EP1007753A1 - Method for producing an adhesive layer for a heat insulating layer - Google Patents

Method for producing an adhesive layer for a heat insulating layer

Info

Publication number
EP1007753A1
EP1007753A1 EP99936366A EP99936366A EP1007753A1 EP 1007753 A1 EP1007753 A1 EP 1007753A1 EP 99936366 A EP99936366 A EP 99936366A EP 99936366 A EP99936366 A EP 99936366A EP 1007753 A1 EP1007753 A1 EP 1007753A1
Authority
EP
European Patent Office
Prior art keywords
layer
slip
component
producing
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99936366A
Other languages
German (de)
French (fr)
Other versions
EP1007753B1 (en
Inventor
Gerhard Wydra
Martin Thoma
Horst Pillhöfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP1007753A1 publication Critical patent/EP1007753A1/en
Application granted granted Critical
Publication of EP1007753B1 publication Critical patent/EP1007753B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/58Embedding in a powder mixture, i.e. pack cementation more than one element being diffused in more than one step

Definitions

  • the invention relates to a method for producing an adhesive layer for a thermal insulation layer, which is applied to a component.
  • Thermally or mechanically stressed components are covered with protective layers, e.g. Wear protection layers or thermal insulation layers.
  • An adhesive layer is generally provided between such an outer layer and the component. Such adhesive layers must have a certain roughness and surface topography for clinging to the outer layer.
  • the adhesive layers are e.g. in the case of thermally highly stressed, metallic components, such as turbine blades, between the component and a thermal barrier coating.
  • thermal insulation layers can consist of a base made of zirconium oxide with additions of calcium or magnesium oxide.
  • the adhesive layers must be oxide-free and resistant to hot gas corrosion. Since different thermal expansions generally occur in the thermal barrier coating and the material of the metallic component, these must also be at least partially compensated for by the adhesive layer.
  • Diffusion layers which contain Al, Cr or Si are known as adhesive layers and are produced by means of the so-called powder pack process or out-of-pack process.
  • the disadvantages of the diffusion layers produced using these methods are their brittleness and the limited layer thicknesses of up to approx. 100 ⁇ m.
  • Another known coating layer based on MCrAlY is sprayed onto the component by means of plasma spraying or is vapor-deposited onto the component by means of vaporization of the layer components in the electron beam. Layer thicknesses of up to approx. 300 ⁇ m are achieved. Such processes are very complex and expensive in terms of production technology. Further disadvantages consist in the fact that the layers cannot be applied uniformly on geometrically complicated components, scattering in of the layer composition occur and the layer elements oxidize during spraying or vapor deposition.
  • JP 55-82761 A it is known to expose components of e.g. a gas turbine, by first applying Ni powder provided with a binder to the component and heat-treating, then introducing Cr by chemical vapor deposition or Al by a packing process and finally depositing and heat-treating Pt, Pd or Rh.
  • the object of the present invention is to provide a method for producing a layer of the type described in the introduction, which is as simple and inexpensive to manufacture as possible in terms of production technology.
  • the solution to the object is characterized by the steps of a) producing a slip by mixing at least one of the elements
  • Powder containing Cr, Ni or Ce with a binder b) applying the slip to the component, c) drying the slip at temperatures from room temperature to 300 ° C., and d) alitizing the slip layer, the process being controlled so that the Adhesive layer has a structure with a grain size smaller than 75 microns and a void fraction of jO to 40%.
  • the advantage of the method is that the powder mixed with a binder can be applied in a simple manner to the component to form a layer, without expensive processes such as plasma spraying or electron beam evaporation being required from the plant outlay.
  • the layers produced using this method have a comparatively fine-grained structure with a grain size that is smaller than 75 ⁇ m.
  • the layer has a void fraction of 0 to 40%.
  • the layer has improved thermal fatigue resistance and an advantageous expansion behavior that is fault-tolerant to cracks.
  • additions of elements such as Y are equally distributed and not oxidized.
  • the slip is produced with a powder from MCrAIY or a MCrAlY alloy, where M stands for at least one of the elements Ni, Co, Pt or Pd and instead of Y also Hf or Ce can be applied.
  • the powder is preferably present with a particle size distribution of 5 to 120 ⁇ m.
  • the slip is preferably applied to the component by spraying, pinning or dipping, as a result of which the process can be carried out easily and inexpensively in terms of production technology.
  • locally delimited layers can also be applied to geometrically complex components in a simple manner.
  • no expensive and complex spraying and evaporating systems are required.
  • unlike thermal spraying or electron beam evaporation the problem of oxidation of powder particles does not arise.
  • the drying of the slip, which is present in a suspension together with the organic or inorganic binder, is preferably carried out over 0.5-4 hours, a duration of 1-2 hours having proven advantageous.
  • the slip layer is heat-treated in argon or vacuum at temperatures of 750 to 1200 ° C. before the alitation, wherein the heat treatment can be carried out for 1-6 hours in order to connect the slip layer to the component by means of diffusion.
  • the final step of alitizing the slip layer is carried out at temperatures between 800 to 1200 ° C. and for a period of 1-12 hours.
  • the alitation is used for diffusion bonding and compacting the layer and is carried out in a customary process, for example in the powder pack process, with the introduction of Al.
  • the AI diffuses into the layer and into the base material of the component.
  • the layer is preferably an adhesive layer, to which a heat insulation layer is applied as an outer layer or protective layer, which can be done in the usual way by means of plasma spraying or electron beam vapor deposition.
  • Fig. 1 is a micrograph of the layer before alitizing
  • Fig. 2 is a micrograph of the layer after alitizing.
  • a MCrAlY powder is first mixed in suspension with a conventional inorganic binder to produce a slip.
  • the grain sizes of the powder particles are between 5 and 120 ⁇ m. This creates a flowable, sprayable mass.
  • the viscosity of this mass can e.g. by the grain size of the powder particles used.
  • the M stands for nickel or cobalt or an alloy of the two elements.
  • the proportion of aluminum and chromium is chosen to be as high as possible in order to take advantage of their protective effect against oxidation, which is based on the fact that chromium and aluminum form protective oxides at high temperatures.
  • the slip is then applied to a metallic component, such as a turbine guide vane made of a nickel-based alloy, with a brush to form a layer.
  • a metallic component such as a turbine guide vane made of a nickel-based alloy
  • the thickness and local spread of the layer can be influenced in a simple manner with this type of application.
  • the application could e.g. also done with a spray gun.
  • the slurry in suspension is dried at room temperature for about 1.5 hours.
  • the dried layer is then heat treated in argon at 1000 ° C. for one hour in order to achieve a connection of the layer with the material of the turbine guide vane by means of diffusion. Then the layer is at about 1 100 ° C. Alitated for 4 hours using a conventional method to strengthen the connection to the metallic component by means of diffusion and to compact the layer. Al enters the layer and the base material of the metallic component and thus ensures both a firm connection Layer with the component as well as for a connection of the spherical MCrAlY particles to each other. In addition, the MCrAlY particles sinter together at least partially.
  • Layer 1 shows a layer 2 applied to a metallic component 1, which has been heat-treated but has not yet been treated.
  • Layer 2 clearly shows the spherical structure of the MCrAlY particles as well as the cavities between them.
  • the component 1 and the layer 2 after the alitation step shows the component 1 and the layer 2 after the alitation step.
  • the spherical MCrAlY particles are connected to one another by the penetration of Al into the layer and into the base material of component 1.
  • the MCrAlY particles were sintered together in the alitation step.
  • the layer produced in this way has a significantly improved thermal fatigue resistance in comparison to (adhesive) layers produced in a conventional manner.
  • the active elements, such as Y, are evenly distributed and not oxidized.
  • the layer produced in this way can be used as an adhesive layer, to which a thermal insulation layer is finally applied by plasma spraying or another conventional method.
  • the layer can also be used as a high-quality hot gas corrosion layer without the need for an additional outer protective layer.
  • the properties of the corrosion and oxidation-resistant layer can be varied or improved by extending the alitation process.

