EP1005105A2 - Einrichtung zur Erzeugung und automatischen Nachführung von Antennen-Diagrammen in der Elevationsrichtung für Luftfahrzeuge bei Flugmanövern zum Zwecke der Datenübertragung - Google Patents

Einrichtung zur Erzeugung und automatischen Nachführung von Antennen-Diagrammen in der Elevationsrichtung für Luftfahrzeuge bei Flugmanövern zum Zwecke der Datenübertragung Download PDF

Info

Publication number
EP1005105A2
EP1005105A2 EP99122607A EP99122607A EP1005105A2 EP 1005105 A2 EP1005105 A2 EP 1005105A2 EP 99122607 A EP99122607 A EP 99122607A EP 99122607 A EP99122607 A EP 99122607A EP 1005105 A2 EP1005105 A2 EP 1005105A2
Authority
EP
European Patent Office
Prior art keywords
antenna
frequency
aircraft
generating
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99122607A
Other languages
English (en)
French (fr)
Other versions
EP1005105B1 (de
EP1005105A3 (de
Inventor
Ludwig Mehltretter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
DaimlerChrysler AG
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG, EADS Deutschland GmbH filed Critical DaimlerChrysler AG
Publication of EP1005105A2 publication Critical patent/EP1005105A2/de
Publication of EP1005105A3 publication Critical patent/EP1005105A3/de
Application granted granted Critical
Publication of EP1005105B1 publication Critical patent/EP1005105B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2682Time delay steered arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/42Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means using frequency-mixing

