Schicht 2 liegen deutlich weniger Hohlräume vor. Zudem sind die kugligen MCrAlY-Partikel durch das Eindringen von AI in die Schicht und in den Grundwerkstoff des Bauteils 1 miteinander verbunden. Außerdem ist bei dem Alitierungsschritt ein Zusammensintern der MCrAlY-Partikel erfolgt.
Die so hergestellte Schicht weist eine deutlich verbesserte thermische Ermüdung s- beständigkeit im Vergleich zu auf herkömmliche Weise hergestellten (Haft-) Schic h- ten auf. Zudem erfolgt keine Oxidbildung der Schicht. Darüberhinaus sind die Aktivelemente, wie Y, gleichmäßig verteilt und nicht oxidiert.
Die so hergestellte Schicht kann als Haftschicht eingesetzt werden, auf die abschli e- ßend eine Wärmedämmschicht durch Plasmaspritzen oder ein anderes übliches Ve r- fahren aufgebracht wird. Die Schicht läßt sich zudem ohne weiteres als hochwertige Heißgaskorrosionsschicht einsetzen, ohne daß eine zusätzliche, äußere Schut zschicht aufzubringen ist. Die eigenschaften der korrosions- und oxidationsbeständi- gen Schicht lassen sich durch Verlängern des Alitierungsvorgangs variieren bzw. verbessern.

Claims

Patentansprüche
1. Verfahren zum Herstellen einer Haftschicht für eine Wärmedämmschicht, die auf ein Bauteil aufgebracht wird, gekennzeichnet durch die Schritte a) Herstellen eines Schlickers durch Mischen wenigstens eines der Elemente
Cr, Ni oder Ce enthaltenden Pulvers mit einem Bindemittel, b) Auftragen des Schlickers auf das Bauteil, c) Trocknen des Schlickers bei Temperaturen von Raumtemperatur bis 300 °C, und d) Alitieren der Schlickerschicht, wobei das Verfahren so gesteuert wird, daß die Haftschicht eine Struktur mit einer Korngröße kleiner als 75 μm und einem Hohlraumanteil von 0 bis 40% aufweist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Schlicker mit e i- nem Pulver aus MCrAIY hergestellt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Pulver mit einer Korngrößenverteilung von 5 bis 120 μm vorliegt.
4. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch g e- kennzeichnet, daß das Auftragen durch Spritzen, Pinseln oder Tauchen erfolgt.
5. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Bauteil aus einer Legierung auf Nickel- oder Kobaltbasis besteht.
6. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Trocknen über 0,5 - 4 Stunden durchgeführt wird.
7. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch g e- kennzeichnet, daß die Schlickerschicht vor dem Alitieren bei Temperaturen von 750 bis 1200 °C in Argon oder Vakuum wärmebehandelt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Wärmebehandeln über 1 - 6 Stunden durchgeführt wird.
9. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Alitieren bei Temperaturen zwischen 800 bis 1200 °C und einer Dauer von 1 bis 12 Stunden durchgeführt wird.
EP99936366A 1998-06-03 1999-05-31 Verfahren zum herstellen einer haftschicht für eine wärmedämmschicht Expired - Lifetime EP1007753B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19824792A DE19824792B4 (de) 1998-06-03 1998-06-03 Verfahren zum Herstellen einer Haftschicht für eine Wärmedämmschicht
DE19824792 1998-06-03
PCT/DE1999/001598 WO1999063126A1 (de) 1998-06-03 1999-05-31 Verfahren zum herstellen einer haftschicht für eine wärmedämmschicht

Publications (2)

Publication Number Publication Date
EP1007753A1 true EP1007753A1 (de) 2000-06-14
EP1007753B1 EP1007753B1 (de) 2002-04-03

Family

ID=7869775

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99936366A Expired - Lifetime EP1007753B1 (de) 1998-06-03 1999-05-31 Verfahren zum herstellen einer haftschicht für eine wärmedämmschicht

Country Status (6)