Abstract

The invention relates to a method for producing an anticorrosive, oxidation-resistant layer that is applied on a component, whereby the method can be technically carried out in an easy and cost-effective manner and comprises the following steps: a) producing a slurry by mixing a powder containing at least one of the elements Cr, Ni or Ce with a binding agent; b) applying the slurry on the component; c) drying the slurry at ambient temperatures of up to 300 DEG C and d) aluminizing the slurry layer.

Description

Verfahren zum Herstellen einer Haftschicht für eine Wärmedämmschicht Process for producing an adhesive layer for a thermal barrier coating
Die Erfindung betrifft ein Verfahren zum Herstellen einer Haftschicht für eine Wä r- medämmschicht, die auf ein Bauteil aufgebracht wird.The invention relates to a method for producing an adhesive layer for a thermal insulation layer, which is applied to a component.
Thermisch oder mechanisch belastete Bauteile werden mit Schutzschichten, z.B. Verschleißschutzschichten oder Wärmedämmschichten versehen. Zwischen einer solchen äußeren Schicht und dem Bauteil wird im allgemeinen eine Haftschicht vo r- gesehen. Derartige Haftschichten müssen eine bestimmte Rauhigkeit und Oberflä- chentopographie zur Verklammerung mit der äußeren Schicht aufweisen.Thermally or mechanically stressed components are covered with protective layers, e.g. Wear protection layers or thermal insulation layers. An adhesive layer is generally provided between such an outer layer and the component. Such adhesive layers must have a certain roughness and surface topography for clinging to the outer layer.
Im Gasturbinenbau werden die Haftschichten z.B. bei thermisch hochbelasteten, metallischen Bauteilen, wie Turbinenschaufeln, zwischen dem Bauteil und einer Wärmedämmschicht vorgesehen. Derartige Wärmedämmschichten können aus einer Basis aus Zirkonoxid mit Zusätzen von Caicium- oder Magnesiumoxid bestehen. Die Haftschichten müssen neben der Rauhigkeit zur Verklammerung mit der äußeren Schutzschicht bzw. der Wärmedämmschicht oxidfrei und heißgaskorrosionsbestän- dig sein. Da in der Wärmedämmschicht und dem Werkstoff des metallischen Bauteils im allgemeinen unterschiedliche Wärmedehnungen auftreten, müssen diese dar- überhinaus von der Haftschicht wenigstens teilweise ausgeglichen werden.In gas turbine construction, the adhesive layers are e.g. in the case of thermally highly stressed, metallic components, such as turbine blades, between the component and a thermal barrier coating. Such thermal insulation layers can consist of a base made of zirconium oxide with additions of calcium or magnesium oxide. In addition to the roughness for clinging to the outer protective layer or the heat insulation layer, the adhesive layers must be oxide-free and resistant to hot gas corrosion. Since different thermal expansions generally occur in the thermal barrier coating and the material of the metallic component, these must also be at least partially compensated for by the adhesive layer.
Als Haftschichten sind Diffusionsschichten, die AI, Cr oder Si enthalten, bekannt, welche mittels sog. Pulverpackverfahren oder Out of Pack-Verfahren hergestellt werden. Die Nachteile der mit diesen Verfahren hergestellten Diffusionsschichten bestehen in ihrer Sprödigkeit und den begrenzten Schichtdicken von bis ca. 100 μm.Diffusion layers which contain Al, Cr or Si are known as adhesive layers and are produced by means of the so-called powder pack process or out-of-pack process. The disadvantages of the diffusion layers produced using these methods are their brittleness and the limited layer thicknesses of up to approx. 100 μm.
Eine andere bekannte sog. Auflageschicht auf MCrAlY-Basis wird mittels Plasmaspritzen auf das Bauteil aufgespritzt oder mittels Verdampfen der Schichtb e- standteile im Elektronenstrahl auf das Bauteil aufgedampft. Dabei werden Schicht- dicken bis zu ca. 300 μm erzielt. Derartige Verfahren sind fertigungstechnisch sehr aufwendig und teuer. Weitere Nachteile bestehen darin, daß die Schichten auf ge o- metrisch komplizierten Bauteilen nicht gleichmäßig aufzubringen sind, Streuungen in der Schichtzusammensetzung auftreten und die Schichtelemente beim Aufspritzen bzw. Aufdampfen oxidieren.Another known coating layer based on MCrAlY is sprayed onto the component by means of plasma spraying or is vapor-deposited onto the component by means of vaporization of the layer components in the electron beam. Layer thicknesses of up to approx. 300 μm are achieved. Such processes are very complex and expensive in terms of production technology. Further disadvantages consist in the fact that the layers cannot be applied uniformly on geometrically complicated components, scattering in of the layer composition occur and the layer elements oxidize during spraying or vapor deposition.