Definitions

  • the invention relates to a device for generating and automatically tracking Antenna diagrams in the elevation direction for aircraft, such as airplanes or earthbound missiles, in flight maneuvers for the purpose of data transmission, in particular broadband data transmission.
  • the broadband data transmission between aircraft moving relative to each other must be in the higher frequency range, that is to say in the microwave range, because only there is a sufficient number Transmission channels with a larger bandwidth are available. But there Free space attenuation increases with increasing frequency and the transmission power does not can be increased arbitrarily, antennas with higher profit, ie directed antennas be used.
  • phased array antennas are used in the for fast tracking of directional antennas Known in the field of radar technology.
  • the disadvantage of these common phased array antennas is that use them to align the antenna diagrams phase shifters in the transmission frequency range use that, especially at higher frequencies, a considerable attenuation in the phase networks cause and due to the requirements for phase stability in proportion are expensive.
  • No. 5,493,306 describes a phase-controlled antenna for automatic scanning by tracking an antenna pattern over a given angular range described.
  • phase-shifting delay lines in the Intermediate frequency level arranged and the intermediate frequency is in the individual branches mixed with the signal of a local oscillator in a mixer before the high frequency Signal is fed to the individual antennas of the array.
  • the phase shift to The antenna diagram is tracked according to the principle of the Butler matrix, in its Network the delay lines are integrated.
  • the so-called frequency scanning method is known for use with radar devices, that dispenses with adjustable phase shifters and is therefore cheaper.
  • This frequency scanning method the individual antennas of an array with different lengths Feed lines, so that different depending on the fed frequency Set phase positions on the individual antennas, which results in different radiation angles surrender.
  • this method is unusable for data transmission because the Transmitted frequency changes depending on the required direction of radiation, so that the reception with a remote station is difficult to implement and antenna tracking after it Principle is completely impossible.
  • the required tracking rate is relatively low (a few seconds) is.
  • the tracking rate required to align the antennas in Elevation range due to the possible flight maneuvers mainly due to the usual rapidly changing flight positions in the roll axis of the aircraft can be much higher.
  • the definition of the respective elevation angle depends on the position angle, i.e. the roll and the Plane pitch angle and azimuth angle to the opposite side.
  • the invention has for its object to provide a device with which a user data transmission between aircraft during flight maneuvers and quick tracking of Antenna diagrams in the elevation direction with little functional and equipment expenditure is possible.
  • An advantage of the invention is that the data transmission regardless of the angle at which the aircraft communicating with each other are at a constant carrier frequency can be done. Another advantage is that the phase shift leading to Alignment of the antenna diagrams of the sub-antennas involved is required on low frequencies is generated, so that with the use of relatively inexpensive Components for the transmitting and receiving devices without great effort the stability of the Tracking can be achieved.
  • the remaining critical part of the circuit in the high frequency range is largely unproblematic with regard to the transmission quality, since the antenna assembly is compatible with the functions for generating and tracking the antenna diagrams in the immediate vicinity of the antenna feed point and extends in the smallest space. So they are Supply lines extremely short, therefore insensitive to phase changes and practical damping-free.
  • Another advantage is the fact that there is no expensive power amplifier for the transmitting part high performance is required, but a number of small inexpensive parallel connected Low power transmit amplifiers can be used. Through this parallel connection of The reliability is also increased by several transmitter output stages or antenna assemblies the device according to the invention.
  • FIG. 1 shows the arrangement 1 according to the invention for generation and tracking of antenna diagrams with a system controller 3, a modulator 5, a demodulator 6 and an oscillator unit 7, comprising a first 8 and a second 9 oscillator, which are expediently formed together in one module.
  • a system controller 3 controls the arrangement 1 according to the invention for generation and tracking of antenna diagrams with a system controller 3, a modulator 5, a demodulator 6 and an oscillator unit 7, comprising a first 8 and a second 9 oscillator, which are expediently formed together in one module.
  • Each transmission branch 21 is connected to the modulator 5 and each reception branch via a line 23 22 with a line 24 to the demodulator 6 in connection.
  • Both the first oscillator 8 and also the second oscillator 9 are connected to the system controller 3, via which the arrangement of Figure 1 with other aircraft systems, in particular the position reference system 25 des Airplane is connected.
  • the modulator 5 is used to transmit high-frequency signals with user data act upon. Accordingly, the demodulator 6 sets received modulated high-frequency signals into digital signals (user data), which are then processed can.
  • Each transmission branch 21 has on the side of the modulator 5 a first mixer 31, which of the first oscillator 8 received high-frequency signals with the modulator 5 coming signals mixes.
  • the signal coming from the modulator 5 the one Intermediate frequency represents, in a signal at around the alignment frequency different frequency implemented.
  • the first Mixer 31 Seen from the modulator 5 is the first Mixer 31 has a delay line 33a connected to it, which sends the signal through the transmit alignment frequency with a phase shift and that to a second Mixer 35 is guided.
  • the second mixer 35 mixes that from the delay line 33a coming signal with the signal generated by the second oscillator 9. This will make the the delay line 33a incoming signal into a signal with the transmission transmission frequency implemented.
  • This signal becomes a transmit power amplifier or a transmit power amplifier 37 out, which is connected to a transmitting antenna 39.
  • the Transmit branches 21 in terms of hardware on an antenna assembly, e.g. on a circuit board integrated.
  • receive branch 22 includes a receive antenna 49 and further from seen from this a receiving amplifier 47, a first mixer 45, one Delay line 43a, 43b, 43c, 43d, 43e and a second mixer 41.
  • first mixer 45 with the second oscillator 9 and the second mixer 41 with the first Oscillator 8 connected.
  • This Signal is through the delay line 43a, 43b, 43c, 43d, 43e with a Phase shift applied, supplied to the second mixer 41 and by this a signal coming from the first oscillator 8 mixed so that the signal is a receives constant transmission intermediate frequency.
  • the switch 8b and the switch 9b by the System control are switched, ensure that for the transmission phase, the mixer 31 or 35 of the transmission branch and for the reception phase, the mixers 41 and 45 of the reception branch are supplied with oscillator signals.
  • the receive transmission frequency is preferably the same as the transmission transmission frequency and is in the range of 10 GHz, for example.
  • the transmit alignment frequency or the receive alignment frequency is lower than that Transmit transmission frequency or the reception transmission frequency, both preferably are in the range of 1 GHz.
  • the antenna networks 12, 13, 14, 15 thus each have a first mixer 31 and a second one in their transmitting branch 21 Mixer 35, a transmit power amplifier or transmit output stage 37 and a transmit antenna 39 and in their receiving branch 22 a first mixer 45, a second mixer 41, one each Receive amplifier 47 and a receive antenna 49.
  • the lengths of the Delay lines are provided so that in the center position or another defined position of the antenna diagram of an antenna or an antenna network 11, 12, 13, 14, 15 the phase positions caused in the delay lines are relative differ from each other by a multiple of the wavelength. So the antenna network points 12 has a delay line 33b in its transmitting branch 21 and 22 in its receiving branch a delay line 43b. Analog are in the antenna network 13 Delay lines 33c and 43c, in the antenna network 14, the delay lines 33d and 43d and the delay lines 33e and 43e are provided in the antenna network 15.