Country Link
US (1) US6709711B1 (de)
EP (1) EP1007753B1 (de)
JP (1) JP4469083B2 (de)
DE (2) DE19824792B4 (de)
ES (1) ES2176003T3 (de)
WO (1) WO1999063126A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228510B1 (en) * 1998-12-22 2001-05-08 General Electric Company Coating and method for minimizing consumption of base material during high temperature service
US6485780B1 (en) * 1999-08-23 2002-11-26 General Electric Company Method for applying coatings on substrates
DE19946650C2 (de) * 1999-09-29 2003-11-27 Mtu Aero Engines Gmbh Verfahren zum Herstellen einer Panzerung für ein metallisches Bauteil
EP1123987A1 (de) * 2000-02-11 2001-08-16 General Electric Company Reparierbare Diffusionsaluminidbeschichtungen
FR2813318B1 (fr) * 2000-08-28 2003-04-25 Snecma Moteurs Formation d'un revetement aluminiure incorporant un element reactif, sur un substrat metallique
DE102004034410A1 (de) * 2004-07-16 2006-02-02 Mtu Aero Engines Gmbh Schutzschicht zum Aufbringen auf ein Substrat und Verfahren zur Herstellung einer Schutzschicht
US7316057B2 (en) * 2004-10-08 2008-01-08 Siemens Power Generation, Inc. Method of manufacturing a rotating apparatus disk
JP2007262447A (ja) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd 耐酸化膜及びその形成方法、遮熱コーティング、耐熱部材、及びガスタービン
DE102009008510A1 (de) * 2009-02-11 2010-08-12 Mtu Aero Engines Gmbh Beschichtung und Verfahren zum Beschichten eines Werkstücks
DE102013207457B4 (de) * 2013-04-24 2017-05-18 MTU Aero Engines AG Verfahren zur Herstellung einer Hochtemperaturschutzbeschichtung
US9587302B2 (en) * 2014-01-14 2017-03-07 Praxair S.T. Technology, Inc. Methods of applying chromium diffusion coatings onto selective regions of a component
DE102015213555A1 (de) * 2015-07-20 2017-03-09 MTU Aero Engines AG Dichtrippenpanzerung und Verfahren zur Herstellung derselben
DE102015221482A1 (de) 2015-11-03 2017-05-04 MTU Aero Engines AG Diffusionsschichten
DE102016009854A1 (de) * 2016-08-12 2018-02-15 Dechema Forschungsinstitut Stiftung Bürgerlichen Rechts Langzeitstabiler, lagerfähiger Schlicker für umweltfreundliche Diffusionsbeschichtungen
DE102021127344A1 (de) * 2021-10-21 2023-04-27 MTU Aero Engines AG Verfahren zum Beschichten eines Bauteils eines Flugtriebwerks mit einer Verschleißschutzschicht und Bauteil für ein Flugtriebwerk mit wenigstens einer Verschleißschutzschicht

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3720537A (en) * 1970-11-25 1973-03-13 United Aircraft Corp Process of coating an alloy substrate with an alloy
GB1427054A (en) * 1973-09-19 1976-03-03 Rolls Royce Method of and mixture for aluminishing a metal surface
IT1083665B (it) 1977-07-14 1985-05-25 Fiat Spa Procedimento per la realizzazione di rivestimenti per alte temperature su metalli e leghe metalliche
JPS5582761A (en) * 1978-12-15 1980-06-21 Hitachi Ltd Coating method for platinum group metal onto cobalt alloy
JPS5754282A (ja) * 1980-09-17 1982-03-31 Mitsubishi Heavy Ind Ltd Tainetsugokinnohyomenshorihoho
JPS58177401A (ja) * 1982-04-12 1983-10-18 Sumitomo Metal Ind Ltd ニツケル,クロム合金被覆法
JPS6067652A (ja) * 1983-09-20 1985-04-18 Asia Kogyo Kk 合金層の形成方法
US4910092A (en) * 1986-09-03 1990-03-20 United Technologies Corporation Yttrium enriched aluminide coating for superalloys
DE4226272C1 (de) * 1992-08-08 1994-02-10 Mtu Muenchen Gmbh Verfahren zur Behandlung von MCrAlZ-Schichten und mit dem Verfahren hergestellte Bauteile
GB9426257D0 (en) * 1994-12-24 1995-03-01 Rolls Royce Plc Thermal barrier coating for a superalloy article and method of application
US5759142A (en) * 1995-01-20 1998-06-02 Bender Machine, Inc. Coated roll for aluminizing processes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9963126A1 *