Aus der JP 55-82761 A ist es bekannt, heißen Gasen ausgesetzte Bauteile von, z.B. einer Gasturbine, zu schützen, indem zunächst mit einem Binder versehenes Ni- Pulver auf das Bauteil aufgebracht und wärmebehandelt wird, dann Cr durch chemische Gasphasenabscheidung oder AI durch ein Packverfahren eingebracht werden und schließlich Pt, Pd oder Rh abgeschieden und wärmebehandelt werden.From JP 55-82761 A it is known to expose components of e.g. a gas turbine, by first applying Ni powder provided with a binder to the component and heat-treating, then introducing Cr by chemical vapor deposition or Al by a packing process and finally depositing and heat-treating Pt, Pd or Rh.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zum Herstellen einer Schicht der eingangs beschriebenen Gattung zu schaffen, die mit dem fertigungstechnisch möglichst einfach und kostengünstig herzustellen ist.The object of the present invention is to provide a method for producing a layer of the type described in the introduction, which is as simple and inexpensive to manufacture as possible in terms of production technology.
Die Lösung der Aufgabe ist erfindungsgemäß durch die Schritte gekennzeichnet, a) Herstellen eines Schlickers durch Mischen wenigstens eines der ElementeAccording to the invention, the solution to the object is characterized by the steps of a) producing a slip by mixing at least one of the elements
Cr, Ni oder Ce enthaltenden Pulvers mit einem Bindemittel, b) Auftragen des Schlickers auf das Bauteil, c) Trocknen des Schlickers bei Temperaturen von Raumtempeartur bis 300° C, und d) Alitieren der Schlickerschicht, wobei das Verfahren so gesteuert wird, daß die Haftschicht eine Struktur mit einer Korngröße kleiner als 75 μm und einem Hohlraumanteil von jO bis 40% aufweist.Powder containing Cr, Ni or Ce with a binder, b) applying the slip to the component, c) drying the slip at temperatures from room temperature to 300 ° C., and d) alitizing the slip layer, the process being controlled so that the Adhesive layer has a structure with a grain size smaller than 75 microns and a void fraction of jO to 40%.
Der Vorteil des Verfahrens besteht darin, daß das mit einem Bindemittel gemischte Pulver auf einfache Weise auf das Bauteil unter Bildung einer Schicht aufgetragen werden kann, ohne daß vom Anlagenaufwand teure Verfahren wie das Plasmaspri tzen oder das Elektronenstrahlaufdampfen erforderlich sind. Die mit diesem Verfa h- ren hergestellten Schichten haben eine vergleichsweise feinkörnige Struktur mit einer Korngröße, die kleiner als 75 μm ist. Die Schicht weist einen Hohlraumanteil von 0 bis 40 % auf. Als Folge besitzt die Schicht eine verbesserte thermische Erm ü- dungsbeständigkeit sowie ein vorteilhaftes Ausdehnungsverhalten, das fehlertolerant gegenüber Rissen ist. Zudem sind Zusätze von Elementen, wie z.B. Y, gleich verteilt und nicht oxidiert. In einer bevorzugten Ausgestaltung des Verfahrens wir der Schlicker mit einem Pu I- ver aus MCrAIY bzw. einer MCrAlY-Legierung hergestellt, wobei M für wenigstens eines der Elemente Ni, Co, Pt oder Pd steht und anstelle von Y auch Hf oder Ce ver- wendet werden kann.The advantage of the method is that the powder mixed with a binder can be applied in a simple manner to the component to form a layer, without expensive processes such as plasma spraying or electron beam evaporation being required from the plant outlay. The layers produced using this method have a comparatively fine-grained structure with a grain size that is smaller than 75 μm. The layer has a void fraction of 0 to 40%. As a result, the layer has improved thermal fatigue resistance and an advantageous expansion behavior that is fault-tolerant to cracks. In addition, additions of elements such as Y are equally distributed and not oxidized. In a preferred embodiment of the method, the slip is produced with a powder from MCrAIY or a MCrAlY alloy, where M stands for at least one of the elements Ni, Co, Pt or Pd and instead of Y also Hf or Ce can be applied.
Bevorzugt liegt das Pulver mit einer Korngrößenverteilung von 5 bis 120 μm vor.The powder is preferably present with a particle size distribution of 5 to 120 μm.
Das Auftragen des Schlickers auf das Bauteil erfolgt bevorzugt durch Spritzen, Pi n- sein oder Tauchen, wodurch sich das Verfahren fertigungstechnisch einfach und kostengünstig durchführen läßt. Durch diese Art des Auftragens lassen sich auf ei n- fache Weise lokal begrenzte Schichten auch auf geometrisch komplizierten Bauteilen aufbringen. Zudem sind keine teuren und aufwendigen Spritz- und Verdampferanlagen erforderlich. Außerdem tritt anders als beim thermischen Spritzen oder dem Elektronenstrahlaufdampfen das Problem der Oxidation von Pulverpartikeln nicht auf.The slip is preferably applied to the component by spraying, pinning or dipping, as a result of which the process can be carried out easily and inexpensively in terms of production technology. With this type of application, locally delimited layers can also be applied to geometrically complex components in a simple manner. In addition, no expensive and complex spraying and evaporating systems are required. In addition, unlike thermal spraying or electron beam evaporation, the problem of oxidation of powder particles does not arise.