  • the delay lines 33b and 43b are such that one in them Phase shift occurs that is at least one wavelength from that in the Delay lines 33a and 43a occurring phase shifts differs.
  • the Comparison to the phase shifts occurring in the delay line 33a or 43a occurs in the delay lines 33c and 43c by at least twice the wavelength larger phase shift, one in the delay lines 33d and 43d at least three times the wavelength larger phase shift and in the Delay lines 33e and 43e are larger by at least four times the wavelength Phase shift on.
  • the alignment or change of Antenna diagrams are made by vectorial addition of the individual signals of each transmitting antenna 39 or each receiving antenna 49, so that the signal level in a corresponding manner of the various antenna networks 11, 12, 13, 14, 15 when receiving or transmitting in add up vectorially to a specific send or receive direction.
  • phase shift in the different antenna networks 11, 12, 13, 14, 15 through the delay lines 33a, 33b, 33c, 33d, 33e or 43a, 43b, 43c, 43d of different lengths, 43e in cooperation with the supply frequencies generated by the first oscillator 8 is can by changing these supply frequencies of the first oscillator 8, which over the first mixer 31 are overlaid with the signal coming from modulator 5, respectively Formation of the main beam direction of the antenna can be effected in a defined direction. This direction is the direction to the aircraft that contains the user data or signals to be sent should receive.
  • the resulting target angle becomes the main antenna beam direction by the system control 3 or by a system assigned to it determined and from it the frequency of the first oscillator 8 changed so that an alignment the antenna main beam direction in the desired direction given by the desired angle becomes.
  • the setpoint angle is preferably determined by the aircraft reference system, e.g. the Inertial system, determined and with the azimuth angle to the opposite side in the elevation angle converted.
  • the second oscillator 9 in the transmitting part 21 causes that from the respective delay line 33a, 33b, 33c, 33d, 33e ultimately coming signal to the constant transmission transmission frequency is implemented.
  • the first from the first oscillator 8 Mixer 31 introduced to align the respective antenna diagrams frequency deviation is thus subtracted from the same frequency deviation by the second oscillator 9 and the respective second mixer 35 are eliminated. In this way they send respective transmit antennas 39 the relevant data with the same transmission frequency, regardless of the orientation of those belonging to the respective transmission antennas 39 Antenna diagrams.
  • the switches 8b, 9b are set so that the Signals of the first oscillator 8 to the assigned first mixer 31 or the signals of the second oscillator 9 to the respectively connected second mixer 35.
  • reception mode there is a superposition of those occurring in the respective reception part 22 Received signals on the one hand via the second oscillator 9 and the one assigned to it first mixer 45 and via the first oscillator 8 in connection with this assigned second mixer 41 instead.
  • the switches 8b, 9b must be set so that the Signals of the first oscillator 8 to the assigned second mixer 41 or the signals of the second oscillator 9 to the respective first mixers 45 connected.
  • the effect that into the respective receiving branches 22 via the first 8 and second oscillators 9 The phase shifts introduced are reversed to that in the respective transmission branches 21 intended mode of action.
  • That coming from the receiving antenna 49 and from Receiving amplifier 47 amplified signal is by means of the second oscillator 9 at a corresponding position of the switch 9b and by means of the respective first mixer 45 a signal superimposed, which is made up of a fundamental frequency and one for the diagram panning required variable frequency forms. This creates a signal with a Reception alignment frequency by the second mixer 41 to an intermediate frequency brought. The signal with the intermediate frequency is sent to the demodulator via line 24 6 fed. By the vectorial addition of those obtained after mixing twice As in the case of transmission, received signals 24 are generated by different phase shifts Chart panning.
  • the signals are behind the respective first mixers 45 via the delay lines 43a, 43b, 43c, 43d, 43e led to the phase delay resulting from these delay lines in a Convert diagram change to the reception of signals from the remote station horizontal direction, i.e. from a substantially parallel to the earth's surface trending direction.
  • the two mixes in the first Mixer 45 and in the second mixer 41 the reception frequency to that in line 24 present constant intermediate frequency implemented and supplied to the demodulator 6.
  • the system controller 3 calculates the elevation angle from the position angles, i.e. the rolling, Nick and azimuth angles, and places them in the required frequency offset for generation which together with the delay lines 33a, 33b, 33c, 33d, 33e or 43a, 43b, 43c, 43d, 43e caused phase shifts in the transmission or reception alignment frequency also effected um by the control signals for the first oscillator 8 and the second oscillator 9 generated.
  • the phase shifts between the antenna networks occur, are provided so that there is a for sending or receiving
  • the antenna main beam direction of the alignment arrangement 1 results in a target angle relative to an aircraft-fixed reference axis, i.e. is aligned with the remote station in every flight position.
  • the phase shift to be provided for this in each antenna network depends on the Distances between the respective transmit 39 or the respective receive 49 antennas the antenna networks 11, 12, 13, 14, 15. These are preferably the same size. Are these different, determine the required phase positions for generation or education and Alignment of the antenna main beam direction according to known algorithms.
  • FIG. 2 shows an example of an antenna main beam direction 70. With the help of described device can this in other pivot positions 71, 72, 73, 74, 75, 76th be moved.
  • system controller 3 is provided for switching the control signals from Send on receive and vice versa as well as switch-on and switch-off signals for amplifier modules (not shown). It can also be provided that the system control 3 Send or receive frequency selection by specifying or changing the second Oscillator 9 controls the fundamental frequency.
  • switches 8b and 9b With the help of the switches 8b and 9b, between the modes of transmission and reception switched. Alternatively, however, if different for sending and receiving Frequencies are used (frequency diversity), parallel transmission and reception be provided. Two first 8 or second 9 oscillators can then be provided.
  • the modulator 5 and the demodulator 6 can for the data to be sent or received all common types of modulation, such as AM (amplitude modulation), FM (Frequency Modulation), PM (Phase Modulation) or Spread Spectrum.
  • AM amplitude modulation
  • FM Frequency Modulation
  • PM Phase Modulation
  • Spread Spectrum amplitude modulation
  • the entire circuit of the antenna networks 11, 12, 13, 14, 15, possibly also including the antennas 39, 49 is expediently on a common or PCB 80 common to at least one transmitting or receiving branch (FIG. 3) housed, which can be designed as a multilayer.
  • the transmitting antennas can also be used 39 and receiving antennas 49 can be accommodated on this common plate, the antennas e.g. Patch or slot antennas can be and the active components are implemented in SMD or chip technology.
  • the transmitting 39 and receiving antennas 49 can be parts of the Aircraft structure.
  • this arrangement results in particular in the Advantage that the radar backscatter cross section and the aerodynamic conditions are not or change only relatively little.
  • each antenna field of the antenna networks 11, 12, 13, 14, 15 for the transmitting (21) and the receiving branch (22) also with only one antenna field be realized.
  • Such an antenna field would then have a corresponding one for each antenna Switches or a circulator can be assigned to these antennas in case of sending the corresponding functions of the transmission branch 21 and in the event of reception to assign corresponding functions of the receiving branch 22.
  • the antenna networks or assemblies 11, 12, 13, 14, 15 can be in aircraft structural parts be integrated.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Einrichtung zur Erzeugung und automatischen Nachführung eines zur Nutzdaten-Übertragung an Flugzeugen vorgesehenen Antennen-Diagramms bei Flugmanövern in der Elevationsrichtung, bei dem das Antennen-Diagramm von mehreren nach einem Sollwinkel ausgerichteten Antennen mit zugeordneten Antennen-Netzwerken gebildet wird, um Breitband-Daten auf einer bei Veränderung der Elevationsrichtung konstanten Übertragungs-Frequenz zu senden und zu empfangen. <IMAGE>