Also Published As

Publication number Publication date
DE19824792A1 (de) 1999-12-16
DE59901109D1 (de) 2002-05-08
JP2002517608A (ja) 2002-06-18
JP4469083B2 (ja) 2010-05-26
ES2176003T3 (es) 2002-11-16
EP1007753B1 (de) 2002-04-03
DE19824792B4 (de) 2005-06-30
US6709711B1 (en) 2004-03-23
WO1999063126A1 (de) 1999-12-09

Similar Documents

Publication Publication Date Title
EP1007753B1 (de) Verfahren zum herstellen einer haftschicht für eine wärmedämmschicht
DE60021178T2 (de) Abrasions- und hochtemperaturbeständige, abschleifbare wärmedämmende verbundbeschichtung
DE19807636C1 (de) Verfahren zum Herstellen einer korrosions- und oxidationsbeständigen Schlickerschicht
DE69925590T2 (de) Mehrschichtige haftbeschichtung für wärmedämmschicht und verfahren dazu
DE3426201C2 (de)
DE19545025A1 (de) Verfahren zur Aufbringung einer metallischen Haftschicht für keramische Wärmedämmschichten auf metallische Bauteile
EP1616979A1 (de) Schutzschicht zum Aufbringen auf ein Substrat und Verfahren zur Herstellung einer Schutzschicht
EP2796588B1 (de) Verfahren zur Herstellung einer Hochtemperaturschutzbeschichtung
DE3815976C2 (de)
WO2008110161A1 (de) Schichtsystem und verfahren zu dessen herstellung
EP1097249B1 (de) Verfahren zur herstellung einer panzerung für ein metallisches bauteil
EP1298230A1 (de) Verfahren zur Entfernung von Schichtbereichen eines Bauteils aus Metall
DE10200803A1 (de) Herstellung eines keramischen Werkstoffes für eine Wärmedämmschicht sowie eine den Werkstoff enthaltene Wärmedämmschicht
DE2353858B2 (de) Verfahren zum aluminisieren einer metalloberflaeche
DE102004002303B4 (de) Verfahren zur Herstellung eines beschichteten Kohlenstoff/Kohlenstoff-Verbundwerkstoffes und danach hergestellter beschichteter Kohlenstoff/Kohlenstoff-Verbundwerkstoff
EP1466036A1 (de) Schichtsystem mit einer porösen schicht
DE2935417C2 (de) Verfahren zur Herstellung eines Verbundwerkstoffes
DE102006040360A1 (de) Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit
DE102004002304B4 (de) Verfahren zur Herstellung eines beschichteten Kohlenstoff/Kohlenstoff-Verbundwerkstoffes und danach hergestellter Verbundwerkstoff
EP1088907B1 (de) Verfahren zum Herstellen einer Panzerung für ein metallisches Bauteil
EP1687458A1 (de) Verfahren zum herstellen einer korrosionsbeständigen und oxidationsbeständigen beschichtung sowie bauteil mit einer solchen beschichtung
DE19621763A1 (de) Erzeugnis mit einem Grundkörper aus einer Superlegierung und einem darauf befindlichen Schichtsystem sowie Verfahren zu seiner Herstellung
DE60307041T2 (de) Verfahren zum Aufbringen einer dichten Verschleisschutzschicht und Dichtungsystem
EP1367144A1 (de) Verfahren zur Entfernung von zumindest einem Teilbereich eines Bauteils aus Metall oder einer Metallverbindung
DE19634616C2 (de) TiAl-Legierungsteil und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010806

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REF Corresponds to:

Ref document number: 59901109

Country of ref document: DE

Date of ref document: 20020508

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020701

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2176003

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160523

Year of fee payment: 18

Ref country code: ES

Payment date: 20160523

Year of fee payment: 18

Ref country code: CH

Payment date: 20160526

Year of fee payment: 18

Ref country code: DE

Payment date: 20160525

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160523

Year of fee payment: 18

Ref country code: FR

Payment date: 20160523

Year of fee payment: 18

Ref country code: IT

Payment date: 20160524

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59901109

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170531

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601