Bevorzugt wird das Trocknen des Schlickers, der zusammen mit dem organischen oder anorganischen Bindemittel in einer Suspension vorliegt, über 0,5 - 4 Stunden durchgeführt, wobei sich eine Dauer von 1 - 2 Stunden als vorteilhaft erwiesen hat.The drying of the slip, which is present in a suspension together with the organic or inorganic binder, is preferably carried out over 0.5-4 hours, a duration of 1-2 hours having proven advantageous.
Bevorzugt ist ferner, daß die Schlickerschicht vor dem Alitieren bei Temperaturen von 750 bis 1200 °C in Argon oder Vakuum wärmebehandelt wird, wobei das Wärmebehandeln über 1 - 6 Stunden durchgeführt werden kann, um die Schlickerschicht mit dem Bauteil mittels Diffusion zu verbinden.It is further preferred that the slip layer is heat-treated in argon or vacuum at temperatures of 750 to 1200 ° C. before the alitation, wherein the heat treatment can be carried out for 1-6 hours in order to connect the slip layer to the component by means of diffusion.
In einer bevorzugten Ausgestaltung des Verfahrens wird der abschließende Schritt Alitieren der Schlickerschicht bei Temperaturen zwischen 800 bis 1200 °C und einer Dauer von 1 - 12 Stunden durchgeführt. Das Alitieren dient zum Diffusionsverbinden und Kompaktieren der Schicht und wird in einem üblichen Verfahren, wie z.B. im Pulverpack-Verfahren, unter Einbringung von AI durchgeführt. Das AI diffundiert in die Schicht und in den Grundwerkstoff des Bauteils. Ferner ist die Schicht bevorzugt eine Haftschicht, auf die eine Wärmedämmschicht als äußere Schicht bzw. Schutzschicht aufgebracht wird, was in üblicher Weise mi t- tels Plasmaspritzen oder Elektronenstrahlaufdampfen erfolgen kann.In a preferred embodiment of the method, the final step of alitizing the slip layer is carried out at temperatures between 800 to 1200 ° C. and for a period of 1-12 hours. The alitation is used for diffusion bonding and compacting the layer and is carried out in a customary process, for example in the powder pack process, with the introduction of Al. The AI diffuses into the layer and into the base material of the component. Furthermore, the layer is preferably an adhesive layer, to which a heat insulation layer is applied as an outer layer or protective layer, which can be done in the usual way by means of plasma spraying or electron beam vapor deposition.
Im folgenden wird die Erfindung anhand einer Zeichnung unter Bezugnahme auf ein Beispiel näher erläutert. Es zeigt:The invention is explained in more detail below with reference to a drawing and with reference to an example. It shows:
Fig. 1 ein Schliffbild der Schicht vor dem Alitieren undFig. 1 is a micrograph of the layer before alitizing and
Fig. 2 ein Schliffbild der Schicht nach dem Alitieren.Fig. 2 is a micrograph of the layer after alitizing.
Bei der Herstellung einer Schicht wird zunächst zur Herstellung eines Schlickers ein MCrAlY-Pulver in einer Suspension mit einem üblichen anorganischen Bindemittel gemischt. Die Korngrößen der Pulverpartikel liegen zwischen 5 und 120 μm. Dabei bildet sich eine fließfähige, spritzbare Masse. Die Viskosität dieser Masse läßt sich z.B. durch die Korngröße der verwendeten Pulverpartikel beeinflussen. Das M steht für Nickel oder Kobalt oder eine Legierung der beiden Elemente. Der Anteil von AI u- minium und Chrom wird so hoch wie möglich gewählt, um deren Schutzeffekt gegen Oxidation auszunutzen, der darauf beruht, das Chrom und Aluminium bei hohen Temperaturen als Schutzfilme dienende Oxide bilden.When producing a layer, a MCrAlY powder is first mixed in suspension with a conventional inorganic binder to produce a slip. The grain sizes of the powder particles are between 5 and 120 μm. This creates a flowable, sprayable mass. The viscosity of this mass can e.g. by the grain size of the powder particles used. The M stands for nickel or cobalt or an alloy of the two elements. The proportion of aluminum and chromium is chosen to be as high as possible in order to take advantage of their protective effect against oxidation, which is based on the fact that chromium and aluminum form protective oxides at high temperatures.