Description

Die Erfindung betrifft eine Einrichtung zur Erzeugung und automatischen Nachführung von Antennen-Diagrammen in der Elevationsrichtung für Luftfahrzeuge, wie Flugzeuge oder erdgebundene Flugkörper, bei Flugmanövern zum Zwecke der Datenübertragung, insbesondere der Breitband-Datenübertragung.
Die Breitband-Datenübertragung zwischen sich relativ zueinander bewegenden Flugzeugen muß im höheren Frequenzbereich, also im Mikrowellenbereich, erfolgen, da nur dort ausreichend viele Übertragungskanäle mit größerer Bandbreite zur Verfügung stehen. Da aber die Freiraumdämpfung mit wachsender Frequenz immer höher wird und die Sendeleistung nicht beliebig erhöht werden kann, müssen Antennen mit höherem Gewinn, also gerichtete Antennen eingesetzt werden.
Zur schnellen Nachführung von Richtantennen sind sogenannte Phased-Array-Antennen im Bereich der Radar-Technik bekannt. Der Nachteil dieser üblichen Phased-Array-Antennen ist, daß sie zur Ausrichtung der Antennen-Diagramme Phasenschieber im Sende-Frequenzbereich verwenden, die vor allem bei höheren Frequenzen eine beträchtliche Dämpfung in den Phasen-Netzwerken bewirken und aufgrund der Anforderungen an die Phasenstabilität verhältnismäßig aufwendig sind.
In der Druckschrift US 5 493 306 ist eine phasengesteuerte Antenne für automatisches Scannen mittels Nachführung eines Antennendiagramms über einen vorgegebenen Winkelbereich beschrieben. Hierbei werden phasenschiebende Verzögerungsleitungen in der Zwischenfrequenzebene angeordnet und die Zwischenfrequenz wird in den einzelnen Zweigen mit dem Signal eines Lokaloszillators in je einem Mischer gemischt, bevor das hochfrequente Signal den einzelnen Antennen des Arrays zugeleitet wird. Die Phasenverschiebung zur Nachführung des Antennendiagramms erfolgt nach dem Prinzip der Butler-Matrix, in deren Netzwerk die Verzögerungsleitungen eingebunden sind.
Weiterhin ist aus der Druckschrift DE 197 37 136 A1 eine Antenne mit azimuthal steuerbarer Richtwirkung für die Kommunikation zwischen einer ortsfesten und mehreren mobilen Stationen bekannt geworden, bei der eine Einstellung der Phase im Zwischenfrequenzbereich erfolgt, wobei vor und hinter dem Schaltungsteil zur Phaseneinstellung eine Frequenzumsetzung mittels je eines Oszillators und eines Mischers erfolgt.
Für den Einsatz bei Radargeräten ist das sogenannte Frequency-Scanning-Verfahren bekannt, das auf einstellbare Phasenschieber verzichtet und daher billiger ist. Bei diesem Frequency-Scanning-Verfahren werden die einzelnen Antennen eines Arrays mit unterschiedlich langen Zuleitungen gespeist, so daß sich in Abhängigkeit der eingespeisten Frequenz unterschiedliche Phasenlagen an den einzelnen Antennen einstellen, woraus sich unterschiedliche Abstrahlwinkel ergeben. Dieses Verfahren ist für die Datenübertragung leider unbrauchbar, da sich die Sendefrequenz je nach der erforderlichen Abstrahlrichtung verändert, so daß der Empfang mit einer Gegenstelle nur schwer zu realisieren ist und eine Antennen-Nachführung nach demselben Prinzip völlig unmöglich ist.
Durch die Relativbewegung zwischen den Flugzeugen ist auch eine Nachführung im Azimuth-Bereich erforderlich, wobei die erforderliche Nachführungsrate relativ gering (einige Sekunden) ist. Demgegenüber muß die erforderliche Nachführungsrate zur Ausrichtung der Antennen im Elevations-Bereich auf Grund der möglichen Flugmanöver vor allem durch die üblicherweise sich schnell ändernden Fluglagen in der Rollachse der Flugzeuge sehr viel höher sein. Die Festlegung des jeweiligen Elevationswinkels erfolgt in Abhängigkeit der Lagewinkel, d.h. dem Roll- und dem Nickwinkel des Flugzeuges, und des Azimuthwinkels zur Gegenstelle.
Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung zu schaffen, mit der eine Nutzdaten-Übertragung zwischen Flugzeugen während Flugmanövern und eine schnelle Nachführung von Antennen-Diagrammen in der Elevationsrichtung bei geringem funktionalem und gerätetechnischem Aufwand möglich ist.
Ein Vorteil der Erfindung ist, daß die Datenübertragung unabhängig vom Winkel, unter dem sich die miteinander kommunizierenden Flugzeuge zueinander befinden, bei konstanter Träger-Frequenz erfolgen kann. Ein weiterer Vorteil ist, daß die Phasenverschiebung, die zur Ausrichtung der Antennen-Diagramme der beteiligten Teil-Antennen erforderlich ist, auf niedrigen Frequenzen erzeugt wird, so daß mit dem Einsatz verhältnismäßig preisgünstiger Bauteile für die Sende- und Empfangseinrichtungen ohne Aufwand eine hohe Stabilität der Nachführung erreicht werden kann.
Der verbleibende kritische Teil der Schaltung im hohem Frequenzbereich ist weitgehend unproblematisch hinsichtlich der Übertragungs-Qualität, da sich die Antennen-Baugruppe mit den Funktionen zur Erzeugung und Nachführung der Antennen-Diagramme in unmittelbarer Nähe des Antennen-Einspeise-punkts befindet und sich auf kleinsten Raum erstreckt. Somit sind die Zuleitungen äußerst kurz, daher für Phasenänderungen unempfindlich und praktisch dämpfungsfrei.
Ein weiterer Vorteil besteht in der Tatsache, daß für den Sendeteil keine teuere Endstufe mit hoher Leistung benötigt wird, sondern eine Anzahl kleiner preisgünstiger parallel geschalteter Sende-Verstärker geringer Leistung verwendet werden. Durch diese Parallelschaltung von mehreren Sende-Endstufen oder Antennen-Baugruppen erhöht sich zudem die Zuverlässigkeit der erfindungsgemäßen Vorrichtung.
Die Aufgabe wird mit den Merkmalen des Hauptanspruches gelöst. Alternative Ausführungsformen sind in den Unteransprüchen angegeben.
Im folgenden wird die Erfindung anhand der beigefügten Figuren 1, 2 und 3 beschrieben, die zeigen:
Fig. 1
ein Blockschaltbild, das schematisch den funktionalen Aufbau der erfindungsgemäßen Anordnung zur Erzeugung und Nachführung eines Antennen-Diagramms darstellt,
Fig. 2
ein Beispiel für die Gestalt eines von der Anordnung erzeugten Antennen-Diagramms in verschiedenen Diagramm-Schwenkpositionen und
Fig. 3
die Anordnung eines möglichen Antennenarrays in einer gemeinsamen Einheit.
Das in Fig. 1 gezeigte Blockschaltbild zeigt die erfindungsgemäße Anordnung 1 zur Erzeugung und Nachführung von Antennen-Diagrammen mit einer Systemsteuerung 3, einem Modulator 5, einem Demodulator 6 und einer Oszillatoreinheit 7, umfassend einen ersten 8 und einen zweiten 9 Oszillator, die zweckmäßigerweise zusammen in einem Modul ausgebildet sind. Diese speisen Netzwerke oder-Baugruppen 11, 12, 13, 14, 15, die einen Sendezweig 21 und einen Empfangszweig 22 umfassen.
Jeder Sendezweig 21 steht über eine Leitung 23 mit dem Modulator 5 und jeder Empfangszweig 22 mit einer Leitung 24 mit dem Demodulator 6 in Verbindung. Sowohl der erste Oszillator 8 als auch der zweite Oszillator 9 sind mit der Systemsteuerung 3 verbunden, über die die Anordnung der Figur 1 mit anderen Flugzeugsystemen, insbesondere dem Lagereferenzsystem 25 des Flugzeugs verbunden ist. Der Modulator 5 dient dazu, hochfrequente Signale mit Nutzdaten zu beaufschlagen. Dementsprechend setzt der Demodulator 6 empfangene modulierte hochfrequente Signale in digitale Signale (Nutzdaten) um, die dann weiterverarbeitet werden können.
Jeder Sendezweig 21 weist auf der Seite des Modulators 5 einen ersten Mischer 31 auf, der von dem ersten Oszillator 8 empfangene hochfrequente Signale mit den vom Modulator 5 kommenden Signalen mischt. Dadurch wird das vom Modulator 5 kommende Signal, das eine Zwischenfrequenz darstellt, in ein Signal mit einer um die Ausrichtungsfrequenz unterschiedlichen Frequenz umgesetzt. Von dem Modulator 5 aus gesehen ist dem ersten Mischer 31 eine Verzögerungsleitung 33a nachgeschaltet, die das Signal durch die Sende-Ausrichtungsfrequenz mit einer Phasenverschiebung beaufschlagt und das zu einem zweiten Mischer 35 geführt wird. Der zweite Mischer 35 mischt das von der Verzögerungsleitung 33a kommende Signal mit dem von dem zweiten Oszillator 9 erzeugten Signal. Dadurch wird das von der Verzögerungsleitung 33a kommende Signal in ein Signal mit der Sende-Übertragungsfrequenz umgesetzt. Dieses Signal wird zu einem Sende-Endverstärker oder einer Sende-Endstufe 37 geführt, das mit einer Sendeantenne 39 in Verbindung steht. Vorzugsweise sind die Sendezweige 21 hardwaremäßig auf einer Antennen-Baugruppe, also z.B. auf einer Platine integriert.
In ähnlicher Weise umfaßt der Empfangszweig 22 eine Empfangsantenne 49 und weiterhin von dieser aus gesehen einen Empfangsverstärker 47, einen ersten Mischer 45, eine Verzögerungsleitung 43a, 43b, 43c, 43d, 43e und einen zweiten Mischer 41 auf. Dabei ist der erste Mischer 45 mit dem zweiten Oszillator 9 und der zweite Mischer 41 mit dem ersten Oszillator 8 verbunden. Auf diese Weise wird das von der Empfangsantenne 49 kommende Signal mit der Empfangs-Übertragungsfrequenz mit dem vom zweiten Oszillator 9 erzeugten Signal gemischt und zu einem Signal mit einer Sende-Ausrichtungs-Frequenz verändert. Dieses Signal wird durch die Verzögerungsleitung 43a, 43b, 43c, 43d, 43e mit einer Phasenverschiebung beaufschlagt, dem zweiten Mischer 41 zugeführt und durch diesen mit einem von dem ersten Oszillator 8 kommenden Signal gemischt, so daß das Signal eine konstante Sende-Zwischenfrequenz erhält. Der Schalter 8b und der Schalter 9b , die durch die Systemsteuerung geschaltet werden, sorgen dafür, daß für die Sendephase die Mischer 31 bzw. 35 des Sendezweigs und für die Empfangsphase die Mischer 41 bzw. 45 des Empfangszweigs mit Oszillatorsignalen versorgt werden.
Die Empfangs-Übertragungsfrequenz ist dabei vorzugsweise gleich der Sende-Übertragungsfrequenz und liegt beispielsweise im Bereich von 10 GHz. Die Sende-Ausrichtungsfrequenz bzw. die Empfangs-Ausrichtungsfrequenz ist jedoch geringer als die Sende-Übertragungsfrequenz bzw. die Empfangs-Übertragungsfrequenz, die beide vorzugsweise im Bereich von 1 GHz liegen.
In der Ausrichtungsanordnung 1 sind parallel zum beschriebenen Antennen-Netzwerk 11 weitere Antennen-Netzwerke 12, 13, 14, 15 angeordnet. Diese weisen im wesentlichen dieselben Komponenten wie das beschriebene Antennen-Netzwerk 11 auf. In entsprechender Weise wurden Bauteile mit derselben Funktion in den verschiedenen parallel zueinander arbeitenden Antennen-Netzwerken mit denselben Bezugszeichen versehen. Die Antennen-Netzwerke 12, 13, 14, 15 weisen also in ihrem Sendezweig 21 jeweils einen ersten Mischer 31, einen zweiten Mischer 35, einen Sende-Endverstärker oder Sende-Endstufe 37 und eine Sendeantenne 39 und in ihrem Empfangszweig 22 jeweils einen ersten Mischer 45, einen zweiten Mischer 41, einen Empfangsverstärker 47 und eine Empfangsantenne 49 auf.
Die Verzögerungsleitungen 33a, 33b, 33c, 33d, 33e bzw. 43a, 43b, 43c, 43d, 43e im jeweiligen Antennen-Netzwerk 11, 12, 13, 14, 15 weisen jedoch verschiedene Längen auf. Die Längen der Verzögerungsleitungen sind so vorgesehen, daß in der Mittenstellung oder einer anderen definierten Stellung des Antennen-Diagramms einer Antenne bzw. eines Antennen-Netzwerks 11, 12, 13, 14, 15 die in den Verzögerungsleitungen bewirkten Phasenlagen sich relativ zueinander um ein Vielfaches der Wellenlänge unterscheiden. So weist das Antennen-Netzwerk 12 in seinem Sendezweig 21 eine Verzögerungsleitung 33b und in seinem Empfangszweig 22 eine Verzögerungsleitung 43b auf. Analog sind im Antennen-Netzwerk 13 die Verzögerungsleitungen 33c bzw. 43c, im Antennen-Netzwerk 14 die Verzögerungsleitungen 33d bzw. 43d und im Antennen-Netzwerk 15 die Verzögerungsleitungen 33e bzw. 43e vorgesehen. Dabei sind die Verzögerungsleitungen 33b und 43b so beschaffen, daß in ihnen eine Phasenverschiebung auftritt, die sich um mindestens eine Wellenlänge von der in den Verzögerungsleitungen 33a bzw. 43a auftretenden Phasenverschiebungen unterscheidet. Im Vergleich zu den in der Verzögerungsleitung 33a oder 43a auftretenden Phasenverschiebungen tritt in den Verzögerungsleitungen 33c bzw. 43c eine um die mindestens zweifache Wellenlänge größere Phasenverschiebung, in den Verzögerungsleitungen 33d bzw. 43d eine um die mindestens dreifache Wellenlänge größere Phasenverschiebung und in den Verzögerungsleitungen 33e bzw. 43e eine um die mindestens vierfache Wellenlänge größere Phasenverschiebung auf. Durch die in den Verzögerungsleitungen der verschiedenen Antennen-Netzwerke 11, 12, 13, 14, 15 auftretenden, voneinander unterschiedlichen Phasenverzögerungen wird erreicht, daß das jeweilige Antennen-Diagramm der Sende-Antennen 39 bzw. der Empfangs-Antennen 49 in einem bestimmten Winkel zu einer Referenz- oder Nullstellung ausgerichtet ist, so daß die Abstrahlung immer in horizontaler Richtung erfolgt. Wegen der relativ großen Entfernung der Gegenstelle im Vergleich zu den Höhenunterschieden der jeweils kommunizierenden Flugzeuge ist eine Korrektur aufgrund unterschiedlicher Höhen der Flugzeuge nicht erforderlich. Dabei wird unter der horizontalen Richtung eine Richtung verstanden, die parallel zur Erdoberfläche verläuft. Die Ausrichtung bzw. Veränderung der Antennen-Diagramme erfolgt durch die vektorielle Addition der einzelnen Signale jeder Sende-Antenne 39 bzw. jeder Empfangs-Antenne 49, so daß sich in entsprechender Weise die Signal-Pegel der verschiedenen Antennen-Netzwerke 11, 12, 13, 14, 15 beim Empfang bzw. Senden in einer bestimmten Sende- bzw. Empfangs-Richtung vektoriell auf-addieren. Da die Phasenverschiebung in den verschiedenen Antennen-Netzwerken 11, 12, 13, 14, 15 durch die unterschiedlich langen Verzögerungsleitungen 33a, 33b, 33c, 33d, 33e bzw. 43a, 43b, 43c, 43d, 43e im Zusammenwirken mit der vom ersten Oszillator 8 erzeugten Speisefrequenzen bewirkt wird, kann durch die Veränderung dieser Speisefrequenzen des ersten Oszillators 8, die über den jeweils ersten Mischer 31 mit dem vom Modulator 5 kommenden Signal überlagert werden, die Ausbildung der Hauptstrahlrichtung der Antenne in einer definierten Richtung bewirkt werden. Diese Richtung ist die Richtung zum Flugzeug, das die zu sendenden Nutzdaten bzw. Signale empfangen soll.
Bei der Veränderung der relativen Lage der beiden miteinander kommunizierenden Flugzeuge aufgrund von Flugmanövern wird der sich jeweils ergebende Sollwinkel der Antennen-Hauptstrahlrichtung durch die Systemsteuerung 3 oder durch ein diesem zugeordneten System ermittelt und daraus die Frequenz des ersten Oszillators 8 so verändert, daß eine Ausrichtung der Antennen-Hauptstrahlrichtung in der durch den Sollwinkel gegebenen Sollrichtung bewirkt wird. Der Sollwinkel wird dabei vorzugsweise durch das Flugzeug-Referenzsystem, z.B. das Inertialsystem, ermittelt und mit dem Azimuthwinkel zur Gegenstelle in den Elevationswinkel umgerechnet.
Der zweite Oszillator 9 im Sendeteil 21 bewirkt, daß das aus der jeweiligen Verzögerungsleitung 33a, 33b, 33c, 33d, 33e kommende Signal letztendlich auf die konstante Sende-Übertragungsfrequenz umgesetzt wird. Die vom ersten Oszillator 8 über den jeweils ersten Mischer 31 zur Ausrichtung der jeweiligen Antennen-Diagramme eingebrachte Frequenz-Abweichung wird also durch die Subtraktion einer gleichen Frequenz-Abweichung durch den zweiten Oszillator 9 und den jeweils zweiten Mischer 35 eliminiert. Auf diese Weise senden die jeweiligen Sende-Antennen 39 die betreffenden Daten mit derselben Übertragungsfrequenz, unabhängig von der Ausrichtung der zu den jeweiligen Sende-Antennen 39 gehörenden Antennen-Diagramme. Dabei bestimmt die vom zweiten Oszillator 9 eingebrachte Grundfrequenz im wesentlichen die Sende-Übertragungsfrequenz der Sende-Antennen 39, da die Frequenz des zweiten Oszillators 9 groß gegenüber der Frequenz des ersten Oszillators 8 und der Frequenz des vom Modulator 5 kommenden Signals 23 ist. Bei der Mischung der entsprechenden Signale durch die Mischer 31, 35 im Sendeteil 21 sind die Schalter 8b, 9b so einzustellen, daß die Signale des ersten Oszillators 8 zu dem zugeordneten ersten Mischer 31 bzw. die Signale des zweiten Oszillators 9 zu dem jeweils zugeschalteten zweiten Mischer 35 gelangen.