Anschießend wird der Schlicker unter Bildung einer Schicht mit einem Pinsel auf ein metallisches Bauteil, wie eine Turbinenleitschaufel aus einer Nickelbasis-Legierung, aufgetragen. Die Dicke und lokale Ausbreitung der Schicht läßt sich bei dieser Art des Auftragens auf einfache Weise beeinflussen. Alternativ könnte das Auftragen z.B. auch mit einer Spritzpistole erfolgen.The slip is then applied to a metallic component, such as a turbine guide vane made of a nickel-based alloy, with a brush to form a layer. The thickness and local spread of the layer can be influenced in a simple manner with this type of application. Alternatively, the application could e.g. also done with a spray gun.
Im nächsten Schritt wird der in einer Suspension vorliegende Schlicker bei Rau m- temperatur über etwa 1 ,5 Stunden getrocknet.In the next step, the slurry in suspension is dried at room temperature for about 1.5 hours.
Die getrocknete Schicht wird dann bei 1000 °C eine Stunde in Argon wärmebehandelt, um eine Verbindung der Schicht mit dem Werkstoff der Turbinenleitschaufel mittels Diffusion zu erzielen. Daran anschließend wird die Schicht bei etwa 1 100 °C 4 Stunden lang mit einem üblichen Verfahren alitiert, um die Verbindung mit dem metallischen Bauteil mittels Diffusion zu verstärken und die Schicht zu kompaktie- ren. Dabei tritt AI in die Schicht und den Grundwerkstoff des metallischen Bauteils ein und sorgt so sowohl für eine feste Verbindung der Schicht mit dem Bauteil als auch für eine Verbindung der kugligen MCrAlY-Partikel untereinander. Zudem sintern die MCrAlY-Partikel untereinander wenigstens teilweise zusammen.The dried layer is then heat treated in argon at 1000 ° C. for one hour in order to achieve a connection of the layer with the material of the turbine guide vane by means of diffusion. Then the layer is at about 1 100 ° C. Alitated for 4 hours using a conventional method to strengthen the connection to the metallic component by means of diffusion and to compact the layer. Al enters the layer and the base material of the metallic component and thus ensures both a firm connection Layer with the component as well as for a connection of the spherical MCrAlY particles to each other. In addition, the MCrAlY particles sinter together at least partially.
Fig. 1 zeigt eine auf ein metallisches Bauteil 1 aufgebrachte Schicht 2, die wärmebehandelt aber noch nicht alitiert worden ist. In der Schicht 2 ist die kuglige Struktur der MCrAlY-Partikel ebenso wie die dazwischen befindlichen Hohlräume deutlich zu erkennen.1 shows a layer 2 applied to a metallic component 1, which has been heat-treated but has not yet been treated. Layer 2 clearly shows the spherical structure of the MCrAlY particles as well as the cavities between them.
In Fig. 2 ist das Bauteil 1 und die Schicht 2 nach dem Alitierungsschritt dargestellt. In der Schicht 2 liegen deutlich weniger Hohlräume vor. Zudem sind die kugligen MCrAlY-Partikel durch das Eindringen von AI in die Schicht und in den Grundwerkstoff des Bauteils 1 miteinander verbunden. Außerdem ist bei dem Alitierungsschritt ein Zusammensintern der MCrAlY-Partikel erfolgt.2 shows the component 1 and the layer 2 after the alitation step. There are significantly fewer voids in layer 2. In addition, the spherical MCrAlY particles are connected to one another by the penetration of Al into the layer and into the base material of component 1. In addition, the MCrAlY particles were sintered together in the alitation step.
Die so hergestellte Schicht weist eine deutlich verbesserte thermische Ermüdung s- beständigkeit im Vergleich zu auf herkömmliche Weise hergestellten (Haft-) Schic h- ten auf. Zudem erfolgt keine Oxidbildung der Schicht. Darüberhinaus sind die Aktivelemente, wie Y, gleichmäßig verteilt und nicht oxidiert.The layer produced in this way has a significantly improved thermal fatigue resistance in comparison to (adhesive) layers produced in a conventional manner. In addition, there is no oxide formation in the layer. In addition, the active elements, such as Y, are evenly distributed and not oxidized.
Die so hergestellte Schicht kann als Haftschicht eingesetzt werden, auf die abschli e- ßend eine Wärmedämmschicht durch Plasmaspritzen oder ein anderes übliches Ve r- fahren aufgebracht wird. Die Schicht läßt sich zudem ohne weiteres als hochwertige Heißgaskorrosionsschicht einsetzen, ohne daß eine zusätzliche, äußere Schut zschicht aufzubringen ist. Die eigenschaften der korrosions- und oxidationsbeständi- gen Schicht lassen sich durch Verlängern des Alitierungsvorgangs variieren bzw. verbessern. The layer produced in this way can be used as an adhesive layer, to which a thermal insulation layer is finally applied by plasma spraying or another conventional method. The layer can also be used as a high-quality hot gas corrosion layer without the need for an additional outer protective layer. The properties of the corrosion and oxidation-resistant layer can be varied or improved by extending the alitation process.