Im Empfangsbetrieb findet eine Überlagerung der im jeweiligen Empfangsteil 22 auftretenden Empfangssignale zum einen über den zweiten Oszillator 9 und des diesem jeweils zugeordneten ersten Mischer 45 sowie über den ersten Oszillator 8 in Verbindung mit dem diesen zugeordneten zweiten Mischer 41 statt. Hierzu sind die Schalter 8b, 9b so einzustellen, daß die Signale des ersten Oszillators 8 zu den zugeordneten zweiten Mischern 41 bzw. die Signale des zweiten Oszillators 9 zu den jeweils zugeschalteten ersten Mischern 45 gelangen. Die Wirkung der in die jeweiligen Empfangszweige 22 über den ersten 8 und zweiten Oszillator 9 eingebrachten Phasenverschiebungen ist umgekehrt zu der in den jeweiligen Sendezweigen 21 vorgesehenen Wirkungsweise. Das von der Empfangs-Antenne 49 kommende und vom Empfangsverstärker 47 verstärkte Signal wird mittels des zweiten Oszillators 9 bei einer entsprechenden Stellung des Schalters 9b und mittels des jeweiligen ersten Mischers 45 mit einem Signal überlagert, das sich aus einer Grundfrequenz und einer für die Diagramm-Schwenkung erforderlichen variablen Frequenz bildet. Dadurch entsteht ein Signal mit einer Empfangs-Ausrichtungsfrequenz, das durch den zweiten Mischer 41 auf eine Zwischen-Frequenz gebracht wird. Das Signal mit der Zwischen-Frequenz wird über die Leitung 24 dem Demodulator 6 zugeführt. Durch die vektorielle Addition der nach der zweimaligen Mischung erhaltenen Empfangssignale 24 entsteht wie beim Sendefall durch unterschiedliche Phasenverschiebung die Diagrammschwenkung. Von den Empfangs-Antennen 49 aus gesehen werden die Signale hinter den jeweiligen ersten Mischern 45 über die Verzögerungsleitungen 43a, 43b, 43c, 43d, 43e geführt, um die durch diese Verzögerungsleitungen entstehende Phasenverzögerung in eine Diagramm-Änderung umzuwandeln, die den Empfang von Signalen der Gegenstelle aus der horizontalen Richtung bewerkstelligen, d.h. aus einer im wesentlichen parallel zur Erdoberfläche verlaufenden Richtung. Wie für den Sendefall wird durch die zweimalige Mischung im ersten Mischer 45 und im zweiten Mischer 41 die Empfangsfrequenz auf die in der Leitung 24 vorliegende konstante Zwischen-Frequenz umgesetzt und dem Demodulator 6 zugeführt.
Die Systemsteuerung 3 berechnet den Elevationswinkel aus den Lagewinkeln, d.h. den Roll-, Nick- und Azimuth-Winkeln, und setzt diese in die erforderliche Frequenzablage zur Erzeugung der zusammen mit den Verzögerungsleitungen 33a, 33b, 33c, 33d, 33e bzw. 43a, 43b, 43c, 43d, 43e bewirkten Phasenverschiebungen bei der ebenfalls bewirkten Sende- bzw. Empfangs-Ausrichtungs-frequenz um, indem sie die Ansteuersignale für den ersten Oszillator 8 bzw. den zweiten Oszillator 9 erzeugt. Die Phasenverschiebungen, die zwischen den Antennen-Netzwerken auftreten, sind so vorgesehen, daß sich für das Senden bzw. das Empfangen eine Antennen-Hauptstrahlrichtung der Ausrichtungs-Anordnung 1 ergibt, die einen Sollwinkel relativ zu einer flugzeugfesten Bezugsachse hat, d.h. bei jeder Fluglage zur Gegenstelle ausgerichtet ist. Die dazu in jedem Antennen-Netzwerk vorzusehende Phasenverschiebung hängt dabei von den Abständen zwischen den jeweiligen Sende 39 - bzw. den jeweiligen Empfangs 49 - Antennen der Antennen-Netzwerke 11, 12, 13, 14, 15 ab. Diese sind vorzugsweise gleich groß. Sind diese unterschiedlich, ermitteln sich die erforderlichen Phasenlagen zur Erzeugung oder Bildung und Ausrichtung der Antennen-Hauptstrahlrichtung nach bekannten Algorithmen.
Durch die zweiten Mischer 35 im jeweiligen Sendezweig 21 und die ersten Mischer 45 im jeweiligen Empfangszweig 22 wird erreicht, daß die End-Frequenz oder Übertragungs-Frequenz konstant bleibt, auch wenn sich die Ausrichtung der Antennen-Hauptstrahlrichtung ändert. In der Figur 2 ist beispielhaft eine Antennen-Hauptstrahlrichtung 70 dargestellt. Mit Hilfe der beschriebenen Vorrichtung kann diese in andere Schwenkpositionen 71, 72, 73, 74, 75, 76 bewegt werden.
Weiterhin ist die Systemsteuerung 3 dazu vorgesehen, die Steuersignale zur Umschaltung von Senden auf Empfangen und umgekehrt sowie Ein- und Ausschaltsignale für Verstärkerbausteine (nicht gezeigt) zu erzeugen. Außerdem kann vorgesehen sein, daß die Systemsteuerung 3 die Sende- bzw. Empfangs-Frequenzwahl durch Festlegung bzw. Veränderung der vom zweiten Oszillator 9 erzeugten Grundfrequenz steuert.
Mit Hilfe der Schalter 8b bzw. 9b wird zwischen den Betriebsarten Senden und Empfangen umgeschaltet. Alternativ dazu kann jedoch, wenn für Senden und Empfangen unterschiedliche Frequenen benutzt werden (frequency diversity) auch ein paralleles Senden und Empfangen vorgesehen sein. Dabei können dann zwei erste 8 bzw. zweite 9 Oszillatoren vorgesehen sein.
Der Modulator 5 und der Demodulator 6 kann die zu sendenden bzw. empfangenen Daten für alle gebräuchlichen Modulationsarten, wie beispielsweise AM (Amplituden-Modulation), FM (Frequenz-Modulation), PM (Phasen-Modulation) oder Spread Spectrum, umsetzen.
Die gesamte Schaltung der Antennen-Netzwerke 11, 12, 13, 14, 15, möglicherweise auch einschließlich der Antennen 39, 49 ist zweckmäßigerweise auf einer gemeinsamen oder wenigstens pro Sende- oder Empfangszweig gemeinsamen Leiterplatte 80 (Figur 3) untergebracht, die als Multilayer ausgeführt sein kann. Weiterhin können auch die Sende-Antennen 39 und Empfangs-Antennen 49 auf dieser gemeinsamen Platte untergebracht sein, wobei die Antennen dann z.B. Patch- oder Schlitzantennen sein können und die aktiven Bauteile in SMD- oder Chip-Technik ausgeführt sind.
Dadurch, daß für jede Antenne ein Sende- bzw. Empfangs- Netzwerk und/oder Vorverstärkereingangsstufe vorhanden ist, ist die Ausfallsicherheit der Ausrichtungsanordnung 1 hoch. Vor allem wird diese mit geringem funktionalem Geräte-Aufwand erreicht.
Durch das zweimalige Mischen der Abstrahlungs- bzw. Empfangsfrequenz mit den durch den ersten 8 und zweiten Oszillator 9 erzeugten Signale wird erreicht, daß die Phasenverschiebung in einem leicht beherrschbaren tieferen Frequenzbereich und somit bei geringerer Leistung erfolgt. Da sich die Antennen-Netzwerke 11, 12, 13, 14, 15 direkt am Einspeisepunkt der jeweiligen Sende- 39 bzw. Empfangs- 49 Antenne befinden, sind die Zuleitungen äußerst kurz und somit für Phasenänderungen unempfindlich und praktisch dämpfungsfrei. Ein weiterer Vorteil besteht darin, daß für die Sendezweige 21 keine teueren Endstufen mit hoher Leistung benötigt werden, sondern nur eine Anzahl kleiner, parallel geschalteter und preiswerter Verstärkerbausteine verwendet werden. Durch diese Parallelschaltung von mehreren Antennen-Netzwerken wird die Ausfallsicherheit erhöht. Dadurch können mit geringem Aufwand die herrschenden Anforderungen leicht erreicht werden.
In einer weiteren Ausführungsforrn können die Sende- 39 und Empfangs-Antennen 49 Teile der Flugzeugstruktur sein. Bei Flugzeugen ergibt sich durch diese Anordnung insbesondere der Vorteil, daß sich der Radar-Rückstreu-querschnitt und die aerodynamischen Verhältnisse nicht oder nur verhältnismäßig gering verändern.
In einer weiteren Ausführungsform kann jedes Antennenfeld der Antennen-Netzwerke 11, 12, 13, 14, 15 für den Sende- (21) und den Empfangszweig (22) auch mit nur einem Antennenfeld realisiert sein. Einem solchen Antennenfeld müßte dann je Antenne ein entsprechender Umschalter oder ein Zirkulator zugeordnet sein, um diese Antennen für den Fall des Sendens die entsprechenden Funktionen des Sendezweigs 21 und für den Fall des Empfangs die entsprechenden Funktionen des Empfangszweigs 22 zuzuordnen.
Die Antennen-Netzwerke oder-Baugruppen 11, 12, 13, 14, 15 können in Flugzeug-Strukturteilen integriert sein.

Claims (5)

  1. Einrichtung zur Erzeugung und automatischen Nachführung des Antennen-Diagramms in der Elevationsrichtung bei Flugmanövern zum Zwecke der Breitband-Datenübertragung zwischen Luftfahrzeugen,
    bei der eine Arrayantenne aus mehreren Antennen (39, 49) mit zugeordneten Speisenetzwerken (11, 12, 13, 14, 15) mit jeweils einem Sende- und jeweils einem Empfangszweig (21, 22) gebildet wird und das Antennen-Diagramm mittels des aus den Lagewinkeln des Luftfahrzeugs berechneten Steuersignals (3) in Elevationsrichtung so nachgeführt wird, daß die Abstrahl- oder Empfangsrichtung immer in horizontaler Richtung zeigt,
    bei der die von den Antennen (39, 49) zu sendenden und zu empfangenden Signale zur Erzeugung des Antennen-Diagramms in jeder Antenne einer Phasenverschiebung unterworfen werden,
    bei der die Phasenverschiebungen zwischen den einzelnen Antennen mittels jeweils einer Antenne zugeordneten Zuleitungen erreicht werden, die als Verzögerungsleitungen (33a,.., 33e, 43a,.., 43e) ausgebildet sind, die sich voneinander jeweils um mindestens eine oder um jeweils ein Vielfaches einer Wellenlänge unterscheiden, so daß sich bei Frequenzen, die von der Mittenfrequenz abweichen, für jede Antenne unterschiedliche Phasenlagen ergeben,
    bei der sich die Verzögerungsleitungen (33a, 33b, 33c, 33d, 33e; 43a, 43b, 43c, 43d, 43e) zur Erzeugung der Phasenverschiebungen zwischen jeweils einem ersten (31, 45) und einem zweiten (35, 41) Mischer befinden,
    bei der die Mischer (31,45) durch je einen ersten (8) und einen zweiten (9) Oszillator angesteuert werden, deren Frequenz mittels des aus den Lagewinkeln des Luftfahrzeugs berechneten Steuersignals (3) so gesteuert werden, daß die Signalfrequenz in den Verzögerungsleitungen (33a, 33b, 33c, 33d, 33e; 43a, 43b, 43c, 43d, 43e) derart verändert wird, daß sich aus den Phasenverschiebungen für eine dem Elevationswinkel entsprechende Diagrammschwenkung einstellt, wobei die Erzeugung der Phasenverschiebungen in einem im Vergleich zur Übertragungsfrequenz tieferen Frequenzbereich erfolgt und eine konstante Übertragungsfrequenz durch den zweiten Mischer (35; 41) durch Abziehen einer der Stellgröße entsprechende Frequenz erreicht wird,
    und bei der das Steuersignal (3) aus den Roll-, Nick- und Azimuth-Winkeln der Fluglage des Luftfahrzeugs zur Gegenstelle berechnet wird.
  2. Einrichtung zur Erzeugung und automatischen Nachführung des Antennen-Diagramms in der Elevationsrichtung für Luftfahrzeuge nach Anspruch 1, dadurch gekennzeichnet, daß die Antennen (39, 49) des Sendezweigs (21) und des Empfangszweigs (22) durch je eine gemeinsamr Antenne ersetzt wird, die mit den anderen Speisenetzwerken (11, 12, 13, 14, 15) durch einen Schalter oder einen Zirkulator verbunden ist.
  3. Einrichtung zur Erzeugung und automatischen Nachführung des Antennen-Diagramms in der Elevationsrichtung für Luftfahrzeuge nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Speisenetzwerke (11, 12, 13, 14, 15) zwei Einheiten durch die Integration der Sendezweige (21) und der Empfangszweige (22) auf insgesamt zwei Leiterplatten bilden.
  4. Einrichtung zur Erzeugung und automatischen Nachführung des Antennen-Diagramms in der Elevationsrichtung für Luftfahrzeuge nach Anspruch 1 oder 2 dadurch gekennzeichnet, daß die Speisenetzwerke (11, 12, 13, 14, 15) eine einzige Einheit durch die Integration auf einer Leiterplatte bilden.
  5. Einrichtung zur Erzeugung und automatischen Nachführung des Antennen-Diagramms in der Elevationsrichtung für Luftfahrzeuge nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß die Antennennetzwerke (11, 12, 13, 14, 15) in Flugzeug-Strukturteilen integriert sind.
EP99122607A 1998-11-23 1999-11-13 Einrichtung zur Erzeugung und automatischen Nachführung von Antennen-Diagrammen in der Elevationsrichtung für Luftfahrzeuge bei Flugmanövern zum Zwecke der Datenübertragung Expired - Lifetime EP1005105B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853933 1998-11-23
DE19853933A DE19853933B4 (de) 1998-11-23 1998-11-23 Verfahren zur Erzeugung und automatischen Nachführung von Antennen-Diagrammen in der Elevationsrichtung für Luftfahrzeuge bei Flugmanövern zum Zwecke der Datenübertragung