Claims

Patentansprüche claims
1. Verfahren zum Herstellen einer Haftschicht für eine Wärmedämmschicht, die auf ein Bauteil aufgebracht wird, gekennzeichnet durch die Schritte a) Herstellen eines Schlickers durch Mischen wenigstens eines der Elemente1. A method for producing an adhesive layer for a heat insulation layer, which is applied to a component, characterized by the steps a) producing a slip by mixing at least one of the elements
Cr, Ni oder Ce enthaltenden Pulvers mit einem Bindemittel, b) Auftragen des Schlickers auf das Bauteil, c) Trocknen des Schlickers bei Temperaturen von Raumtemperatur bis 300 °C, und d) Alitieren der Schlickerschicht, wobei das Verfahren so gesteuert wird, daß die Haftschicht eine Struktur mit einer Korngröße kleiner als 75 μm und einem Hohlraumanteil von 0 bis 40% aufweist.Cr, Ni or Ce containing powder with a binder, b) applying the slip to the component, c) drying the slip at temperatures from room temperature to 300 ° C, and d) alitizing the slip layer, the process being controlled so that the Adhesive layer has a structure with a grain size smaller than 75 microns and a void fraction of 0 to 40%.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Schlicker mit e i- nem Pulver aus MCrAIY hergestellt wird.2. The method according to claim 1, characterized in that the slip is made with a powder from MCrAIY.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Pulver mit einer Korngrößenverteilung von 5 bis 120 μm vorliegt.3. The method according to claim 1 or 2, characterized in that the powder is present with a particle size distribution of 5 to 120 microns.
4. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch g e- kennzeichnet, daß das Auftragen durch Spritzen, Pinseln oder Tauchen erfolgt.4. The method according to one or more of the preceding claims, characterized in that the application is carried out by spraying, brushing or dipping.
5. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Bauteil aus einer Legierung auf Nickel- oder Kobaltbasis besteht.5. The method according to one or more of the preceding claims, characterized in that the component consists of an alloy based on nickel or cobalt.
6. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Trocknen über 0,5 - 4 Stunden durchgeführt wird.6. The method according to one or more of the preceding claims, characterized in that the drying is carried out over 0.5 - 4 hours.
7. Verfahren nach einem oder mehreren der vorherigen Ansprüche, dadurch g e- kennzeichnet, daß die Schlickerschicht vor dem Alitieren bei Temperaturen von 750 bis 1200 °C in Argon oder Vakuum wärmebehandelt wird. 7. The method according to one or more of the preceding claims, characterized in that the slip layer is heat-treated at temperatures of 750 to 1200 ° C in argon or vacuum before the alitation.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Wärmebehandeln über 1 - 6 Stunden durchgeführt wird.8. The method according to claim 7, characterized in that the heat treatment is carried out for 1-6 hours.
9. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Alitieren bei Temperaturen zwischen 800 bis 1200 °C und einer Dauer von 1 bis 12 Stunden durchgeführt wird. 9. The method according to one or more of the preceding claims, characterized in that the alitation is carried out at temperatures between 800 to 1200 ° C and a duration of 1 to 12 hours.
EP99936366A 1998-06-03 1999-05-31 Method for producing an adhesive layer for a heat insulating layer Expired - Lifetime EP1007753B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19824792 1998-06-03
DE19824792A DE19824792B4 (en) 1998-06-03 1998-06-03 Method for producing an adhesive layer for a thermal barrier coating
PCT/DE1999/001598 WO1999063126A1 (en) 1998-06-03 1999-05-31 Method for producing an adhesive layer for a heat insulating layer

Publications (2)

Publication Number Publication Date
EP1007753A1 true EP1007753A1 (en) 2000-06-14