Publications (3)

Publication Number Publication Date
EP1005105A2 true EP1005105A2 (de) 2000-05-31
EP1005105A3 EP1005105A3 (de) 2002-01-02
EP1005105B1 EP1005105B1 (de) 2005-01-12

Family

ID=7888685

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99122607A Expired - Lifetime EP1005105B1 (de) 1998-11-23 1999-11-13 Einrichtung zur Erzeugung und automatischen Nachführung von Antennen-Diagrammen in der Elevationsrichtung für Luftfahrzeuge bei Flugmanövern zum Zwecke der Datenübertragung

Country Status (3)

Country Link
EP (1) EP1005105B1 (de)
AT (1) ATE287128T1 (de)
DE (2) DE19853933B4 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887706A (zh) * 2017-03-17 2017-06-23 王家齐 全自动卫星跟踪通信天线电子极化跟踪方法和装置
CN114725682A (zh) * 2022-04-19 2022-07-08 广州程星通信科技有限公司 一种相控阵波束指向设计方法、系统、装置及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1499848B1 (de) 2002-04-27 2010-04-07 EADS Deutschland GmbH Verfahren zum datenaustausch zwischen militärischen flugzeugen und vorrichtung zur durchführung dieses verfahrens

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766558A (en) * 1971-09-17 1973-10-16 Itt Raster scan antenna
US3833904A (en) * 1973-02-05 1974-09-03 Hughes Aircraft Co Airborne switched array radar system
US4731614A (en) * 1986-08-11 1988-03-15 Crane Patrick E Phased array scanning system
EP0731523A2 (de) * 1995-03-10 1996-09-11 Space Systems / Loral, Inc. System und Verfahren zum Korrigieren der Lagerichtungsfehler für eine Raumschiffsantenne

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493306A (en) * 1987-08-28 1996-02-20 Eaton Corporation Phased array antenna system to produce wide-open coverage of a wide angular section with high directive gain and moderate capability to resolve multiple signals
US5353031A (en) * 1993-07-23 1994-10-04 Itt Corporation Integrated module controller
JP3204111B2 (ja) * 1996-08-28 2001-09-04 松下電器産業株式会社 指向性制御アンテナ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766558A (en) * 1971-09-17 1973-10-16 Itt Raster scan antenna
US3833904A (en) * 1973-02-05 1974-09-03 Hughes Aircraft Co Airborne switched array radar system
US4731614A (en) * 1986-08-11 1988-03-15 Crane Patrick E Phased array scanning system
EP0731523A2 (de) * 1995-03-10 1996-09-11 Space Systems / Loral, Inc. System und Verfahren zum Korrigieren der Lagerichtungsfehler für eine Raumschiffsantenne

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106887706A (zh) * 2017-03-17 2017-06-23 王家齐 全自动卫星跟踪通信天线电子极化跟踪方法和装置
CN106887706B (zh) * 2017-03-17 2020-06-30 王家齐 全自动卫星跟踪通信天线电子极化跟踪方法和装置
CN114725682A (zh) * 2022-04-19 2022-07-08 广州程星通信科技有限公司 一种相控阵波束指向设计方法、系统、装置及存储介质

Also Published As

Publication number Publication date
DE59911440D1 (de) 2005-02-17
DE19853933A1 (de) 2000-06-08
DE19853933B4 (de) 2004-04-29
EP1005105B1 (de) 2005-01-12
EP1005105A3 (de) 2002-01-02
ATE287128T1 (de) 2005-01-15

Similar Documents

Publication Publication Date Title
DE60212682T2 (de) Antennensystem
DE60221150T2 (de) Antennensystem
DE102013105809B4 (de) Multifunktionale Radaranordnung
DE112006003644B4 (de) Radarvorrichtung
EP0636251B1 (de) Verfahren zur überwachung eines gebietes und anordnung zur durchführung des verfahrens
DE112019006801T5 (de) Antennenvorrichtung und Radarvorrichtung
DE69625949T2 (de) Gruppenantennenvorrichtung
EP2965382B1 (de) Antennenanordnung mit veränderlicher richtcharakteristik
EP2862235A1 (de) Antennenanordnung und verfahren
DE2812575C2 (de) Phasengesteuertes Antennenfeld
DE60225453T2 (de) Konforme, zweidimensionale elektronisch gesteuerte antenne mit butlermatrix und elektronisch gesteuerter linsengruppe (esa)
EP3161903B1 (de) Antennenvorrichtung mit einstellbarer abstrahlcharakteristik und verfahren zum betreiben einer antennenvorrichtung
DE4206797B4 (de) Verfahren zum Betreiben eines Radarantennensystems und Radarantennensystem
DE1791252C3 (de) Richtpeilsystem zur aktiven und passiven Ortung bestehend aus einer Mehrzahl von Antennenelementen. Ausscheidung aus: 1441757
DE102004051276A1 (de) Radarsensor zur Ermittlung des Abstands und der Relativgeschwindigkeit von Objekten
DE19853933B4 (de) Verfahren zur Erzeugung und automatischen Nachführung von Antennen-Diagrammen in der Elevationsrichtung für Luftfahrzeuge bei Flugmanövern zum Zwecke der Datenübertragung
DE60130396T2 (de) Kostengünstiges Radar, insbesondere für hochauflösende Bilderzeugung
DE2342090A1 (de) Antenne mit variabler strahlbreite
DE2747391A1 (de) Vorrichtung zur hyperfrequenzfunkuebertragung mit einer gewissen zahl von umschaltbaren buendeln
DE3612300A1 (de) Phasensteuereinrichtung fuer von einer adaptiven antenne empfangene fernmeldesignale
DE4039898A1 (de) Radarantennen-Speiseanordnung
DE3106032C2 (de) Störsendereinrichtung
DE202018105377U1 (de) Multikanalradarsystem
DE2752680A1 (de) Richtantenne fuer sehr kurze elektromagnetische wellen
EP1005175B1 (de) Verfahren zur Antennen-Ausrichtung zur Datenübertragung zwischen sich bewegenden Fahrzeugen und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS DEUTSCHLAND GMBH

17P Request for examination filed

Effective date: 20020418

17Q First examination report despatched

Effective date: 20020624

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050112

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050112

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59911440

Country of ref document: DE

Date of ref document: 20050217

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050423

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050407

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20051110

Year of fee payment: 7

Ref country code: DE

Payment date: 20051110

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051113

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20051114

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051121

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051130

ET Fr: translation filed
26N No opposition filed

Effective date: 20051013

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061130

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070601

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061113

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061113

BERE Be: lapsed

Owner name: EADS DEUTSCHLAND G.M.B.H.

Effective date: 20051130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050112

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071113