EP1007753B1 EP1007753B1 (en) 2002-04-03

Family

ID=7869775

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99936366A Expired - Lifetime EP1007753B1 (en) 1998-06-03 1999-05-31 Method for producing an adhesive layer for a heat insulating layer

Country Status (6)

Country Link
US (1) US6709711B1 (en)
EP (1) EP1007753B1 (en)
JP (1) JP4469083B2 (en)
DE (2) DE19824792B4 (en)
ES (1) ES2176003T3 (en)
WO (1) WO1999063126A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228510B1 (en) * 1998-12-22 2001-05-08 General Electric Company Coating and method for minimizing consumption of base material during high temperature service
US6485780B1 (en) 1999-08-23 2002-11-26 General Electric Company Method for applying coatings on substrates
DE19946650C2 (en) * 1999-09-29 2003-11-27 Mtu Aero Engines Gmbh Process for the production of armor for a metallic component
EP1123987A1 (en) * 2000-02-11 2001-08-16 General Electric Company Repairable diffusion aluminide coatings
FR2813318B1 (en) 2000-08-28 2003-04-25 Snecma Moteurs FORMATION OF AN ALUMINIURE COATING INCORPORATING A REACTIVE ELEMENT, ON A METAL SUBSTRATE
DE102004034410A1 (en) * 2004-07-16 2006-02-02 Mtu Aero Engines Gmbh Protective layer for application to a substrate and method for producing a protective layer
US7316057B2 (en) * 2004-10-08 2008-01-08 Siemens Power Generation, Inc. Method of manufacturing a rotating apparatus disk
JP2007262447A (en) * 2006-03-27 2007-10-11 Mitsubishi Heavy Ind Ltd Oxidation-resistant film and its deposition method, thermal barrier coating, heat-resistant member, and gas turbine
DE102009008510A1 (en) * 2009-02-11 2010-08-12 Mtu Aero Engines Gmbh Coating and method for coating a workpiece
DE102013207457B4 (en) * 2013-04-24 2017-05-18 MTU Aero Engines AG Process for the preparation of a high temperature protective coating
US9587302B2 (en) * 2014-01-14 2017-03-07 Praxair S.T. Technology, Inc. Methods of applying chromium diffusion coatings onto selective regions of a component
DE102015213555A1 (en) * 2015-07-20 2017-03-09 MTU Aero Engines AG Sealing ridge armor and method of making the same
DE102015221482A1 (en) 2015-11-03 2017-05-04 MTU Aero Engines AG diffusion layers
DE102016009854A1 (en) 2016-08-12 2018-02-15 Dechema Forschungsinstitut Stiftung Bürgerlichen Rechts Long-term stable, storable slip for environmentally friendly diffusion coatings
DE102021127344A1 (en) * 2021-10-21 2023-04-27 MTU Aero Engines AG Method for coating a component of an aircraft engine with a wear protection layer and component for an aircraft engine with at least one wear protection layer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3720537A (en) * 1970-11-25 1973-03-13 United Aircraft Corp Process of coating an alloy substrate with an alloy
GB1427054A (en) 1973-09-19 1976-03-03 Rolls Royce Method of and mixture for aluminishing a metal surface
IT1083665B (en) 1977-07-14 1985-05-25 Fiat Spa PROCEDURE FOR THE CREATION OF HIGH TEMPERATURE COATINGS ON METALS AND METAL ALLOYS
JPS5582761A (en) * 1978-12-15 1980-06-21 Hitachi Ltd Coating method for platinum group metal onto cobalt alloy
JPS5754282A (en) 1980-09-17 1982-03-31 Mitsubishi Heavy Ind Ltd Surface treatment of heat resistant alloy
JPS58177401A (en) 1982-04-12 1983-10-18 Sumitomo Metal Ind Ltd Coating method of nickel and chromium alloy
JPS6067652A (en) 1983-09-20 1985-04-18 Asia Kogyo Kk Formation of alloy layer
US4910092A (en) * 1986-09-03 1990-03-20 United Technologies Corporation Yttrium enriched aluminide coating for superalloys
DE4226272C1 (en) * 1992-08-08 1994-02-10 Mtu Muenchen Gmbh Process for treating MCrAlZ layers and components produced using the process
GB9426257D0 (en) * 1994-12-24 1995-03-01 Rolls Royce Plc Thermal barrier coating for a superalloy article and method of application
US5759142A (en) * 1995-01-20 1998-06-02 Bender Machine, Inc. Coated roll for aluminizing processes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9963126A1 *

Also Published As

Publication number Publication date
JP2002517608A (en) 2002-06-18
ES2176003T3 (en) 2002-11-16
DE19824792A1 (en) 1999-12-16
EP1007753B1 (en) 2002-04-03
DE59901109D1 (en) 2002-05-08
DE19824792B4 (en) 2005-06-30
WO1999063126A1 (en) 1999-12-09
US6709711B1 (en) 2004-03-23
JP4469083B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
EP1007753B1 (en) Method for producing an adhesive layer for a heat insulating layer
DE60021178T2 (en) ABRASION AND HIGH TEMPERATURE RESISTANT, ABRASIVE HEAT-DAMPING COMPOSITE COATING
DE19807636C1 (en) Process for producing a corrosion and oxidation resistant slip layer
DE69925590T2 (en) MULTILAYER ADHESIVE COATING FOR HEAT INSULATION LAYER AND METHOD THEREFOR
DE3426201C2 (en)
EP1616979A1 (en) Applying a protective coating on a substrate and method for manufacturing the protective layer
EP2796588B1 (en) Method for producing a high temperature protective coating
DE3815976C2 (en)
WO2008110161A1 (en) Layer system and method for the production thereof
EP1097249B1 (en) Method for producing a plating for a metal component
EP1298230A1 (en) Process for removing corrosion products from metallic parts
DE10200803A1 (en) Production of a ceramic material for a thermal insulation layer and a thermal insulation layer containing the material
DE2353858B2 (en) PROCEDURE FOR ALUMINATING A METAL SURFACE
EP1900708B1 (en) Heat insulation material with high cyclical temperature rating
DE102004002303B4 (en) A method of making a coated carbon / carbon composite and coated carbon / carbon composite produced thereafter
WO2003060195A1 (en) Layer system comprising a porous layer
DE2935417C2 (en) Process for the production of a composite material
DE102004002304B4 (en) Process for producing a coated carbon / carbon composite and composite material produced therefrom
EP1088907B1 (en) Method for producing a plating for a metal component
WO2005052211A1 (en) Method for producing a corrosion-resistant and oxidation-resistant coating and component comprising a coating of this type
DE19621763A1 (en) Product with a body made of a superalloy and a layer system thereon and method for its production
DE60307041T2 (en) Method for applying a dense wear protection layer and sealing system
EP1367144A1 (en) Process for removing portions of a metallic article
DE102020007415A1 (en) Method for producing at least one metallic component using powder and/or bead-based 3D printing
EP1129231A2 (en) Method for vacuum coating metal components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19991218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20010806

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REF Corresponds to:

Ref document number: 59901109

Country of ref document: DE

Date of ref document: 20020508

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020701

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2176003

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160523

Year of fee payment: 18

Ref country code: ES

Payment date: 20160523

Year of fee payment: 18

Ref country code: CH

Payment date: 20160526

Year of fee payment: 18

Ref country code: DE

Payment date: 20160525

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160523

Year of fee payment: 18

Ref country code: FR

Payment date: 20160523

Year of fee payment: 18

Ref country code: IT

Payment date: 20160524

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59901109

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170531

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601